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Probabilistic Representation of the Temporal Rainfall Process 
by a Modified Neyman-Scott Rectangular Pulses Model' 

Parameter Estimation and Validation 

DARA ENTEKHABI, IGNACIO RODRIGUEZ-ITURBE, l AND PETER S. EAGLESON 

Massachusetts Institute o.f Technology, Cambridge, Massachusetts 

The capability of the Neyman-Scott clustered stochastic point process model of rainfall to preserve 
various observed statistics is considered. Randomization of the cell duration parameter from storm to 
storm is shown to considerably improve the wet-dry period, joint distribution, and extreme value 
statistics. A simple procedure for parameter estimation is introduced and applied. 

INTRODUCTION 

Stochastic processes consisting of point events occurring 
in time and having characteristics derived from sampling 
probability density functions are becoming well-established 
in hydrology. In particular, point process representations of 
rainfall occurrences have been used to drive various physi- 
cally based models of basin storage and fluxes [Eagleson, 
1978]. The sensitivity of these storages and fluxes to the 
temporal structure of the precipitation input has been well- 
established [e.g., Eagleson, 1978]. This sensitivity raises an 
important practical qu•/stion. Do these models, fitted to 
cumulative precipitation data at one level of aggregation 
(say, daily), faithfully reproduce the statistics of the tempo- 
ral structure at other important levels of aggregation (say, 
hourly)? The answer is that some models only perform well 
at the scale of aggregation for which they were constructed 
but other models will preserve the main statistical charac- 
teristics of the rainfall process over a relatively wide range of 
aggregation levels [Rodriguez-Iturbe et al., 1984, 1988]. 

Models which are capable of an adequate representation 
of the rainfall process at a point through a range of temporal 
scales of aggregation are based on a clustered point process 
structure. Storm arrivals are assumed to follow a Poisson 

process. With each storm event is associated a random 
number of cells; natural candidates for the distribution of the 
number of cells are the Poisson distribution and the geomet- 
ric distribution. Each cell is represented by a rectangular 
pulse of random intensity and duration. The positioning of 
the cells can be made in several different manners. Two 

natural ways of doing it lead to the Neyman-Scott process 
and the Bartlett-Lewis process [Cox and Isham, 1980]. In 
the Neyman-Scott process the positions of the cells are 
determined by a set of independent and identically distrib- 
uted random variables representing the time intervals be- 
tween the storm origin and the birth of the individual cells. In 
the Bartlett-Lewis process the intervals between successive 
cells are independent and identically distributed. Overlap- 
ping of cells is allowed both within cells of the same storm 
and across cells of different storms. 
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Rodriguez-Iturbe et al. [1987, 1988] (hereafter referred to 
as RCI (1987, 1988), studied in detail the characteristics of 
both the Neyman-Scott rectangular pulses process and the 
Bartlett-Lewis rectangular pulses process. The difference 
between the two is relatively subtle and it is very unlikely 
that empirical analysis of data can be used to choose 
between them. It was observed by RCI (1987) that both 
models are capable of preserving a number of the statistical 
characteristics of rainfall data at different levels of aggrega- 
tion without changing the model parameters. Nevertheless, 
it was noticed that both models severely overestimate the 
probability of observed dry periods when those periods were 
above several hours. The implications of this for infiltration 
studies and for other hydrologic considerations such as 
rainfall runoff transformations is serious, since there can be 
a major difference in the runoff output when the period with 
no rainfall is varied. 

The original versions of the cluster-based models consid- 
ered rectangular cells whose stochastic description was 
invariant throughout the storm events. In other words, the 
duration of the cells, the intensity of the cells and the number 
of cells came from distribution functions whose parameters 
were the same for all storms. A modified version of the 

Bartlett-Lewis rectangular pulses model was developed by 
RCI (1988). Their modification allows for different structural 
characteristics among the different storms and is capable of 
representing a large variety of statistical characteristics of 
the rainfall process at different levels of aggregation includ- 
ing the probability of dry periods and other related proper- 
ties. Similar changes to the Neyman-Scott rectangular pulses 
model are introduced in this paper. 

