
Parameter estimation of an aeroelastic aircraft using neural
networks

S C RAISINGHANI and A K GHOSH

Department of Aerospace Engineering, Indian Institute of Technology Kanpur,
Kanpur 208 016, India

e-mail: scr@iitk.ac.in

Abstract. Application of neural networks to the problem of aerodynamic
modelling and parameter estimation for aeroelastic aircraft is addressed. A
neural model capable of predicting generalized force and moment coefficients
using measured motion and control variables only, without any need for con-
ventional normal elastic variables or their time derivatives, is proposed. Further-
more, it is shown that such a neural model can be used to extract equivalent
stability and control derivatives of a flexible aircraft. Results are presented for
aircraft with different levels of flexibility to demonstrate the utility of the neural
approach for both modelling and estimation of parameters.
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1. Introduction

Applications of the parameter estimation method to extract aircraft parameters (stability
and control derivatives) from flight data in the linear flight regime for rigid aircraft have
been highly successful in the past (Maine & Iliff 1986). However, the newly introduced
highly maneuverable aircraft with their high degree of flexibility pose a new challenge to
search for appropriate aeroelastic models for inclusion in parameter estimation algorithms
(Zerweckh et al 1990). One of the basic problems faced in estimating parameters of an
aeroelastic aircraft is: a full order model of an aeroelastic aircraft has an order of magnitude
larger number of parameters, and thus, too many of them yield satisfactory estimates via
any of the known parameter estimation methods. To simplify dynamic analysis and control
synthesis, or to ease computational burden in simulation, simple low order models of vehicle
dynamics have been proposed by Waszak & Schmidt (1988) and Ghosh & Raisinghani
(1993). Many proposed model reduction procedures rely on numerical techniques and=or
transformations, and thereby, in the resulting models, the physics of the system is far from
transparent (Waszak & Schmidt 1988). Ghosh & Raisinghani (1993) proposed a reduced
order model of an aeroelastic aircraft that contains the essential characteristics of aircraft
dynamics, and also retains and provides physical interpretation of the parameters involved
in the reduced order model. Furthermore, they have also given a criterion in the form of an
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analytical expression to help decide adequacy or otherwise of the proposed simplified
model of an aeroelastic aircraft. In the present work, rather than resorting to model simpli-
fication for estimating parameters, we use a neural network aerodynamic model of a flexible
aircraft, and subsequently use such a model for estimating parameters via the Delta and the
Zero methods (discussed later) proposed by Raisinghani et al (1998a).

Recently, a class of neural networks called the feed forward neural networks (FFNNs)
have been used to model aircraft dynamics wherein aircraft motion variables and control
inputs are mapped to predict the total aerodynamic coefficients (Hess 1993; Basappa &
Jategaonkar 1995; Linse & Stengal 1993). It has been shown that FFNNs can work as
general function approximators and thereby are capable of approximating any continuous
function to any desired accuracy provided the appropriate number of hidden layers and the
neurons per layer exist, and that the activation function is continuous (Hornik et al 1989).
The capacity to act as general function approximator presents FFNNs as an alternative tool
for modelling aircraft dynamics. FFNNs also possess generalization property which enables
the interpolation and extrapolation using a finite set of measurements. This generalization
property has been exploited by Raisinghani et al (1998a) to propose two methods, named
the Delta method and the Zero method, for explicitly estimating aircraft parameters using
FFNNs. This paper investigates the aerodynamic modelling of an aeroelastic aircraft using
FFNN and the applicability of the Delta and Zero methods for extracting parameters from
such a neural model.

2. Neural networks

Neural networks have two main components ± the processing elements called neurons or
nodes and the connection between neurons, each connection having its own weight. The
neurons are the information processors, and the connections function as information storage
(figure 1a). Each processing element first calculates a weighted sum of the input signals,
and then applies a transfer function, also called activation function, such as the tangent
hyperbolic function or the logistic (sigmoidal) function to the weighted sum and outputs
the result. The neurons within a network are arranged in an input layer, one or more hidden
or processing layers, and an output layer. Figure 1b shows a typical backpropagation neural
network. The name `backpropagation' comes from the training method employed during
the learning (training) process ± backpropagation of error. The error between the predicted
output and expected (desired or true) output is computed. The training method is simply a
gradient descent method that minimizes the total squared error of the output so computed
by the net. In a prediction problem, such as aerodynamic modelling, the number of neurons
in the input layer equals the number of input variables, and the number of neurons in the
output layer equals the number of predicted variables. Selection of the rest of the architecture
of the network in terms of the number of neurons in the hidden layer, the learning rate, the
momentum rate etc. is not an exact science, and one has to resort to trial and error methods
to find a suitable network structure for the given data.

