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Abstract. The problem of parameter estimation of the chirp signals in presence of station-

ary noise has been addressed. We consider the least squares estimators and it is observed

that the least squares estimators are strongly consistent. The asymptotic distributions of the

least squares estimators are obtained. The multiple chirp signal model is also considered and

we obtain the asymptotic properties of the least squares estimators of the unknown param-

eters. We perform some small sample simulations to observe how the proposed estimators

work for small sample sizes.

1. Introduction

In this paper we consider the estimation procedure of the parameters of the following

signal processing model:

(1) y(n) = A0 cos(α0n + β0n2) + B0 sin(α0n + β0n2) + X(n); n = 1, . . . , N.

Here y(n) is the real valued signal observed at n = 1, . . . , N . A0 and B0 are real-valued

amplitudes and α0 and β0 are the frequency and frequency rate respectively. So the chirp

signal model (1) does not have a constant frequency like the sinusoidal frequency model

and the initial frequency changes over time with the rate β. The error random variables

{X(n)} is a sequence of random variables with mean zero and finite fourth moment. The

error random variable X(n) satisfies the following assumption:

Assumption 1. The error random variable {X(n)} can be written in the following form;

(2) X(n) =

∞
∑

j=−∞
a(j)e(n − j).
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Here {e(n)} is a sequence of independent and identically distributed (i.i.d.) random vari-

ables with mean zero and finite fourth moment. The coefficients a(j)’s satisfy the following

condition;

(3)

∞
∑

j=−∞
|a(j)| < ∞.

The signals as described in (1) are known as the chirp signals in the statistical signal

processing literature (Djurić and Kay; 1990). Chirp signals are quite common in various

areas of science and engineering, specifically in sonar, radar, communications, etc. Several

authors considered the chirp signal model (1) when X(n)’s are i.i.d. random variables. See

for example, the work of Abatzoglon (1986), Kumaresn and Verma (1987), Djurić and Kay

(1990), Gini, Montanari and Verrazzani (2000), Nandi and Kundu (2004) etc. Different

approaches of the estimation of chirp parameters in similar kinds of models are found in

Giannakis and Zhou (1995), Zhou, Ginnakis and Swami (1996), Shamsunder, Giannakis and

Friedlander (1995), Swami (1996) and Zhou and Giannakis (1995). It is well known, that in

most of the practical situations, the errors may not be independent. We assume stationarity

through assumption 1 to incorporate the dependence structure and make the model more

realistic.

Assumption 1 is a standard assumption for a stationary linear process. Any finite dimen-

sional stationary AR, MA or ARMA process can be represented as (2) when the coefficients

a(j)’s satisfy (3). Thus, the Assumption 1 is true for a large class of stationary random

variables.

In this paper, we discuss the problem of parameter estimation of the chirp signal model

in presence of stationary noise. We consider the least squares estimators and study their

properties, when the errors satisfy assumption 1. It is known, see Kundu (1997), that

the simple sum of sinusoidal model does not satisfy the sufficient conditions of Jennrich

(1969) or Wu (1981) for the least squares estimators to be consistent. So the chirp signal

model as defined in (1) also does not satisfy the sufficient conditions of Jennrich and Wu.

Therefore, the results of Wu or Jennrich cannot be applied directly to establish the strong

consistency or the asymptotic normality properties of the LSEs. Interestingly, because of the

structure of the model, although it does not satisfy the standard sufficient conditions, the

strong consistency or the asymptotic normality results can be obtained. It is also observed

that the asymptotic variances of the amplitudes, frequency and frequency rate estimators
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are O(N−1), O(N−3) and O(N−5) respectively. Based on the asymptotic distributions,

asymptotic confidence intervals can also be constructed.

The rest of the paper is organized as follows. In section 2, we provide the asymptotic

properties of the least squares estimators. Multiple chirp model is discussed in section 3.

Some numerical results are presented in section 4 and we conclude the paper in section 5.

The proofs of the results of section 2 are provided in the Appendix.

2. Asymptotic Properties of LSEs

Let us use the following notation: θ = (A, B, α, β), θ0 = (A0, B0, α0, β0). Then, the least

squares estimator (LSE) of θ0, say θ̂ = (Â, B̂, α̂, β̂), can be obtained by minimizing

(4) Q(A, B, α, β) = Q(θ) =
N
∑

n=1

[

y(n) − A cos(αn + βn2) − B sin(αn + βn2)
]2

,

with respect to A, B, α and β. In the following, we state the consistency property of θ0 in

theorem 1.

