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The automatic fitting of spiking neuron models to experimental data is a challenging

problem. The integrate and fire model and Hodgkin–Huxley (HH) models represent the

two complexity extremes of spiking neural models. Between these two extremes lies two

and three differential-equation-based models. In this work, we investigate the problem

of parameter estimation of two simple neuron models with a sharp reset in order to fit

the spike timing of electro-physiological recordings based on two problem formulations.

Five optimization algorithms are investigated; three of them have not been used to tackle

this problem before. The new algorithms show improved fitting when compared with

the old ones in both problems under investigation. The improvement in fitness function

is between 5 and 8%, which is achieved by using the new algorithms while also being

more consistent between independent trials. Furthermore, a new problem formulation is

investigated that uses a lower number of search space variables when compared to the

ones reported in related literature.

Keywords: spiking neuron model, meta-heuristic optimization algorithms, leaky integrate and fire (LIF), adaptive

exponential (AdEx) integrate and fire, in-vitro data, cuckoo search optimizer, marine predator algorithm

1. INTRODUCTION

The tuning of spiking neuron model parameters is a challenge that started with a manual
trial-and-error approach and evolved into an automatic approach as the availability of
computational resources increased. An optimization problem that aims at tuning the parameters
of a spiking neuron model is composed of two independently chosen components: the fitness
function and the search algorithm. The fitness function is a quantitative measure of how well
the model response fits the measured data. The optimization/search algorithm job is to explore
the search space to find the optimal parameters within a short amount of time. The choice of
these two components is independent except for the case of the multi-objective optimization
approach (Van Geit et al., 2008).

The leaky-integrate and fire (LIF) model is widely used for studying neural systems. In this
model, the membrane potential of a neuron is described as a function of the synaptic input
currents. A spike is generated when the membrane potential crosses a threshold. However, in the
original model, the physical changes in the conductances are not part of the model. The LIF model
dates back to 1907 when Lapicque suggested a circuit model of the neuron membrane voltage
that is composed of a resistor and a parallel capacitor (Lapique, 1907). The capacitor represents
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the integrator, and the resistor is the leaky element of the
model. The membrane potential is reset for a refractory period
after producing a spike. This simplified model enabled Lapicque
to derive the firing rate as a function of the stimulating
voltage magnitude. This model separated two-time scales: the
slow sub-threshold integration and the fast spike generation
(Burkitt, 2006). The most biologically plausible spiking neuron
model is the Hodgkin-Huxley one which is an example of
multi-compartmental, conductance-based models (Hodgkin and
Huxley, 1952; Izhikevich, 2004). Their work led to an immediate
interest in electro-physiology, for which they shared the 1963
Nobel prize in Physiology or Medicine (Schwiening, 2012). In
between these two extremes lie many models that are evolved
from IF models to improve their fitting capabilities. One of
the major additions to these models is the adaptation variables.
Examples of these models are, in order of complexity, the IF
model with an adaptive current, the adaptive threshold IF model
(Gerstner et al., 2014), and the adaptive quadratic (Izhikevich)
IF models (Izhikevich, 2003). Many of these models were
investigated in the problem of automatic fitting to experimental
spiking neuron recordings. Simple models are more capable of
accurate fitting to spike timing. In contrast, complex models, like
the HH model, are more challenging to optimize due to their
numerous parameters and simulation time (Rossant et al., 2010;
Lynch and Houghton, 2015). All these efforts take part in solving
the crucial neuro-science quest to figure out the input-output
function of the neuron. Examples of recent effort in this direction
can be found at Ujfalussy et al. (2018), Beniaguev et al. (2021),
Harkin et al. (2021).

The optimization approach for spiking neuron models
depends on the model itself and the nature of the experimental
data. In some cases, the injected current can be changed freely,
and this is used to isolate somemodel parameters via an analytical
method. However, this is not always the case, and a more generic
approach is needed for this problem. Thus, researchers tend
to use global heuristic optimizers to search the parameter space
without the need to calculate the gradient of the performance
metric (Rossant et al., 2010; Lynch and Houghton, 2015). This
property is important in case of fitting problems that are based
on spike trains where the metrics have discontinuous nature.
Examples of spike train metrics are the van Rossum metric,
the inter-spike-interval distance, and the Ŵ coincidence factor
(Kreuz et al., 2020). A genetic algorithm and particle swarm
optimization are the main optimization algorithms used to
identify the parameters of spiking neural models in the literature
(Rossant et al., 2010; Lynch and Houghton, 2015). Recently,
several other nature-inspired optimization algorithms have been
presented and proven to give better results in many applications
(Yousri et al., 2018, 2021). Examples of these algorithm are the
cuckoo search optimizer (Gandomi et al., 2013), the marine
predator algorithm (Faramarzi et al., 2020), and the gray wolf
optimizer (Yousri et al., 2020) (check Abd Elaziz et al., 2021
for a recent review of these algorithms). However, these newly
introduced algorithms have not been used to tackle the problem
of the estimation model parameter of spiking neurons. In this
paper, the genetic algorithm (GA), marine predator algorithm
(MPA), cuckoo search optimizer (CS), fractional-order cuckoo

search optimizer (FOCS), and particle swarm optimizer (PSO)
are used to fit the spike timing of the in vitro current injection
responses provided within the Quantitative Single Neuron
Modeling Competition (QSNMC) dataset (Naud et al., 2009).
Two different optimization approaches are discussed for each of
the two spiking neuron models under investigation.

The main contributions of this paper can be summarized
as follows:

• Applying new meta-heuristic optimization algorithms, other
than the ones commonly used in literature, to tackle the
problem of fitting spike times of experimental neuron
recordings. This results in more accurate fitting and validation
coincidence factors.