A practical feature of the models described above is the 
efficiency of their parameter estimation procedures. Sensi- 
tivity analyses and empirical verification of such models 
require the repeated estimation of parameter sets based on 
different historical statistics estimated at different levels of 

aggregation. For this reason a simplified solution procedure 
to the set of nonlinear equations is introduced here with 
satisfactory convergence behavior. 

MODIFIED NEYMAN-SCOTT RECTANGULAR 

PULSES MODEL 

The Neyman-Scott rectangular pulses rainfall model intro- 
duced by RCI (1987) is a particular form of a clustered point 
process. There are storm origins that arive in a Poisson 
manner with parameter A. With each storm are associated a 
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TABLE 1. Historical Estimates of Mean, Variance, and Lagged Autocorrelation of Cumulative 
Precipitation at Various Levels of Aggregation: Denver, Colorado, Period May 15 to June 16, 

1949-1976 

Level of 

Aggregation, Mean, Variance, Lag-1 Auto- Lag-2 Auto- Lag-3 Auto- 
hours mm mm 2 correlation correlation correlation 

1 0.0885 0.4030 0.4800 0.3220 0.2679 

6 0.5313 5.9702 0.3318 0.1285 0.0593 
12 1.0626 16.8829 0.2301 0.0671 -0.0218 
24 2.1252 41.6067 0.1571 -0.0250 -0.0473 

48 4.2510 98.9673 0.0196 -0.0423 -0.0540 

random c (c •> 1) number of cells. The cells are each 
independently displaced from the storm origin according to 
an exponential probability density function with parameter 
/3. Each cell is a rectangular pulse of random height (inten- 
sity) x and width (duration). The duration is exponentially 
distributed with parameter r/. The probability density func- 
tion for cell intensity need not be selected at this stage. 
There is the possibility of cell overlap both within and across 
storms. 

In order to be able to equate the second-order properties 
of this process with those measured by standard rainfall 
gages, it is necessary to integrate the intensity process. The 
result Y of this aggregation over an arbitrary time period r 
defines the rainfall depth process. As given by RCI (1987) the 
second-order properties of the aggregated original Neyman- 
Scott rectangular pulses process Yi(r), the cumulative rain- 
fall over the time interval r are 

ElY/(7')] -- A n - lg[c]g[x]T 

Var [Y/(r)] = At/- 3(r/r- 1 + e- n*){ 2E[c]E[x 2] 
+ E[c 2- c]E2[x] 1•2_ rl 2 

E[c 2- c]E2[x] 
- A(fir- 1 + e-t•) fi(fi2_ r/2) (2) 

Coy [Y/('r), Y/+ k('r)] = At/- 3(1 - e - nr)2e - n(k- l)r 

1 E[c 2 - c]E2[x]l• 2} ß E[c]E[ x2] + • /•2 _ r/2 - A(1 - e- t•r)2 
ß e- t•(k-l) 1 E[c 2- c]E2[x] v_ k•> l 

2 2- n 2) 
(3) 

TABLE 2. Historical Estimates of Cumulative Precipitation 
Probabilities at Various Levels of Aggregation: Denver, 

Colorado, Period May 15 to June 16, 1949-1976 

Level of Probability 
Aggregation, 

hours Depth - 0.0 Depth < 0.5 mm Depth < 1.0 mm 

1 0.9385 0.9569 0.9712 

2 0.9169 0.9363 0.9553 
4 0.8825 0.9068 0.9298 
6 0.8550 0.8845 0.9117 

12 0.7795 0.8206 0.8594 
16 0.7315 0.7755 0.8233 
24 0.6412 0.6979 0.7558 
48 0.4769 0.5370 0.6181 
96 0.2731 0.3287 0.4074 

192 0.0833 0.1296 0.1574 

One major shortcoming of the original Neyman-Scott 
rectangular pulses model outlined above is its inability to 
preserve the proportions of dry or wet periods especially on 
the scale of several hours to several days (RCI, 1987). 
Clearly, the one factor that controls the duration of precip- 
itation and hence wet and dry runs is the inverse mean cell 
duration r/. By introducing structural interstorm variability 
in r/we seek greater physical realism and a more accurate 
preservation of historical fractions of wet periods. Elimina- 
tion of the current overestimation of dry windows in the 
simulated series will improve the estimates of critical depen- 
dent hydrologic variables such as basin runoff and evapora- 
tion. This change leads to the modified Neyman-Scott 
model. 

