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METHODOLOGY ARTICLE Open Access

Parameter estimation in systems biology models
using spline approximation
Choujun Zhan*, Lam F Yeung*

Abstract

Background: Mathematical models for revealing the dynamics and interactions properties of biological systems

play an important role in computational systems biology. The inference of model parameter values from time-

course data can be considered as a “reverse engineering” process and is still one of the most challenging tasks.

Many parameter estimation methods have been developed but none of these methods is effective for all cases

and can overwhelm all other approaches. Instead, various methods have their advantages and disadvantages. It is

worth to develop parameter estimation methods which are robust against noise, efficient in computation and

flexible enough to meet different constraints.

Results: Two parameter estimation methods of combining spline theory with Linear Programming (LP) and

Nonlinear Programming (NLP) are developed. These methods remove the need for ODE solvers during the

identification process. Our analysis shows that the augmented cost function surfaces used in the two proposed

methods are smoother; which can ease the optima searching process and hence enhance the robustness and

speed of the search algorithm. Moreover, the cores of our algorithms are LP and NLP based, which are flexible and

consequently additional constraints can be embedded/removed easily. Eight system biology models are used for

testing the proposed approaches. Our results confirm that the proposed methods are both efficient and robust.

Conclusions: The proposed approaches have general application to identify unknown parameter values of a wide

range of systems biology models.

Background
In recent years, the rapid development of sophisticated

experiment tools in molecular biology allows the acqui-

sition of high qualitative time series data which can sig-

nificantly improve the ability of revealing the complex

dynamics and interactions of biological systems. Profit-

ing from the rapid technological advances, more and

more researchers from different disciplines can now uti-

lize such observation data to establish mechanism-based

models which can incorporate every possible detail and

functioning of biological systems [1]. One common

approach is to characterize the biological system with a

set of Ordinary Differential Equations (ODEs) [2-7].

Generally, there are two major aspects of building an

ODE model for a biological system from experimentally

measured time series: (1) to determine the structure of

the system through a set of suitable ODEs with

unknown parameters; (2) to determine the unknown

parameters of this ODE model. The identification of

these unknown parameter with fixed model structure

from observations is one of the central issues of compu-

tational systems biology [8]. This type of approach can

be considered as a “reverse engineering process” [9-11].

The parameter estimation problem is generally formu-

lated as an optimization problem that minimizes an

objective function which represents the fitness of the

model with respect to a set of experimental data

[8,12-17]. Two major optimization approaches are com-

monly adopted; the gradient-based nonlinear optimiza-

tion method and the evolutionary based method. Also,

simulations had shown that the simulated annealing

(SA) method can offer promising results [18]. In [19],

many deterministic and stochastic global optimization

(GO) methods for parameter estimation were further

compared using a three-step pathway model with noise

free data assumption; the best result was given by the

Stochastic Ranking Evolution Strategy (SRES) method.
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It is worth mentioning that, due to its simplicity in

implementation, evolutionary algorithms, such as genetic

algorithm and their variants, are extensively utilized for

identifying unknown parameters of systems biology

models [1,11,20-22]. However, most of these aforemen-

tioned approaches need a numerical ODE solver to per-

form the numerical integration for the underlining

differential equations. Studies have revealed that more

than 90% of the computation time is consumed in the

ODE solver during the identification process [19]. In

particular, for nonlinear dynamical systems with high-

parameter-dimension, one trial usually consumes tens of

hours or even days [10,20,21,23]. Furthermore, the con-

vergence property is aggravated by numerical integration

failure, which is a major problem in the optimization

process [11]. The computational burden can be relieved

by reformulating the system involving differential equa-

tions into a system of algebraic equations [12,15,17,24],

which can be classified as “decomposition approaches”.

These decomposition approaches are widely employed

in the parameter estimation of S-systems [7,25]. The

reliability of the decomposed methods depends on the

accuracy of the “smooth” estimated derivatives and the

states of the system. In practice, these data are subject

to significant observation noise. Without proper pre-

processing, the estimation faces the potential of the

overfitting problem and hence the estimation can devi-

ate badly from the “true” value [26,27]. Regularization

can be considered as a mathematical pre-processing on

the measured noisy data set and be used to control the

trade-off between the “roughness” of the solution and

the infidelity of the data [28]. Since we are dealing with

a known structured bio-system, the system model itself

possesses a physical inertia and can serve as physical

constraints which limit the system states within a set of

possible trajectories. In this paper, the over-fitting pro-

blem can be relieved by embedding the model dynamics,

the mass and energy balance constraints into our con-

strained optimization algorithms. Owing to the nonli-

nearity of systems biology models, the cost function to

be minimized is complex and has multiple local minima.

