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Parameter Estimation in TV Image Restoration
Using Variational Distribution Approximation
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Abstract—In this paper, we propose novel algorithms for total
variation (TV) based image restoration and parameter estimation
utilizing variational distribution approximations. Within the hier-
archical Bayesian formulation, the reconstructed image and the
unknown hyperparameters for the image prior and the noise are si-
multaneously estimated. The proposed algorithms provide approx-
imations to the posterior distributions of the latent variables using
variational methods. We show that some of the current approaches
to TV-based image restoration are special cases of our framework.
Experimental results show that the proposed approaches provide
competitive performance without any assumptions about unknown
hyperparameters and clearly outperform existing methods when
additional information is included.

Index Terms—Bayesian methods, image restoration, parameter
estimation, total variation (TV), variational methods.

I. INTRODUCTION

I
N MOST applications, the acquired images represent a

degraded version of the original scene. These applica-

tions include astronomical imaging (e.g., using ground-based

imaging systems or extraterrestrial observations of the earth and

the planets), commercial photography, medical imaging (e.g.,

X-rays, digital angiograms, autoradiographs), and molecular

and cellular bioimaging [2]–[4]. The degradation can be due

to the atmospheric turbulence, the relative motion between the

camera and the scene, and the finite resolution of the acquisition

instrument.

A standard formulation of the image degradation model is

given in matrix-vector form by

(1)

where the vectors , , and represent, respectively, the

original image, the available noisy and blurred image, and the

noise with independent elements of variance , and

represents the known blurring matrix. The images are assumed

to be of size , and they are lexicographically ordered

into vectors. The restoration problem calls for finding an
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estimate of given , , and knowledge about and possibly

[2].

A number of approaches have been developed in providing

solutions to the restoration problem (see, for example, [2], [3],

[5], and references therein). A straightforward approach to the

restoration problem is to use least squares estimation and select

, an estimate of the original image, as

(2)

where . However, as is well known, this

approach does not lead to useful restorations in most cases. Use

of prior knowledge about the original image can improve the

restoration results. Within the Bayesian framework this knowl-

edge is encapsulated as a prior distribution .

A general model for the prior distribution is a Markov

random field (MRF) which is characterized by its Gibbs distri-

bution given by

(3)

where is the partition function with a constant and

is the energy function of the form , where

denotes a set of cliques (i.e., set of connected pixels) for the

MRF, and is a potential function defined on a clique.

A critical issue is the choice of the energy function. In this

paper we use the total variation (TV) image prior [6] whose en-

ergy function is the discrete version of the total variation integral

defined as

(4)

We will explicitly write the form of the prior model in the next

section.

If the hyperparameters and are known, following the

Bayesian paradigm (see [7] for the unification of probabilistic

and variational estimation), it is customary to select, as the

restoration of , the image defined by

(5)

Not much work has been reported in the literature on the

joint parameter and image estimation when the parameters

and are not known (see [5], [8] for recent developments in

variational modeling and inference). Rudin et al. [6] consider

the minimization of constrained by

, where represents an estimate of the noise variance,
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and then proceed to estimate both the image and the associated

Lagrange multiplier to this constrained optimization problem.

Bertalmio et al. [9] make the Lagrange multiplier region depen-

dent. Bioucas-Dias et al. [10], using their majorization-mini-

mization approach [11], propose a Bayesian method to estimate

the original image and assuming that an estimate of the noise

variance is available. To our knowledge no work has been re-

ported on the simultaneous estimation of the parameters and

and the image and also on the estimation of the uncertainty

of those estimates (only point estimates of the parameters and

image have been provided).

In this paper, we use the Bayesian paradigm to jointly es-

timate the image and unknown hyperparameters ( and ) in

image restoration when the TV image prior is used. The esti-

mation procedure will not provide only point estimates of the

image and the hyperparameters but also the probability distri-

butions that approximate the posterior distribution of the hyper-

parameters and the original image given the observation.

This paper is organized as follows. Section II presents a gen-

eral description of the Bayesian modeling and inference of the

TV restoration problem, which includes a brief discussion on

estimation procedures (inference methods) that provide point

or probability distribution estimates. The actual parameter

hyperpriors, image prior, and observation models used in this

paper are then presented in Section III. Section IV describes

the variational approach to distribution approximation for

TV image restoration and how inference is performed. We

propose different approximations of the posterior distribution

of the image and the unknown hyperparameters, and compare

them to other approaches reported in the literature. Finally, in

Section V, experimental results and comparisons with other

methods are shown, and Section VI concludes the paper.