Instead of fixing r/as a constant parameter which controls 
the distribution from which the duration of all cells arises, ,/ 
is now a random variable which changes from storm to 
storm. Thus the duration of the cells from storm i are random 

quantities governed by an exponential distribution with 
parameter r/i. The probability density function for r/ is 
assumed to be a two-parameter gamma distribution with 
shape parameter a. All other assumptions remain the same 
as in the original Neyman-Scott rectangular pulses model 
and thus r/is independent of the number of cells c and the 
cell intensities x. In the modified Bartlett-Lewis rectangular 
pulses model developed by RCI (1988) the same assumption 
is made for r/but other parameters are also allowed to vary 
randomly from storm to storm. More specifically in the 
Bartlett Lewis case the parameter /3 of the exponential 
distribution controlling the cells interarrival time varies 
randomly from storm to storm but the dimensionless param- 
eter/3/r/remains fixed. Also, in the Bartlett-Lewis case by 
assuming the number of cells per storm is geometrically 
distributed the process of cell origins in a storm terminates 
after a time that is exponentially distributed with rate y, 
where E[c] = 1 + 13/y. In the modified Bartlett-Lewis 
rectangular pulses model y also varies randomly from storm 
to storm but y/rl remains fixed. The Bartlett-Lewis rectan- 
gular pulses scheme is more tractable from a mathematical 
point of view than the Neyman-Scott scheme and thus a 
wider spectrum of analytical results are derived in the work 
by RCI (1988). 

A very interesting feature of the cluster-based rectangular 
pulses models with random r/is that for values of a < 2 the 
processes become asymptotically second-order self-similar 
(RCI, 1988). This means that for large periods of aggregation 
the correlation structure converges to the correlation struc- 
ture of the aggregated fractional noise process. The validity 
or lack of validity of this kind of behavior in temporal rainfall 
data aggregated for intervals between 1 hour and 1 month is 
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TABLE 3. Definition of Parameter Sets a, b, and c for the 
Original and Modified Neyman-Scott Rectangular 

Pulses Models 

C2 
+ c2I(5, tr) - T I(5, + r) 

Lag-I 
Mean Variance Autocorrelation 

Original Neyman-Scott Rectangular Pulses Model 
Parameter set a I hour I and 6 hours I and 6 hours 
Parameter set b I hour I and 12 hours I and 12 hours 

Parameter set c 1 hour I and 24 hours I and 24 hours 

Modified Neyman-Scott Rectangular Pulses Model 
Parameter set a I hour I and 12 hours 1, 6, and 12 

hours 

Parameter set b I hour I and 24 hours 1, 6, and 24 
hours 

Parameter set c I hour 1 hour 1, 6, 12, and 
24 hours 

studied in detail by Jacobs et al. [1987]. Thus the models are 
structurally capable of representing either a fractal or a 
nonfractal type of process and this choice is not an a priori 
decision but rests upon the data from which the model 
parameters are estimated. 

Using standarad properties of conditional expectation 

E(Y) = En[E(YI r/)] (4) 

Var (Y) = Var [E(YI r/)] + E[Var (YI r/)] (5) 

Cov[ Y•, Y2] =Cov [E(Yl I r/), E(Y21 r/)] 

+ E[Cov (Yl, Y21r/)] (6) 

and assuming r• 2 >> /32, the moments of the cumulative 
rainfall process are derived as for (1)-(3): 

E[ Yi(T)] = E[x]E[c]ArI(1, 0) (7) 

Var [ Yi(r)] = [E[x]E[c],•rl(1, 0)] 2 

+ {2Clr + C2 13- 3(/3r + e- t•_ 1) 

+ (E[c]E[x]Ar)2}l(2, O) 

- 2CiI(3, 0) - C2ri(4, 0) + C2I(5, 0) 

+ 2ClI(3, r)- C2I(5, r) (8) 

Cov [Yi(r), Yi+k(r)] = CJ(3, kr- r) - 2CiI(3, kr) 

C2 
+ C1 •(3, kr + r)-T •(5, kr- r) 

where 

C2 - 3( - t3r)2 e - t3(t<- l)rl(2,0) +T/3 1-e 

+ (E[c]E[x]A'r)2[l(2, 0) - 12(1, 0)] (9) 

