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Abstract With the spread of the novel coronavirus
disease 2019 (COVID-19) around the world, the esti-
mation of the incubation period of COVID-19 has
become a hot issue. Based on the doubly interval-
censored data model, we assume that the incubation
period follows lognormal and Gamma distribution,
and estimate the parameters of the incubation period
of COVID-19 by adopting the maximum likelihood
estimation, expectation maximization algorithm and a
newly proposed algorithm (expectation mostly condi-
tional maximization algorithm, referred as ECIMM).
The main innovation of this paper lies in two aspects:
Firstly, we regard the sample data of the incubation
period as the doubly interval-censored data without
unnecessary data simplification to improve the accu-
racy and credibility of the results; secondly, our new
ECIMM algorithm enjoys better convergence and uni-
versality compared with others. With the framework of
this paper, we conclude that 14-day quarantine period
can largely interrupt the transmission of COVID-19,
however, people who need specially monitoring should
be isolated for about 20 days for the sake of safety.
The results provide some suggestions for the preven-
tion and control of COVID-19. The newly proposed
ECIMM algorithm can also be used to deal with the
doubly interval-censored data model appearing in var-
ious fields.
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1 Introduction

In the late 2019 and early 2020, a number of patients
infected with the novel coronavirus disease 2019
(COVID-19) have been successively found in Wuhan,
Hubei province, China [1,2]. This newly discovered
virus causes severe acute respiratory disease.OnMarch
11, 2020, the World Health Organization (WHO)
announced the novel COVID-19 a pandemic [3]. As
time goes by, COVID-19 epidemic has spread very
rapidly all over the world. The distribution of COVID-
19 cases by country in the world is shown in Fig. 1. The
epidemic prevention work is gradually taken seriously
by more and more countries [2]. In many countries,
the drastic restrictive measures have not prevented the
outbreak of new pandemic’s waves [3,4].

Despite the worldwide manages to control the
growth of COVID-19, the number of COVID-19 inci-
dences is still rising at a reproduction rate of 3.77 [6,7].
The outbreak evolution for the current most affected
countries is shown in Fig. 2. The mortality rate in
cases infected with COVID-19 is 5.25% worldwide.
This mortality rate is 7.60% in the European region,
2.24% in the Eastern Mediterranean region, 2.22%
in the African region, 2.95% in the South-East Asia
region, 5.07% in the region of Americas, and 3.55% in
the region of Western Pacific [6,8]. The novel COVID-
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Fig. 1 Global cases of
COVID-19 until May 12,
2021 [5]

Fig. 2 Daily confirmed new cases of the current most affected
countries [13]

19 has become a worldwide pandemic affecting 219
countries with an estimate of more than 159 mil-
lion infected cases and over 3.3 million deaths (WHO
CoronavirusDisease [COVID-19]Dashboard,May 12,
2021) [11,12].

To protect against COVID-19 epidemic, we must
have a deep understanding of the basic characteristics
of COVID-19, among which one of the most important
features is the incubation period of the virus [2,14].
The incubation period of COVID-19 is the period from
infection to the earliest appearance of clinical symp-
toms of COVID-19 patients [15,16]. Estimation of
virus incubation period is of great significance for the
epidemiological investigation and the development of
epidemic prevention and controlling measures [17].
The incubation period is an aid for defining the time
period for which contact tracing is to be done [18].
It helps in active monitoring of people having higher
exposure and also in determining the length of active
monitoring so as to save resources [19]. Knowledge

of the incubation period distribution is also necessary
for estimating the size and transmission potential of
COVID-19 outbreaks [17].