3. The Delta method and the Zero method

Details of both the Delta and Zero methods are given in Raisinghani et al (1998) and Ghosh
et al (1998). However, for the sake of completeness, a brief description of the methods is
presented. The Delta method is based on the following premise: a stability or a control
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derivative can be thought of as the change in the aerodynamic force or moment coefficient
caused by a small variation in one of the motion=control variables while the rest of the
variables are held constant. Let the FFNN be trained to map the network input variables �,
q and � to the output variable CL or Cm. Only one of the network inputs (say �) is given a
small (delta, ��) perturbation (hence the name `̀ the Delta method'') at each time point
while all the other network inputs are held at their original values. Let the predicted Cm

for ���� and �ÿ�� be C�m and Cÿm . Now the stability derivative Cm�
is given by Cm�

�
�C�m ÿ Cÿm�=2��:

The Zero method views the stability or control derivatives as follows: if we could obtain
an aerodynamic coefficient as a function of only one of the motion=control variables at a
time, while the rest of the variables are set at zero values, then the ratio of the predicted
aerodynamic coefficient to the non-zero motion=control variable will yield the corres-
ponding stability=control derivative. For example, if we set q � � � 0 while � is kept at its
original value, the predicted CL and Cm are used to yield CL�

� CL=� and Cm�
� Cm=�:

4. Simulated flight data generation and neural modelling

At the outset, it may be emphasized that the Delta and Zero methods do not require
stipulation of an a priori model for flexible aircraft; it is only for the purpose of generating

Figure 1. Schematic of (a) a processing element, (b) a backpropagation neural
network for modelling short period mode.

Parameter estimation of an aeroelastic aircraft using neural networks 183



simulated flight data that the following equations of motion are considered. To this purpose,
only the longitudinal nonlinear equations of motion of a flexible aircraft are considered and
linearized about a straight and level cruise flight. Assuming variations in velocity to be
negligible (u � constant), the equation of motion given by Waszak & Schmidt (1988) are
approximated for the short period mode as

_�ÿq�ÿ�uS=2m CL���CLqqc=2u�CL���
Xn

i�1

�CLnini�CL _ni _nic=2u�
" #

; �1a�

_q��u2Sc=2Iy Cm���Cmqqc=2u�Cm���
Xn

i�1

�Cmnini�Cm _ni _nic=2u�
" #

; �1b�

where vehicle angle-of-attack �, pitch rate q, and control input � represent small perturba-
tions from the chosen reference flight condition; ni and _ni are the generalized elastic
deflections and their time derivatives; CL�;Cm�; . . . ;CLni;Cmni are the stability and control
derivatives as defined in Waszak & Schmidt (1988). Air density �, total inertial velocity u,
wing area S, wing chord c, aircraft mass m, and moment of inertia about the Y-axis Iy, are
the other quantities used in the above equations.

The following equation satisfied by the generalized coordinates ni is taken from Waszak
& Schmidt (1988) except that an additional term 2�iwi _ni representing the structural damp-
ing is also included in it

�ni � 2�iwi _ni � w2
i ni � �u2Sc=2Mi�Cni

� �� Cni
q qc=2u� Cni

� �

�
Xn

j�1

�Cni
nj nj � Cni

_nj _nj c=2u��; �2�

where wi, �i and Mi are the in-vacuo frequency, modal damping, and modal generalized
mass respectively and Cni

� ;C
ni
q ; . . . ;Cni

ni;C
ni
_ni represent the generalized force derivatives due

to coupling in elastic and aerodynamic degrees-of-freedom.
Due to nonavailability of real flight data, simulated flight data were generated for an

example aeroelastic aircraft similar to that given in Waszak & Schmidt (1988). The geome-
tric, mass, and moment of inertia characteristics, stability and control derivatives, flight
condition, and the first four aeroelastic modes for the baseline configuration C2 and its
more flexible version C3 are taken from Waszak & Schmidt (1988). Equations (1)±(2) are
integrated for a multistep 3-2-1-1 type of elevator input to generate motion variables (�; q)
and to compute generalized force and moment coefficients (CL and Cm). To vary the
flexibility of the aircraft, it is assumed that the aircraft can be made to vibrate in nearly the
same normal modes but with different in-vacuo frequencies (Waszak & Schmidt 1988).
Thus, for the more flexible configuration C3, the same total force coefficients as that of
C2 ± but the in-vacuo frequencies of C3 ± were used to generate flight data. Now the
motion and control variables �; q and � as the network inputs and either CL or Cm as the
output variable are used for supervised training of the network.