• Introducing a new problem formulation that achieved a higher
mean coincidence factor than the traditional approach.

• Providing a statistical analysis (mean, standard deviation, and
coefficient of variation) on the coincidence factor and model
several parameters for two different spiking neuron models.

This paper is organized as follows: Section 2 discusses the
QSNM2009 dataset and related works. Then, Section 3 discusses
the spiking neuron models under investigation. Section 4
formulates two optimization problems and reviews the five meta-
heuristic optimization algorithms whose results are compared
in this work. The results and their discussion are presented in
Section 5, while the concluding remarks and suggested future
research directions are in Section 5.

2. QSNMC2009 DATASET

The aim of the QSNMC, in its 2009 version, was to offer a
framework for comparing fitting algorithms and neuron models
by providing a common set of neuronal recordings for fair
comparison (Naud et al., 2009). It had four challenges: A, B, C,
and D, and Challenge A is the focus of this manuscript. This
challenge was predicting the spike timing of regular (not fast)
spiking of the L5 pyramidal cell as it responds to a stimulation
current that is synthesized in a way to make it similar to the
current observed in in-vivo conditions. The current stimulus had
two main parts. The first one is 17.5 s long and consisted of four-
step currents of a 2 s duration each, and between steps, there were
2 s of rest. The first current step is hyper-polarizing (negative
current), and the other three are depolarizing (positive current)
with increasing intensity. Following the current steps, a white
noise injection was made for 2 s.

A simulated excitatory and inhibitory spike train was then
injected for a duration of 42.5 s. Six spike trains were used to
compile this stimulant. The first three were convolved with an
exponential decay with a 2 ms time constant, while the other
three were also convolved with an exponential decay but with
a time constant of 10 ms. These six time series were merged by
a weighted sum whose weights were chosen so as to stimulate
the neuron to spike at a frequency between 5 and 10 Hz, which
resembles in-vivo conditions.

The training set was chosen to be the first 38 s, and the test
set was the last 22 s. The injected current, with a 60 s length,
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was provided to the participants. However, the voltage traces
of the 13 recordings were provided for only the first 38 s (the
training duration).

2.1. Related Works
There are a few papers that used the experimental spiking
neuron data provided by the International Neuroinformatics
Coordinating Facility (INCF) at their QSNMC in 2009. The
details and results of this competition are outlined in Gerstner
and Naud (2009) and Naud et al. (2009, 2011, 2012). The dataset
was made available at the Github repository of the INCF to allow
further research on the problem (Gerkin, 2009). Although many
papers cite this dataset, only a few papers used it to identify the
parameters of spiking neuron models (Rossant et al., 2010, 2011;
Russell et al., 2010; Yamauchi et al., 2011; Mitra et al., 2013; Lynch
and Houghton, 2015).

One of the earliest papers to use the QSNMC2009 dataset is
Rossant et al. (2010). The authors used a particle swarm optimizer
(PSO) as the global optimization algorithm and the coincidence
factor (Ŵ), defined in Section 3.2, as the objective function.
They also provided a model fitting library integrated with the
Brian neuron simulator and capable of running in parallel on
GPUs. They proposed an online approach to calculate the Ŵ
factor where the spike coincidences are counted as the model
is simulated, and not post-simulation as usual. The model was
simulated using time slicing, with an overlapping concept to
parallelize the evaluation of the model further. The optimization
procedure was tested on the synthetic data of the LIF model
with an adaptive threshold by injecting an Ornstein-Uhlenbeck
process current for 500 ms. The coincidence window was set
to δ = 0.1 ms for this test. A perfect match was obtained
within a few iterations. The parameter values were within ±15%
of the ones used for synthesis and were found to be within
±3% when the number of particles was increased. However, the
number of particles was not reported. For the experimental data,
results were summarized for the dataset of Challenges A and
B of QSNMC2009. Challenge A is for regular spiking neurons,
and Challenge B is for fast-spiking neurons. The data of each
recording in each challenge were divided into training and testing
periods, each of which had a duration of 10 s. For Challenge A,
the optimization was performed over the period from 17.5 s to
28 s, and the coincidence factor was reported for 28 s to 38 s
with a coincidence window of δ = 4 ms. The intrinsic reliability
(Ŵin), defined in Section 3.2, was explicitly reported in this paper
to be Ŵin = 0.78 and Ŵin = 0.74 for Challenges A and B,
respectively, but neither the source for these values nor the period
over which these values were computed was provided. A time
shift parameter was used to shift the model spike to align with
the recorded spike. This happens because the spike times were
recorded as the times when the membrane voltage crossed zero.
The optimization was performed on each record independently,
and the mean and standard deviation of the coincidence factor
were reported. For example, the adaptive exponential IF model
achieved Ŵ = 0.51 ± 0.04(65%) for Challenge A and Ŵ =

0.76± 0.05(102%) for Challenge B. The values in brackets are the
normalized value with respect to the intrinsic reliability.

In the review (Rossant et al., 2011), the authors applied
their previously developed toolbox, which was based on Brian
and used efficient parallelization concepts, to the QSNMC2009
dataset in order to estimate many of the parameters of the models
that participated in the competition. The authors reported that
their results were different from the ones reported in the
competition due to the fact that they used only the available
dataset and divided it into fitting and testing parts, whereas the
entire available data was used for fitting in the competition.
However, the authors did not specify the time periods used for
fitting and testing. They developed and used a parallel version
the Covariance Matrix Adaptation Evolution Strategy as the
optimization algorithm suitable for GPU and multiple CPU
simulations, and the coincidence factor as the objective function.