II. BAYESIAN MODELING AND INFERENCE

The Bayesian modeling of the TV restoration problem re-

quires first the definition of a joint distribution of

the observation, , the unknown image, , and the hyperpa-

rameters and . To model the joint distribution, we utilize in

this paper the hierarchical Bayesian paradigm (see, for example,

[12]–[15]). In the hierarchical approach to image restoration, we

have at least two stages. In the first stage, knowledge about the

structural form of the observation noise and the structural be-

havior of the image is used in forming and ,

respectively. These noise and image models depend on the un-

known hyperparameters and . In the second stage, a hyper-

prior on the hyperparameters is defined, thus allowing for the

incorporation of information about these hyperparameters into

the process.

For , , , , the following joint distribution is defined:

(6)

and inference is based on .

Three crucial questions have to be addressed when modeling

and performing inference for image restoration problems using

the hierarchical Bayesian paradigm. The first one relates to the

definition of and . We should be able to deal with the

case of known hyperparameters which correspond to degenerate

distributions for and , but also with more realistic sit-

uations including the cases when some knowledge about these

parameters is available or when only the observation is avail-

able to estimate them.

The second crucial problem to be considered is to decide how

inference will be carried out. A commonly used approach in

image restoration (called the Evidence analysis [12]) consists

of estimating the hyperparameters , by using

(7)

and then estimating the image by solving

(8)

Another approach, also commonly used in image restoration,

is the so called empirical analysis [16], which consists of calcu-

lating the restoration by solving

(9)

These inference procedures aim at optimizing a given func-

tion and not at obtaining posterior distributions that can be an-

alyzed or simulated to obtain additional information about the

quality of the estimates. Instead of having a distribution over all

possible values of the parameters and the image, the above infer-

ence procedures choose a specific set of values. This means that

we have neglected many other interpretations of the data. If the

posterior is sharply peaked, other values of the hyperparameters

and the image will have a much lower posterior probability but,

if the posterior is broad, choosing a unique value will neglect

many other choices of them with similar posterior probabilities.

The third crucial problem to be solved when using the

Bayesian paradigm on TV image restoration is to decide how

to calculate , which is in general a challenging

task. An approach is provided by the variational distribution

approximation. This approximation can be thought of as being

between the Laplace approximation (see, for instance, [14]

and [17]) and sampling methods [18]. The basic underlying

idea, as will be explained later, is to approximate

with a simpler distribution. See the very interesting [19], [20]

books [21], [22] and book chapter [23] for a comprehensive

introduction to variational methods.

The last few years have seen a growing interest in the appli-

cation of variational methods [19], [23] to inference problems.

These methods attempt to approximate posterior distributions

with the use of the Kullback–Leibler cross-entropy [24]. Appli-

cation of variational methods to Bayesian inference problems

include graphical models and neural networks [23], independent

component analysis [19], mixtures of factor analyzers, linear

dynamic systems, hidden Markov models [20], support vector

machines [25] and blind deconvolution problems (see [15], [26],

and [27]).
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In this paper, we use a TV prior distribution for the image,

and gamma distributions for the unknown parameter (hyperpa-

rameter) of the prior and the image formation noise. We apply

variational methods to approximate the posterior probability of

the unknown image and hyperparameters and propose two dif-

ferent approximations of the posterior distribution. We use the

obtained posterior approximation to gain additional insight into

the estimated hyperparameters and image.

III. HYPERPRIORS, PRIOR, AND OBSERVATION MODEL

USED IN TV IMAGE DECONVOLUTION

We first describe the TV prior model as well as the observa-

tion model we use in the first stage of the hierarchical Bayesian

paradigm. Then, since the prior and observation models depend

on unknown hyperparameters, we proceed to explain the hyper-

prior distributions we utilize for these hyperparameters.

A. First Stage: Prior Models on Images

As image model we use the TV prior, given by

(10)

where is the partition function and

(11)

where the operators and correspond to, respec-

tively, the horizontal and vertical first order differences, at pixel

, that is, and , with

and denoting the nearest neighbors of , to the left and

above, respectively.

