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JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. D16, PAGES 19,491-19,503, AUGUST 27, 1999 

Parameter estimation of a land surface scheme using 
multicriteria methods 

H. V. Gupta, L. A. Bastidas, S. Sorooshian, W. J. Shuttleworth, and Z. L. Yang 
Department of Hydrology and Water Resources, University of Arizona, Tucson 

Abstract. Attempts to create models of surface-atmosphere interactions with greater 
physical realism have resulted in land surface schemes (LSS) with large numbers of 
parameters. The hope has been that these parameters can be assigned typical values by 
inspecting the literature. The potential for using the various observational data sets that 
are now available to extract plot-scale estimates for the parameters of a complex LSS via 
advanced parameter estimation methods developed for hydrological models is explored in 
this paper. Results are reported for two case studies using data sets of typical quality but 
very different location and climatological regime (ARM-CART and Tucson). The 
traditional single-criterion methods were found to be of limited value. However, a 
multicriteria approach was found to be effective in constraining the parameter estimates 
into physically plausible ranges when observations on at least one appropriate heat flux 
and one properly selected state variable are available. 

1. Introduction and Scope 

This paper is one of three papers that discuss the usefulness 

of multicriteria methods for the evaluation and improvement 
of a land surface scheme (LSS). The focus of this paper is to 
show how multicriteria methods can be used to improve the 
estimates of LSS parameters. A companion paper [Bastidas et 
al., this issue] introduces a multicriteria approach to parameter 
sensitivity analysis, thereby providing a way to reduce the di- 

mensionality of the parameter estimation problem. In both 

papers, the methodology is illustrated using the Biosphere- 

Atmosphere Transfer Scheme (BATS) [Dickinson et al., 1993]) 
and two data sets, one from a grassland site in Oklahoma/ 
Kansas, and the other from a semiarid site in the Sonoran 

Desert, Arizona. A third paper (in preparation) will discuss the 
use of multicriteria methods for the evaluation of model per- 
formance and for model intercomparison. 

The paper is organized as follows: Section 2 discusses the 

background and context for this work and presents a review of 
the literature. Section 3 introduces the theoretical and practi- 

cal basis for applying multicriteria calibration methods to the 
estimation of LSS model parameters. Calibration of the BATS 
model to the two study sites is discussed in section 4, and 
section 5 discusses the results and future extensions. 

2. Background 

In order for an LSS to simulate the input-state-output be- 

havior of a portion of the land surface with minimal uncer- 
tainty, it is necessary to estimate (select) appropriate values for 
the model parameters. Here this process is referred to as 
parameter estimation. It is important to note that because an 

LSS is a (simplified) conceptual representation of the real 
system, the model parameters are also conceptual representa- 
tions of physical properties of the system. Where the concor- 
dance between the model conceptualization and the real world 
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is somehow close, it may be possible to obtain estimates for 

certain model parameters by direct measurements on the real 

system. However, where the concordance is less close, the 

model parameters can realistically only be viewed as abstract 

conceptual representations of physical quantities for which 

useful estimates cannot be found by direct measurement. 

From the earliest simple LSSs such as the "bucket model" 

[Manabe, 1969] to the relatively complex contemporary LSSs 

such as the Biosphere-Atmosphere Transfer Scheme (BATS) 

[Dickinson et al., 1993], the simple biosphere model (SiB2) 
[Sellers et al., 1996] and the variable infiltration capacity (VIC- 
2L) model [Liang et al., 1994], a common characteristic is the 
approximate description of the large-scale integrated areal 

land surface response using system equations derived from the 

understanding of land surface physics at the relatively small 

patch scale. Further, because of the need to parameterize an 

LSS for each (large scale) GCM grid square across the globe, 
the goal has usually been to construct schemes whose large- 

scale parameters can be defined from observed (hence mea- 
surable) quantities. For example, the BATS model uses 

look-up tables for model parameters corresponding to a fixed 

number of discrete soil-vegetation-climate regimes, the values 

in the tables having being deduced from studies published in 
the literature. 

Some LSS model parameters, such as albedo, percent veg- 

etated cover, leaf area index, etc., can be measured (estimated) 

at both the patch scale and the large scale (via remote sensing), 
and the relationship between their area-averaged values at 

patch and large scales is linear. However, other parameters 
such as soil hydraulic conductivity, stomatal resistance, aero- 

dynamic resistance, etc., are not easily measured at the rele- 

vant scales, and their relationship at different scales is less 
simple [Arain et al., 1996; Shuttleworth et al., 1997]. For exam- 

ple, saturated soil hydraulic conductivity is defined as the rate 

of flow of water through a unit cross section of soil caused by 

a unit hydraulic gradient. Even at the small scale, there is poor 

consistency in the estimates obtained using different measure- 

ment techniques [Brewer and Wheatcraft, 1994]. Consequently, 

at the GCM-LSS model scales, there is poor understanding of 
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(a) Parameter Space (b) Criterion Space 