When fitting the parameters of the virus incuba-
tion period distribution, researchers usually simplify
the data structure by treating data as the singly interval-
censored data or exact data in order to reduce the diffi-
culty of data analysis [17]. In Refs. [20,21], the sample
data of the incubation period of the virus are treated as
the doubly interval-censored data without unnecessary
data structure simplification to improve the accuracy of
the researches. In Refs. [17,22], maximum likelihood
estimation (MLE) and Bayesian estimation are widely
applied in the field of the doubly interval-censored data
model. It has been shown that the doubly interval-
censored data model makes the research results more
reliable. Fast and effective algorithm makes great con-
tribution to the data analysis and processing [9,10].
Expectation maximization (EM) algorithm optimizes
the process of maximizing the likelihood function to
get the parameter estimates through the iterative pro-
cedure [23,24]. Some extensions on the EM algorithm
have been proposed and widely applied as supplement
to the EM algorithm theory [25]. Expectation condi-
tional maximization (ECM) algorithm solves the prob-
lem of multi-parameter estimation by approaching the
optimal estimate values step by step [26], and expec-
tation mostly maximization (EMM) algorithm acceler-
ates the convergence speed of the iterative algorithm
by improving the expectation function in the doubly
interval-censored data model. In order to make the
EM algorithm more suitable for processing the dou-
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bly interval-censored data, we propose a new algorithm
named as expectationmostly conditionalmaximization
(ECIMM) algorithm to estimate the parameters of the
COVID-19 incubation period.

In this paper, the sample data of the incubation
period of COVID-19 will be regarded as the doubly
interval-censored data [20,21]. The incubation period
of COVID-19 will be fitted by lognormal distribution
and Gamma distribution based on the open data of
COVID-19 incubation period collected so far [27]. In
the field of statistical research, maximum likelihood
estimation and the EM algorithm are mature parameter
estimation methods [25,26,28]. The newly proposed
ECIMM algorithm enjoys better universality and con-
vergence compared with the related basic algorithm.
We will use the maximum likelihood estimation, the
EM algorithm and the ECIMM algorithm to estimate
the parameters of the incubation period of COVID-19
[17,26], and propose some suggestions for the preven-
tion and control of COVID-19 epidemic.

The rest of this paper is organized as follows. We
will introduce the data background in Sect. 2, and the
maximum likelihood estimation and the EM algorithm
in Sect. 3. The ECIMM algorithm will be proposed
in Sect. 4. In Sect. 5, we will use three methods to
estimate the parameters and propose the suggestions
for epidemic prevention. In Sect. 6, we will discuss
our parameter estimation results with others. Finally,
the conclusion and future work will be emphasized in
Sect. 7.

2 Data background

Current common estimations of the incubation period
of COVID-19 are mostly based on studies of accu-
rate case data or simplified case data [17]. However,
in the actual data acquisition, accurate data can not be
obtained easily, and only the approximate intervals of
the infection and onset time of patients can be inves-
tigated [17]. In order to obtain accurate estimation of
COVID-19 incubation period, we will estimate param-
eters on the basis of the doubly interval-censored data
model [17,20,21].

According to the doubly interval-censored data
model [17,20,21], E and S represent the time when
patients infected with COVID-19 are exposed to
the novel coronavirus and the time when symp-
toms occur, respectively. The time of the incuba-

tion period is T = S − E . A typical observed
value consists of four time points, namely X =
(EL , ER, SL , SR), where the subscripts L and R cor-
respondingly represent the left and right endpoints
of the interval of E and S, as shown in Fig. 3.
When E and S are both intervals, the observed data
is called the doubly interval-censored data. Accord-
ingly, when one of E and S is an exact value and
the other is an interval, the observed data is called
the singly interval-censored data. When E and S
are both exact values, the observed data is the exact
data.

There are several distributions which are suitable for
simulating the incubation period, e.g., the lognormal
distribution and Gamma distribution [29–31]. In this
paper, we will correspondingly assume that the incu-
bation period follows the lognormal and Gamma dis-
tribution, and estimate the main parameters. As mean
and quantiles play an important role in the research of
the incubation period of COVID-19, we will pay atten-
tion to mean and quantiles of the novel coronavirus
incubation period [32].