Theorem 1. Let the true parameter vector θ0 = (A0, B0, α0, β0) be an interior point of the

parameter space Θ = (−∞,∞)× (−∞,∞)× (0, π)× (0, π) and A02

+ B02

> 0. If the error

random variables X(n) satisfy assumption 1, then θ̂, the LSE of θ0, is a strongly consistent

estimator of θ0.

In this section we compute the asymptotic joint distribution of the least squares estima-

tors of the unknown parameters. We use Q′(θ) and Q′′(θ) to denote the 1 × 4 vector of

first derivatives of Q(θ) and the 4 × 4 second derivative matrix of Q(θ) respectively. Now

expanding Q′(θ̂) around the true parameter value θ0 by Taylor series, we obtain

(5) Q′(θ̂) − Q′(θ0) = (θ̂ − θ0)Q′′(θ̄),

here θ̄ is a point on the line joining the points θ̂ and θ0. Suppose D is a 4 × 4 diagonal

matrix as follows;

D = diag
{

N− 1

2 , N− 1

2 , N− 3

2 , N− 5

2

}

.

Since Q′(θ̂) = 0, therefore (5) can be written as

(6) (θ̂ − θ0)D−1 = −
[

Q′(θ0)D
] [

DQ′′(θ̄)D
]−1

,
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as
[

DQ′′(θ̄)D
]

is an invertible matrix a.e. for large N . Using theorem 1, it follows that θ̂

converges a.e. to θ0 and since each element of Q′′(θ) is a continuous function of θ, therefore,

lim
N→∞

[

DQ′′(θ̄)D
]

= lim
N→∞

[

DQ′′(θ0)D
]

= 2Σ(θ0) (say).

Now let us look at different elements of the matrix Σ(θ) = (σjk(θ)). We will use the following

result

lim
N→∞

1

Np

N
∑

n=1

np−1 =
1

p
for p = 1, 2, . . . .

and the following notation:

lim
N→∞

1

Np+1

N
∑

n=1

np cosk(αn + βn2) = δk(p, α, β),(7)

lim
N→∞

1

Np+1

N
∑

n=1

np sink(αn + βn2) = γk(p, α, β).(8)

Here k takes values 1 and 2. Using these notation for limits, we compute the elements of

Σ(θ) by routine calculations and are as follows:

The 4 × 1 random vector
[

Q′(θ0)D
]

takes the form;























− 2√
N

∑N
n=1 X(n) cos(α0n + β0n2)

− 2√
N

∑N
n=1 X(n) sin(α0n + β0n2)

2

N
3
2

∑N
n=1 nX(n) [A0 sin(α0n + β0n2) − B0 cos(α0n + β0n2)]

2

N
5
2

∑N
n=1 n2X(n) [A0 sin(α0n + β0n2) − B0 cos(α0n + β0n2)]























.

Now using the central limit theorem of stochastic processes (see Fuller; 1976, page 251), it

follows that
[

Q′(θ0)D
]

tends to a 4-variate normal distribution as given below;

(9)
[

Q′(θ0)D
] d
−→ N4(0,G(θ0)),
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where the matrix G(θ0) is the asymptotic dispersion matrix of
[

Q′(θ0)D
]

. If we denote

G(θ) = ((gjk(θ))), then for k ≥ j, gjk(θ) are as follows:

g11(θ) = lim
N→∞

4

N
E[S1]

2, g12(θ) = lim
N→∞

4

N
E[S1S2],(10)

g13(θ) = lim
N→∞

4

N2
E[S1S3], g14(θ) = lim

N→∞

4

N3
E[S1S4],(11)

g22(θ) = lim
N→∞

4

N
E[S2]

2, g23(θ) = lim
N→∞

4

N2
E[S2S3],(12)

g24(θ) = lim
N→∞

4

N3
E[S2S4], g33(θ) = lim

N→∞

4

N3
E[S3]

2,(13)

g34(θ) = lim
N→∞

4

N4
E[S3S4], g44(θ) = lim

N→∞

4

N5
E[S4]

2,(14)

where

S1 = −
N
∑

n=1

X(n) cos(αn + βn2), S2 = −
N
∑

n=1

X(n) sin(αn + βn2),

S3 =
N
∑

n=1

nX(n)
[

A sin(αn + βn2) − B cos(αn + βn2)
]

,

S4 =

N
∑

n=1

n2X(n)
[

A sin(αn + βn2) − B cos(αn + βn2)
]

.

For k < j, gjk(θ) = gkj(θ). These limits given in (10) to (14) exist for fixed value of θ

because of (7) and (8). Therefore, from (6) the following theorem follows.

Theorem 2. Under the same assumptions as in Theorem 1,

(15) (θ̂ − θ0)D−1 d
−→ N4

[

0,
1

4
Σ−1(θ0)G(θ0)Σ−1(θ0)

]

.