Parameter 01 fl f2 f3 
Figure 1. Example showing the Pareto solution set (shaded 
region) for a simple problem having two parameters (0•, 02) 
and three criteria (f•, f2, f3): (a) parameter space plot show- 
ing contours of constant function value for each criterion. The 
points c•,/3, and 3' minimize different criteria, •5 is a multicri- 
teria (Pareto) solution and e is an inferior solution); (b) mul- 
tidimensional criterion space projected onto a two-dimen- 
sional plot. Each vertical axis indicates a different criterion, 
and each line joining all three axes indicates a point in the 
parameter space. 

between a model output and the data [e.g., Sorooshian and 

Dracup, 1980; James and Burges, 1982], reliable optimization 

methods for solving the nonlinear parameter estimation prob- 

lem [e.g., Duan et al., 1992; Sorooshian et al., 1993], insight into 
the appropriate quantity and most informative kind of data 

[e.g., Kuczera, 1982; Gupta and Sorooshian, 1985; Yapo et al., 
1996], and methods for representing model uncertainty [e.g., 
Spear and Hornberger, 1980; Kuczera, 1988; Franks et al., 1998]. 
A framework for extending this knowledge and experience to 

the emerging generation of multi-input-output hydrologic 

models was recently presented by Gupta et al. [1998] and tested 
in preliminary fashion on the U.S. National Weather Service 

flood forecasting model [Gupta et al., 1998; Yapo et al., 1997] 
and a soil moisture assimilation model [Houser, 1996]. 

The work presented here uses the framework presented by 

Gupta et al. [1998]. The major aim of this paper is to demon- 
strate a systematic and comprehensive approach for the appli- 

cation of calibration procedures to LSS models, to illustrate 

the consequent benefits that can accrue, and to discuss some of 

the difficulties that may be encountered. We show that multi- 

criteria calibration leads to conceptually realistic estimates for 

the model parameters with consequent improvements in 

model performance. 

how to obtain a valid and representative estimate. All that 

might reasonably be specified is the approximate range for the 

parameter value, based on some approximate understanding of 

the regional hydrogeology. (Note that the current practice of 
using parameter look-up tables based on approximate knowl- 

edge of climatic regime, vegetation, and soil types is arguably 

prone to error). If the input-state-output response of the LSS 
is not sensitive to parameter variations within this range [see 

Bastidas et al., this issue], it is presumably reasonable to use 

some nominal estimate (such as the midpoint of the parameter 
uncertainty range). However, if the LSS response is sensitive to 
finer specification of the parameter, the only remaining re- 

course is to adjust the value of the parameter so that the model 

responses are constrained to better match .available observa- 

tions. Here this process is referred to as model calibration or, 

more simply, calibration. 

Although current LSSs involve much conceptual abstraction, 

it has not been usual to apply calibr•/tion procedures to them. 
However, a few recent publications have investigated the po- 

tential benefits of calibration. For example, Sellers et al. [1989] 
employed manual calibration on the SiB model to improve 

estimates of nine of its parameters by fitting to five 2 week 

periods of field data. Franks and Beven [1997] used the gener- 
alized likelihood uncertainty estimation approach to reduce 

the output flux uncertainty for the TOPUP model by constrain- 
ing the model parameters using short periods of FIFE (10 
days) and ABRACOS (2.5 months) data. Perhaps the most 
revealing results come from the PILPS2c workshop, during 

which a large number of LSS models were intercompared; a 

significant conclusion was that the models that employed pa- 

rameter adjustment through calibration tended to provide bet- 

ter performance than those that did not [Lettenmaier et al., 
1996]. 

During the past two decades, the issue of how to calibrate 

conceptual models to observed data has received substantial 

attention within the hydrologic community (for a review, see 
Gupta et al. [1998]). This has included the development of 
maximum likelihood techniques for measuring the closeness 

3. Multicriteria Parameter Estimation 

Methodology 

A theoretical and practical basis for the application of mul- 

ticriteria theory to the calibration of conceptual physically 

based models was presented by Gupta et al. [1998]. The 
method is summarized briefly as follows: Consider a model 

having parameters 0 = { 0x, ---, 0 v • which is to be calibrated 
using time series observations collected on m different simu- 

lated response variables (Z•(0, t•), t• = ta•, ..., tb•, j - 
1,---, m). A separate criterion f•.(0) for each model re- 
sponse is defined to measure the distance between the model- 

simulated responses Z• and the observations O•. The specification 
of the mathematical form of these criteria depends on the prob- 

lem and the goals of the user. However, it is common practice to 

use a measure of residual variance such as the root-mean-square 

error (RMSEi (0) = sqrt {(1/Fl)•t=l,... n (gj(o, t) - Oi (t))2)); for 
a discussion of this, see Gupta et al. [1998]. The multicriteria 
model calibration problem can then be formally stated as the 

optimization problem: 

Minimize F(O) = {f•(0),---, fro(O)} subject to 0 C • (1) 

where the goal is to find the values for 0 within the feasible set 

•9 that simultaneously minimize all of the m criteria. 