The data of this paper are from the online reposi-
tory [27]. The repository consists of the information
of 3397 patients infected with COVID-19, such as the
location, the country, the gender and the age of each
patient. The repository also includes the time when
patients are exposed to the novel coronavirus and the
time when symptoms occur, which are used to estimate
the incubation period of the novel coronavirus in this
paper.

3 Algorithm theory

3.1 Maximum likelihood estimation based on the
doubly interval-censored data model

The density of T and E are recorded as fθ (t) and hλ(v).
In general, we can suppose that E and T are mutually
independent and E follows uniform distribution. The

Fig. 3 The doubly interval-censored data
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likelihood functions of the doubly interval-censored
data, the singly interval-censored data and the exact
data are as follows [33]:

L(θ, λ; X) =
∫ ER

EL

∫ SR

SL
hλ(v) fθ (s − v)dvds, (1)

L(θ; TL , TR) =
∫ TR

TL
fθ (t)dt, (2)

L(θ; T ) = fθ (T ). (3)

An observed data of the sample may be the dou-
bly interval-censored data, and can also be the singly
interval-censored data or the exact data [17]. We intro-
duce two indicative variables, called σi and ωi . When
σi=1, the observed data is the doubly interval-censored
data. When ωi=1, the observed data is the singly
interval-censored data. And σi=ωi=0 indicates that the
observed data is the exact data. The likelihood function
of this observed data is as follows [33]:

L(θ, λ; Xi ) =
[∫ ERi

ELi

∫ SRi

SLi

hλ(v) fθ (s − v)dvds

]σi

×
[∫ TRi

TLi

fθ (t)dt

]ωi

× [ fθ (Ti )]
1−σi−ωi .

(4)

The likelihood function of the whole sample can be
easily obtained by multiplying likelihood functions of
all observed data:

L(θ, λ; X) =
[∫ ERi

ELi

∫ SRi

SLi

hλ(v) fθ (s − v)dvds

] n∑
i=1

σi

×
[∫ TRi

TLi

fθ (t)dt

] n∑
i=1

ωi

× [ fθ (Ti )]

n∑
i=1

1−σi−ωi
.

(5)

According to the idea of maximum likelihood, the
best estimates of the parameters are the values which
maximize the likelihood function:

(θ, λ) = argmax
(θ,λ)

log L(θ, λ). (6)

3.2 EM algorithm based on the doubly
interval-censored data model

The likelihood function of the whole sample is shown
as Eq. 5.

In the rest of this paper, we transform L(θ, λ) to
p(x |θ, λ) in order to express the algorithmmore clearly
and concisely.

EM algorithm is an iteration algorithm [23,24].
According to the theory of survival analysis, we intro-
duce a latent variable z to advance the parameter esti-
mation process. log p(x, z|θ, λ) is the log-likelihood
function of complete data. We calculate the mathemat-
ical expectation of the log-likelihood function, named
as ELBO function. According to the idea of maximum
likelihood, we get the best estimates of the parame-
ters by finding the values which maximize the ELBO
function:
E step:

ELBO =
∫
z
p(z|x, θ(i), λ(i)) log p(x, z|θ, λ)dz, (7)

M step:

argmax
(θ,λ)

∫
z
p(z|x, θ(i), λ(i)) log p(x, z|θ, λ)dz. (8)

When

||θ(i+1) − θ(i)|| + ||λ(i+1) − λ(i)|| (9)

meets the allowable error range for the specific prob-
lems, the iterative process should be stopped.

4 ECIMM algorithm

4.1 ECIMM algorithm based on the doubly
interval-censored data model

The likelihood function of the whole sample is shown
as Eq. 5.