Remark 1. When X(n)’s are i.i.d. random variables, then the covariance matrix takes the

simplified form

Σ−1(θ0)G(θ0)Σ−1(θ0) = σ2Σ−1(θ0).

Remark 2. Although we could not prove it theoretically, but it is observed by extensive

numerical computations that the right hand side limits of (7) and (8) for k = 1, 2 do not

depend on α. So we assume that these quantities are independent of their second argument

and we write them as

δk(p; β) = δk(p, α, β), γk(p; β) = γk(p, α, β).
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Let us denote

cc =

∞
∑

k=−∞
a(k) cos(α0k + β0k2), cs =

∞
∑

k=−∞
a(k) sin(α0k + β0k2).

cc and cs are functions of α0 and β0, but we do not make it explicit here to keep the notation

simple.

Now according to the above assumption, δ’s and γ’s are independent of α and based on it,

we can explicitly compute the elements of G(θ) matrix for a given θ. For different entries of

the matrix G(θ) in terms of δ’s and γ’s, one can see at http://www.isid.ac.in/∼statmath/eprints/

(isid/ms/2005/08) or it can be available from the authors on request.

Thus, obtaining the explicit expression of different entries of the variance-covariance matrix
1
4
Σ−1(θ0)G(θ0)Σ−1(θ0) of (θ̂−θ0)D−1 is possible by inverting the matrix Σ(θ) at θ0 . But

they are not provided here due to the complex (notational) structure of matrices Σ(θ) and

G(θ). If the true value of β is zero (i.e. frequency does not change over time) and if this

information is used in the model, then the model (1) is nothing but the usual sinusoidal

model. In that case, the asymptotic distribution can be obtained in compact form and the

amplitude is asymptotically independent of the frequency. This has not been observed in

case of the chirp signal model.

3. Multiple Chirp Signal

In this section, we introduce the multiple chirp signal model in stationary noise. The

complex-valued single chirp model was generalized as superimposed chirp model by Saha

and Kay (2002). The following model is a similar generalization of model (1). We assume

that the observed data y(n) have the following representation.

(16) y(n) =

p
∑

k=1

[

A0
k cos(α0

kn + β0
kn

2) + B0
k sin(α0

kn + β0
kn

2)
]

+ X(n); n = 1, . . . , N.

Similarly as the single chirp model, the parameters α0
k, β

0
k ∈ (0, π) are the frequency and

frequency rate respectively. A0
k’s and B0

k’s are real-valued amplitudes. Again our aim is

to estimate the parameters and study their properties. We assume that the number of

components, p is known and X(n)’s satisfy assumption 1. Estimation of p is an important

problem and will be addressed elsewhere. Now let us define, θk = (Ak, Bk, αk, βk) and

ν = (θ1, . . . , θp) be the parameter vector. The least squares estimators of the parameters

are obtained by minimizing the objective function, say R(ν) (defined similarly as Q(θ); see



CHIRP SIGNALS IN STATIONARY NOISE 7

eq. (4), sec. 2). Let ν̂ and ν0 denote the least squares estimator and the true value of ν.

The consistency of ν̂ follows similarly as the consistency of θ̂, considering the parameter

vector as ν. We will state the asymptotic distribution of ν̂ here. The proof involves routine

calculations and use of the multiple Taylor series expansion and the central limit theorem

for stochastic processes. For the asymptotic distribution of ν̂, we introduce the following

notation; ψN
k = (θ̂k − θ

0
k)D

−1 =
(

N1/2(Âk − A0
k), N

1/2(B̂k − B0
k), N

3/2(α̂k − α0
k), N

5/2(β̂k −

β0
k)
)

, moreover ck
c and ck

s are obtained from cc and cs by replacing α0 and β0 by α0
k and β0

k

respectively. Let us denote βj + βk = β+
jk, βj − βk = β−

jk, d1 = c1
cc

2
c + c1

sc
2
s, d2 = c1

cc
2
s + c1

sc
2
c ,

d3 = c1
cc

2
c − c1

sc
2
s and d4 = c1

cc
2
s − c1

sc
2
c. Then the asymptotic distribution of (ψN

1 , . . . ,ψN
p ) is

as follows.

(17) (ψN
1 , . . . ,ψN

p )
d

−→ N4p

(

0, 2σ2Λ−1(ν0)H(ν0)Λ−1(ν0)
)

,

(18) Λ(ν) =













Λ11 Λ12 · · · Λ1p

Λ21 Λ22 · · · Λ2p

...
...

...
...

Λp1 Λp2 · · · Λpp













, H(ν) =













H11 H12 · · · H1p

H21 H22 · · · H2p

...
...