The training algorithm is iterative in nature: the algorithm is started with a set of randomly
initialized weights, and the back propagation algorithm repeated for all data points to update
the weights recursively. The mean square error (MSE) for each iteration is defined by,

MSE � 1

mn

Xn

i�1

Xm

j�1

�Yi� j� ÿ Xi� j��2
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where Y and X are respectively the desired and computed outputs of the neural network, n
is the number of data points and m is the number of output variables. The training sessions
are continued till changes in the MSE in successive iterations are less than the prescribed
value, or the number of iterations exceeds the specified number.

Once the training (modelling) is over and the network weights are frozen, the same input
data are passed again to check the prediction capability of the neural network. The predicted
values are deemed acceptable only if the MSE is less than the minimum specified value. To
achieve the desired level of MSE, various interrelated neural network parameters like the
number of hidden layers, number of nodes in the hidden layer(s), learning rate, momentum
factor, abruptness (gain) factor of the sigmoidal function, initial neural network weights
and scaling of input±output data are adjusted by trial and error. Once the FFNN has been
trained satisfactorily to represent the mapping of the input variable (�; q; �) to the output
variable (CL or Cm), it is used for estimating aircraft parameters by the Delta and Zero
methods.

The trained FFNN is the aerodynamic model of the aeroelastic aircraft, mapping
motion and control variable to the total force and moment coefficient. Such an FFNN
aerodynamic model has few useful practical applications besides its use for estimating
parameters via the Delta and Zero methods. For example, such an on-board neural
model could provide access to an on-line aeroelastic model of an aeroelastic aircraft;
the model would predict the total aerodynamic force and moment coefficients
(including the elastic effects), the measured variables required being only the motion
and control variables, and not the elastic deflections or their time derivatives. In this
context, it is worth reiterating that for the case of real flight data, only the measured
variables �; q; �, normal acceleration az and _q (either measured directly, or obtained via
numerical differentiation of measured q) are required. The total aerodynamic coefficients
(with aeroelastic effects included) CL and Cm are computed from CL � ÿ2maz=�u2S and
Cm � Iy _q=�u2Sc.

Thus, the equations of motion, (1) and (2), neither need to be postulated nor integrated
for neural modelling, i.e., the neural model is obtainable by directly using only the measured
quantities.

5. Parameter estimation via the Delta and the Zero methods

The Delta and Zero methods possess some features that could be used advantageously when
estimating parameters of an aeroelastic aircraft. Because the network is trained separately
for each of the force or moment coefficients, it can be subsequently used for estimating
parameters, one at a time, corresponding to that very force or moment coefficient. Thus,
rather than estimating the whole set of parameters in one go, the estimation is carried out in
separate steps equal to the number of force or moment coefficients involved. For example,
the stability and control derivatives corresponding to each of the six degrees-of-freedom
are obtained separately. This property is of special significance for an aeroelastic aircraft
since the number of unknown parameters is very large. Furthermore, for an aeroelastic
aircraft, due to elastic deformations, the rigid-body and elastic degrees-of-freedom get
coupled via the aerodynamic forces. Conventional methods like the maximum likelihood
(ML) method would require solution of these coupled equations to generate the model
response which is compared with the measured response to form the cost function to be
minimized by the ML algorithm. Also, the ML method needs a reasonable estimate for
initial values of parameters to begin the algorithm. In contrast, the Delta and the Zero
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methods require neither the solution of such coupled equations nor any guess values of the
parameters.

We reiterate: it is only for the sole purpose of generating simulated flight data that the
coupled equations of motion (1) and (2) are required, and not for estimating parameters via
the Delta or the Zero method. The flight data so generated always contain the aeroelastic
effects of all the four modes, and thus the generalized force and moment coefficients in the
output file of the network always contain all the aeroelastic effects. However, the variables
used in the network input file can be varied. In the present work, the results for the following
two cases are presented.