= E[c]E[x 2] ( 

C2 = AE[c 2 - c]E2[x]132 (11) 

F(a - x) (12) 
l(x, y) = E[ rt- Xe - fly] = Oa( 0 + y)X -, 

F(a) x>0, y•>0 

To evaluate the expectations E[x], E[x2], E[c], and E[c 2 - 
c] we must assume distributions for x and c. For x exponen- 
tially distributed, 

E[x] = m (13) 

E[x 2] = 2/Xx 2 (14) 
For c •> 1, the distribution may be either geometric or 
Poisson, in which case 

E[c] =/% (15) 

E[c 2- c] = •/Xc 2 + 2e/Xc (16) 
where 

• = + 1 c: Poisson (17) 
• = + 2 c: geometric 

e = + 1 c: Poisson (18) 
e = - 1 c: geometric 

It can be shown by simulation that the distribution of the 
number of cells per storm has no general bias effect on the 
covariance and remaining functions [Rodriguez-lturbe et al., 
1987]. Hereafter and in the simulations x is regarded as 
exponentially distributed and c is assumed to belong to a 
Poisson probability mass function. The random variable c is 
independently and identically distributed (iid) among the 
storms. The cell intensity and displacement from storm 
origins are iid among the cells of all storms. The cell duration 
is iid according to an exponential distribution with parameter 
r• within every storm and r• is gamma distributed between 
storms. 

TABLE 4. Summary of Estimated Parameters 

Original Neyman-Scott Process 

,•, /3, r/, E[x], mm 
hour- 1 hour- • hour- • hour- 1 E[c] 

Set a 0.005874 0.144365 2.072598 3.011935 10.36733 
Set b 0.005070 0.179066 2.731938 3.052653 15.62309 
Set c 0.005084 0.127560 2.102091 3.024823 12.09678 

Modified Neyman-Scott Process 

,•, /3, 0, E[x], mm 
hour- 1 hour-• hour a hour-• E[c] 

Set a 0.0104 0.1368 1.2212 4.0288 3.2441 6.2755 
Set b 0.0107 0.1493 1.1304 3.9779 3.1398 6.9829 
Set c 0.0109 0.1398 1.0625 3.7785 3.1833 6.5691 
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TABLE 5a. Set a Statistics for the Original Neyman-Scott 
Rectangular Pulses Model 

Level Mean Variance Corr(1) Corr(2) Corr(3) 

1 0.08850 0.40300 

6 0.53100 5.97027 
12 0.16200 15.90236 

24 2.12401 39.55064 

TABLE 5c. Set c Statistics for the Original Neyman-Scott 
Rectangular Pulses Model 

Level Mean Variance Corr(1) Corr(2) Corr(3) 

0.48000 0.24402 O. 18965 1 0.08850 0.40300 
0.33179 0.13093 0.05506 6 0.53100 6.25134 
0.24355 0.04171 0.00738 12 1.06200 16.88304 

0.13444 0.00411 0.00013 24 2.12400 41.53556 

0.47999 0.28255 0.22849 

0.35035 0.11577 0.03954 

0.23010 0.02634 0.00307 
O. 11619 O. O0156 O. 00002 

PARAMETER ESTIMATION 

The parameters of the probability distribution functions 
governing the clustered Poisson-based models are estimated 
by equating their analytical moments with the moments 
estimated from historical precipitation time series. Equa- 
tions (1)-(3) and (7)-(9) represent the mean, variance, and 
lagged covariance of processes defined by the original and 
modified Neyman-Scott rectangular pulse models, respec- 
tively. They are integrated equations over nonoverlapping 
time intervals of length r in order to correspond to the 
manner in which rainfall is measured. Tables 1 and 2 contain 

the estimated statistical properties of rainfall in Denver, 
Colorado, for the seasonal period between May 15 and June 
16. This period was concluded to be temporally homoge- 
neous in regard to the rainfall characteristics by Cordova 
and Bras [1981]. The tables are based on 27 years of 
observations occurring between 1949 and 1976. 