...
...

Hp1 Hp2 · · · Hpp













.

The sub-matrices Λjk and Hjk are square matrices of order four and Λjk ≡ Λjk(θj, θk),

Hjk ≡ Hjk(θj, θk). Λjj and Hjj can be obtained from Σ(θ) and G(θ) by putting θ = θj. As

in case of G(θ), the entries of the off-diagonal sub-matrices Λjk = ((λrs)) and Hjk = ((hrs))

are available at http://www.isid.ac.in/∼statmath/eprints/ (isid/ms/2005/08). The elements

of the matrices Λjk and Hjk are non-zero. So the parameters corresponding to different

components, ψN
j and ψN

k for j 6= k, are not asymptotically independent. If the frequencies

do not change over time, i.e. the frequency rates β’s vanish, the model (16) is equivalent to

the multiple frequency model. Then the off-diagonal matrices in H and Λ are zero matrices

and the estimators of the unknown parameters in different components are independent.

This is due to the reason that δ1(p, α, 0) = 0 = γ1(p, α, 0) for all p ≥ 0 and α ∈ (0, π).

4. Numerical Experiments

In this section, we present the results of the numerical experiments based on simulations.

For this purpose, we consider a single chirp model with A = 2.93, B = 1.91, α = 2.5

and β = .10. We use sample size N = 50 and N = 100. Though, α, β ∈ (0, π), we

have considered the true value of β, much less than the initial frequency α, as β, being the

frequency rate is comparatively small in general. We consider different stationary processes

as the error random variables for our simulations. The errors are generated from (a) X(t) =
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ρe(t + 1) + e(t), (b) X(t) = ρ1e(t − 1) + ρ2e(t − 2) + e(t) and (c) X(t) = ρX(t − 1) + e(t).

The random variables {e(t)} are distributed as N (0, σ2). The processes (a), (b) and (c)

are stationary MA(1), MA(2) and AR(1) processes. Here MA(q) and AR(p) are usual

notation for the moving average process of order q and the autoregressive process of order

p respectively. For simulations, ρ = .5, ρ1 = .5 and ρ2 = −.4 have been used. We consider

different values of σ2 and accordingly the variances of X(t) are different depending on the

model of the error process and their true parameter values. We generate the data using

(1) and the parameters as mentioned above. The LSEs of the parameters are obtained by

minimizing the residual sum of squares. The starting estimates of the frequency and the

frequency rate are obtained by maximizing the following periodogram like function;

I(ω1, ω2) =
1

N

∣

∣

∣

∣

∣

N
∑

t=1

y(t)e−i(ω1t+ω2t2)

∣

∣

∣

∣

∣

2

over a fine two-dimensional (2-d) grid of (0, π)× (0, π). The linear parameters, A and B are

expressible in terms of α and β. So the minimization of Q(θ) with respect to θ involves a

2-d search. Once the non-linear parameters, α and β are estimated, A and B are estimated

using the linear regression technique. We replicate this procedure of data generation and

the estimation for parameters 1000 times resulting 1000 estimated values of each parameter.

Then we calculate the average estimate (AVEEST), the bias (BIAS) and the mean squared

error (MSE) of each parameter. We summarize results in tables 1-2 when the errors are of

type (c). In table 1, results with N = 50 are reported and results with N = 100 are in table 2.

We did not report the results with errors of types (a) and (b) for limitation of space. These

results are available at http://www.isid.ac.in/∼statmath/eprints/ (isid/ms/2005/08) or it

can be obtained from the authors on request. In section 2, we have obtained the asymptotic

distributions of the LSEs of the unknown parameters of a single chirp signal model under

quite general assumptions. So, it is possible to obtain the confidence intervals of the unknown

parameters for fixed finite length data using Theorem 2. But due to the complexity involved

in the distribution, it is extremely complicated to implement it in practice. Also in numerical

experiments, it has been observed that the convergence of sequences, δ’s as well γ’s highly

depends on the parameters and in many cases we need a very large value to stabilize the

convergence. For this reason, we have used the percentile bootstrap method for interval

estimation of the different parameters as a simple alternative method as suggested by Nandi,

Iyer and Kundu (2002). In each replication of our experiment, we generate 1000 bootstrap

resamples using the estimated parameters and then the bootstrap confidence intervals using

the bootstrap quantiles at 95% nominal level. So we have 1000 intervals for each parameter

from the replicated experiment. Then we estimate the 95% bootstrap coverage probability
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Figure 1. Plot of the histograms of LSEs of A (left plot) and B (right plot).
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Figure 2. Plot of the histograms of LSEs of α (left plot) and β (right plot).

by calculating the proportion of covering the true parameter value by the interval in each

replication. We report them as B-COVP in Tables 1-2. We also report the average length

of the bootstrap confidence interval as B-AVEL. So in each table, we report the average

estimate, its bias and mean squared error and the 95% bootstrap coverage probability and

the average length. We have seen in simulations, that the maximizer of the periodogram

like function defined above over a fine grid provides reasonably good initial estimates of the

non-linear parameters, α and β in most of the cases.