Minimization algorithms face the high possibility of get-

ting trapped at local optima. For these reasons, the para-

meter estimation problem is still a bottleneck and a

challenging task of computational analysis of systems

biology [1,11]. Until now, none of the parameter estima-

tion methods is effective in all cases and can overwhelm

all the other methods. Instead, various methods have

their advantages and disadvantages. Consequently, it is

worthy to develop acceptably “good enough” methods

within a given tolerance and time frame.

For practical purpose, some essential issues should be

taken into account when developing a parameter

estimation method: first, the method must be “efficient”

enough that a trial can be completed within a reason-

able computation time; second, for biological systems,

the observation data is often corrupted by high level of

noise, which complicates the objective function surface

and introduces unwanted additional local minima in the

search space [29]. Hence, the approach should be robust

subject to noise; third, it needs to be flexible enough for

adding/removing physical constraints, such as model

dynamics, the mass and energy balance constraints.

Furthermore, the representative cost function should

have less local minima so as to ease the optimization

algorithm in converging to the global minima. In this

paper, two parameter estimation methods of combining

spline theory [28] with Linear Programming (LP) and

Nonlinear Programming (NLP) are developed, respec-

tively. These methods remove the need for an ODE sol-

ver. Our analysis exhibits that the cost function surfaces

of the two proposed methods are smooth.

Moreover, the cores of our algorithms are LP and NLP

based, which are very flexible and hence additional con-

straints can be embeded/removed easily. Eight systems

biology models were used to test the proposed algorithms.

Experimental results show that the proposed methods are

both efficient and robust (see additional file 1 for details).

This paper is organized as follows: The preliminary pro-

blem formulation is given and the bottleneck of the problem

is highlighted in the next section. Then, two parameter esti-

mation methods surmounting those bottlenecks are pre-

sented. In section 3, two trials are given, a simple enzyme

kinetic model and the mammalian G1/S transition network

model, in order to illustrate the robustness and the effective-

ness of these two proposed methods (more models and trial

results are given in additional file 1 and 2). Finally, conclu-

sions and discussions are given in section 4.

Methods
Parameter estimation problem of systems biology models

Biological pathway dynamics can be modelled by the fol-

lowing continuous ODEs:

&x t f x t u t x t x

y t x t t

( ) ( ( ), ( ), ), ( ) ,

( ) ( ( )) ( ),

= =

= +

q

h

0 0

g
(1)

where x � Rn is the system’s state vector (for example

the concentrations of a process), θ � Rk is the system’s

parameter vector (for instance, the reaction rates), u(t) �

Rp is system’s input, y � Rm denotes the measured data

subject to a Gaussian white noise h(t) ~ N(0, s2), and x0
is the initial state. f(·) is a set of nonlinear transition

functions describing the dynamical properties of a biolo-

gical system. Here, g(·) represents a measurement func-

tion. If all the states can be measured, the observer g(·)

becomes an identity matrix. Otherwise, g(·) usually is a
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rectangular zero-one matrix with corresponding rows

deleted (represent the immeasurable states) from the

identity matrix In.

The parameter estimation problem of nonlinear dyna-

mical systems described in (1) can be formulated as a

nonlinear programming problem (NLP) P0 with differen-

tial-algebraic constraints:

P

i

0

10

1

0

: min ( ) ( ) ,

. .
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(2)

P0 minimizes a cost function that measures the fitness of

the model with respect to a given set of experiment data

subjecting to a set of constraints, where ̂ ∈ Rk is the set

of parameters to be estimated, ||·||l denotes the l-norm

with l > 0, x̂0 is the estimated initial condition, x̂ Rk∈ is

the estimated system states ( ˆ( | ˆ)x t j  represents the esti-

mated variable at time tj with parameter ̂ and initial con-

dition x̂0 ), wij are the weighting coefficients, ŷ is the

estimated measured data. In some applications, additional

constraints are introduced to impose special structural

properties of a given system; they can be implemented in

the form of the equality and inequality constraints Ceq and

Cineq (for instance the system performance and the mass

balance constraints). Finally, θ L and θ U are simple struc-

tural constraints such as the parameter’s upper/lower

bounds (they can be part of the Cineq).

For the NLP-P0 , the direct optimization methods, such

as Newton type methods and many GO methods, require

solving the nonlinear dynamic model (1) for x̂ in order

to compute the cost function. The common method to

estimate ̂( )x t i
and ˆ( )x t i is using ODE solvers, which

perform the numerical integration with ̂ fixed at each

iteration [19]. During the process of identification, the

integration has to be executed thousands, even millions

of times. That is the main reason more than 90% of the

time is consumed in the ODE solver [24] and the compu-

tation time spent on the P0 can be hours even days

[10,20]. Moreover, P0 is a nonlinear optimization pro-

blem subjecting to a set of linear and non-linear differen-

tial equation constraints. Hence, P0 is often multimodal

(non-convex) and has many local minima. In a high-

noise environment, the situation becomes more difficult.