According to the theory of survival analysis, we
introduce a latent variable z with the density function
q(z) to transform the log-likelihood function:

log p(x |θ, λ) =
∫
z
q(z) log

p(x, z|θ, λ)

q(z)
dz

−
∫
z
q(z) log

p(z|x, θ, λ)

q(z)
dz. (10)

We take the density function of the latent variable z
as the undetermined function q(z) while the EM algo-
rithm treats the density function of the latent variable z
as the posterior density function p(z|x, θ(i), λ(i)). We
get the ELBO function of the ECIMM algorithm by
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calculating the mathematical expectation of the log-
likelihood function:

ELBO =
∫
z
p(z|x, θ(i), λ(i)) log p(x, z|θ, λ)dz

−
∫
z
log q(z)dz. (11)

The following algorithm steps are based on the opti-
mized ELBO function. In step MM1, we fix parameter
values to obtain the optimal density estimate q̂(z) by
maximizing ELBO function. In step MM2, We fix the
density function of z as q̂(z) to estimate the parameters
by maximizing ELBO function.

MM1 step: Fix θ, λ, and solve

q̂ = argmax
q

ELBO, (12)

MM2 step: Fix q = q̂ , and accomplish the param-
eter estimation by the following steps:

(θ(i), λ(i)) → (θ(i+1), λ(i+1)). (13)

Theoretically, we can get the parameter estimates by
computing the partial derivatives of the ELBO function
and equating them to be zero. However, it is difficult to
obtain those estimates when the ELBO function is mul-
tivariate in the doubly interval-censored data model.
The ECIMM algorithm obtain parameter estimates by
approaching the optimal values step by step.

CM1 step: Fix θ = θ(i), and

λ(i+1) = argmax
λ

ELBO, (14)

CM2 step: Fix λ = λ(i+1), and

θ(i+1) = argmax
θ

ELBO. (15)

When

||θ(i+1) − θ(i)|| + ||λ(i+1) − λ(i)|| (16)

meets the allowable error range for the specific prob-
lems, the iterative process should be stopped.

Compared with the EM algorithm, which directly
treats the density function of the latent variable z as the
posterior conditional density, the ECIMM algorithm
treats it as the undetermined variable q(z) for research
and analysis.

Since the density function q(z) ≤ 1 and the inte-
gral value

∫
log q(z)dz ≤ 0, the ELBO function of

the ECIMM algorithm is more suitable for parameter
estimation based on the doubly interval-censored data
model:

∫
z
q(z) log

p(x, z|θ, λ)

q(z)
dz

≥
∫
z
p(z|x, θ, λ) log p(x, z|θ, λ)dz. (17)

Because theECIMMalgorithmoptimizes theELBO
function, the iterative value can be closer to the true
value of the parameters. According to maximum like-
lihood theory, the ECIMM algorithm reduces the num-
ber of iteration steps and accelerates the convergence
speed of the algorithm:

∥∥∥θ(i+1) − θ∗
∥∥∥ ≤

∥∥∥θ(i) − θ∗
∥∥∥ , (18)∥∥∥θ

(i+1)
EC IMM − θ∗

∥∥∥ ≤
∥∥∥θ

(i+1)
EM − θ∗

∥∥∥ . (19)

At the same time, in the steps of maximizing the
ELBO function to get the parameter estimates, the basic
idea is to set the partial derivatives to be zero and solve
the equations

⎧⎨
⎩

∂
∫
z p(z|x,θ(i),λ(i)) log p(x,z|θ,λ)dz

∂θ
= 0,

∂
∫
z p(z|x,θ(i),λ(i)) log p(x,z|θ,λ)dz

∂λ
= 0.

(20)

However, since the ELBO function in the doubly
interval-censored data model is always a multivariate
function, it is hard to realize the algorithm due to the
complexity of the calculation. ECIMM algorithm opti-
mizes the algorithmby approaching the optimal param-
eter estimates step by step. Itmakes the algorithmmuch
easier to implement so that it can be widely used to
solve various problems:

argmax
λ

[∫
z
p(z|x, θ(i), λ(i)) log p(x, z|θ(i), λ)dz −

∫
z
log q̂(z)dz

]
,

(21)

argmax
θ

[∫
z
p(z|x, θ(i), λ(i)) log p(x, z|θ, λ(i+1))dz −

∫
z
log q̂(z)dz

]
,

(22)