An optimization method based on the maximum likelihood
(ML) function was proposed for the Mihalas–Niebur spiking
neuron model in Russell et al. (2010). To validate their method,
the authors simulated 250 ms of tonic bursting and used it as the
target spike pattern. The results of optimization of the synthetic
case were described qualitatively to be an almost perfect match
for spike timing. One second of the QSNMC2009 dataset was
used to configure/predict the parameters of the model using
the ML function. First, the spike time of each repetition of the
13 recordings was extracted as the time when the voltage trace
crossed 0 mV. The optimization was then performed on the 13
recordings. However, the authors have not reported either the
optimization algorithm or the period they have optimized over.
They reported that their resulting voltage response was a 1.2 ms
average difference in its inter-spike intervals compared with the
experimental response, with a standard deviation of 1.12 ms. As
the recorded data had an average inter-spike interval of 39.4 ms,
this error is approximately 3%.

An augmented Multi-timescale Adaptive Threshold (MAT)
model was proposed in Yamauchi et al. (2011) by adding voltage
dependency to the adaptive threshold in order to increase the
variety of its firing patterns. The original MAT model won first
place in QSNMC2009 competition, Challenge A. The authors did
not use synthetic data to validate their method. The AugMAT
model parameters were adjusted to match the data of 10 out
of 13 voltage responses of the QSNMC2009, and then validated
using the rest of the trials. The 10 trials were randomly selected,
but the details of the parameter tuning were omitted, and the
time window of evaluating Ŵ was not mentioned. The paper
is more focused on introducing the AugMAT model and its
new spiking patterns than the parameter identification problem.
This process was repeated 100 times, and the coincidence factor,
Ŵ, was used to assess the performance of the model using a
coincidence window of 4 ms. The AugMAT model achieved
Ŵ = 0.84, while the original MAT model achieved Ŵ = 0.77
in their predictive performance. Augmented MAT was superior
at different coincidence windows (2 ms to 10 ms).

In Mitra et al. (2013), the authors used a gradient descent
algorithm to estimate the parameters of the AugMAT model
using a synthetic dataset. The stimulating current had a length
of 1 s and was generated by a sum of different exponentials to
emulate the stimulus received from a dendrite tree. The search
space in the synthetic case was five-dimensional, and the gradient
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descent reached the minimum within a finite number of steps.
The authors proposed a differentiable performance function that
can be viewed as a special case of the Van-Rossum metric. The
performance function is given as

ζ =
1

t2
f

∫ tf

0

[

ψ1(t)− ψ2(t)
]2
dt, (1)

where ψi(t) is the convolution of the spike train of the neuron
number i with the Heaviside unit step function. A hybrid
technique was proposed for the parameter estimation of the
AugMAT model applied to the experimental spike train dataset
provided with QSNMC2009. They chose to use the same part
of the dataset discussed in Yamauchi et al. (2011), which is a 4s
window from the time instance 17.5 s to 21.5 s. However, the
record number, out of 13, was not specified. The hybrid technique
used a gradient descent and a Nelder–Mead algorithm. The
gradient descent started at a randomly chosen initial point using
the ζ performance index until a previously specified number
of iterations was reached, and the Nelder–Mead then used the
result of the previous phase as the initial point of its search
using the coincidence factor (Ŵ). This hybridization was aimed to
overcome the limitations of using each of these algorithms alone.
The simulation was conducted 100 times with different random
initial parameters for the hybrid method (GD+NM) and the NM
alone. The statistics of the results are 0.65 ± 0.09 and 0.55 ± 0.1
for GD+NM and NM, respectively.

The latest paper to use the QSNMC2009 dataset is Lynch
and Houghton (2015). The authors used the genetic algorithm
for optimization and the Van-Rossum metric as the objective
function. The validity of the optimization procedure was tested
on the adaptive exponential integrate and fire model (aEIF) by
using 4 s of synthetic data generated from a random input current
signal. The first 2 s were for training, and the last 2 s were for
validation. This test was run 20 times. The population size of the
genetic algorithmwas set to 240, and the number of iterations was
set to 1, 000. Three synthetic tests with the time constant, τ , of the
Van-Rossummetric were made. The first test used varying values
of τ that start with half of the simulation time and gradually
decrease until it reaches the mean inter-spike interval. In the
second one, τ was set to be the simulation time; in the third one,
τ was set to be the mean inter-spike interval. When comparing
the results based on the coincidence factor, the larger time scale
had the lowest Ŵ, the short time scale was better, and the varying
time scale was the best. It is worth mentioning that the mean Ŵ
factor value for a varying time scale case was not equal to 1. For
the experimental data, the authors used the same 20.5 s used in
Rossant et al. (2010), starting at 17.5 s, where the first 10.5 s were
used for fitting, and the last 10 s were used for validation. The
spike time was determined to be the times in the trace where the
voltage crosses a certain value, but this threshold value was not
specified in the paper. The genetic algorithm was set to run for
800 iterations in the experimental data case for 10 interdependent
runs. The authors tested five neuron models in that paper: the
aIF, atIF, aEIF, a2EIF, and Izhikevich models. The aEIF and a2EIF
models achieved the top Ŵ factor values.