Consequently, P0 requires further manipulation in order

to reduce the complexity so as to relieve the computation

burden and also to avoid being trapped in local minima.

Instead of using ODE solvers to estimate x(t) and
x t( ) , one can utilize spline approximation. Given L real

values τi, called knots, with τ0 ≤ τ1 ≤ · · · ≤ τL-1. Using

the Cox-de Boor recursion formula, the B-spline basis of

degree nd = 0, 1, 2, · · ·, L - 2 can be defined as follows:

b t
t m L

m
m m

, ( )
, , , , ,

0
11 0 1 2

0
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if

otherwise,

 ≤ < = −
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+ (3)

b t
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 
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1 1
1 nn
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d
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−
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1
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(4)

Let b t b t b t b ti n n L n n
T

d d i d d
( ) [ ( ), ( ), , ( )], , ,= − −1 2 2 , a vector

of length Li - nd - 2, be the chosen basis functions. Then, the

estimated variable x̂ can be expressed in terms of the basis

function expansion [28]

ˆ ( ) · ( ), [ ], ,x t p b t t t ti i m

m

L n

i n N

i b

b
= ∈

=

− −

∑
1

2

0 (5)

where x̂ Ri ∈ is the estimation of the ith state

of (1), p i , m is the weighting coefficient. Let
pi i i i L n

T

j d
= [ , , , ], , ,p p p0 1 2 − − , (5) can be rewritten in

matrix form

ˆ ( ) ( )· , , , , .x t b t p i ni i
T

i= = 1 2  (6)

Similarly, the estimated ̂ ( )x ti
can be approximated by

 ˆ ( ) ( )· ,x t b t pi i
T

i= (7)

where     b t b t b t b tj n n L n n
T

d d j d d
( ) [ ( ), ( ), , ( )], , ,= − −0 0 2 is

the set of the derivatives of the basis functions. There are

various types of splines suitable for this application, such as

cubic spline, B-spline, uniform spline, nonuniform spline

and interpolating spline. For more detail information about

spline approximation theory, please refer to chapter (IX, XI,

and XIV) in [28]. As B-spline is simple in formation and

efficient for computation, it is adopted here. Our extensive

tests have shown that uniform B-spline basis with
N L N

i3 2
≤ ≤ produces good results. Hence, in this paper,

unless otherwise indicated, the uniform B-spline basis with
L N

i ≈
3

was used in the parameter identification process.

Zhan and Yeung BMC Systems Biology 2011, 5:14

http://www.biomedcentral.com/1752-0509/5/14

Page 3 of 12



Next, two techniques based on spline for parameter

estimation will be proposed: one is based on linear pro-

gramming (LP) which is very efficient and can cover

many special structured systems and the other one is

based on NLP which is flexible and can cater for general

system structures.

The LP Approach

In many bio-system models, f (x, θ) is autonomous sys-

tem and linear in θ as follows:

x t x t x t x( ) ( ( )) , ( ) .= =Φ  0 0 (8)

where F(x) � Rn ×k is a matrix and its elements are a

function of the state x. Systems with structure (8) covers

a large set of systems biology models, such as enzyme

kinetic pathway model, RKIP pathway model, I�B-NF-�B

model TNFa-Mediated NF-�B-signaling pathway model,

irreversible inhibition of HIV proteinase model, Laub and

Loomis model [2-4,30]. In addition, these types of models

are usually subject to the mass balance constraints which

can be incorporated into the LP easily (It is demonstrated

in the results section via the Enzyme kinetic model).

For noisy data, good smoothing approximation can be

achieved by minimizing the following cost function [26]

C
N

y t x t x ti
j

N

i j i j
j

N

i
m

j=
+

− +
= =∑ ∑1

1 0

2

0

2( ( ) ( )) ( ( ))( )λ (9)

where ˆ ( )x i
m represents the mth derivative of x̂ i , m � Z+

and l ≥ 0 control the trade-off between the “roughness” of

the solution and hence can be used to relieve the overfitting

problem. If the equality Ceq represents the mass balance con-

straint and the inequality constraint Cineq represents para-

meter values’ lower/upper bounds, the B-coefficient vector p

= [p1; p2; · ·· pn ]
T can be computed by solving the following

quadratic programming sub-problem A1 :

A1 2
2
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(10)

A x beq eq·ˆ = stands for the equality constraints

C xeq( , )^ ^

 = 0 . Aeq is a constant matrix, beq is a constant

vector. It is found empirically that m = 2 and 0 ≤ l ≤

0.05 produce relatively good results. Hence, the para-

meters m = 2, and l = {0, 0.01, 0.03} corresponding to a

noise level {0%, 5%, 10%}, respectively, were used in this

study. Then, the “smooth” estimated state x̂ can be

generated by the B-spline approximation (5).