The objective is to estimate the (n x 1) parameter vector 
v. Let i' = (• , •2, ''', L) be some estimated moments at 
different levels of aggregation from the historical data set 
(Table 1). The function f (v) = Ill (v), f2(v), ..-, f,•(v)] 
contains the model expressions for the same moments based 
on the parameter vector v. It is required that 

f(v) - i'= 0 (19) 

where 0 is the null vector. Equation (19) defines a system of 
n nonlinear simultaneous equations in n unknowns. 

Multivariate Newton-Raphson solution of (19) requires the 
repeated inversion of Jacobian matrices. This approach and 
its modified versions that bypass the inversion requirement 
at every iteration are highly sensitive to the initial estimates 
of v. They rarely converge and thus present an unreliable 
approach to the systematic estimation of parameters. 

The alternative is to estimate v by minimizing the sum of 
squared differences in (19). The components must be nor- 
malized so that the minimization is not biased toward 

preferentially selecting the larger magnitude components. 
For this, we define the diagonal matrices • = diag (i') and 
F(v) = diag [f(v)]. The minimization now becomes 

min z = trace {(I - F(v)•- •)2} (20) 

Equation (20) poses a nonlinear unconstrained optimization 

TABLE 5b. Set b Statistics for the Original Neyman-Scott 
Rectangular Pulses Model 

Level Mean Variance Corr(1) Corr(2) Corr(3) 

1 0.08850 0.40300 0.48000 0.24919 0.19817 
6 0.53100 6.03365 0.35465 0.15575 0.07245 

12 1.06200 16.34698 0.27262 0.05741 0.01242 

24 2.12400 41.60698 0.15710 0.00722 0.00034 

problem. Solutions may be obtained using widely available 
algorithms. We have found (20) to be a reliable and rapid 
approach to parameter estimation of the Neyman-Scott 
rectangular pulses models and similar stochastic models. 

The method of (20) is applied to the original Neyman-Scott 
rectangular pulses model for three different sets (a, b, and c) 
of five equations representing combinations of hourly mean, 
variance and lag-one autocorrelation and either the 6-, 12-, 
or 24-hourly variance and lag-one autocorrelation (see Table 
3). The five equations in each case are simultaneously 
satisfied for their historical values and three sets of the five 

model parameters are defined. Similar estimation of v is 
performed for the modified Neyman-Scott rectangular pulses 
model (equations (7)-(9)). There are six parameters in this 
case one of which is the probability distribution shape 
parameter a. If one is willing to guess the shape of the 
distribution, a may be set a priori at a constant value 
whereupon the modified and original Neyman-Scott rectan- 
gular pulses models will have the same number of parame- 
ters. In this experiment, the shape parameter is allowed to 
vary freely. The resulting parameter sets for both models are 
summarized in Table 4. 

With these parameter sets, the moments are computed for 
both models according to (1)-(3) and (7)-(9), respectively, 
as a check on the goodness of fit. These values are given in 
Tables 5a, 5b, and 5c for the original Neyman-Scott model 
and in Tables 6a, 6b, and 6c for the modified version. Their 
agreement with the historical statistics given in Table 1 is 
good, indicating close satisfaction of (19). Two further 
observations are in order: (1) the values of the probability 
distribution parameters remain nearly the same regardless of 
which of the three constraint vectors • are considered and (2) 
the model estimates of mean, variance, and lagged autocor- 
relation at aggregation levels not included in i' and f(v) are 
well-represented by the models. Therefore we can say that 
the rainfall process characterized by the statistics of Table 1 
has a temporal structure consistent with a Neyman-Scott 
point process and that the suggested parameter estimation 
scheme is robust. Once the parameters are estimated, the 
statistics for every aggregation level in the stochastic pro- 
cess are constrained to the value derived from the analytical 
relations in (1)-(3) and (7)-(9). 