(θ(i), λ(i)) → (θ(i), λ(i+1)) → (θ(i+1), λ(i+1)). (23)

Overall by improving the ELBO function in the dou-
bly interval-censored data model and approaching the
optimal estimate value step by step, we accelerate the
convergence speed of the algorithm and improve the
universality of the algorithm.
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4.2 ECIMM algorithm based on the assumption of
lognormal distribution

In the algorithm description process of fitting specific
distribution, we record the ELBO function as Q func-
tion in order to intuitively reflect the values of parame-
ters in the algorithm iteration. Assuming that E follows
uniform distribution on (a, b) and T follows lognor-
mal distribution, we apply the ECIMM algorithm to
estimate the parameters of the novel coronavirus incu-
bation period:

Q[q(z), (μ, σ ; b − a)|(μ(i), σ (i); (b − a)(i))]
= E{ln L(μ, σ ; b − a)|wc, μ

(i), σ (i); (b − a)(i)}
−

∫
z
log q(z)dz. (24)

MM1 step: Fix (μ, σ ; b − a), and solve

q̂ = argmax
q

Q[q(z), (μ, σ ; b − a)|(μ(i), σ (i); (b − a)(i))],
(25)

MM2 step: Fix q = q̂ , and accomplish the param-
eter estimation by the following steps:

(μ(i), σ (i), (b − a)(i)) → (μ(i+1), σ (i+1), (b − a)(i+1)).

(26)

CM1 step: Fix (μ, σ ) = (μ(i), σ (i)), and

̂b − a = (b − a)(i+1) = argmax
b−a

Q[q̂(z), (μ(i), σ (i), (b − a))|(μ(i), σ (i); (b − a)(i))], (27)

CM2 step: Fix b−a = (b − a)(i+1), μ = μ(i), and

σ̂ = σ (i+1) = argmax
σ

Q[q̂(z), (μ(i), σ ; (b − a)(i)+1))|(μ(i), σ (i); (b − a)(i))], (28)

CM3 step: Fix b − a = (b − a)(i+1), σ = σ (i+1),
and

μ̂ = μ(i+1) = argmax
μ

Q[(q̂(z), μ, σ (i+1); (b − a)(i+1))|(μ(i), σ (i); (b − a)(i))]. (29)

It completes the process of

(μ(i), σ (i), (b − a)(i)) → (μ(i+1), σ (i+1), (b − a)(i+1)).

(30)

When

||μ(i+1) − μ(i)|| + ||σ (i+1) − σ (i)|| + ||(b − a)(i+1) − (b − a)(i)||
(31)

meets the allowable error range for the specific prob-
lems, the iterative process should be stopped.

4.3 ECIMM algorithm based on the assumption of
Gamma distribution

Assuming that E follows uniform distribution on (a, b)
and T follows Gamma distribution, we apply the
ECIMM algorithm to estimate the parameters of the
novel coronavirus incubation period:

Q[q(z), (k, θ; b − a)|(k(i), θ (i); (b − a)(i))]
= E{ln L(k, θ; b − a)|wc, k

(i), θ (i); (b − a)(i)}
−

∫
z
log q(z)dz. (32)

MM1 step: Fix (k, θ; b − a), and solve

q̂ = argmax
q

Q[q(z), (k, θ; b − a)|(k(i), θ (i); (b − a)(i))],
(33)

MM2 step: Fix q = q̂ , and accomplish the param-
eter estimation by the following steps:

(k(i), θ (i), (b − a)(i))→(k(i+1), θ (i+1), (b − a)(i+1)).