Unless we want to use very simple estimation procedures for

the hyperparameter , we need to calculate (approximate) the

partition function . Using

(12)

we can utilize the following approximation of in (10)

proposed in [11]:

(13)

where again is the size of the original image , and is a

constant. Note that the idea of approximating partition functions

in image priors to be able to estimate distribution parameters has

also been used in [27].

The probability distribution corresponding to the observation

model in (1) is given by

(14)

B. Second Stage: Hyperpriors on the Hyperparameters

A large part of the Bayesian literature is devoted to finding

hyperprior distributions for which can be

either calculated in a straightforward way or be closely approxi-

mated. These are the so called conjugate priors [28] which have

Fig. 1. Graphical model showing relationships between variables.

the intuitive feature of allowing one to begin with a certain func-

tional form for the prior and end up with a posterior of the same

functional form, but with the parameters updated by the sample

information.

We will assume that each of the hyperparameters

has as hyperprior the gamma distribution, , defined

by

(15)

where and are, respectively, the scale and shape

parameters, which are assumed to be known. We will discuss

their calculation in Section V. The gamma distribution has the

following mean, variance, and mode

(16)

There are several important reasons for selecting Gamma dis-

tributions for the hyperpriors. First, the Gamma distribution is

conjugate for the variance of the Gaussian, and, therefore, the

posteriors will also have Gamma distributions in the Bayesian

formulation. Second, as will be shown later, their update equa-

tions will exhibit interesting similarities to some previously de-

rived results in the literature.

Finally, combining the first and second stages of the problem

modeling we have the following global distribution:

(17)

where , , , and have been defined in

(13)–(15). The joint probability model is shown in graphical

form in Fig. 1 using a directed acyclic graph.

IV. BAYESIAN INFERENCE AND VARIATIONAL APPROXIMATION

OF THE POSTERIOR DISTRIBUTION FOR

TV IMAGE RESTORATION

The Bayesian paradigm dictates that inference on

should be based on

(18)

where is given by (17).
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Because cannot be found in closed form, since

(19)

cannot be calculated analytically, we apply variational methods

to approximate this distribution by the distribution .

We utilize a mean field approximation for the posterior distri-

butions of , , and so that these posterior distributions are

assumed to be independent given the observations. We will later

show that particular selections of the distributions and

lead to the hyperparameters and image point estimates pro-

vided by the evidence and empirical analysis described in Sec-

tion II. Notice, however, that unless the distributions

and are degenerate, the variational approximation provides

us with additional information that goes beyond simple point

estimates.

The variational criterion used to find is the mini-

mization of the Kullback–Leibler divergence, given by

(20)

which is always non-negative and equal to zero only when

.

Due to the form of the TV prior, the above integral is difficult

to evaluate (note that also for the same reason the evidence and

empirical estimates described in Section II are difficult to cal-

culate). We can, however, majorize the TV prior by a function

which renders the integral easier to calculate. Let us consider

the following inequality, also used in [11], which states that, for

any and

(21)

Let us also define for , , and any -dimensional vector

, with components , , the following

functional:

(22)

Now, using inequality (21) with and

and comparing (22) with (13), we obtain

(23)

As will be shown later, vector is a quantity that needs to be

computed and has an intuitive interpretation related to the un-

known image . Inequality (23) leads to the following lower

bound for the joint probability distribution:

(24)

By defining

(25)

and utilizing inequality (24), we obtain

(26)

Therefore, by finding a sequence of distributions

that monotonically decreases

for a fixed a sequence of an ever decreasing upper bound

of is also obtained due to

(20). However, also minimizing with respect

to generates a sequence of vectors that tightens the

upper-bound for each distribution . Therefore,

the two sequences and are coupled. We

develop an iterative algorithm (Algorithm 1) to find such

sequences.

Inequality (21) provides a local quadratic approximation to

the TV prior. Had a fixed with same elements been used

a global conditional auto-regression model approximating

the TV prior would have been obtained. Clearly, the proce-

dure which updates will provide a tighter upper bound for

, since we are using

instead of .

Finally, we note that the process to find the best posterior dis-

tribution approximation of the image in combination with is

a very natural extension of the majorization-minimization ap-

proach to function optimization (see [29]) and that local ma-

jorization has also been applied to variational logistic regres-

sion [30], as well as, to the inference of its parameters (see [31]

and [32]).

The following algorithm can, therefore, be used for calcu-

lating the approximating posteriors .

Algorithm 1

Posterior parameter and image distributions estimation in TV

restoration using .