Note that a is always more than 2, meaning that the model 
is not self-similar. The aggregated data from 1 to 24 hours do 

TABLE 6a. Set a Statistics for the Modified Neyman-Scott 
Rectangular Pulses Model 

Level Mean Variance Corr(1) Corr(2) Corr(3) 

I 0.0846 0.3936 0.4776 0.2549 0.1887 
6 0.5074 6.2653 0.2992 0.1246 0.0640 

12 1.0148 17.3089 0.2216 0.0602 0.0327 
24 2.0296 46.4089 0.1398 0.0433 0.0411 
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TABLE 6b. Set b Statistics for the Modified Neyman-Scott 
Rectangular Pulses Model 

TABLE 7. Probability of No Events at Various Levels of 
Aggregation for the Simulated Data 

Level Mean Variance Corr(1) Corr(2) Corr(3) 

1 0.0886 0.4030 0.4800 0.2633 0.1972 

6 0.5317 6.5179 0.3022 0.1199 0.0590 
12 1.0634 18.1055 0.2163 0.0554 0.0319 
24 2.1269 48.5688 0.1339 0.0441 0.0434 

not indicate self-similarity under the criteria developed by 
Cox [1984] and applied to rainfall time series by [B. L. 
Jacobs, personal communication, 1987]. 

DRY PERIODS AND RELATED STATISTICAL 

PROPERTIES 

12 

Following the parameter estimation approximately 105 16 
values of hourly precipitation depths are simulated for each 24 
of the three different parameter sets and for each model 48 ß 96 

As previously noted, the original Neyman-Scott rectangu- 192 
lar pulses model grossly overestimates the proportion of dry 
periods to the length of the series, especially for periods of 
aggregation ranging from several hours to a few days (RCI, 
1987). This can be seen in the upper portion of Table 7 where 
the probability of dry 1-, 6-, 24-, and 48-hour periods are 
0.9385, 0.8550, 0.6412, and 0.4769 in the historical data set, 
while the original model predicts values averaging 0.9498, 
0.8793, 0.7788, and 0.6842, respectively. 

The improvement introduced by the modification is tabu- 
lated in the lower portion of Table 7 and is strikingly 
displayed graphically in Figure 1. In this figure the probabil- 
ity estimates from the historical data set are plotted as 
separate points while the values from the simulations are 
plotted as the dotted (original model) and solid (modified 
model) continuous curves. Even up to 8-day aggregation 
periods the agreement between the historical probabilities 
and the modified process probabilities are good. In addition 
to preserving the mean, variance and lagged autocorrelation, 
the modified Neyman-Scott rectangular pulses model pre- 
serves the dry-wet time structure of point observations of 4.0 
rainfall. These characteristics are particularly important in 
the hydrologic application of such models where estimates of 
runoff storage, and evaporation of a basin are of interest. 

It is interesting to notice that in the original and modified 
• o.• Bartlett-Lewis rectangular pulses models the probability of .-- 

dry periods or what is equivalent, the probability mass at the 
origin of the aggregated process, is analytically known and ,o 0.4 
thus the expression can be used in the parameter estimation 
procedure (RCI, 1987). In the Neyman-Scott schemes the 0.2 

TABLE 6c. Set c Statistics for the Modified Neyman-Scott 
Rectangular Pulses Model 

Level Mean Variance Corr(1) Corr(2) Corr(3) 

1 0.0873 0.3976 0.4791 0.2605 O. 1942 
6 0.5241 6.3994 0.3017 0.1231 0.0618 

12 1.0481 17.7588 0.2197 0.0576 0.0318 
24 2.0963 47.7142 0.1365 0.0435 0.0433 

Level of 

Aggregation, Observed 
hours (Denver) 

Simulated With Parameter Set 

a b c 

Original Neyman-Scott Rectangular Pulses Model 
1 0.9385 

2 0.9169 
4 0.8825 

6 0.8550 

12 0.7795 
16 0.7315 

24 0.6412 

48 0.4769 

96 0.2731 
192 0.0833 

0.9504 
0.9258 

0.8960 
0 8756 

0 8329 
0 8O77 
0 7697 
0 6675 
0 5040 

0 2920 

0.9496 0.9493 
0.9290 0.9251 
0.9055 0.8951 
0.8882 0.8742 
0.8540 0.8338 
0.8343 0.8127 

0.7955 0.7713 
0.7050 0.6800 
0.5480 0.5290 
0.3380 0.3220 

Modified Neyman-Scott Rectangular Pulses Model 
0.9385 0.9406 0.9360 0.9368 
0.9169 0.9042 0.8996 0.8985 
0.8825 0.8545 0.8500 0.8471 

0.8550 0.8191 0.8163 0.8106 

0.7795 0.7494 0.7437 0.7360 
0.7315 0.7097 0.7090 0.7003 
0.6412 0.6480 0.6455 0.6305 
0.4769 0.4990 0.4980 0.4835 
0.2731 0.2990 0.2980 0.2940 
0.0833 0.0780 0.0980 0.1000 

analytical expression is not available and without making use 
of this information in the estimation of parameters, the 
modified model, indeed, preserves well the dry period char- 
acteristics of the historical data at different levels of aggre- 
gation. 