(34)

CM1 step: Fix (k, θ) = (k(i), θ (i)), and
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̂b − a = (b − a)(i+1) = argmax
b−a

Q[q̂(z), (k(i), θ (i), (b − a))|(k(i), θ (i); (b − a)(i))], (35)

CM2 step: Fix b − a = (b − a)(i+1), k = k(i), and

θ̂ = θ(i+1) = argmax
θ

Q[q̂(z), (k(i), θ; (b − a)(i+1))|(k(i), θ (i); (b − a)(i))], (36)

CM3 step: Fix b − a = (b − a)(i+1), θ = θ(i+1),
and
k̂ = k(i+1)

= argmax
k

Q[(q̂(z), k, θ(i+1); (b−a)(i+1))|(k(i), θ (i); (b−a)(i))].

(37)

It completes the process of

(k(i), θ (i), (b − a)(i))→(k(i+1), θ (i+1), (b − a)(i+1)).

(38)
When

||k(i+1)−k(i)||+||θ(i+1)−θ(i)||+||(b−a)(i+1)−(b−a)(i)||
(39)

meets the allowable error range for the specific prob-
lems, the iterative process should be stopped.

5 The parameter estimation of COVID-19
incubation period

We estimate the incubation period of COVID-19 using
the doubly interval-censored data model with the sam-
ple size of 50, 200 and 500 [17,20,21]. We carry out
the simulation through the maximum likelihood esti-
mation method, the EM algorithm and the ECIMM
algorithm based on the lognormal and Gamma dis-
tribution hypothesis, and the results are shown in
Figs. 4, 5, 6, 7, 8, and 9. The parameter estimation
results of the incubation period are obtained by using
the above three parameter estimation methods based
on the lognormal and Gamma distribution hypothesis,
which are listed in Tables 1, 2, 3, 4, 5 and 6.

Figures 4, 5 and 6 show the simulation results of
three estimation methods based on the assumption of
lognormal distribution, with the sample size of 50,200
and 500, respectively. While Figs. 7, 8 and 9 show the
simulation results of three estimationmethods based on
the assumption ofGamma distribution, with the sample
size of 50,200 and 500, respectively. In each figure, the
three different lines correspond to the three different
estimation methods.

We can discover that in each figure, the simulation
results obtained by three methods are close to each
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Fig. 4 The simulation results of three estimation methods based
on the assumption of lognormal distribution (n = 50)
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Fig. 5 The simulation results of three estimation methods based
on the assumption of lognormal distribution (n = 200)
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Fig. 6 The simulation results of three estimation methods based
on the assumption of lognormal distribution (n = 500)
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Fig. 7 The simulation results of three estimation methods based
on the assumption of Gamma distribution (n = 50)
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Fig. 8 The simulation results of three estimation methods based
on the assumption of Gamma distribution (n = 200)
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Fig. 9 The simulation results of three estimation methods based
on the assumption of Gamma distribution (n = 500)

other, indicating that our new method is reasonable.
As the sample size increases, the simulation results
are more reliable. And we can find that the simula-
tion results on the lognormal distribution assumption
are different from the simulation results on the Gamma
distribution assumption due to the different character-
istics of two distributions.

As mean and quantiles play an important role in
the research of the incubation period of COVID-19,
we estimate mean and quantiles of the novel coron-

avirus incubation period. Tables 1, 2 and 3 list the
estimation results of three estimation methods based
on the assumption of lognormal distribution, with the
sample size of 50,200 and 500, respectively. While
Tables 4, 5 and 6 list the estimation results of three
estimationmethods basedon the assumptionofGamma
distribution, with the sample size of 50,200 and 500,
respectively. We can find that the quantile values on
the lognormal distribution assumption are larger than
the quantile values on the Gamma distribution assump-
tion, which is due to the different characteristics of two
distributions.

According to Table 3, based on the lognormal dis-
tribution hypothesis, the average incubation period is
about 6.8 days, and the probability of the incubation
period not exceeding 15.31 days is 0.975. According
to Table 6, based on the hypothesis of Gamma distri-
bution, the average incubation period is about 6.5 days,
and the probability of the incubation period not exceed-
ing 13.84days is 0.975.The results of the research show
that the 14-day quarantine period can largely interrupt
the transmission of COVID-19, which fits within the
range for the incubation period of 0 to 14 days assumed
by the WHO, and is consistent with current medical
control measures [1].