Given and , an initial estimate of the

distribution , for until a stopping criterion

is met.

1) Find

(27)

2) Find

(28)
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3) Find

(29)

Set

(30)

Let us now further develop each of the steps of the above

algorithm. To calculate , we observe that differentiating

the integral on the right-hand side of (27) with respect to

and setting it equal to zero, we obtain

(31)

which represents an -dimensional Gaussian distribution with

parameters

(32)

and

(33)

where is an diagonal matrix of the form

(34)

and and represent the convolution matrices as-

sociated to the first order horizontal and vertical differences, re-

spectively.

To calculate , we have from (28) that

(35)

and, consequently

(36)

Notice that is not required in calculating . It is

clear from (36) that the vector is a function of the spa-

tial first order differences of the unknown image under the

distribution and represents the local spatial activity of .

Therefore, matrix in (34) can be interpreted as the spa-

tial adaptivity matrix, since it controls the amount of smoothing

at each pixel location depending on the strength of the inten-

sity variation at that pixel, as expressed by the horizontal and

vertical intensity gradients. That is, for the pixels with high spa-

tial activity the corresponding entries of are very small

or zero, which means that no smoothness is enforced, while for

the pixels in a flat region the corresponding entries of

are very large, which means that smoothness is enforced. This

matrix has also been referred to as the visibility matrix

[33] since it describes the masking property of the human visual

system, according to which noise is not visible in high spatial

activity regions (its high frequencies are masked by the edges),

while it is visible in the low spatial frequency (flat) regions. The

visibility matrix and its complementary matrix have

been used in iterative image restoration in [34].

By differentiating the integral on the right hand side of (29)

with respect to and setting it equal to zero, we obtain

(37)

and thus

(38)

where and are gamma distributions given re-

spectively by

(39)

(40)

The means of these gamma distributions are given by

(41)

The calculation of , ,

, and is

carried out in Appendices I and II.

Note that we have

(42)

(43)

and thus

(44)

(45)
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where , , and

(46)

Equation (46) indicates that and , both taking values in

the interval [0,1), can be understood as normalized confidence

parameters. As can be seen from (44) and (45), the inverses of

the means of the hyperpriors are represented as convex com-

binations of their initial values and their maximum likelihood

(ML) estimates. These ML estimates have been derived before

either empirically or by using regularization formulations [34],

[35]. According to (44) and (45), when they are equal to zero, no

confidence is placed on the initial values of the hyperparameters

and ML estimates are used, while when they are asymptotically

equal to one, the prior knowledge of the mean is fully enforced,

i.e., no estimation of the hyperparameters is performed.

Case of particular interest is when

(47)

which corresponds to a flat hyperprior distribution. This type of

hyperprior modeling makes the observation responsible for the

whole estimation process.

In the proposed model, for estimating the posterior distribu-

tion of the image and the unknown hyperparameters no assump-

tions were made about and . We study now the case

when is a degenerate distribution, that is, a distribution

which takes one value with probability one and the rest with

probability zero. In the iterative procedure we describe next, we

use to denote the value takes with probability one. We

then have the following procedure.

Algorithm 2

Posterior parameter and image distributions estimation in

TV restoration using with a

degenerate distribution.

Given , an initial estimate of the distribution

and , for until a stopping criterion

is met.

1) Calculate

(48)

2) Calculate

(49)

3) Calculate

(50)

where and are gamma distributions

given, respectively, by

(51)

(52)

Set

(53)

Two additional factorizations of the distribution

can be used. The first one corresponds to assuming that

is a degenerate distribution. In this case, selecting as image es-

timate the mean value of the limiting distribution in the

corresponding algorithm is equivalent to performing the evi-

dence analysis for the TV restoration problem. The second one

corresponds to assuming that both and are degen-

erate distributions. The corresponding algorithm is equivalent

to maximizing alternatively in the hyperparameters and image

the lower bound of given in (24). In other words, the

estimation procedure is an iterated conditional mode (ICM) al-

gorithm [36].

To end this section, we comment on two particular hyperpa-

rameter distributions . The first one is obtained when

both and are known quantities. Then Algorithm 2 with

, , and , provides the same so-

lution with

(54)

If with , the estimate of (54) is the one used

in [11], and referred to as algorithm BFO1 in Section V.