For further assessment of fit several joint distribution 
characteristics are evaluated both for the historical data and 

via simulation for the original and modified Neyman-Scott 
rectangular pulses models. The results are shown in Table 8 
where the fixed r/ model refers to the set a of parameters 
specified in Table 4. 

The results are similar to those found by RCI (1987) for the 
random r/ Bartlett-Lewis rectangular pulses model. The 

0.0 

20 40 60 80 1 O0 120 140 160 180 200 

Level of Aggregetion 
(Hours) 

Fig. 1. Probability of zero depth from simulations with the 
original Neyman-Scott rectangular pulses model parameter sets a, b, 
and c (dashed curves) and with the modified Neyman-Scott rectan- 
gular pulses model parameter sets a, b, and c (solid curves). The 
historical values for Denver, Colorado (May 16, to June 16, 1949- 
1976) are represented by open circles. 
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TABLE 8. Models and Historical Comparison of Statistics That 
Characterize the Temporal Structure of Rainfall 

1 hour 6 hours 12 hours 24 hours 

Prob ( Y, = 01Y,_ • = O) 
Historical 0.976 0.901 0.820 0.712 
Original N-S 0.974 0.950 0.923 0.863 
Modified N-S 0.961 0.913 0.866 0.773 

E( ¾,I ¾, > O• 
Hist oric al 1.454 3.692 4.844 5.943 

Original N-S 1.874 4.477 6.667 9.678 
Modified N-S 1.5 l0 2.975 4.295 6.115 

Vat": ( Y,I Y, > O) 
Historical 2.158 5.426 7.684 9.649 

Original N-S 2.499 5.419 7.298 9.587 
Modified N-S 2.399 5.268 7.252 9.628 

E( Ytl Y t > O, Y, , = O) 
Historical 1.240 2.910 2.811 4.461 

Original N-S 1.743 4.909 8.330 12.537 
Modified N-S 1.309 3.074 4.831 7.127 

Var": ( Y, I Y, > O, Y, • = O) 
Historical 2.318 5.061 6.894 7.896 
Original N-S 2.381 5.759 8.183 9.995 
Modified N-S 2.106 5.038 6.806 10.281 

E(YtlY t > 0, Yt+, = 0) 
Historical 0.845 2.271 3.002 4.131 

Original N-S 1.323 2.758 4.368 8.236 
Modified N-S 1.047 2.100 3.246 5.205 

Var": (YtlYt > O, Y,+, = O) 
Historical 1.257 3.950 4.882 6.799 

Original N-S 1.798 4.244 6.302 9.513 
Modified N-S 1.665 3.292 4.620 8.719 

E( Y, I Y, > O, Yt-, > O) 
Historical 1.576 4.445 6.115 6.983 

Original N-S 2.003 4.243 5.618 7.267 
Modified N-S 1.826 2.906 3.926 5.370 

Var :/: (Y, I Y, > O, Y, • >0) 
Historical 2.264 5.887 8.697 10.602 

Original N-S 2.605 5.213 6.476 8.532 
Modified N-S 2.772 5.412 7.517 9.057 

Corr [ Y,, Y, + , I Y, > O, Y, + , > O] 
Historical 0.338 0.508 0.317 0.100 

Original N-S 0.206 0. 110 -0.0018 -0.137 
Modified N-S 0.492 0.303 0.235 0.124 

N-S, Neyman-Scott. 

modified Neyman-Scott rectangular pulses model, indeed, 
preserves very well the different joint distribution character- 
istics that were analyzed for a relatively wide range of levels 
of aggregation. It shows in most joint features a striking 
improvement over the original fixed •/version of the model. 