Replace x(t) by the estimated state ˆ( )x t and integrate

(8) yield:

x t t dtx x xj
t t

t

j

j
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where ˆ ( ˆ( ))Ψ Φj
t t

t j
x t dt=

=∫ 0

represents the transition

matrix. Then, P0 can be reformulated into the following

optimization problem:

P w y t x t

s t

x t

R

ij i j i j

i

n

j

N

j

k
1

10

: min | ( ) ( ) |

. .

( ) ( , )

^

^





∈ ==

−

−

∑∑ 

i Ψ
^̂ ^ ^

^

,

( ) ,

,.., ; , , , , .

j

L U

x

i n j N



  

+

≤ ≤
= =














0

1 0 1 2

ii



(12)

Here, wij ≥ 0 is weighting factor. Note that the L1-

norm of a variable × is equivalent to the following rela-

tion: | | min{ }x =
≥


0

; s.t. - a ≤ x ≤ a. Then P1 can be

transformed into the following augmented optimization

problem by introducing the slack variables a as follows:
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It is a Linear Programming (LP) problem with variable

{a, θ}, which is a convex problem with a wealth of fast

and efficient routines available [31,32].

Combine spline theory and NLP

To deal with systems biology models, of which the states

and parameters are separable, the LP approach is suita-

ble and efficient. In contrast, if the model does not

belong to this category, such as the mammalian G1/S

transition model and S-system model, the aforemen-

tioned approach cannot apply. Thus, a more general

approach will be introduced. Recalling (6) and (7), the

estimation of ˆ( )x t j and ̂( )x t j can be constructed by a
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set of basis functions. We can replace ˆ( )x t j and ̂( )x t j

in (i-iv) of P0 with (6) and (7). With little change, P0 can

be reformulated as
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Note that the constraint-(i) of (2) has been replaced by

constraints (i)-(iii) of P3. Then, NLP-P0-(2) with differ-

ential-algebraic constraints turns into NLP-P3-(14) with

only algebraic equation constraints. Hence, P3 does not

require ODE solvers, which eases the computation bur-

den (as shown in Examples). In contrast to the the

decomposition methods [12,15], which divide the esti-

mation of the system states (and its derivative) and the

parameter estimation into two separate steps, P3 com-

putes the estimated states (and its derivative) and para-

meter values at the same time. Note that constraint (iii)

of P3 governs the estimated state (and its derivative) so

as to ensure these estimates belong to the trajectory

ˆ( | ˆ)x t  , which is a solution of system (1). Thus, the sys-

tem model itself serves as a filter performing regulariza-

tion. Hence, the overfitting problem can be relieved (see

additional file 2 for details).

For a non-linear system, the Lagrangian of (2),

L X( , )
^ ^

 0
, is an implicit function of { , }

^ ^ x0
[31]. How-

ever, many traditional optimization algorithms require

the derivative ∂ ∂L /
^

 during the optimization process.

As L x( , )
^ ^ 0

is an implicit function of ̂ , ∂ ∂L /
^

 can-

not be obtained directly, but has to be computed via

approximation methods [16], which makes the algorithm

unreliable. For P3, the Lagrangian L p( , )
^

 now consists

of simple algebraic constraints. Thus, ∂ ∂L /
^

 and ∂L/

∂p are explicit functions of ̂ and p. In conclusion,

many of the aforementioned difficulties can be reduced.

P3 can be solved by a number of optimization

approaches; either via evolution type algorithms, such as

genetic algorithm (GA), simulated annealing (SA) and

etc, or via traditional NLP algorithms, such as sequential

quadratic programming(SQP), sequential penalty func-

tion, the trust region approach and etc [33,34].

Results
Two biological system models, a simple enzyme kinetic

model and the mammalian G1/S transition network

model, are chosen as benchmarks for evaluating the per-

formance of P2 and P3 respectively.

Enzyme kinetic model

Consider the well-known simplified enzyme kinetic

model. E is the concentration of an enzyme that com-

bines with a substrate S to form an enzyme-substrate

complex ES with a rate constant k1. The complex ES

holds two possible out comes in the next step. It can be

dissociated into E and S with a rate constant k2, or it

can further proceed to form a product P with a rate

constant k3. It is assumed that none of the products

reverts to the initial substrate. These relations can be

represented by the following set of ODEs.

dS t

dt
k E t S t k ES t

dE t

dt
k E t S t k k

( )
( ) ( ) ( ),

( )
( ) ( ) (

= − ⋅ +

= − ⋅ ⋅ + +

⋅ ⋅1 2

1 2 33

2 3

3

1

) ( ),

( )
( ) ( ) ( ) ( )

( )

⋅

= ⋅ ⋅ − + ⋅

= ⋅

ES t

dES t

dt
k E t S t k k ES t

dP t

dt
k ES (( ),t

(15)

where k1, k2, k3, are the system unknown parameters.