An important characteristic of the multiobjective problem is 

that it does not, in general, have a unique solution. Because of 

errors in the model structure (and other possible sources), it is 
not usually possible to find a single point 0 at which all the 
criteria have their minima. Instead, it is common to have a set 

of solutions, with the property that moving from one solution 

to another results in the improvement of one criterion while 

causing deterioration in another. A simple problem having two 

parameters (0•, 02) and three criteria (f•, f2, f3) is illustrated 
in Figure 1. Figure la shows the feasible parameter space 

and Figure lb is a projection of the positive quadrant of the 

multidimensional criteria space onto a two-dimensional plot; 
each vertical axis line indicates a different criterion, and each 

point in •9 is represented by a line joining all three axes. The 
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points a,/3, and ? indicate the different solutions that minimize 
each of the individual criteria. The shaded region indicates the 

set S of multicriteria solutions to the problem. If 8 and e are 

points arbitrarily selected from inside and outside S, respec- 
tively, then, in a multicriteria sense, every point 8 is superior to 

every point e; that is, f•.(8) < f•(e), for all j = 1, ..., 3. 
However, no point in S is superior to any other. A particular 

point may be superior to others for one (or more) criterion, but 
it is inferior to them for at least one other criterion. The set S 

of solutions is variously called the trade-off set, noninferior set, 
nondominated set, or efficient set, but here, we call it the 

Pareto set. The Pareto set represents the minimal uncertainty 

that can be achieved for the parameters via calibration, without 

subjectively assigning relative weights to the individual model 
responses. The size and properties of this set are related to 
errors in the model structure and data. Only when the model 

is a perfect representation of the system (and there are no 
systematic biases in the observation data) can S become a 
unique solution. 

There are a number of different approaches to solving the 
multicriteria problem (equation (1)), and the relative merits of 
these is the subject of ongoing research [e.g., see Hathoe, 
1992]. Recently, Yapo et al. [1997] presented an efficient pop- 
ulation-based optimization strategy that can provide an ap- 

proximate representation of the Pareto set with a single opti- 
mization run. This algorithm, which is called the multiobjective 

complex evolution (MOCOM-UA) method, is based on exten- 
sions of the successful SCE-UA single-criterion method [Duan 

et al., 1992, 1993, 1994]. The MOCOM-UA method begins by 

uniformly sampling the feasible space 19 at a number of loca- 
tions and then uses a multicriteria population evolution strat- 

egy to drive this population of sample points toward the Pareto 
region; for details, see [Yapo et al., 1997]. The final solution 
therefore consists of a set of randomly distributed points which 

approximately represent the Pareto set. 

4. Case Studies 

The multicriteria parameter estimation methodology de- 
scribed above was used to calibrate a land surface scheme to 

two different data sets, one from the ARM-CART (atmo- 

spheric radiation measurement--cloud and radiation test bed) 
project grassland site in Oklahoma/Kansas and the other from 
a Sonoran Desert semiarid site [Unland et al., 1996]. In both 
cases the data are representative of the local small-(patch) 
scale hydrometeorology (rather than the scale of a GCM grid), 
and thus a critical evaluation of the performance of the pa- 

rameter estimation method is possible. The LSS used for this 

study was the off-line version of the Biosphere-Atmosphere 
Transfer Scheme (BATS le) [Dickinson et al., 1993], which has 
24 independent parameters and three initial soil-moisture con- 

ditions that must be specified. 

4.1. BATS Land Surface Scheme 

BATS is a conceptual parameterization of the ecohydrologi- 

cal processes at the scale of individual plots of vegetation 
(50-1000 m). The model consists of six interacting hydrom- 
eteorological components (three layers of soil, a canopy air 
component, a canopy leaf-stem component, and a snow- 

covered portion). Together, these components simulate the 
various radiative and hydrological process at the land atmo- 

sphere interface, including the exchange of solar and long- 
wave radiation, precipitation inputs (rain, snow, and dew), 

runoff, and the surface transfer of momentum and sensible and 

latent heat exchanges. The specification of parameters is con- 

ventionally made via a global land surface classification con- 

sisting of 18 land cover types (12 vegetation and 6 nonvegeta- 
tion) and 12 global soil types. Each land cover type is 
characterized by 16 vegetation-related parameters, and each 

soil type is characterized by eight parameters that represent 

the hydraulic, thermal, and reflective properties of the soil (see 
Table 1). Therefore the model has a total of 24 parameters that 
must be estimated, but two of these, xmowil (the wilting point 
parameter) and xmofc (the ratio of the field capacity to the 
saturated water content) are not independent parameters. The 
parameter xmowil is computed as a function of two other 

parameters, namely the hydraulic conductivity (xmohyd) and 
the minimum soil suction (xmosuc), while xmofc is used only 
when the land cover is assigned to be semidesert [Dickinson et 

al., 1993]. 