It is important to point out that there are climates where 
nonstationarities are present at time scales lower than 1 day 
[Maddox, 1980]. This is frequently the case where rainfall 
comes mainly from convective showers whose air lifting due 
to heating plays a dominant role. In these cases a high 
percentage of the precipitation is concentrated in the after- 
noon and evening hours and thus one may find a higher 
autocorrelation in the daily rainfall totals than, say, the 
12-hour accumulated rainfall. The models in their present 
structure can not properly represent this type of behavior, 

and the insertion of a cyclic structure in the rate of storm 
arrivals ,• is a logical approach to represent this kind of 
physical situation. 

From the above simulations an extreme value analysis was 
carried out for the original and the random •/Neyman-Scott 
rectangular pulses models. The results are shown in Figures 
2a and 2b where they are compared with the extremes of the 
historical data. In the historical case the largest hour depth 
for each of the 32 days in each year is picked and assigned a 
probability according to its rank within the sorted sample. A 
similar procedure is followed for the simulated series but 
with a much larger sample. The experiments of RCI (1987) 
show that the original version of the model adequately 
reproduce the extreme value behavior of the historic data. 
The results obtained in this paper show an adequate behav- 
ior in this aspect for the random •/version of the model as 
well along with an improved representation of the rare event 
tail. 

SUMMARY AND CONCLUSIONS 

A modified Neyman-Scott rectangular pulses point pro- 
cess is proposed wherein the cell durations are iid according 
to an exponential probability distribution with parameter •/ 
within every storm. The parameter •/is iid between storms 
according to a gamma probability density function. 

A method of moments parameter estimation is followed 
•vhere a set of highly nonlinear equations is solved by a 
convenient nonlinear unconstrained optimization in param- 
eter vector v. 

Following parameter estimation for both the original and 
modified rectangular pulses Neyman-Scott models using 
various mixes of historical statistics to be preserved in the 
method of moments estimations, long series are syntheti- 
cally generated. Whereas the original model severely over- 
estimates periods of no rainfall, the modified model pre- 
serves the historical probabilities of dry periods up to 8 days 
in duration and also better preserves the statistical charac- 
teristics of the joint distribution for two successive periods. 

The internal structure of rainfall events lies hidden in the 

aggregated statistics but is critical in the establishment of 
infiltration, runoff, moisture, and energy balance, and other 
hydrologic and climatologic variates. Stochastic point pro- 
cess models such as the random •/ Neyman-Scott and 
Bartlett-Lewis rectangular pulses models may hence become 
valuable tools in the deciphering of constituent components 
from integrated observations. More research, however, is 
needed in determining the comparative robustness of the 
parameter estimates when only large aggregation periods 
(e.g., 24 and 12 hours) are used in the estimation process. 
Nevertheless, it is clear that these models accomplish a 
consistent representation of the rainfall process at a contin- 
uum of scales ranging from less than an hour to more than a 
few days. Moreover, our research in progress shows that 
when these models are applied to different months of the 
year and to regions with and without orographic influences, 
the estimated model parameters reflect the distinguishing 
climatologic features of the season and the location. 
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Fig. 2. Extreme value analysis for the l-hour (circles) and 24-hour (squares) levels of aggregation. 

The open symbols represent results from simulation with parameter set a. Closed symbols are the 
Denver, Colorado (May 15, to June 16, 1949-1976), historical values. 

NOTATION 

c number of cells per storm. 
E[ ] expectation operator. 

f(•,) vector of analytical expressions for statistical 
moments as functions of parameter vector 

i' vector of observed statistical moments. 
F(•,) matrix with f(•,) as diagonal. 

• matrix with t as diagonal. 
I( ) analytical function defined by (12), hours. 

k time lag, hour. 
Var( ) variance of( ), mm 2. 

x cell intensity, mm/hour-'. 
Y(r) cumulative rainfall process aggregated over r 

hours, mm. 
a shape parameter of cell duration gamma 

probability density function (pdf). 
/3 exponential pdf parameter of cell interarrival, 

hour -l. 

8 constant depending on pdf of c, (17). 
e constant depending on pdf of c, (18). 
r/ exponential pdf parameter of cell duration, 

hour -1 ' 

a ,,,,, duration gamma pdf. - param,.,,.r of cell 
A parameter of storm center interarrival 

exponential pdf, hour-i. 
•. expectation of c. 
•x expectation of x, mm/hour -'. 

•, parameter vector. 

r period of aggregation, hours. 
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