3. NEURON MODELS AND METRICS

3.1. Spiking Neuron Models
In this work, we consider two different neuron models: the
adaptive exponential integrate and fire (aEIF) model (Brette
and Gerstner, 2005), and the adaptive-threshold with adaptation
variable integrate and fire (aTIF-W) model (Koch, 2004). The
latter is a combination of the adaptive threshold leaky integrate
and fire model and the leaky integrate and fire model with
an adaptation variable. These two models represent different
variations of the integrate and fire model with almost the same
number of parameters. The aEIF model is written as

τm
dv

dt
= (EL − v)+1Te

(v−vT )/1T − w+ RI (2a)

τw
dw

dt
= b(v− EL)− w, (2b)

where v is the membrane potential, I is the input current, R is
the leak resistance, τm is the membrane time constant, EL is the
resting potential, VT is the spike threshold,1T is the slope factor,
w is the adaptation voltage, τw is the adaptation time constant,
and b is the sub-threshold adaptation. The sharp reset condition
is given at a constant cut-off voltage vc as follows: when v(t) >
vc, then

v → vr , w → w+ α, (3)

where vr is the reset voltage, and α is the spike-triggered
adaptation. It is worth mentioning that, when v(t) ≈ EL and I =
0, the adaptation voltage, w, decays to zero. Therefore, the point
(EL, 0) can be considered an equilibrium point of this system of
equations by taking into consideration that the exponential term
is very small in this case.

The adaptive threshold IF model with adaptation current is
given as

τm
dv

dt
= (EL − v)− w+ RI, (4a)

τw
dw

dt
= b(v− EL)− w, (4b)

τt
dvc

dt
= c(v− EL)− vc. (4c)

where vc is the cut-off voltage, c is the sub-threshold adaptation
factor of the cut-off voltage, and τt is the cut-off voltage time
constant. The sharp reset condition is given at a time-dependent
cut-off voltage vc(t) as follows: when v(t) > vc(t), then

v → vr , w → w+ α, vc → vc + β , (5)

where α and β are the spike-triggered adaptation of the
adaptation voltage and cut-off voltage, respectively. Similar to
the aEIF model, the point (EL, 0, 0) is an equilibrium point of
the system.

In this work, the spike time is recorded at the instant when
the sharp reset condition is applied. It is important to note
that the chosen models are not the best performing models in
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the literature. However, their simplicity and popularity make
them good candidates when the goal is to compare optimization
algorithms, which is one of the objectives of this work.

3.2. Identification Metric
The performance was evaluated based on the coincidence factor
Ŵ. Several quantities are needed to calculate Ŵ, including Ndata

and Nmodel, which are the number of spikes in the target and
model responses, respectively. Ncoinc is the number of coincident
spikes between the model response and the target. A target spike
is considered coincident if there is a least one spike in the model
that matches the target spike time within the coincident window
(δ = 4ms in the case of QSNMC2009). The Ŵ factor between two
spike trains is given as (Jolivet et al., 2008; Naud et al., 2009)

Ŵ =
1

1− 2δf

Ncoinc − 2δNdataf

Ndata + Nmodel
, (6)

where f is the average firing rate of the target spike train
(experimental). The MATLAB code for calculating the Ŵ factor
is provided in Gerstner (2007). When Ŵ = 0, the prediction
is no more than a chance, and when Ŵ = 1, the prediction
is optimal. When dealing with several recordings of the same
neuron, the Ŵ factor should be normalized with respect to the
intrinsic reliabilityŴin. The normalizedmeanŴ factor acrossNrep

repetitions of the same experiment is given as (Naud et al., 2009).

PA =
1

Nrep

Nrep
∑

i=1

Ŵi

Ŵin
, (7)

where Ŵi is the coincidence factor between the model spike train
and the i-th recording. Nrep = 13 in QSNMC2009. The intrinsic
reliability is calculated between the neuron recordings as the
average Ŵ factor between each unique recording. It is formulated
as (Naud et al., 2009).

Ŵin =
2

Nrep(Nrep − 1)

Nrep
∑

i=1

Nrep
∑

j=i+1

Ŵi,j, (8)

where Ŵi,j is the coincident factor between recordings i and j.

4. PARAMETER IDENTIFICATION SEARCH

4.1. Problem Formulation
The available QSNMC2009 data includes an injected current
and 13 membrane potential recordings stimulated by the same
current. The time length of the online data is 38 s. In this work.
the simulations are started at t = 13 s, which is an equilibrium
point. The fitting duration is from t = 17.5 to t = 28 s, while
the validation duration starts at t = 28 s to the end of the online
data-set (t = 38 s). These time regions are illustrated in Figure 1.

Two optimization problems are considered in this work.
Problem 1 is maximizing the average Ŵ factor across all
recordings. This problem is formulated as

max
x

1

N

N
∑

i=1

Ŵi, (9)

FIGURE 1 | The injected current, Iinj in orange, and the recorded membrane

potential, Vm in blue, of a single trial from the QSNMC2009 dataset. The

dashed circles point each signal to its corresponding axis on the left or the

right. The timeline is segmented into simulation, fitting, and validation periods.

The simulation starts from an equilibrium point and not from the beginning to

reduce the total time consumed by each agent during the search of the

meta-heuristic optimization algorithms.

where x is the search vector,N is the number of recordings, which
is 13 for QSNMC2009, and Ŵi is the calculated coincidence factor
between the estimated spike times and the spike times of the
ith recording.

The second problem, which is the one used in Rossant
et al. (2010) and Lynch and Houghton (2015), is a set of
independent optimization problems where each one is concerned
with maximizing the coincidence factor between the estimated
spike train and the spike train of one of the 13 recordings.

max
xi
Ŵi, 1 ≤ i ≤ N. (10)

where xi is the search vector corresponding to recording i. The
second problem formulation has N times the dimension of the
first problem and the optimal parameters of the second problem
are expected to differ between recordings.