Case 1: The network input file has only the motion and control variables �; q and �. None
of the elastic deflections or their derivatives are present in the input file.

Case 2: The input file variables �; q and � are supplemented by the elastic deflection n1

corresponding to the first mode.

5:1 Results for case 1

The aerodynamic model for case 1 achieves mapping of the motion and control variables to
the total force and moment coefficients that contain the aeroelastic effects. The estimated
parameters via the Delta and the Zero methods from such a neural model (table 1) would
represent equivalent parameters wherein the effects of all the aeroelastic modes get
absorbed. Before discussing these results, we digress to place the concept of equivalent
derivatives in its proper perspective.

A question is posed: When and how useful are the equivalent parameter estimates?
Ghosh & Raisinghani (1993) proposed an analytical expression F as an indicator of the
flexibility of the aircraft and of its adequacy or otherwise of using equivalent parameters to
represent essential dynamics of the flexible aircraft. The analytical expression F is obtained

Table 1. Comparison of parameter estimates via the Delta and Zero methods, and analytical
computations.

Estimated equivalent parameters

Configuration C2 Configuration C3

Parameter Delta Zero Analytical Delta Zero Analytical

CL� 2.629 2.662 2.700 1.997 2.433 2.24
(0.076)* (0.017) (0.59) (0.25)

ÿCLq 15.286 14.817 15.870 15.238 21.473 18.57
(0.426) (0.091) (5.00) (0.111)

CL� 0.367 0.374 0.351 0.203 0.317 0.021
(0.015) (0.007) (0.10) (0.005)

ÿCm� 1.287 1.346 1.390 0.544 0.598 1.565
(0.060) (0.018) (0.08) (0.01)

ÿCmq 36.358 37.646 33.100 18.803 20.773 27.98
(1.547) (1.166) (2.93) (1.46)

ÿCm� 2.331 2.311 2.310 1.385 1.502 1.573
(0.097) (0.193) (0.22) (0.02)

* Sample standard deviation in parentheses
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by substituting steady state ni (dropping the time derivative terms �ni; _ni) from (2) into (1).
Such an analytical expression and the corresponding computed equivalent parameters
for the case where only the first mode terms (n1) are retained in (2) are given by Ghosh &
Raisinghani (1993). It is of interest to see how the equivalent parameters are affected
by inclusion of the second, or the second and third modes, in addition to the first mode
included earlier. In table 2, analytically computed parameters from such an exercise are
compared for the nominal configuration C2 and its more flexible version C3. Results
for the C2 configuration show that the inclusion of the first mode alone is sufficient to
predict the equivalent parameters, since inclusion of additional modes affects analytically
computed values only marginally (except CL�). For configuration C3, inclusion of addi-
tional modes does affect the estimates, the effect being most pronounced on the weak
parameters CLq and CL�. These observations suggest that for most of the strong parameters,
inclusion of the first mode alone would be sufficient to analytically compute equivalent
parameters.

The equivalent parameter estimates via the Delta and the Zero method would represent
absorption of the all the aeroelastic modes. For comparison, table 1 lists these estimates
along with the analytically computed values. For configuration C2, we see that these esti-
mates compare reasonably with those obtained via analytical computations. For the more
flexible configuration C3, the estimates show some discrepancy amongst those from different
approaches, specially for the derivative CL�.

The estimates via the Zero method show sample standard deviations lower by a factor of
2 to 10 as compared to the Delta method, and also compare marginally better with the
analytically computed estimates. To illustrate how the aeroelastic effects would affect the
aircraft response for a given control input, true � and q responses for the more flexible
configuration C3 are compared with the corresponding rigid-body responses in figure 2. As
seen, both � and q responses for the aeroelastic aircraft are different, not only quanti-
tatively but also qualitatively from the corresponding rigid-body response. Thus a rigid-
body model for C3 would be erroneous and unacceptable. Next, the responses using
estimated equivalent parameters from the Delta method, the Zero method and the analytical
computations for C3 are compared with the actual response in figure 3. The estimated
responses show a much improved match with the actual response; the match being better
both quantitatively and qualitatively as compared to that shown for the rigid-body in
figure 2. For configuration C2, the match (not shown) was found to be far better than that

Table 2. Effect of inclusion of mode shapes (ni; i � 1; 2; 3) on computed equivalent parameters.