The second hyperparameter distribution is obtained

when only is known, that is, , , and when

and . Then Algorithm 2 at convergence

provides [see (44)]

(55)

and the solution for the image in (48) satisfies

(56)

with

(57)

Now, regularizing by using where is

a small positive constant to obtain a differentiable TV norm, we

have

(58)

Therefore, (56) can be rewritten as

(59)
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That is, for this particular selection of , Algorithm 2 pro-

vides the solution of

(60)

Interestingly, this image estimate coincides with the image es-

timate proposed in [10], and referred to as algorithm BFO2 in

Section V, which is obtained as

(61)

Clearly, Algorithm 2 is a generalization of the algorithms pre-

sented in [11] and [10].

V. EXPERIMENTAL RESULTS

We performed a number of experiments to evaluate the

performance of the proposed algorithms and also to compare

them with other image restoration methods in the literature. We

present results with Algorithm 1 (denoted by ALG1), Algorithm

2 (denoted by ALG2) and the TV-based approaches in [11] and

[10], denoted (see the end of the previous section) by BFO1

and BFO2, respectively. As already shown algorithms BFO1

and BFO2 are special cases of ALG2. We will elaborate on the

differences and similarities of the methods in conjunction with

the results. As in [11] and [10] we use a conjugate gradient

algorithm (CG) to find the BFO1 and BFO2 image estimates.

We also included results obtained with the use of the algo-

rithm in [16] which models the image distribution by a simulta-

neous autoregression (SAR) model [37] instead of a TV model

and simultaneously estimates the prior and image hyperparame-

ters. This algorithm will be denoted by MOL in the results. Com-

paring TV-based algorithms with this method provided useful

insights about the proposed approaches.

In evaluating the upper bound of the performance of the pro-

posed algorithms, we also provide results obtained by the al-

gorithms denoted by ALG1-TrueU, ALG2-TrueU, ALG1-True,

and ALG2-True. For the ALG1-TrueU and ALG2-TrueU algo-

rithms, the noise variance is known (since we are dealing

with synthetic experiments), and and are calculated using

the original image [ from the equation

and from (36) and (49)].

All three parameters are computed once, and, thus, they are

not updated during the iterations. For the ALG1-True and ALG2-

True algorithms and are treated as in ALG1-TrueU and

ALG2-TrueU, but is evaluated iteratively.

In our results, we provided the improvement in signal-to-

noise ratio (ISNR) as an objective measure of the quality.

The ISNR is defined as , where

, and are the original, observed, and estimated images,

respectively. In the tables we present in this section, we report

the ISNR values, number of iterations, and estimated noise

variances using a conjugate gradient (CG) approach [values

in parentheses are obtained using a gradient descent (GD)

Fig. 2. (a) Lena image; degraded with a Gaussian shaped PSF with variance 9
and Gaussian noise of variance: (b) 0.16 (BSNR = 40 dB), (c) 1.6 (BSNR =
30 dB), (d) 1 (BSNR = 20 dB).

approach to solve (33) and (48), as further discussed in Ap-

pendix I]. Note that since the parameter is not estimated by

the algorithms BFO1 and BFO2, but it is assumed known, the

corresponding entries are denoted by “-”. For all experiments,

(or instead of ) is used to

terminate the algorithms, and a threshold of is used to

terminate the CG and GD iterations.

For the first set of experiments, we synthetically degraded

the “Lena” and “Cameraman” images and the “Shepp–Logan”

phantom with a Gaussian blur with variance 9 and additive

Gaussian noise. We experimented with three noise levels, cor-

responding to blurred signal-to-noise ratios (BSNR) of 40, 30,

and 20 dB. The original Lena image is shown in Fig. 2(a) and the

degraded versions with the three noise levels in Fig. 2(b)–(d) (the

corresponding noise variances are equal to 0.16, 1.6, and 16).

Flat hyperpriors on the hyperparameters are used as initial

conditions, i.e., and . The initially

selected values for and for both ALG1 and

ALG2 methods were equal to

(62)

that is, we used the observations to initialize the hyperprior

means. The observed image is used as the initial value of , and

the initial value of is calculated from this observed image.

Note that the algorithms are initialized automatically without

any manual input.