In the above discussed experiments, we have collected the LSEs of all the parameters

estimated in all replications in case of N = 50 with type (c) error and σ2 = .1. The type

(c) error, being an AR(1) process, has the variance σ2

1−ρ2 = .13, of its stationary distribution.

To understand their sample distributions, we plot the histograms of the LSEs of A and B

in Fig. 1 and histograms of the LSEs of α and β in Fig. 2. We wanted to see how the fitted

signal looks like, so we have generated a realization using the type of error and σ2, same as

above. The fitted signal is plotted in Fig. 3 along with the original one.
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Figure 3. Plot of original signal (solid line) and estimated signals (dotted line).

Table 1. Average estimates, biases, MSEs, coverage probabilities and average

lengths using bootstrap technique when errors are of type (c) and sample size

N = 50

Parameters

σ2 A B α β

0.1 AVEEST 2.92884326 1.91418457 2.50015926 .0999963731

BIAS -1.15680695e-3 4.18460369e-3 1.59263611e-4 -3.62843275e-6

MSE 8.06691125e-3 1.39705129e-2 2.45984756e-5 1.25075923e-8

B-COVP .976 .973 .897 .848

B-AVEL .435647398 .585830092 1.85300075e-2 3.61990707e-4

0.5 AVEEST 2.92720795 1.91918254 2.50034285 .0999920592

BIAS -2.79211998e-3 9.18257236e-3 3.42845917e-4 -7.94231892e-6

MSE 4.05863188e-2 6.96346015e-2 1.23846767e-4 6.29799075e-8

B-COVP .977 .971 .895 .849

B-AVEL .965029001 1.29620469 4.16616127e-2 8.12350831e-4

1.0 AVEEST 2.92532682 1.92366946 2.50049949 0.0999882892

BIAS -4.67324257e-3 1.36694908e-2 4.99486923e-4 -1.17123127e-5

MSE 8.10585618e-2 .138886198 2.47357559e-4 1.25821842e-7

B-COVP .977 .972 .894 .852

B-AVEL 1.36005151 1.81864798 5.9380278e-2 1.15502137e-3

Now we summarize the findings of the experiments discussed above. We observe that the

average estimates are quite good which is reflected in the fact that the biases are quite small

in absolute value. The MSEs are reasonably small and we observe that they are in decreasing
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Table 2. Average estimates, biases, MSEs, coverage probabilities and average

lengths using bootstrap technique when errors are of type (c) and sample size

N = 100

Parameters

σ2 A B α β

0.1 AVEEST 2.92976546 1.91153288 2.50007677 0.0999990776

BIAS -2.34603882e-4 1.53291225e-3 7.67707825e-5 -9.23871994e-7

MSE 5.03146602e-3 1.00822281e-2 2.46111904e-6 2.25312574e-10

B-COVP .946 .955 .962 .960

B-AVEL .309637368 .458883166 7.0124059e-3 6.7486304e-5

0.5 AVEEST 2.92800331 1.91039991 2.50014496 0.0999983251

BIAS -1.9967556e-3 3.99947166e-4 1.44958496e-4 -1.67638063e-6

MSE 2.51741707e-2 5.0748501e-2 1.23751706e-5 1.13128373e-9

B-COVP .946 .957 .962 .959

B-AVEL .686493933 1.01766443 1.56924874e-2 1.51613291e-4

1.0 AVEEST 2.92434359 1.90953135 2.50021315 0.0999974459

BIAS -5.65648079e-3 -4.68611717e-4 2.1314621e-4 -2.55554914e-6

MSE 5.05070463e-2 .101672225 2.4809211e-5 2.26738139e-9

B-COVP .943 .957 .965 .961

B-AVEL .967028975 1.42990315 2.22291183e-2 2.15437249e-4

order of the linear parameters, α and β. The similar findings are also seen in case of the

average bootstrap confidence lengths i.e. the average lengths decrease with (A, B), α, β. The

asymptotic distribution (Theorem 2) also suggests accordingly as the rates of convergence

are N−1/2, N−3/2, N−5/2 respectively. This has been reflected in the bootstrap intervals to

some extent. Also considering all the cases reported here, we can say that the order of the

MSEs, approximately match with the order given in the asymptotic distribution of the LSEs

and that we expect in case of finite samples of moderate size. For each type of error, the

average lengths of intervals, biases and MSEs increase as the error variance increases for all

the parameters. Also as we increase the sample size, these values decrease and that has to

be according to the Theorem 1 which says that LSEs are strongly consistent. By comparing

the different types of errors and σ2, we see that with N = 50, the coverage probabilities do

not attain the nominal level mainly for the frequency rate β except type (b) error. However,

in case of N = 100, the bootstrap coverage probabilities are quite close to the nominal level.