With the improvement of epidemic prevention and
control, the situation has stabilized in some areas [1].
People from high-risk areas need to be specially moni-
tored. According to Table 3, the probability of the incu-
bation period not exceeding 21.56 days is 0.995, based
on the lognormal distribution hypothesis. According
to Table 6, the probability of the incubation period not
exceeding 17.19 days is 0.995, based on the assumption
of Gamma distribution. The results suggest that for the
sake of safety, people who need specially monitoring
should be isolated for about 20 days. The probability
that a patient infected with COVID-19 does not show
disease symptoms during 20-day quarantine period is
nearly less than 0.5%. Therefore the new quarantine
period can effectively block the spread of COVID-19.

Remarks:

1. We estimate the parameters of COVID-19 incuba-
tion period based on the doubly interval-censored
data model, which makes the research results more
reliable.

2. Our new ECIMM algorithm enjoys good conver-
gence and universality.
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Table 1 The parameter
estimation of lognormal
distribution (n = 50)

The method of parameter estimation MLE EM Algorithm ECIMM Algorithm

Mean 5.9 6.7 6.3

97.5% Quantile 13.17 14.40 14.09

99.5% Quantile 18.48 19.89 19.78

Table 2 The parameter
estimation of lognormal
distribution (n = 200)

The method of parameter estimation MLE EM Algorithm ECIMM Algorithm

Mean 6.2 6.6 6.5

97.5% Quantile 14.11 15.13 15.15

99.5% Quantile 19.95 21.47 21.65

Table 3 The parameter
estimation of lognormal
distribution (n = 500)

The method of parameter estimation MLE EM Algorithm ECIMM Algorithm

Mean 6.3 6.5 6.8

97.5% Quantile 14.89 15.24 15.31

99.5% Quantile 21.40 21.83 21.56

Table 4 The parameter
estimation of Gamma
distribution (n = 50)

The method of parameter estimation MLE EM Algorithm ECIMM Algorithm

Mean 5.8 6.5 6.0

97.5% Quantile 12.57 13.34 12.92

99.5% Quantile 15.69 16.41 16.10

Table 5 The parameter
estimation of Gamma
distribution (n = 200)

The method of parameter estimation MLE EM Algorithm ECIMM Algorithm

Mean 6.3 6.4 6.6

97.5% Quantile 13.31 13.96 13.81

99.5% Quantile 16.51 17.45 17.08

3. Our results can be regarded as a valuable supple-
ment of COVID-19 prevention.

6 Discussion

We compare our results with others, as listed in Table 7.
Backer uses Bayesian estimation method to estimate
the main parameters with the sample size of 88 by
assuming the incubation period follows lognormal,
Gamma and Weibull distribution [19]. Qiu uses max-
imum likelihood estimation and Bayesian estimation
method to estimate the main parameters with the sam-

ple size of 543 by assuming the incubation period fol-
lows lognormal, Gamma andWeibull distribution [17].
They estimate the mean and 97.5% quantile, while we
estimate the mean, 97.5% quantile and 99.5% quan-
tile. They estimate the parameters by using maximum
likelihood estimation and Bayesian estimationmethod,
while we use maximum likelihood estimation method,
the EM algorithm and the ECIMM algorithm to esti-
mate the main parameters.