The ISNR values, the number of iterations, and the estimates

of the noise variance are shown in Table I (it is noted that

the true value of the noise variance is reported for the algorithms

with the “True” suffix). In the second set of experiments, the
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Fig. 3. Restorations of the Lena image blurred with a Gaussian PSF with
variance 9 and 40-dB BSNR using the (a) MOL method (ISNR = 3:90 dB),
(b) BFO1 method (ISNR = 4:72 dB), (c) BFO2 method (ISNR = 4:5 dB),
(d) ALG1 method (ISNR = 4:84 dB), and (e) ALG2 method (ISNR =
4:64 dB).

same images are degraded by a 9 9 uniform blur and additive

Gaussian noise. The corresponding results are shown in Table II.

It is clear that knowledge of the noise and image parameters

provides an advantage for BFO1; this method outperforms other

methods in nearly all noise levels. However, both ALG1 and

ALG2 result in comparable, in some cases even higher ISNR

values, despite the fact that no prior information is assumed

about the degradation process. We will later show that with

the use of hyperpriors on the unknown hyperparameters higher

ISNR values to the ones obtained by BFO1 can be achieved by

the ALG1 and ALG2 algorithms.

The important point to note here is that ALG1 and ALG2

generally perform better that BFO2 and MOL. The proposed

methods generally result in higher ISNR values than BFO2, al-

though the noise variance is assumed to be known in BFO2. The

MOL algorithm is outperformed by other methods in all experi-

ments, although the noise variance is very accurately estimated.

Fig. 4. Restorations of the Lena image blurred with a Gaussian PSF with
variance 9 and 20-dB BSNR using the (a) MOL method (ISNR = 2:45 dB),
(b) BFO1 method (ISNR = 3:02 dB), (c) BFO2 method (ISNR = 2:47 dB),
(d) ALG1 method (ISNR = 3:06 dB), and (e) ALG2 method (ISNR =
2:58 dB).

This comparison clearly shows that the spatially adaptive de-

convolution and noise removal achieved by TV-based restora-

tion methods provides a significant improvement over methods

like MOL which do not incorporate spatial adaptivity in the es-

timation procedure.

We also note that the proposed methods are robust to the ini-

tial values of the hyperparameters. For instance, when the algo-

rithms are initialized using and , as in

[11], the resulting ISNR values are similar to the ones reported

in Table I. For instance, for the 40-dB BSNR case with the Lena

image, the ISNR values are 4.64 (4.75) dB and 4.34 (4.42) dB,

and for the 20-dB BSNR case, the ISNR values are 2.88 (3.06)

dB and 2.45 (2.51) dB for the ALG1 and ALG2 methods, re-

spectively. These results show the robustness of the methods to

parameter initialization.

Although the results in Table II are similar to the Gaussian

blur case, we note some interesting differences. It is clear that
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TABLE I
ISNR VALUES AND NUMBER OF ITERATIONS FOR THE LENA, CAMERAMAN, AND SHEPP–LOGAN IMAGES DEGRADED BY A GAUSSIAN BLUR WITH VARIANCE 9

ALG2 outperforms ALG1 in high BSNRs, but it results in a

lower ISNR in the low BSNR case. We can conclude that in the

high BSNR case, where the noise level is low, exploiting addi-

tional information using the full variational formulation actually

results in lower performance. However, using the full variational

algorithm, i.e., ALG1, provides better image estimates in the low

BSNR case. Another remark is that both algorithms fail to ac-

curately estimate the noise variance when the noise level is very

low at 40-dB BSNR, although the estimated noise variance is

very close to the true value at high noise levels.

The results obtained with the use of GD and CG are compa-

rable, although in most cases GD results in fewer iterations.

A fair comparison between BFO1 and the proposed ap-

proaches can be made by looking at the performances of

ALG1-True and ALG2-True. In most cases ALG1-True and

ALG2-True outperform BFO1, while a smaller number of iter-

ations is adequate for convergence. Additionally, ALG1-TrueU

and ALG2-TrueU provide the upper bound in ISNR that can be

achieved by TV-based restoration methods represented here.

Clearly, knowledge of the true value of the matrix provides a

significant advantage to the methods.

We next examine the effect of the introduction of additional

information about the unknown hyperparameters through the

use of the confidence parameters and on the performance

of the algorithms. As we have already explained before, in the

case of , no information about the hyperparam-

eters is available, and the observed image is responsible for

the estimation of the hyperparameters and the image. However,

one usually has some information about the original image and

the degradation process. For example, off-line estimates of the

image and noise variance can be computed, and provided to the

algorithms. In our experiments, we provided the true image and

noise variance to the algorithms and run the algorithms while

varying the confidence parameters and from 0 to 1 in 0.1

intervals.