Let x1(t), x2(t), x3(t)and x4(t) represent S(t),E(t), ES(t)

and P(t) respectively. Then, the above equation can be

rewritten into





x k x x k x

x k x x k x k x

x k x x k x k x

1 1 1 2 2 3

2 1 1 2 2 3 3 3

3 1 1 2 2 3 3
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3
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
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
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
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
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


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


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k
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k

(16)

Then, the mass balance constraint becomes:

x t x t x t x t

x t x t x t x t x t x

2 3 2 0 3 0

1 3 4 1 0 3 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

+ = +
+ + = + + 44 0( )t





(17)
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Or in matrix form, we have

Aeq eq· bx = (18)

where Aeq =










0 1 1 0

1 0 1 1
and

b
x t x t

x t x t x t
eq =

+
+ +











2 0 3 0

1 0 3 0 4 0

( ) ( )

( ) ( ) ( )
.

According to (16), we have

Φ( ( )) ,x t

x x x

x x x x

x x x x
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x
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t i

(19)

An artificial data set with four time courses was cre-

ated. A total of 40 sampling points were assigned on

each time courses. The observation data was perturbed

by a zero mean Gaussian white noise h(t) ~ N(0, s2)

in order to simulate the observation error. The esti-

mated state x̂ was computed by solving the quadratic

programming sub-problem A1. The unknown para-

meter values were estimated using P2. The searching

region of the parameter values was [0, +∞). All the

computations were performed on a Pentium Dual Core

computer (2.13 GHz ×2) with 2 GB RAM. The algo-

rithm was implemented with Matlab-7 using the inter-

ior point algorithm. To quantify the fitness of the

estimated model, the following relative squared error

(RSE) measure J is employed:

J
N n

t x t

x t

x

j

N

i

n
i j i j

i j

=
⋅

−

==
∑∑1

01

2(
( ) ( )

( )
) ,

^

(20)

where ˆ ( )x ti j is the estimated time-course at time tj of

a state variable xi, and xi(tj) represents the “true” time-

courses without noise at time tj. Note that smaller RSE J

reflects better estimation. In order to obtain a statistical

result on the quality of the estimation, 5,000 trials were

performed. At each trial an estimated ̂ is computed

using P2. Then, the mean estimation and standard devia-

tion were deduced. The computation was very efficient

and only took a few seconds for one estimation trial.

Table 1 shows the statistical results of the estimation.

It reveals that all the system parameter values are esti-

mated successfully with a relative error of around 0.01%

in noise free condition. When the system is subjected to

a 10% observation noise level, all the mean estimated

parameter values are within a relative tolerance, better

than 2%. The RSE between the time-courses, produced

by inferred model, and the given time-series data, aver-

aged smaller than 1% even subject to 10% observation

noise level condition. For this reason, we have confi-

dence that the proposed method is robust within ±10%

noise ratio (more complicated models and trials on P2
can be found in part I of additional file 1). Figure 1

shows the responses of one trial.

The mammalian G1/S transition network model

Next, the mammalian G1/S transition network model,

which includes a set of proteins and regulatory gene net-

work, is used to test P3. In the mammalian G1/S transi-

tion network, pRB and AP-1 are the tumor suppressor

from the family of pocket proteins and the family of tran-

scription factors that mediate mitogenic signals, E2F1 is

the transcription factor targeting genes that regulate cell

cycle progression, Cyclin D/cdk4,6, cyclin E/cdk2, com-

plexes characterizing the G1- and S- phases. There are

various positive and negative feedback loops in the net-

work controlling the G1/S transition. The positive feed-

back regulation of E2F1 and a double activator-inhibitor

module can lead to bistability. The double activator-inhi-

bitor module of the antagonistic plays E2F/DP on pRB

make up the key unit of this phase transition. The graph

representation of the mammalian G1/S transition net-

work model can be found in additional file 1 and more

details can refer to Swat et al. [5]. Definition of Variables

for G1/S Transition Model is shown in Table 2. The cor-

responding ODE model is as follows

Table 1 Statistical results of parameter estimation of enzyme kinetic model

Nominal Value Mean estimation ± standard deviation

Noise level: 0% Noise level: 5% Noise level: 10%

k1 0.18 0.1796 ± 33.5081e-6 0.1794 ± 0.0008 0.1808 ± 0.0025

k2 0.20 0.1993 ± 108.4891e-6 0.1968 ± 0.0031 0.1963 ± 0.0106

k3 0.23 0.2300 ± 1.5946e-6 0.2326 ± 0.0001 0.2345 ± 0.0004

J 6.8620e-8 ± 7.7337e-8 1.0996e-4 ± 9.3270e-5 3.0328e-4 ± 3.2160e-4
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(21)

where x is the set of state variables. There are totally 9

states and 39 parameters. The nominal parameter values

are shown in Table 3.