MATLAB R2020a has been used to run the optimization
procedures on IBEX HPC at KAUST. Each run was repeated
10 times in problem 2 to report the mean, standard deviation
(std), coefficient of variation (CV=std/mean) for each parameter,
and the fitting and validation coincidence factors, while each
run was repeated 100 times for problem 1 to balance the total
number of runs between both problems. A coincidence window
of 4 ms was used throughout these optimizations to evaluate the
coincidence factor (Ŵ). The simulation time step is 0.1 ms and the
Euler numerical method is the one used to evaluate the estimated
membrane potential. The GA algorithm is set to 100 generations
as this is found to stall very early, while other algorithms are set
to 10k iterations. The algorithms parameters are assumed as the
default unless otherwise specified. The upper and lower limits
for the parameters of each model are summarized in Table 1.
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TABLE 1 | The upper and lower bounds for the search space of the two models: aEIF and aTIF-W.

aEIF τm, ms τw , ms b VT , mV Vr , mV EL, mV α, mV 1T , mV R, M� -

Lb 1 80 0 −30 −100 −100 10 1 70 -

Ub 15 150 5 −10 −50 −50 40 5 200 -

aTIF-W τm, ms τw , ms τt, ms b c Vr , mV EL, mV α, mV β, mV R, M�

Lb 1 20 20 0 −3 −120 −120 0 0 70

Ub 15 150 150 5 3 −40 −40 40 40 200

The values for the upper and lower limits were inspired by
the methodology of similar papers in the literature (Lynch and
Houghton, 2015).

4.2. Meta-Heuristic Search Algorithms
Meta-heuristic algorithms are categorized into four classes: the
evolutionary algorithm-like genetic algorithm and differential
evolution, the swarm intelligence algorithm-like particle swarm
optimizer and artificial bee colony optimizer, the natural
phenomena algorithm-like intelligent water drops and water
cycle algorithm, and human-inspired algorithms such as the
seeker optimization and soccer league competition (Abd Elaziz
et al., 2021). In this work, we consider one algorithm of the first
class (genetic algorithm), and the other four algorithms are of the
second class.

4.2.1. Genetic Algorithm
In the 1960s and 1970s, John Holland and his collaborators
developed the genetic algorithm that models the biological
evolution theory, and the concept of natural selection (Holland
et al., 1992). The use of crossover, mutation, and selection was
very new to artificial systems. Many updates were later made,
and many variants were applied to a vast range of optimization
problems in science and engineering. There are many advantages
to using GA that includes dealing with complex problems, time-
varying objective functions, discontinuous search space, and
non-linear problems. A GA can also be parallelized easily, as its
agents can evaluate the objective function independently, which
is the case for most meta-heuristic optimization algorithms. On
the other hand, there are disadvantages to a GA. For example,
the many parameters of the algorithm need to be carefully
tuned, such as the rate of mutation and selection criteria. A bad
combination of these parameters and the optimization problem
can make it difficult for the algorithm to converge to a reasonable
solution (Yang, 2020). The algorithm has three main operations:
selection, crossover, andmutation. In selection, the parents of the
upcoming generation are selected from the current population.
In the crossover, two parents are combined to produce the
children of the next generation. The mutation is the process of
randomly changing some features of the individual parents to
produce children. In this work, we used the standard genetic
algorithm in MATLAB.

4.2.2. Cuckoo Search and Its Fractional Variant
The cuckoo search (CS) was innovated by Yang and Deb
(2009) inspirited from the natural behavior of cuckoo breeding
parasitism. In Gandomi et al. (2013), the authors modeled that

behavior mathematically via three hypotheses: (I) each cuckoo
lays one egg at a time, (II) a cuckoo puts an egg in a nest chosen
randomly, and the fittest is retained for the next generation, and
(III) the available host nests are bounded, and a host cuckoo can
detect a stranger egg with a probability of Ps ∈ [0, 1] (Ps = 0.1
in this work).These behaviors can be formulated mathematically
using Levy flights.

Later on, the fractional variant of the cuckoo search optimizer
was introduced (Yousri and Mirjalili, 2020). The main idea
was to fractionalize the exploration random walk in order to
improve the diversification capabilities of the algorithm. With a
fractional-order cuckoo optimizer, the memory effect is added to
the classical CS to boost the random walk. The extra parameters
given by fractional calculus are used to adaptively tune the
harmonization between the global and local randomwalks. Based
on Yousri and Mirjalili (2020), the recommended value of the
derivative order is 0.3, with a memory length of four terms.

4.2.3. Marine Predator Algorithm
The marine predators algorithm (MPA) is a biologically inspired
optimization algorithm that has been recently proposed in
Faramarzi et al. (2020). It simulates the interactions between
marine preys and predators based on the governing policies
for optimal foraging and memories in marine predators. For
example, it has been found that marine predators use a Levy
strategy and Brownian motion for areas with low and high
concentrations of prey, respectively. However, they use both
random walk strategies during their lifetime while traversing
different habitats. Predators use their good memory to their
advantage by reminding themselves and their associates of the
locations where their hunt ended successfully in the past.

As in most meta-heuristic algorithms, the MPA population
is initialized by drawing from a uniform distribution within the
feasible region of the search space. After that, two important
matrices are constructed: the Prey matrix and the Elite matrix.
Bothmatrices have the dimension n×d, where n is the number of
search agents, and d is the dimension of the search space. Initially,
the rows of the Prey matrix contain the positions of the prey from
the initialization step. After that, the Prey matrix update strategy
will be different according to the phase of the optimization. At
each iteration, the Elite matrix is constructed by replicating the
position of the top predator across all rows.