In some cases, mainly for the linear parameters, the bootstrap method overestimate the
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coverage probabilities. We understand that using the given sample size in calculating the

limiting quantities, δ’s and γ’s, may cause the overestimation.

We have plotted the histograms of the LSEs in Figs 1 and 2. It is clear from the plots that

the LSEs are distributed symmetrically around the true value for all parameters. Though,

we have reported the MSEs, the histograms gives a very good idea of the variability of the

estimates. In Fig. 3, the fitted signal have been plotted with the observed one for a particular

case. We see that the fitted one match reasonably well with the observed one. So, from this

discussion, we see that the performance of the LSEs and the bootstrap method in obtaining

the confidence intervals are quite good and can be used in practice.

5. Conclusions

In this paper, we study the problem of estimation of the parameters of the real single

chirp signal model as well as the multiple chirp signal model in stationary noise. It is a

generalization of the multiple frequency model similar to the way the complex-valued chirp

signal is a generalization of the exponential model. We propose the least squares estimators

to estimate the unknown parameters and study their asymptotic properties. As the joint

asymptotic distribution of the LSEs of the unknown parameters is quite complicated for

practical implementation purposes, we have used a parametric bootstrap method for interval

estimation. We observe that the results are quite satisfactory and can be used in practice. In

simulations study, the initial estimates of the frequency and the frequency rate are obtained

by maximizing a periodogram like function. It will be interesting to explore the properties

of the estimators obtained by maximizing the periodogram like function defined in section

4. Also generalization of some of the existing iterative and non-iterative methods for the

frequency model to the chirp signal model is another problem which needs to be addressed

as well as the estimation of the number of chirp components for the multiple chirp model.

Appendix

In this appendix, we first state Lemmas 1 and 2 and then state and prove the lemmas A-1

to A-6. Then these lemmas are used to prove lemma 2.

Lemma 1: Let us denote

SC,M =
{

θ; θ = (AR, AI , α, β), |θ− θ0| ≥ 4C, |AR| ≤ M, |AI | ≤ M
}

.
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If for any C > 0 and for some M < ∞,

lim inf
N→∞

inf
θ∈SC,M

1

N

[

Q(θ) − Q(θ0)
]

> 0 a.s.

then θ̂ is a strongly consistent estimator of θ0.

Proof of Lemma 1: The proof can be obtained by contradiction along the same line as

the lemma 1 of Wu (1981).

Lemma 2: As N → ∞,

sup
α,β

∣

∣

∣

∣

∣

1

N

N
∑

n=1

X(n)ei(αn+βn2)

∣

∣

∣

∣

∣

→ 0 a.s.

In the following, we first state and prove the lemmas A-1 to A-6 and then these lemmas are

used to prove lemma 2.

Lemma A-1: Let {e(n)} be a sequence of i.i.d. random variables with mean zero and finite

fourth moment, then

(19) E

∣

∣

∣

∣

∣

N−2
∑

n=1

e(n)e(n + 1)2e(n + 2)

∣

∣

∣

∣

∣

= O(N
1

2 ),

(20) E

∣

∣

∣

∣

∣

N−k−1
∑

n=1

e(n)e(n + 1)e(n + k)e(n + k + 1)

∣

∣

∣

∣

∣

= O(N
1

2 ),

for k = 2, 3, . . . , N − 2.

Proof of Lemma A-1: We prove (19) and then (20) follows similarly. Note that

E

∣

∣

∣

∣

∣

N−2
∑

n=1

e(n)e(n + 1)2e(n + 2)

∣

∣

∣

∣

∣

≤



E

(

N−2
∑

n=1

e(n)e(n + 1)2e(n + 2)

)2




1

2

= O(N
1

2 ).