Here, P3 was solved by the Stochastic Raking Evolu-

tion Strategy (SRES) algorithm [35]. The searching

region of the parameters was [0, 50θ ]. SRES uses sto-

chastic ranking as the constraint handling technique,

which adjusts the balance between the objective and

penalty functions automatically during the evolutionary

search. The observation data include 4 sets of time

course, which consists of 40 sample points. For trials

with noise free data, the algorithm converged in 8 ~ 9

hours after 250,000 ~ 300,000 iterations. The estimated

parameter values, as shown in Table 3 are almost identi-

cal to the nominal parameter values. However, for k23,

k25 and J15, the estimated values are far from the nom-

inal values, but the RSE measure is almost zero, which

possibly implies that the system is insensitive with the

changes of k23, k25 and J15. This phenomenon reveals

that the G1/S transition model either has some para-

meters that are insensitive to the chosen observation, or

they are non-identifiable parameters [36,37]. It is worth
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Figure 1 The dynamic profiles of a trial with observation data subject to 10% random noises. Solid lines represent the “true” time-series

data without noise, dots represent the measured time-series data with added artificial noise, and diamonds represent the estimated time-series

data produced by the model.

Table 2 Definition of Variables for G1/S Transition Model

Symbol x1 x2 x3 x4 x5 x6 x7 x8 x9

Acronym pRB E2F1 CycDi CycDa AP - 1 pRBp pRBpp CycEi CycEa
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mentioning that the this large computational effort is

the consequence of the very tight convergence criteria,

an almost equal good result can be reached within

200,000 generations in about 6.5 hours with the RSE

measure J is smaller than 1%. Figure 2(a) shows the

“true” time-series data without noise and computed

dynamic time-series data from one identified model.

When 10% random noises are added, the convergence

time increased and the relative estimation errors

between estimated parameters and nominal parameters

increased with the increase of noise. However, the time-

series produced by the estimated model is very similar

to the original data, namely the RSE J is still small. This

phenomenon may imply that there is no need to esti-

mated every parameters accurately to achieve a model

with equivalent dynamical properties with a good degree

of accuracy. As the simulation time is long, performing

thousands of simulations as the first method in order to

evaluate the mean and variance of estimated parameters

is impractical. Thus, due to the lack of space, results of

just a few selected trial are shown in Table 3 (more trial

results can be found in additional file 1).

Trials were performed using Matlab-7. The main rea-

son to use Matlab is that it is a convenient environment

to visualize all the information arising from the optimi-

zation runs of the solver, evaluate new algorithms and

modify existing algorithms. In contrast to the conveni-

ence, it is worth mentioning that Matlab programs

usually are one order of magnitude (10 times or more)

slower than equivalent compiled Fortan or C codes [19].

This is the major drawbacks of carrying programs out

with Matlab. However, even in this situation, the perfor-

mance of the proposed methods is acceptable.

For fair comparison, we also used the SRES algorithm

to solve the same parameter estimation problem in the

same searching region, but using NLP-P0 with differential

algebraic constraints as cost function. In this condition,

after running 1 day, the algorithm failed to produce a set

of parameters that can produce reasonable simulation

result. We further reduced the searching region to [0, 3θ

] and used noise free data, but the estimation result was

still not good and the RSE J is larger than 10.

Here, we use the G1/S model to show the differences

of the cost function surfaces between NLP-P0 and NLP-

P3: in this case, the cost function of P0 is a highly irre-

gular and complicated manifold with multiple local

minima; the augmented cost function adopted in pro-

blem P3 is a much “smoother” function and hence it is

easier for the NLP algorithm to converge to the solu-

tion. In order to simplify the analysis for exposition pur-

pose, we only vary parameters k1 and k2 over the range

k1 � [0; 2 ] and k2 � [0, 3.2 ] and fix all other parameters

at their nominal values. Figure 3(a) displays the cost

function surface of P0 , while Figure 3(b) exhibits the

same data as Figure 3(a) on the expanded scale and Fig-

ure 3(c) is the corresponding contour plots. Figure 3(a)

shows that the cost function surface of is a ridge, which

drops suddenly from 109 to 0. However, Figure 3(b)