In principle, the BATS model computes the evolution of 12 

state variables, namely the temperature and water content for 

each of the six model components. However, two of these are 

not independent because the model assumes that the temper- 

ature of the lowest soil layer is constant and that when snow 

cover is present, it has the same temperature as the upper soil 
layer. Thus BATS uses 10 water-energy conservation equations 

to solve for the dynamical evolution of the 10 independent 

state variables. Gao et al. [1996] showed that errors in specifi- 
cation of initial values for these state variables tend to decay 

rapidly, with the notable exception being the initial moisture 

contents of the soil layers. In the work of Bastidas et al. [this 
issue] the results of a multicriteria parameter sensitivity anal- 

ysis show that the sensitivity of the model response to the 

initial soil-moisture contents is significant. Therefore to avoid 

problems caused by poor specification of these variables, the 
initial soil-moisture contents of the three soil layers were in- 

cluded as parameters to be estimated. 

4.2. Parameter Estimation for ARM-CART Grassland 

Study Site 

4.2.1. Data set. The ARM-CART study area covers a 

wide region in the southern Great Plains and includes parts of 

the states of Kansas and Oklahoma. The spatial coverage of 

the project enables the study of the spatial variation of land 

surface characteristics over an area. Data from one centrally 

located site (E13) were used in this study. The data cover the 
5-month period from April 1 to August 25, 1995, with a sam- 
pling interval of 30 min. The observed atmospheric variables 

are net radiation (R n in W/m2), surface temperature (T a in K), 
atmospheric pressure (Pa in kPa), relative humidity (r h in %), 
wind velocity (Va in m/s), and precipitation (P in mm). 

The available data contained many gaps and some obvious 

errors. Because an uninterrupted time series of inputs is re- 
quired by the model, short gaps (2-3 hours) were filled by 
simple linear interpolation. One of the gaps spanned 3 days, 
and data from a nearby site (E15) were then used to complete 
the series. 

The data set also included observed time series of variables 

that correspond with two model outputs (sensible heat (H in 

W/m 2) and latent heat (XE in W/m2)), and two model state 
variables (ground temperature (T a in K) and soil moisture (S w 
in mm)). The data on H and XE are derived from a Bowen 
ratio system that is reported to have poor reliability when the 
value of the Bowen ratio is close to 1.0; therefore all values of 

H and XE in periods when the Bowen ratio was between 0.75 
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Figure 2. Comparison of modeled variables (solid line) with the observed data (dots) for the ARM-CART 
site default parameters. The time series plots on the left show a representative 10 day period during which 
rainfall occurred. The scatterplots on the right show the entire period of data. 

and 1.25 were discarded. Further, a model spin-up period of 1 
month was used to reduce the influence of the errors in the 

specification of initial values of the state variables. The result- 

ing number of time steps for which values of H, hE, Tg, and 
Sw are available for constraining the model parameters is 4237. 

In this study of model calibration the root-mean-square error 

(RMSE) between the observed and model-simulated time se- 
ries for each of the four observed model response values (H, 

hE, Tg, and Sw) was computed, and these were selected as the 
four criteria to be minimized. 

4.2.2. Control run using BATS default parameters. As 

mentioned earlier, the standard method for parameter speci- 

fication in BATS automatically assigns values for the 24 pa- 

rameters based on user specifications of land cover, soil tex- 
ture, and soil color. The values for these so-called default 

parameters for the ARM-CART grassland site are listed in 
Table 1. To provide a basis for comparison, the default BATS 

parameters for grassland sites were used to generate a control 

run simulation (see Figure 2). To minimize the effects of poor 
specification of initial values, the initial water contents in the 

three soil layers were estimated by optimization following Bas- 

tidas [1998] and a one month spin-up period was used. 

In Figure 2, each row of plots corresponds to one of the four 

observed model responses. The four scatterplots on the right- 

hand side depict the correspondence between the entire set of 

observed and the simulated values. The time series plots on the 

left show the response dynamics for a representative 10 day 

period during which precipitation occurred (DOY 120-129, 
1995) with the observations indicated by dots and the model 
simulations indicated by solid lines. Although the observed and 

simulated output energy fluxes H and hE for the 10 day period 

appear to agree quite well, the scatterplots for the entire data 
set show that many points are quite far from the 1:1 line. This 
scatter can arise due to the combined effects of model and 

observational errors, but the scatterplots show a tendency to- 

ward underestimation of H (bias = 13.01 W/m 2) and overes- 
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timation of AE (bias = -7.57 W/m2), suggesting that there is 
a problem with the partitioning of energy within the model. In 

contrast, correspondence of the observed and simulated state 

variables T a and S w for the 10 day period is poor. In particular, 
the diurnal variation in simulated ground temperature tends to 

peak earlier and be larger than the observed diurnal variation, 
and the simulated soil moisture does not track the observed 

changes associated with precipitation events on days 122, 125, 

126, and 127. The peculiar shape of the •'Catterplot for S w 
suggests problems with the partitioning of moisture within the 

model; we later show that this can be improved by adjusting the 

parameters. However, we should not ignore the possibility of 
some incompatibility between the Sw that is measured and that 

which is simulated by the model. 