Comparing the results, we find that the mean values
are all between 6 and 7, in other words, they are consis-
tent with each other. Based on the lognormal distribu-
tion assumption, the 97.5% quantile values obtained
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Table 6 The parameter
estimation of Gamma
distribution (n = 500)

The method of parameter estimation MLE EM Algorithm ECIMM Algorithm

Mean 6.4 6.2 6.5

97.5% Quantile 13.73 13.92 13.84

99.5% Quantile 17.09 17.54 17.19

Table 7 The comparison of results(NA indicates the result is not available)

Distribution Method Mean 97.5% Quantile 99.5% Quantile

Lognormal MLE 6.3 14.9 21.4

Lognormal EM 6.5 15.2 21.8

Lognormal ECIMM 6.8 15.3 21.6

Gamma MLE 6.4 13.7 17.1

Gamma EM 6.2 13.9 17.5

Gamma ECIMM 6.5 13.8 17.2

Lognormal [19] Bayes 6.8 15.5 NA

Gamma [19] Bayes 6.5 12.5 NA

Weibull [19] Bayes 6.4 11.1 NA

Lognormal [17] MLE 6.3 15.2 NA

Gamma [17] MLE 6.3 13.8 NA

Weibull [17] MLE 6.4 13.3 NA

Lognormal [17] Bayes 6.4 15.4 NA

Gamma [17] Bayes 6.3 13.8 NA

by three methods of our research are between 14.5
and 15.5, while the 97.5% quantile value obtained by
Bayesian estimation method in Ref. [19] is 15.5, and
the 97.5% quantile values obtained by maximum like-
lihood estimation and Bayesian estimation method in
Ref. [17] are 15.2 and 15.4. Based on theGamma distri-
bution assumption, the 97.5% quantile values obtained
by threemethods of our research are between 13 and14,
while the 97.5% quantile value obtained by Bayesian
estimation method in Ref. [19] is 12.5, and the 97.5%
quantile values obtained by maximum likelihood esti-
mation and Bayesian estimation method in Ref. [17]
are both 13.8.

Comparing the results based on the Gamma distri-
bution and lognormal distribution assumption, we find
that the quantile values based on the lognormal distribu-
tion assumption are significantly greater than that based
on the Gamma distribution assumption. It is due to the
different characteristics of two distributions. Lognor-
mal distribution has greater degree of dispersion than
Gamma distribution. The quantile results based on the
lognormal distribution assumption are more conserva-
tive.

We compare the results obtained by threemethods in
our research, and find that the results are similar, which
can indicate that our new method is reasonable. How-
ever, the ECIMM algorithm shows fast convergence
speed in dealing with the doubly interval-censored data
of COVID-19 incubation period, and it can be widely
used to deal with the doubly interval-censored data in
various fields.

We hope that the research work of this paper can be
regarded as the useful supplement to the related studies
on the incubation period of COVID-19, and be helpful
for the prevention and control of COVID-19.

7 Concluding remarks

In this paper, we have estimated the parameters
of COVID-19 incubation period based on the dou-
bly interval-censored data model. Statistical inference
analysis has been conducted on lognormal distribu-
tion andGammadistribution. Themaximum likelihood
estimation method, the EM algorithm and the ECIMM
algorithm have been used for parameter estimation.
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Each parameter estimation method of each distribution
has been theoretically derived, which can be realized
by mainstream computer programming software. We
have obtained the estimates of mean, 97.5% quantile
and 99.5% quantile, and suggested that 14-day quar-
antine period can largely interrupt the transmission of
COVID-19, however, people who need specially mon-
itoring should be isolated for about 20 days for the sake
of safety. The research results can be regarded as a sup-
plement of COVID-19 prevention.

Instead of simplifying the data structure, we regard
the sample data of the incubation period as the doubly
interval-censored data, which makes the results more
accurate and reliable. Furthermore, we propose a new
algorithm called ECIMM algorithm which has good
convergence and universality. The ECIMM algorithm
shows fast convergence speed when dealing with the
doubly interval-censored data ofCOVID-19 incubation
period, and it can bewidely used to dealwith the doubly
interval-censored data in various fields.

In future studies, we will further extend the research
results by estimating the parameters of the incuba-
tion period of COVID-19 based on other distribu-
tion assumptions. There are few researchers who have
applied the ECIMM algorithm in current studies. We
encourage further studies on its accuracy and conver-
gence rate as the potential work. Andwe hope our work
in this paper contributes to the prevention and control
of COVID-19 and other epidemics.
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