The optimization process of MPA is equally divided into three
phases based on the velocity ratio between predators and prey.
In Phase 1, when the predator is moving faster than the prey,
in the exploration phase, the prey moves in Brownian motion
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during the first third of the iterations. During the second phase,
a transition from exploration to exploitation occurs. Half of the
population is in exploration modes, and the other half is in
exploitation mode. During the last phase, the predators switch
to Levy flight instead of Brownian motion in order to emphasize
the exploitation.

4.2.4. Particle Swarm Optimization
Kennedy and Eberhart developed particle swarm optimization
in 1995 (Kennedy and Eberhart, 1995). Since then, it became
one of the most widely used swarm intelligence algorithms, as
it is straightforward and flexible. The algorithm uses randomness
and communication between its particles to update their location

TABLE 2 | Summary of fitted parameters; the fitting and validation Ŵ factor of the aEIF model in problem 1.

τm τw b VT Vr EL α 1T R Ŵ fitting Ŵ validation

GA
Mean 8.375 101.656 1.358 −18.566 −82.589 −63.669 20.832 1.794 174.901 0.475 0.358

CV 23.42E-02 14.59E-02 59.59E-02 −29.93E-02 −13.87E-02 −16.58E-02 27.11E-02 36.17E-02 10.58E-02 01.67E-02 06.02E-02

PSO
Mean 8.430 103.307 1.051 −20.457 −79.336 −72.426 18.938 1.652 179.693 0.483 0.359

CV 23.45E-02 18.14E-02 84.87E-02 −31.42E-02 −20.64E-02 −20.58E-02 33.54E-02 45.74E-02 12.64E-02 02.23E-02 06.98E-02

MPA
Mean 9.562 93.319 0.552 −22.811 −70.357 −72.633 20.805 1.139 170.759 0.513 0.399

CV 09.10E-02 14.99E-02 65.13E-02 −26.57E-02 −18.63E-02 −13.23E-02 18.07E-02 23.51E-02 12.99E-02 01.15E-02 06.87E-02

CS
Mean 9.683 110.846 0.348 -19.979 −77.546 −72.761 18.227 1.380 170.425 0.510 0.382

CV 20.45E-02 21.26E-02 52.49E-02 −26.42E-02 −19.68E-02 −16.46E-02 32.14E-02 35.58E-02 14.45E-02 01.19E-02 08.48E-02

FOCS
Mean 9.195 94.328 0.575 −19.520 −69.542 −68.372 19.953 1.285 165.677 0.507 0.392

CV 14.42E-02 16.49E-02 67.36E-02 −29.77E-02 −21.27E-02 −12.97E-02 21.60E-02 28.37E-02 13.34E-02 01.07E-02 07.89E-02

The best fitting and validation coincidence factors are written in bold.

TABLE 3 | Summary of fitted parameters; the fitting and validation Ŵ factor of the aEIF model in problem 2.

τm τw b VT Vr EL α 1T R Ŵ fitting Ŵ validation

GA
Mean 8.1890 103.9098 1.3953 −19.4152 −80.0093 −65.8482 19.7755 2.0600 174.5987 0.5112 0.3597

CV 21.38E-02 16.22E-02 71.71E-02 -29.49E-02 −17.70E-02 −17.82E-02 30.00E-02 40.96E-02 10.20E-02 06.09E-02 09.62E-02

PSO
Mean 8.7731 104.9213 1.2591 −19.7134 −77.1091 −70.4785 18.9612 1.7642 180.2081 0.5319 0.3505

CV 27.89E-02 19.08E-02 88.48E-02 −31.61E-02 −20.37E-02 −22.51E-02 37.61E-02 55.09E-02 11.80E-02 05.91E-02 11.75E-02

MPA
Mean 9.5678 98.4903 0.9829 −19.2104 −77.8583 −68.8243 18.2399 1.2991 168.0283 0.5752 0.3531

CV 25.79E-02 20.06E-02 01.03E+00 −27.69E-02 −21.68E-02 −20.05E-02 36.77E-02 26.69E-02 15.00E-02 05.03E-02 13.18E-02

CS
Mean 10.3605 110.9655 0.5567 −19.7346 -80.3343 -72.0564 16.3476 1.5744 167.9558 0.5761 0.3464

CV 26.23E-02 20.36E-02 01.42E+00 -28.67E-02 -17.98E-02 −21.46E-02 29.61E-02 38.67E-02 15.45E-02 05.14E-02 11.97E-02

FOCS
Mean 8.8954 97.7924 0.9237 −18.7916 −75.4606 −68.0144 18.2478 1.3543 164.4323 0.5656 0.3576

CV 25.46E-02 17.02E-02 01.02E+00 −30.82E-02 −21.97E-02 −18.85E-02 36.52E-02 33.21E-02 17.67E-02 06.57E-02 11.55E-02

The best fitting and validation coincidence factors are written in bold.

TABLE 4 | Summary of fitted parameters; the fitting and validation Ŵ factor of the aTIF-W model in problem 1.