The discrepancies between the observations and BATS 

model default parameter simulations are a consequence of the 

combined influence of data errors, structural inadequacies in 
the model, and parameter misspecification. Parameter mis- 

specification can arise because the default estimates are only 
loosely constrained by field observations of vegetation and soil 

type. If discrepancies can be reduced by constraining the pa- 
rameters by calibration against data, it might then be possible 

to determine whether the energy and moisture partitioning 
problems are associated with structural inadequacies in the 
model. 

4.2.3. Parameter estimation by model calibration. To ex- 

plore the relative value of different observational data sets for 

constraining the model parameters, several different calibra- 

tion studies were performed. Each of the observed system 

responses was first used individually to calibrate the model as 

if the data on other model responses were not available; these 

are called single-criterion calibrations. Then the system re- 

sponses were used in pairs, triples, and all at once; these are 
here referred to as two-criteria, three-criteria, and four-criteria 

calibrations, or collectively as multicriteria calibrations. For 

simplicity of notation, a closed pair of brackets will denote a 

calibration run; for example, {H} denotes a single-criterion 
calibration using H as the calibration criterion, and {H, AE, 

T a } denotes a multicriteria calibration using H, AE, and T a as 
the calibration criteria. The SCE-UA global optimization 
method [Duan et al., 1993] and the MOCOM-UA global op- 
timization method [Yapo et al., 1997] were used for the single- 
criterion and multicriteria calibrations, respectively. 

To allow a relatively rigorous test of the power of multicri- 
teria calibration, it was assumed that there was no information 

available for the study site. In addition, the following two 
conditions were imposed on each of the calibration runs. First, 

all 22 independently specifiable model parameters were esti- 
mated by calibration, despite the fact that several could have 

been specified using field observations. Thus after including 
the three initial soil-moisture contents, a total of 25 unknown 

variables were optimized. Second, the initial parameter uncer- 
tainty was specified in terms of minimum and maximum values 

that are believed to correspond approximately to the full range 
of possible values for any location on Earth (see Table 1). 
Table 1 also lists more restrictive upper and lower bounds on 
each parameter which specify the reasonable range of values 

for the ARM-CART grassland site. These reasonable ranges 
were not used to constrain the calibrations but were instead 

used as postcalibration checks on the reliability and credibility 
of the calibration procedure. 

However, it is important to point out that proper feasibility 
constraints were imposed on the allowable •alues of the pa- 
rameters to preserve the physical realism of the parameteriza- 
tion. For example, the thicknesses of the shallower soil layers 
are constrained to be less than the deeper soil layers, the initial 
water contents of each soil layer were constrained to be less 

than the depth of the corresponding soil layer, and the season 
variability of vegetation cover and leaf area index were con- 

strained to be smaller than their prescribed maximum values. 
4.2.3.1. Single-criterion calibrations: The results of the 

single-criterion calibrations are summarized in Figures 3, 4, 
and Plates la and lb. Figure 3 presents the scatterplots show- 
ing the correspondence between the observed and the simu- 

lated values for each of the four single-criterion calibrations, 
and Figure 4 shows a detailed depiction of the time series 
behavior (for the chosen 10-day period). In both figures, each 
row corresponds to a different model response, and each col- 
umn (from left to right) shows the results of the {H}, { AE}, 

{Ta}, and {Sw} calibrations, respectively. Plate la is a nor- 
malized parameter plot (as introduced by Sorooshian et al. 
[1993]) of the different parameter estimates; the 24 BATS 
parameters and the 3 initial soil-moisture contents are listed 

along the x axis (xmowil and xmofc are included for complete- 
ness), and the y axis corresponds to the parameter values 
plotted on a range normalized by the global maximum and 
minimum values for the parameters. Each line going from left 

to right across the plot corresponds to a different calibration 

result (blue = {H}, green = {AE}, red = {T a}, and cyan = 
{ Sw } ); the default parameter control is also included using the 
color black. The grey shadowed area corresponds to the rea- 
sonable range for each parameter value for the ARM-CART 

grassland site (see Table 1). Plate lb shows the trade-offs 
between the different criteria in the multicriteria space; the 
four response criteria are listed along the x axis, and the y axis 

corresponds to the criterion values (RMSEs) with better values 
toward the bottom of the plot. Each line going from left to 
right across the plot corresponds to a calibration result (and 
hence a different parameter value). Note that if a calibration 
result plots as a line that falls entirely below (or above) that of 
a different result, the former can be said to be absolutely 
superior (inferior) in a multicriteria sense. However, if the two 