reveals the cost function surface of P0 are actually

Table 3 Results of parameter estimation of the

mammalian G1/S transition network model

Parameters Nominal
value

Estimated parameters

Noise
level 0%

Noise
level:
2.5%

Noise
level: 5%

Noise
level:
10%

k1 1 0.9957 1.0150 1.1105 1.6037

k2 1.6 1.5989 1.4138 1.5187 1.0315

k3 0.05 0.0500 0.0528 0.0392 0.0381

k16 0.4 0.4002 0.4440 0.3959 0.9331

k34 0.04 0.0400 0.0414 0.0337 0.0215

k43 0.01 0.0100 0.0142 0.0090 1.45e-10

k61 0.3 0.2985 0.3432 0.2847 0.8185

k67 0.7 0.6999 0.4535 1.3974 1.3108

k76 0.1 0.0999 0.0457 0.2446 0.1845

k23 0.3 0.1219 0.4134 0.6132 0.5579

k25 0.9 0.1785 0.7063 0.8291 0.7874

k28 0.06 0.0601 0.0669 0.0222 0.0198

k39 0.07 0.0700 0.0549 0.0520 0.0334

k96 0.01 0.0100 0.0441 0.0002 4.55e-14

a 0.04 0.0400 0.1257 0.1260 0.1265

J11 0.5 0.4992 0.5612 0.4252 0.6523

J12 5 5.0025 4.8940 4.6892 5.4021

J15 0.001 0.0051 0.0011 0.0010 0.0011

J18 0.6 0.5990 0.7253 0.8014 1.1290

J61 5 5.2581 4.1474 6.4585 7.2003

J62 8 8.0088 29.734 39.403 41.408

J65 6 5.9222 8.7804 9.3474 7.8076

J68 7 6.9916 31.979 25.125 36.795

J13 0.002 0.0050 0.0013 0.0016 2.61e-14

J63 2 1.9740 1.4726 0.4203 19.871

Km1 0.5 0.4905 0.5267 0.5601 0.0410

Km2 4 3.9985 4.0482 4.1061 3.8495

Km4 0.3 0.2999 0.2838 0.2735 0.2338

Km9 0.005 0.0054 3.69e-5 2.03e-5 3.88e-6

Kp 0.05 0.0499 0.0452 0.0496 0.0311

j1 0.005 0.0044 0.0057 0.0041 0.0073

j2 0.1 0.0999 0.0920 0.0983 0.0693

j3 0.023 0.0230 0.0261 0.0164 0.0152

j4 0.03 0.0300 0.0279 0.0253 0.0218

j5 0.01 0.0100 0.0098 0.0101 0.0101

j6 0.06 0.0606 0.0627 0.0608 0.1518

j7 0.04 0.0401 0.0436 0.0404 0.0788

j8 0.06 0.0600 0.1546 0.0024 0.0260

j9 0.05 0.0500 0.0025 0.0439 0.0276

J 7.5399e-
6e

0.0005 0.0009 0.0025
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banana-shaped valley around the nominal value of the

fixed parameters, this unfavorable profile can slow down

the convergence rate of the algorithm. Furthermore,

there are many local minima in the banana-shaped val-

ley. Some algorithms, such as simulated annealing,

genetic algorithm, have been proposed to overcome

these problem. However, these algorithms are all

computationally demanding. In conclusion, these cost

function features make the problem P0 a severe chal-

lenge to every optimization algorithm.

With the same condition, Figure 4(a) displays the cost

function surface of P3, while Figure 4(b) shows the cor-

responding contour line. Compared with the cost func-

tion surface of P0, the cost function surface of P3 is
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Figure 2 The dynamic profiles of two trials. Solid lines represent the “true” time-series data without noise, dots represent the measured time-

series data with added artificial noise, and diamonds represent the estimated time-series data produced by the model: (a) noise free condition

(b) 10% random noise condition.

Figure 3 Cost function surface and contours. (Color online) (a) Cost function surface of the P0 as parameters k1 and k2 are varied; (b) displays

the same data as (a) on the expanded scale; (c) corresponding contours near the nominal parameter value.
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bowl-shaped, which is smoother. Similar results has also

been observed when other combination of parameters

served as variables. Obviously, if all 39 parameters vary

at the same time, the surface of the cost function will be

more “uneven” and more complicated. However, in this

case, from the previous observations, the cost function

surface of P3 is smoother than the cost function surface

of P0.
Furthermore, P3 only involves algebraic equations as

objective function and constraints. These properties

make the NLP-P3 easier to solve.

Discussion and Conclusion
In this paper, two parameter estimation methods based

on spline theory are proposed. One aims at a narrower

class of systems which is linear in parameters; however,

it can cover many commonly found biological systems.