Table III shows the means of the posterior distributions of

the hyperparameters, ISNR values, and the number of iterations

obtained using ALG1 for selected values of the confidence pa-
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TABLE II
ISNR VALUES AND NUMBER OF ITERATIONS FOR THE LENA, CAMERAMAN, AND SHEPP–LOGAN IMAGES DEGRADED BY A 9 � 9 UNIFORM BLUR

TABLE III
POSTERIOR MEANS OF THE DISTRIBUTIONS OF THE HYPERPARAMETERS, ISNR,

AND NUMBER OF ITERATIONS USING ALG1 FOR THE LENA IMAGE WITH

40-dB AND 20-dB BSNR USING � = 1=23:84, AND � = 1=0:16 AND

� = 1=16, RESPECTIVELY, FOR DIFFERENT VALUES OF 
 AND 


rameters. The confidence values are selected to demonstrate the

behavior of the algorithm in the following cases: 1) when full

information about the image and noise variance is available,

2) when no information is provided, i.e., the observation is fully

responsible for the restoration, 3) when some information about

the image prior variance is provided, and 4) when some in-

formation about the noise variance is provided. Moreover, the

evolution of ISNR for the full set of confidence parameters is de-

picted in Fig. 5. A similar ISNR evolution is obtained for ALG2

so its corresponding plot is not shown. It can be observed that

the noise level changes the effect of the confidence parameters.

In the low-noise case dB , information about the

noise variance affects the final ISNR more than the informa-

tion about the image variance; there is almost no ISNR variance

when and changes from 0 to 1. However, in the

20-dB BSNR case information about the image variance is more

valuable than the noise variance. For a fixed , the ISNR value

remains fixed for varying , whereas increasing the image vari-

ance confidence increases the obtained ISNR. It can be stated as

a final remark that the algorithm is less successful at estimating

the noise variance in low noise conditions, and less successful at
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Fig. 5. Evolution of ISNR using ALG1 for different values of 
 and 
 for the restoration of the Lena image blurred with a Gaussian with variance 9, and
(a) BSNR = 40 dB; (b)BSNR = 20 dB.

Fig. 6. Evolution of ISNR with varying 
 and � for Lena image degraded with Gaussian blur with variance 9 at (a) 40-dB BSNR and (b) 20-dB BSNR (note
that � = d � �̂).

estimating the image variance in high noise conditions. There-

fore, information about the poorly estimated parameter helps to

further increase the ISNR values. However, we should also state

that the ISNR variation in these plots is small compared to the

ISNR values (difference between the maximum and minimum

ISNR values are 0.13 dB at 40-dB BSNR and 0.19 dB at 20-dB

BSNR); therefore, we can see that the algorithm is robust to the

estimated hyperparameter values in terms of the final restored

image quality.

We will now examine the additional information provided by

the variational approach and study how the distributions on the

hyperparameters can be used to improve the results already ob-

tained. We start our experiments by assuming flat hyperpriors,

and applied algorithm ALG2 to the Lena image degraded by

a Gaussian blur of variance 9 and additive Gaussian noise at

40- and 20-dB BSNR, as we had before. This provides esti-

mates of the noise and image variance, denoted by and ,

respectively. Next we run algorithm ALG2 multiple times on

the same degraded image with different initial hyperparame-

ters: The final estimated noise variance of the algorithm is used

without update, i.e., and . By moving in

[0,1] and selecting the hyperprior mean as , where

is in the range , we obtain the ISNR evolution

graphs shown in Fig. 6(a) for the 40-dB BSNR case and Fig. 6(b)

for the 20-dB BSNR case. It should be noted that the range

of ISNR values obtained by this experiment includes the best

ISNR achieved with known hyperparameter values, depicted in

Table I, corresponding to ALG2-True. Thus, as expected, the

results by ALG1-True and ALG2-True are included in the case

when different selections of the gamma hyperpriors on the hy-

perparameters are used. A few remarks can be made by exam-

ining at Fig. 6. First, the algorithms are very robust with respect

to the parameter , since even in the case the re-

sulting ISNR value is very close to the highest achievable value.

Second, one can conclude that the distribution of is not sharply

peaked at one value, and, therefore, multiple values of this pa-

rameter can be used in the restoration process without greatly

affecting the performance of the algorithm.