Plate 1. (opposite) Comparison of parameter estimates and final criteria values for the different calibration 
runs: (a) normalized parameter estimates for the ARM-CART site (black = default, blue = {H} calibration, 
green = {AE} calibration, red - {Tg} calibration, cyan = {Sw} calibration, yellow = {H, Tg, Sw} 
calibration, light grey = reasonable ranges); (b) criterion values for the ARM-CART site (color code same as 
Plate la; (c) normalized parameter estimates for the ARM-CART site (black - default, blue = {H, S w} 
calibration, green - { AE, Sw} calibration, red = { Ta, Sw} calibration, light grey - reasonable ranges); (d) 
criterion values for the ARM-CART site (color code same as Plate lc); (e) normalized parameter estimates 
for the Tucson site (black = default, blue - {H} calibration, green = {AE} calibration, red = {Ta} 
calibration, yellow - {H, AE, T a} calibration, light grey = reasonable ranges); (f) criterion values for the 
Tucson site (color code same as Plate lb). 
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Figure 3. Scatterplots comparing modeled variables (solid line) and observed data (dots) for the parameter 
sets estimated obtained by different single-criterion calibration runs. 

lines cross each other then the results are noninferior to each 

other in a multicriteria sense. 

The results of the single-criterion calibrations can be sum- 
marized as follows: Each calibration tends to perform much 

better than the default run on its corresponding model re- 

sponse, giving smaller RMSE values as well as closer corre- 
spondence to the scatterplot 1:1 line while performing less 
well on the other model responses (Figures 3 and Plate lb). 
None of the single-criterion calibrations is superior to the 

default parameter estimates (black) in a multicriteria sense 
(Plate lb). 

Only the results of the {H} calibration can be considered as 
reasonable in comparison to the default parameter estimates. 
There is approximately a 25% RMSE improvement in match- 

ing the H, AE, and T a responses and only a slight RMSE 
deterioration in matching Sw (20%) (see Plate lb). There is 
also a significant improvement in matching the diurnal pattern 

of variation of T a (compare Figures 4a and 2) and a qualitative 
improvement in the response of Sw to precipitation, although 
the actual Sw level is too high (bias = 6.94) (compare Figures 
3d and 4a to Figure 2). 

The { AE } calibration (green line) gives good RMSE results 
for H and AE but shows significant deterioration (70-100%) 

from the defaults for T a and Sw. There is a significant deteri- 
oration in matching the amplitude of variation of Ta; which is 
also reflected in the shape of the scatterplot (compare Figures 
39 and 4b to Figure 2). As with the {H} calibration, there is a 
qualitative improvement in the response of Sw to precipitation, 
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Figure 4. Comparison of modeled variables (solid line) with the observed data (dots) for the parameter sets 
estimated by different ARM-CART site single-criterion calibration runs; the time series plots show a repre- 
sentative 10 day period during which rainfall occurred. 

although the actual Sw level is now too low (bias = -8.36) 
(Figures 3d and 4b). 

The { T a} calibration gives good RMSE values for T a but 
gives such poor RMSEs for the other responses that they are 
above the upper ends of the scales in Plate lb. The visual 

match to T a is excellent, but there is clearly a problem with the 
energy balance; the daily peak in H is too high and XE is 
clipped at a low value (Figures 3i-3k and 4c). In addition, the 
simulated Sw is much too high, being completely off the scales 

of the scatterplot and time series plot (Figures 31 and 4c). 
The {Sw} calibration gives good RMSE values for S w but 

poor RMSEs for the other responses (Plate lb). The visual 
match to the amplitude and pattern of variation of S w is ex- 
cellent (Figures 3p and 4d), but the energy balance is clearly 
incorrect. Note also the significant increase in scatter for H and 

XE (Figures 3m-3n). 
In general, the different calibrations tend to provide some- 

what different parameter values for most of the parameters 

(Plate la). However, some of the parameters tend to fall at 
opposite ends of their feasible ranges when calibrated using 
different response data. In particular, the aerodynamic param- 
eters rough (roughness length) and displa (displacement 

height) tend to have opposite behavior when using {H}, 
{XE), and { Tg) than when using {Sw). However, the cali- 
brated estimates for vegc (vegetation cover), sai (stem area 

index), fc (light dependence of stomatal resistance), rootf (ra- 
tio of roots in upper layer to lower layer), and ssw (surface 
zone water content) tend to be similar and relatively insensitive 
to the response used for calibration. The different calibrations 
tend to give parameters that fall within the reasonable value 

bounds (grey shadowed area) with the exception of rough 
(roughness length), displa (displacement length), rsmin (min- 
imum stomatal resistance), and sai, suggesting that the reason- 
able bounds do not provide sufficiently tight constraints to 

guarantee good model performance. 
4.2.3.2. Multicriteria calibrations: The results of the sev- 

eral multicriteria calibrations are presented in Plates la-ld 

and Figure 5. The results for the {H, Sw}, {XE, Sw), and 

{ Tg, S w} two-criteria calibrations (blue = {H, Sw}, green = 
{hE, S w}, and red = {T g, S w}) and the {H, Tg, S w} 
calibration are shown (yellow) because these gave the best 

results. (Note that the four-criteria {H, hE, Tg, Sw} calibra- 
tion failed to improve on the three-criteria calibration results). 
Remember that for multicriteria calibration the results consist 

of a Pareto set of solutions, reflecting a range of trade-offs in 

matching the associated criteria; no single member of the set is 

better than any other member in a multicriteria sense. There- 

fore instead of picking a single representative member for 

analysis of the results, the results for the entire set of Pareto 
solutions are shown. 
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Figure 5. Comparison of modeled variables (light grey shaded region) with the observed data (dots) for the 
parameter sets estimated by different ARM-CART site multicriteria calibration runs. The time series plots 
show a representative 10 day period during which rainfall occurred. 