τm τw τt b c Vr EL α β R Ŵ fitting Ŵ validation

GA
Mean 7.9430 70.6210 79.1497 2.7231 −1.2536 −77.6165 −60.9129 13.9722 8.7192 166.9074 0.4675 0.3412

CV 25.85E-02 38.73E-02 52.12E-02 41.66E-02 −65.35E-02 −27.00E-02 −23.99E-02 60.88E-02 85.39E-02 14.40E-02 02.07E-02 09.00E-02

PSO
Mean 7.4221 86.4086 81.4162 3.4869 −1.7659 −81.6557 −67.4959 13.1968 11.4470 175.2411 0.4749 0.3396

CV 29.18E-02 33.55E-02 57.15E-02 36.47E-02 −51.76E-02 −29.70E-02 −27.67E-02 78.46E-02 01.04E+00 15.90E-02 02.09E-02 08.62E-02

MPA
Mean 7.5485 41.4732 66.6549 1.9290 −0.7909 −69.2158 −58.6748 26.2633 3.1894 154.1694 0.5075 0.3380

CV 29.14E-02 40.34E-02 68.07E-02 52.24E-02 −96.37E-02 −39.93E-02 −20.33E-02 29.76E-02 01.08E+00 18.71E-02 01.51E-02 08.50E-02

CS
Mean 9.1429 57.5165 104.7507 2.4674 -1.5740 −85.3730 −63.9033 21.5919 5.3737 161.8457 0.5013 0.3292

CV 30.75E-02 47.19E-02 42.51E-02 44.72E-02 −60.60E-02 −33.66E-02 −31.83E-02 50.22E-02 01.15E+00 20.23E-02 02.09E-02 11.51E-02

FOCS
Mean 8.0000 48.9272 80.9417 1.9770 −1.1475 −73.4521 −57.6855 18.5179 5.8169 141.8364 0.5023 0.3305

CV 34.61E-02 44.12E-02 63.21E-02 41.30E-02 −69.68E-02 −41.00E-02 −24.72E-02 45.58E-02 98.75E-02 19.39E-02 01.43E-02 10.29E-02

The best fitting and validation coincidence factors are written in bold.
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TABLE 5 | Summary of fitted parameters; the fitting and validation Ŵ factor of the aTIF-W model in problem 2.

τm τw τt b c Vr EL α β R Ŵ fitting Ŵ validation

GA
Mean 8.068 74.428 75.307 2.630 −1.412 −85.300 −64.212 14.906 11.479 170.415 0.503 0.341

CV 29.44E-02 36.98E-02 51.35E-02 50.72E-02 −65.92E-02 −27.07E-02 −27.12E-02 63.38E-02 80.73E-02 13.74E-02 06.09E-02 11.72E-02

PSO
Mean 8.253 87.115 84.494 3.066 −1.787 −81.297 −63.080 15.359 10.900 169.019 0.524 0.343

CV 30.48E-02 34.27E-02 53.99E-02 44.59E-02 −53.32E-02 −30.43E-02 −29.14E-02 61.91E-02 99.57E-02 16.49E-02 05.88E-02 13.04E-02

MPA
Mean 9.026 70.943 92.815 1.986 −1.161 −85.569 −60.253 18.932 10.605 160.667 0.575 0.338

CV 34.04E-02 39.42E-02 53.08E-02 51.45E-02 −65.48E-02 −33.26E-02 −29.93E-02 59.05E-02 01.00E+00 17.81E-02 04.90E-02 16.46E-02

CS
Mean 10.108 74.807 115.447 2.027 −1.770 −87.567 −67.829 19.181 7.949 160.696 0.570 0.327

CV 27.35E-02 46.02E-02 31.51E-02 58.56E-02 −52.08E-02 −29.70E-02 −34.09E-02 62.07E-02 01.21E+00 20.70E-02 04.75E-02 22.95E-02

FOCS
Mean 8.839 72.563 93.087 2.080 −1.467 −83.416 −61.686 16.100 10.961 153.339 0.565 0.337

CV 32.67E-02 37.30E-02 48.82E-02 54.48E-02 −61.42E-02 −28.70E-02 −32.32E-02 63.19E-02 94.62E-02 18.27E-02 04.68E-02 19.18E-02

The best fitting and validation coincidence factors are written in bold.

in the search space. It is easy to implement due to the lack of
encoding and decoding of parameters when compared to a GA.
The idea behind PSO has inspired many new algorithms, and this
can be seen in the similarity between the structure of these new
algorithms and PSO (Yang, 2020). The algorithm is summarized
as follows: the particles move in the search space in steps. At each
of these steps, the objective function is evaluated, and the new
location of each particle is calculated based on this evaluation.
The movement is towardz a combination of the best location
that the particle has had so far and the global best location
of all particles. In this work, we used the original MATLAB
implementation of the PSO algorithm.

5. RESULTS AND DISCUSSION

In this section, we discuss the comparative results of the
aforementioned optimization algorithms on the QSNMC2009
dataset. Besides, in order to facilitate the reproducibility of the
results, the codes are available online on the project website1.

Table 2 summarizes the fitting results of Optimization
problem 1 using the aEIF model. The most variable parameter
across iterations is b for all algorithms. On the other hand, the
least variable parameter is R for all algorithms except the MPA,
whose least variable parameter is τm. The MPA, CS, and FOCS
achieved a higher fitting coincidence factor than GA and PSO.
The best validation coincidence factor is achieved by the MPA,
followed closely in second place by FOCS. The variability in
the fitting coincidence factor is less than the variability of the
validation coincidence factor.

Table 3 summarizes the results of problem 2 using the
aEIF model. The most and least variable parameters across all
algorithms are b and R, respectively, except for FOCS, whose least
variable parameters are R and τw. The MPA and CS achieved
the best fitting coincidence factor, followed closely by the FOCS,
while the PSO and GA achieved the lowest values for the
fitting coincidence factor. The validation coincidence factor is
approximately the same for all algorithms. The variability of the
fitting coincidence factor is very close between algorithms, while

1https://mefouda.me/project/fractional-order-spiking-systems/

the variability of the validation coincidence factor is also the
same, except that for the GA, which is lower than the rest of
the algorithms.