Overall, the experimental results demonstrate that algorithms

ALG1 and ALG2 provide comparable performance to the ex-

isting TV-based approaches even though no prior knowledge

about the image and degradation process is assumed, and out-
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perform them if prior knowledge is utilized. It is also clear that

TV-based approaches result in higher quality restorations than

nonspatially adaptive restoration methods. Another important

point to be made is that with the developed framework, we can

draw different estimates for the unknown hyperparameters from

their estimated distributions and, thus, assign a degree of trust to

the results and potentially achieve improved restoration results.

The major distinction between the proposed algorithms ALG1

and ALG2 is that ALG1 provides the approximation to the pos-

terior distribution of the unknown image. For scientific applica-

tions for which a confidence value for a restoration is important

(i.e., restoration of astronomical or medical images), ALG1 can

provide such information through the use of this posterior dis-

tribution. On the other hand, when images are restored for, for

example, consumer applications ALG2 can be the algorithm of

choice.

The proposed algorithms are computationally more intensive

than nonspatially adaptive restoration methods since (33) and

(48) cannot be solved by direct inversion in the frequency

domain and numerical approaches are utilized. Typically, the

MATLAB implementations of our algorithms required on the

average about 2–5 min on a 3.20-GHz Xeon PC for 256

256 images. Note that the running time of the algorithms can

be improved by utilizing preconditioning methods (see, for

example, [38]–[41]).

VI. CONCLUSION

We have presented two new methods for the simultaneous

estimation of the image and the unknown hyperparameters in

TV-based image restoration problems. We adopt a variational

approach to provide approximations to the posterior distribu-

tions of the unknown variables. Utilizing this variational frame-

work, different values from the posterior distributions can be

drawn as estimates to the latent variables and prior information

about the degradation process and the unknowns can be incor-

porated into the estimation process to increase the performance

of the algorithms. We have analyzed the proposed methods and

demonstrated that some of the current methods in TV-based

image restoration are special cases of our formulation. Exper-

imental results are provided to show the performance of the

methods in the case where information about the degradation

process and the unknown variables is not available, and when

some information can be provided for improved performance.

APPENDIX I

CALCULATION OF THE IMAGE ESTIMATES

IN ALGORITHMS 1 AND 2

To obtain the image estimates, the mean of the distribution

in (33) is used in Algorithm 1 and the point estimate in

(48) is used in Algorithm 2. The estimation of the quantities can

be carried out by the gradient descent (GD) or the conjugate

gradient (CG) methods. Note that by using the GD or the CG

methods we avoid the calculation of the inverse of the covari-

ance matrix. Our descriptions will be specifically for Algorithm

1. However, the same results apply to Algorithm 2. We next de-

scribe the specific GD steps applied to the solution of

(A1)

where

(A2)

In the description that follows, we use the notation ,

, , to denote the four pixels around pixel (if

they correspond to , , ,

and , respectively).

We now expand the matrix

and calculate at position ,

. We have

(A3)

Let us now define

(A4)

Using this, we obtain

(A5)

Combining with (A1), we obtain

(A6)

Adding to both sides of the above equation, we have

(A7)

Let

(A8)

Finally, using this, we have to find the solution of

(A9)
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from which the GD iteration is obtained, that is

(A10)

Alternatively, a CG method can be applied. In our experi-

ments we used the basic CG version shown in [42] to solve

(A1). Note that several methods can be used (see, for instance,

[38]–[40]) to calculate the TV image estimate without the use

of the majorization of the TV prior.

APPENDIX II

CALCULATION OF REQUIRED EXPECTED

VALUES IN ALGORITHM 1

In this section we show how the calculations of in (36)

and in (41) are carried out. We first expand (36) to

obtain

(A11)

For (41), we have

(A12)

Therefore, is explicitly needed to calculate these

quantities. However, since the calculation of is very

intense, we propose the following approximation of the covari-

ance matrix. We first approximate using

(A13)

where is calculated as the mean value of the diagonal

values in , that is

(A14)

We then approximate using

(A15)

(A16)

Note that the matrix is a block circulant matrix with circulant

blocks (BCCB); thus, computing its inverse can be performed

in Fourier domain, which is very efficient [35].

Using this approximation, the last two terms in (A11) can be

expressed as

(A17)

Finally, we can approximate the last term in (A12) as follows:

(A18)
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