The benefit is that the estimation problem can be trans-

formed in an LP sub-algorithm which are fast and

robust. Additional linear constraints can be embedded

relative easily. For general systems, the problem is

solved by an NLP with algebraic constraints, which is

more computationally demanding.

A simple enzyme kinetic model and the mammalian

G1/S transition network model were used as bench-

marks to evaluate the performance of the two proposed

methods. We illustrate the usefulness with more exam-

ples in additional files 1 but these do not remotely cover

all the conditions.

During the simulation of the mammalian G1/S transi-

tion network model, we found that the estimated para-

meter set FA ≡ {k1, k2, kp, J11, J12, Km1, Km2, j1, j2}

were well within the respective nominal values. While

the set FB ≡ {J61, J62, J63, J65, J68} were far from their

nominal values. However, the time-series produced by

the estimated model were very similar to the original

data. This phenomena reveals that some parameter

values are insensitive in the searching region. Interest-

ingly, we find that the “sensitive” or “easily identified”

parameters set FA are also the parameters of the dou-

ble-activator-inhibitor module of the antagonistic players

E2F/DP and pRB, which makes up the core unit of the

G1/S transition model [5]. This phenomenon may imply

that the parameter values of the core module are sensi-

tive and easy to identify. In contrast, the parameters set

FB seems to be insensitive, which may reflect that pRGp

(x6) is not a key element of the total system. However,

to identify which parameter values or variables are

important, a sensitivity analysis is needed [38], which is

another important topic in systems biology and deserves

a more detailed study. This sensitivity analysis is a pre-

process for isolating those states and parameters which

are sensitive in order to reduce the dimension of the

system model and to improve the numerical stability for

the core estimation problem.

For most biological systems, the ODE models are

often high-dimensional and nonlinear. The problem of

system parameter estimation is computationally

Figure 4 Cost function surface and contours. (Color online) Cost function surface of the P3 as parameters k1 and k2 are varied; (b)

corresponding contours of the cost function.

Zhan and Yeung BMC Systems Biology 2011, 5:14

http://www.biomedcentral.com/1752-0509/5/14

Page 10 of 12



expensive and can easily be trapped in local minima. We

find that under noisy conditions, it is almost impossible

to accurately estimate every parameter of the sloppy

biological system model. However, in practice, a model

with equivalent dynamical properties with a good degree

of accuracy can be constructed based on dominant sen-

sitive parameters and system states. The following are

some of practical observations:

1. High quality experiment data is essential for iden-

tifying accurate biology systems. When the experi-

ment data is corrupted with high level noise, it

needs more experimental data. If an insufficient

amount of time-series data is given as observed pro-

files, the high degree-freedom of systems biology

models ensures that many candidate solutions will

be found.

2. Perform a sensitivity analysis and identifiability

analysis before the identification phase [36-38].

3. For systems models with insensitive or non-identi-

fiable parameters, the search may lead to a solution

where some parameters can have large deviation, but

still produce satisfactory system responses. This pro-

blem can be partly relieved by introducing auxiliary

information (additional constraints such as shrinking

the searching region) of the model into the algorithm.

However, it remains difficult to be solved completely

by improving parameter estimation strategy. It indi-

cates that researchers should focus on predictions

rather than on accurately estimating every parameter.

Although the proposed algorithms are fast and robust,

there is certainly room for improvement: for method 1,

it is not general enough to catch every case; for method

2, the price for the simplicity and generality is at the

expansion of the optimization variable dimension.

Under high noise condition, method 2 is still not robust

enough. At the moment, the testing is based on Matlab

which is much slower than native codes produced by C,

Fortran, etc, however the conversion is straight forward.

Currently, many high-speed computation engines are

available that make use of parallelism, for instance

multi-cluster engines, array-processing engines etc.

Hence, one possible way is developed algorithm on

these high-speed computation engines environment.

Another possible way is developing hybrid algorithms to

incorporate elements from evolution algorithms such as

GA, SA and PSO. In this paper, we have considered the

parameter estimation problem with known structure.

However, it is easy to expand our method to structure

identification by introducing an additional penalty term

to the objective function [39].

Additional material

Additional file 1: In this additional file, we tested the proposed

methods on seven systems biology models were used to test: TNFa

-Mediated NF-�B-Signaling Pathway Model, RKIP Regulated ERK

Pathway model and the model of irreversible inhibition of HIV

proteinase; Yeast fermentation pathway Model, large-scale target

genetic network model, a three step pathway model and the

mammalian G1/S transition network model.

Additional file 2: In this additional file, we use E2F/DP dimmer

model to illustrate the differences between the three different type

methods mentioned in the paper: (i) the direct optimization

method; (ii) decomposition methods; (iii) methods Combine spline

theory and NLP.
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