In general, the results of the multicriteria calibrations can be 
summarized as follows: All of these multicriteria calibrations 

are generally quite good and are comparable to the default in 
a multicriteria sense (Plates lb and ld). Note that the tendency 
to give poor matching of the fluxes not included for calibration 
has been diminished if not removed (compare with Plate lb). 
All the multicriteria calibrations show marked RMSE im- 

provement in Sw compared to the default (black), which is not 
surprising, given that the Sw data are being used to constrain 

the model (Plates lb and ld). The { Ta, Sw} calibration (red) 
tends to match the T.• and Sw fluxes well but at the expense of 
slightly poorer matching of the heat fluxes H and hE (Plate 1 d). 

The time series plots for all of the multicriteria calibrations 

appear to give reasonably good matching of the diurnal pattern 
of variability of all four observed system responses (Figures 
5a-5d). However, there is a noticeable trade-off in the ability 

of the model to simultaneously match both T a and S w well. 
This can be seen even in the { T a, S w } calibration (Figure 5c), 
which is not constrained to match H or hE and shows a ten- 

dency for the entire set of Pareto solutions (shaded area) to 

underestimate T a while overestimating S w. In general, how- 
ever, the biases are small. 

The degree of variability in the parameter values (Plates la 
and lc), both within the Pareto spread of the multicriteria 
calibrations and from one multicriteria calibration to another, 

is reduced in comparison to the single-criterion calibrations 

(Plate la). Notice also that the parameter values tend to lie 
within the reasonable range (grey-shaded area); the most se- 

rious violations are the { Ta, Sw} estimates (Plate lc, red) for 
the parameters rough (roughness length) and displa (displace- 
ment height), which lie only slightly outside the range (and are 
much improved from the single-criterion calibrations). The 
three-criteria {H, Tg, S•} calibration provides the most con- 
sistency with the reasonable parameter ranges (Plate la, yellow). 

The {H, Tg, S•} calibration gives the best overall results 
and is superior to the default in the multicriteria sense; the 
RMSEs are improved by 10.4% for H, 1.2% for hE, 12.6% 

for T a, and 70.3% for S•. The next best results are given by the 
{H, S w} calibration. Then come the { hE, S•} and { Ta, S w} 
calibrations, which are not so good but are superior to the 
single-criterion calibrations. 

4.3. Parameter Estimation for Tucson Semiarid Study Site 

4.3.1. Data set. The Tucson hydrometeorological site is 
located in the semiarid Sonoran Desert in the southwestern 

United States. The data were collected as part of ongoing 

research by the Department of Hydrology and Water Re- 
sources of the University of Arizona into the hydrometeorol- 

ogy of semiarid environments [Unland et al., 1996]. The data 
used here were collected at 20 min time intervals and covers an 
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Figure 6. Comparison of modeled variables (solid line) with the observed data (dots) for the Tucson site 
default parameters. The time series plots on the left show a representative 10 day period during which rainfall 
occurred. The scatterplots on the right show the entire period of data. 

entire year from May 1993 to April 1994. The measured at- 
mospheric forcings are net radiation, incoming radiation, air 
temperature, precipitation, specific humidity, and wind speed. 
Because the atmospheric pressure was not recorded, a con- 

stant value of 91.29 kPa was used on the basis of the average air 
pressure measured at the nearby Tucson International Airport 
and corrected for the elevation. The observed system response 
variables are sensible heat (H), latent heat (XE), and ground 

temperature (Ta). The heat fluxes were measured by eddy 
correlation from July 19 to August 9, 1993, and by a Bowen 
ratio system from August 10, 1993 to March 26, 1994. Unland 

et al., [1996] reported a problem with the reliability of the 
Bowen ratio system when the observed values of latent heat 

are small. These flagged values are considered to be of dubious 
quality and were therefore not used in this research; the re- 

maining system response data contain measurements at 5219 
time steps. In addition, an initial 2 month period of measure- 
ments for the atmospheric variables (but not the observed 
fluxes) was available; this period was used as a model "spin-up" 
period to diminish the influence of the incorrect specification 
of initial state variable values. 