Lemma A-2: For an arbitrary integer m,

E sup
θ

∣

∣

∣

∣

∣

N
∑

n=1

e(n)e(n + k)eimθn

∣

∣

∣

∣

∣

= O(N
3

4 ).
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Proof of Lemma A-2:

E sup
θ

∣

∣

∣

∣

∣

N
∑

n=1

e(n)e(n + k)eimθn

∣

∣

∣

∣

∣

≤



E sup
θ

∣

∣

∣

∣

∣

N
∑

n=1

e(n)e(n + k)eimθn

∣

∣

∣

∣

∣

2




1

2

=

[

E sup
θ

(

N
∑

n=1

e(n)e(n + k)eimθn

)(

N
∑

n=1

e(n)e(n + k)e−imθn

)]
1

2

≤

[

E

N
∑

n=1

e(n)2e(n + k)2 + 2E

∣

∣

∣

∣

∣

N−1
∑

n=1

e(n)e(n + 1)e(n + k)e(n + k + 1)

∣

∣

∣

∣

∣

+ . . .

+2E |e(1)e(1 + k)e(N)e(N + k)|]
1

2 = O(N + N.N
1

2 )
1

2 (using Lemma A-1) = O(N
3

4 ).

Lemma A-3:

E sup
α,β

∣

∣

∣

∣

∣

N
∑

n=1

e(n)ei(αn+βn2)

∣

∣

∣

∣

∣

2

= O(N
7

4 ).

Proof of Lemma A-3:

E sup
α,β

∣

∣

∣

∣

∣

N
∑

n=1

e(n)ei(αn+βn2)

∣

∣

∣

∣

∣

2

= E sup
α,β

[

N
∑

n=1

e(n)ei(αn+βn2)

][

N
∑

n=1

e(n)e−i(αn+βn2)

]

≤ O(N + NN
3

4 ) (using Lemma A-2) = O(N
7

4 ).

Lemma A-4:

E sup
α,β

∣

∣

∣

∣

∣

1

N

N
∑

n=1

e(n)ei(αn+βn2)

∣

∣

∣

∣

∣

≤ O(N− 1

8 ).

Proof of Lemma A-4:

E sup
αβ

∣

∣

∣

∣

∣

1

N

N
∑

n=1

e(n)ei(αn+βn2)

∣

∣

∣

∣

∣

≤



E sup
α,β

∣

∣

∣

∣

∣

1

N

N
∑

n=1

e(n)ei(αn+βn2)

∣

∣

∣

∣

∣

2




1

2

= O(N− 1

8 ) (using Lemma A-3).

Lemma A-5:

E sup
αβ

∣

∣

∣

∣

∣

1

N

N
∑

n=1

X(n)ei(αn+βn2)

∣

∣

∣

∣

∣

≤ O(N− 1

8 ).
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Proof of Lemma A-5:

E sup
α,β

∣

∣

∣

∣

∣

1

N

N
∑

n=1

X(n)ei(αn+βn2)

∣

∣

∣

∣

∣

= E sup
α,β

∣

∣

∣

∣

∣

1

N

N
∑

n=1

∞
∑

k=−∞
a(k)e(n − k)ei(αn+βn2)

∣

∣

∣

∣

∣

≤
∞
∑

k=−∞
|a(k)|

[

E sup
α,β

1

N

∣

∣

∣

∣

∣

N
∑

n=1

e(n − k)ei(αn+βn2)

∣

∣

∣

∣

∣

]

.

Note that E supα,β
1
N

∣

∣

∣

∑N
n=1 e(n − k)ei(αn+βn2)

∣

∣

∣
is independent of k and therefore the result

follows using Lemma A-4.

Lemma A-6:

sup
α,β

∣

∣

∣

∣

∣

1

N

N
∑

n=1

X(n)ei(αn+βn2)

∣

∣

∣

∣

∣

−→ 0, a.s.

Proof of Lemma A-6:

Consider the sequence N 9, then using Lemma A-5 we obtain

E sup
α,β

1

N9

∣

∣

∣

∣

∣

N9

∑

n=1

X(n)ei(αn+βn2)

∣

∣

∣

∣

∣

≤ O(N− 9

8 ).

Therefore, using Borel Cantelli lemma it follows that

sup
α,β

1

N9

∣

∣

∣

∣

∣

N9

∑

n=1

X(n)ei(αn+βn2)

∣

∣

∣

∣

∣

−→ 0, a.s.

Now consider for J , such that N 9 < J ≤ (N + 1)9, then

sup
α,β

sup
N9<J≤(N+1)9

∣

∣

∣

∣

∣

1

N9

N9

∑

n=1

X(n)ei(αn+βn2) −
1

J

J
∑

n=1

X(n)ei(αn+βn2)

∣

∣

∣

∣

∣

= sup
α,β

sup
N9<J≤(N+1)9

∣

∣

∣

∣

∣

1

N9

N9

∑

n=1

X(n)ei(αn+βn2) −
1

N9

J
∑

n=1

X(n)ei(αn+βn2)+

1

N9

J
∑

n=1

X(n)ei(αn+βn2) −
1

J

J
∑

n=1

X(n)ei(αn+βn2)

∣

∣

∣

∣

∣

≤
1

N9

(N+1)9
∑

n=N9+1

|X(n)| +

(N+1)9
∑

n=1

|X(n)|

(

1

N9
−

1

(N + 1)9

)

.