Analytically computed equivalent parameters

Configuration C2 Configuration C3
Rigid

Parameter body n1� n1; n2# n1; n2; n3$ n1 n1; n2 n1; n2; n3

CL� 2.92 2.71 2.72 2.70 1.995 2.26 2.24
ÿCLq 14.70 16.04 15.84 15.87 8.79 18.56 18.57
CL� 0.435 0.252 0.375 0.351 ÿ0.363 0.08 0.021
ÿCm� 1.66 1.42 1.42 1.39 0.63 0.610 0.565
ÿCmq 34.75 33.25 33.22 33.10 28.17 28.04 27.98
ÿCm 2.57 2.37 2.363 2.31 1.69 1.66 1.573

* Only ¢rst (n1) mode included; # only ¢rst (n1) and second (n2) modes included; $ only ¢rst (n1), second (n2) and
third (n3) modes included
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for C3. The above results suggest the potential use of the neural model, and the Delta or the
Zero method for estimating parameters of an aeroelastic aircraft in design of control laws
and flight simulators. A reasonable model as well as estimates of equivalent parameters are
obtainable by simply using measured quantities without any need for postulating coupled
equations of motion or guess for initial values of parameters to be estimated.

5:2 Results for case 2

For case 2, the input file used for aerodynamic modelling included the elastic deflection
n1 also. The idea is to see if the derivatives CLn1 and Cmn1 could also be estimated. In
addition to the equivalent parameters, reasonable estimates of CLn1 and Cmn1 were obtained
via the Delta and the Zero methods as shown below. Since the two additional parameters
CLn1 and Cmn1 to account for aeroelastic effects are added, the equivalent parameter
values are closer to the rigid-body true values, specially for the Cm-derivatives as illustrated
below.

Figure 2. Comparison of responses when aeroelastic effects are omitted (rigid-body)
and included for the aeroelastic configuration C3.
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True Delta Zero

CLn1 0.029 0.020 (0.008)* 0.033 (0.0001)
Cmn1 ÿ0.032 ÿ0.026 (0.004) ÿ0.028 (0.001)
Cm� ÿ1.66 ÿ1.514 (0.206) ÿ1.612 (0.055)
Cmq ÿ34.75 ÿ34.54 (5.53) ÿ37.85 (3.66)
Cm� ÿ2.57 ÿ2.53 (0.321) ÿ2.67 (0.328)

� Sample standard deviation

Figure 3. Comparison of actual responses of aircraft C3 with estimated responses
using parameter estimates obtained via the Delta method, the Zero method and the
analytical computations.
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6. Conclusions

The results of applying the Delta and Zero methods to extract equivalent stability and
control derivatives of an aeroelastic aircraft have been presented. It has been shown that the
neural model of an aeroelastic aircraft can be achieved simply by using measured quantities
�; q; �; az and _q (obtain directly or via the numerical differentiation of measured q), without
requiring measurements of elastic deflections or their derivatives. The main advantages of
the neural modelling and estimating parameters from such a model via the Delta and Zero
methods are: (i) it circumvents the need for postulating and solving the coupled rigid-body
and elastic degrees-of-freedom equations for an aeroelastic aircraft, (ii) the problem of
large numbers of parameters for an aeroelastic aircraft is reduced to estimating fewer
parameters in terms of equivalent parameters and also, the parameters corresponding
to each one of the degrees-of-freedom is estimated separately, (iii) no guesses of initial
values of parameters are required by the Delta or Zero methods, and (iv) the on-board
trained neural model has a potential for obtaining on-line parameter estimates, and such a
model and=or parameter estimates can be used for flight control system design. A question
may be posed: for on-line modelling and parameter estimation, the measurement errors due
to bias, scale factor and measurement noise in the measured data would probably require
on-line pre-processing of data. However, in a recent work by Raisinghani et al (1999), it
has been shown that the proposed neural approach for modelling and parameter estimation
can handle the raw data without a priori burden of correcting them for the measurement
errors.

We would like to thank Dr P K Kalra of the Electrical Engineering Department for some
useful discussions and the use of the neural simulator at his laboratory.
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