4.3.2. Multicriteria parameter estimation. A series of 

single-criterion and multicriteria calibration runs were con- 

ducted for the Tucson site following a similar procedure as for 
the ARM-CART site, and the major results are presented in 
Plates le-lf, and Figures 6 and 7. The default parameter 
performance of the BATS model is shown in Plate if; the 

default parameter values are plotted in Plate le (black). Notice 

that the default value for parameter xla (maximum leaf area 
index) is well above the reasonable range for the Sonoran 
Desert semiarid environment but that the other parameters 
are within the reasonable ranges. However, the time series 

plots and scatterplots (Figure 6) show that the partitioning of 
energy is incorrect and that the model is not matching the 
ground temperature well, especially after rainfall occurs on 
days 237 and 238. Plate if shows that all the single-criterion 
calibrations provide RMSEs ({H} = blue, { AE } = green, 
{ T a} - red) that are better than the default in a multicriteria 
sense. These calibrations also provide parameter estimates that 
are entirely within the reasonable ranges (grey-shaded area). 
As expected, fitting on a single criterion tends to emphasize 
matching of the associated response at the expense of the 
others, and there is a wide variation in the parameter estimates 
(Plate le); for some parameters the single-criterion calibra- 
tions give estimates on opposite sides of the reasonable ranges 
(e.g., albvgl (long-wave vegetation albedo), rootf (upper to 
lower layer root ratio), xmosuc (minimum soil suction), and 
skrat (soil conductivity ratio)). Plate if also shows that the 

three-criteria {H, AE, T a} calibration results (yellow) are 
much superior to the default (the RMSEs are improved by 

32% for H, 39% for AE, and 59% for Ta), and the set of 
Pareto solutions arguably gives better trade-offs in matching to 
the three response variables than the individual single-criterion 
calibrations. In addition, the parameter estimates (Plate le) 
are closely grouped, fall within the reasonable ranges for the 
Sonoran Desert semiarid environment, and appear to be very 
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show a representative 10 day period during which rainfall occurred. The scatterplots on the right compare the 
entire period of data compared with the midpoints of the modeled ranges. 

realistic for the Tucson study site. The time series plots and 

scatterplots (Figure 7) show that the partitioning of energy has 
been improved (the considerable scatter remaining in the la- 
tent heat flux is attributable to measurement difficulties), and 
the model is now matching the ground temperature well. This 

three-criteria calibration run required approximately 20,000 

iterations (model simulations) to converge to the solution. 

5. Summary and Conclusions 

Over the last decade, attempts to create models of surface- 

atmosphere interactions with greater physical realism has re- 

sulted in a suite of land surface schemes that use many param- 

eters (e,g., BATS). The hope has been that these parameters 
can be assigned typical values by inspecting the literature. 

Often, vegetation and soil types are grouped into broad classes 

to aid in assigning the many parameters. However, observa- 

tional data are now available which allow testing of such mod- 

els at the patch scale. Thus the opportunity to contribute to the 

available literature on appropriate land surface parameters by 

optimizing models against time series of measured variables 
now exists. However, the derivation of the required parameters 
from such data has before now proven problematic because of 

the high parametric content of the models. The research pre- 

sented in this paper is motivated by the need to contribute to 
the availability of the required land surface parameters by 

finding an effective means for extracting values for the plot- 

scale parameters from typical field data. Specifically, the pos- 

sibility of whether extensions into a multiobjective form of the 

advanced parameter estimation methods developed for use 

with hydrological models can be used for practical and efficient 

estimation of the parameters in a complex LSS is explored. 

Both traditional single-criterion estimation techniques and 

the recently developed multicriteria methods were applied to 

the above problem using two data sets considered typical in 

terms of data quality but very different in terms of location and 

climatological regime (ARM-CART and Tucson). To the ex- 

tent possible, the results were interpreted with a view to pro- 

viding more general insight. In general, it was found that the 

traditional single-criterion methods are of limited value for 

estimating the preferred range of parameter estimates for a 

highly parameterized land surface scheme via calibration to 

field observations. However, the multicriteria approach was 

found to be effective at constraining tee parameter estimates 

into physically plausible ranges when (and this is an important 

point) observations on certain combinations of outputs and 
state variables are available. 

For the two case studies presented in this paper, successful 

calibration was achieved using observations of at least one heat 
flux (found here to be sensible heat) and one state variable. 

For the ARM-CART grassland site, where evaporation is the 

largest flux, soil moisture was the preferred state variable, and 

inclusion of soil temperature gave limited additional advan- 
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tage. For the Tucson semiarid site, where sensible heat is the 

dominant flux, soil temperature was effective as the observed 

state variable (however, soil-moisture values were not available 
for comparison). These results are suggestive that the pre- 
ferred state variable to be measured should be related to the 

primary heat flux at a particular site. This remains a topic for 
future research. Nonetheless, techniques for establishing which 

parameters are sensitive to the available variables are certainly 
required, which is addressed in the companion paper [Bastidas 
et al., this issue]. 

Regardless, the central conclusions of this paper are clear. A 

multicriteria parameter optimization method that is efficient 
and simple to use with modern land surface schemes has been 

developed, and when used with at least two criteria (e.g., the 
sensible heat flux and an appropriate state variable), the new 
technique is effective in constraining the preferred range for 
the many land-surface-related parameters that must be defined 

in a typical LSS. The MOCOM algorithm has been written to 

be generally applicable to any model, and the code is available 

from the authors on request (e-mail: hoshin@hwr. arizona. edu). 
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