Note that the mean squared error of the first term is of the order O
(

1
N18 × ((N + 1)9−

N9)
2
)

= O(N−2). Similarly, the mean squared error of the second term is of the order
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O

(

N18 ×
(

(N+1)9−N9

N18

)2
)

= O(N−2). Therefore, both terms converge to zero almost surely

and that proves the lemma.

Proof of Theorem 1: In this proof, we denote θ̂ by θ̂N = (ÂN , B̂N , α̂N , β̂N) to empha-

size that θ̂ depends on the sample size. If θ̂N is not consistent for θ0, then there exits a

subsequence {Nk} of {N} such that θ̂Nk
does not converge to θ0. Then either:

Case I: |ÂNk
|+ |B̂Nk

| is not bounded. So |ÂNk
|+ |B̂Nk

| → ∞ i.e. at least one of the |ÂNk
| or

|B̂Nk
| tends to ∞. This implies 1

Nk
Q(θ̂Nk

) → ∞. Since

lim
1

Nk
Q(θ0) < ∞,

hence,
1

Nk

[

Q(θ̂Nk
) − Q(θ0)

]

→ ∞.

But as θ̂Nk
is the LSE of θ0, therefore,

Q(θ̂Nk
) − Q(θ0) < 0,

which leads to a contradiction. So θ̂N is a strongly consistent estimator of θ0.

Case II: |ÂNk
|+ |B̂Nk

| is bounded, that means there exists a set SC,M (as defined in Lemma

1) such that θ̂Nk
∈ SC,M , for some C > 0 and for an 0 < M < ∞. Now let us write

1

N

[

Q(θ) − Q(θ0)
]

= f1(θ) + f2(θ),

where

f1(θ) =
1

N

N
∑

n=1

[

A0 cos(α0n + β0n2) − A cos(αn + βn2)

+B0 sin(α0n + β0n2) − B sin(αn + βn2)
]2

,

f2(θ) =
2

N

N
∑

n=1

X(n)
[

A0 cos(α0n + β0n2) − A cos(αn + βn2)

+B0 sin(α0n + β0n2) − B sin(αn + βn2)
]

.

Using lemma 2, it follows that

(21) lim
N→∞

sup
θ∈SC,M

f2(θ) = 0 a.s.
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Now consider the following sets;

SC,M,1 =
{

θ : θ = (A, B, α, β), |A− A0| ≥ C, |A| ≤ M, |B| ≤ M
}

,

SC,M,2 =
{

θ : θ = (A, B, α, β), |B − B0| ≥ C, |A| ≤ M, |B| ≤ M
}

,

SC,M,3 =
{

θ : θ = (A, B, α, β), |α − α0| ≥ C, |A| ≤ M, |B| ≤ M
}

,

SC,M,4 =
{

θ : θ = (A, B, α, β), |β − β0| ≥ C, |A| ≤ M, |B| ≤ M
}

.

Note that

SC,M ⊂ SC,M,1 ∪ SC,M,2 ∪ SC,M,3 ∪ SC,M,4 = S (say).

Therefore,

(22) lim inf
θ∈SC,M

1

N

[

Q(θ) − Q(θ0)
]

≥ lim inf
θ∈S

1

N

[

Q(θ) − Q(θ0)
]

.

First we show that

(23) lim inf
θ∈SC,M,j

1

N

[

Q(θ) − Q(θ0)
]

> 0 a.s.,

for j = 1, . . . , 4 and then because of (22), it implies

lim inf
θ∈SC,M

1

N

[

Q(θ) − Q(θ0)
]

> 0 a.s.

Therefore, due to lemma 1, theorem 1 is proved, provided we can show (23). First consider

j = 1 to prove (23). Using (21), it follows that

lim inf
θ∈SC,M,1

1

N

[

Q(θ) − Q(θ0)
]

= lim inf
θ∈SC,M,1

f1(θ)

= lim inf
|A−A0|≥C

1

N

N
∑

n=1

[

A0 cos(α0n + β0n2) − A cos(αn + βn2)+

B0 sin(α0n + β0n2) − B sin(αn + βn2)
]2

= lim
N→∞

inf
|A−A0|≥C

1

N

N
∑

n=1

cos2(α0n + β0n2)(A − A0)2

≥ C2 lim
N→∞

1

N

N
∑

n=1

cos2(α0n + β0n2) > 0.

For other j also, it can be shown along the same line and that proves theorem 1.
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