Table 4 summarizes the optimal parameters of the aTIF-W
model when used in problem 1. The best fitting coincidence
factor is achieved by the MPA followed by CS and FOCS. The
best validation coincidence factor is achieved by the GA, followed
by the PSO. The most variable parameter for all algorithms is β ,
while the least variable parameter is R.

Table 5 summarizes the results of problem 2 when solved
using the aTIF-w model. The best fitting coincidence factor is
obtained by the MPA, and the best validation coincidence factor
is obtained by the GA. The variability in the fitting coincidence
factor result is the least for FOCS, followed by CS and MPA in
ascending order. The most and least variable parameters are β
and R, respectively, for all algorithms.

Figure 2 summarizes the results of problem 2 and provides
more details into the behavior of each record individually.
The solid bars are the mean value of the parameter, while
the vertical line segments are the error bounds based on the
standard deviation. The highest fitting coincidence factor is
achieved with Record 10, where the MPA, CS, and FOCS are
more consistent than the PSO and GA. On the other hand, the
highest validation coincidence factor is achieved with Record 6
in the case of the MPA and FOCS algorithms, and the MPA
is more consistent. The parameter b has a larger value in
the case of record 12 when compared to other records. The
lowest membrane time constant, τm, value is seen with Record
12, but the same record shows the highest membrane resistor,
R, value.

In Figure 3, problem 2 results when using the aTIF-W model
are summarized for each record. Record 10 shows the highest
fitting coincidence factor values with remarkable consistency
from the MPA, CS, and FOCS, while Record 13 achieves
higher values for the validation coincidence factor. Parameter
β has lower values than parameter α for all records except the
first two.

The mean convergence curves for problems 1 and 2 using the
aEIF model are illustrated in Figure 4. In the case of problem
1, at iteration 50, the GA reached its optimal value, and before
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FIGURE 2 | Parameter mean and standard deviation across 10 independent runs for the aEIF model using 5 optimization algorithms for each recording. Each column

depicts the mean value of the parameter and the standard deviation is shown as a vertical line segment whose center is at the mean.

iteration 1, 000, the PSO reached Ŵf = 0.482, which is 99.8% of
its final value. The CS and FOCS curves moved side by side, but
at the end, the CS achieved a slightly higher coincidence factor
than the FOCS. At iteration 2, 000, the MPA, CS, and FOCS are
at ≈ 98% of their final values. For problem 2, the behavior of
the GA and PSO is the same as in problem 1. The MPA and CS
convergence curves are very close. At iteration 2, 000, the MPA,
CS, and FOCS are at≈ 97% of their final values.

The mean convergence curves of the aTIF-W model when
used to solve problems 1 and 2 are depicted in Figure 5. The
GA achieves its final value within 40 iterations, while the PSO
achieves its 99.7% of its final value at iteration 500. At iteration
2, 000, the MPA achieves 96.7% of its final value, and the CS
and FOCS arrive at 97.6% of their final values. For problem
2, the GA finishes at 34 iterations, while the PSO achieves
99.5% of its final value at iteration number 1, 000. At iteration
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FIGURE 3 | Parameter mean and standard deviation across 10 independent runs for the aTIF-W model using 5 optimization algorithm for each recording.

2, 000, the MPA, CS, and FOCS arrive at ≈ 95% of their
final values.

In summary, the fitting coincidence factor is always greater
than the validation coincidence factor. The fitting coincidence
factor for problem 1 is lower than that of problem 2 for the
same model, regardless of the optimization algorithm used. A
higher fitting coincidence factor does not necessarily imply a
higher validation coincidence factor for this particular dataset.
The aEIF model has a higher fitting and validation coincidence
factor in problem 1 than the aTIF-W model, although the fitting
coincidence factor of the MPA is higher in aTIF-W, and FOCS

has a nearly equal fitting coincidence factor in both models. For
problem 2, the validation coincidence factor is always lower in
the case of aTIF-W when compared to aEIF. However, the fitting
coincidence factor is the same for the MPA, CS, and FOCS across
both models, while the GA and PSO achieve a higher fitting
coincidence factor in the case of aEIF. Parameter variation is
higher in the aTIF-W model than in the aEIF model. The GA
and PSO converge faster than the MPA, CS, and FOCS, but at
lower objective function values. Consistency is clearly seen in
the fitting coincidence factor results; however, parameter results
are less consistent even in the case of the new meta-heuristic
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FIGURE 4 | CG curves of the aEIF model fitting results using the QSNMC2009 dataset. (A) Problem 1: maximizing mean Ŵ factor. (B) Problem 2: maximizing Ŵ factor

for each record individually.

FIGURE 5 | CG curves of the aTIF-W model fitting results using the QSNMC2009 dataset. (A) Problem 1: maximizing mean Ŵ factor. (B) Problem 2: maximizing Ŵ

factor for each record individually.

algorithms: the MPA, CS, and FOCS. Also, the small variability
of the R parameter may suggest detrending it, removing it from
the search space, which may result in more consistent fitting
results (Pozzorini et al., 2013).

Table 6 summarizes the distribution of the optimal fitting and
validation coincidence factors calculated for each record. The
mean fitting coincidence factor is higher in problem 1 when
compared to problem 2 for all algorithms and models. This is
opposed to what is reported in Tables 2–5, where the reported
values for the coincidence factor for problem 2 are for the
record that the optimizer used only, not for the 13 recordings.
Furthermore, the variability of the fitting coincidence factor is
lower for problem 1 than for problem 2. The mean validation
coincidence factor is higher in problem 1 than in problem 2 in
the case of the aEIF model, while they are between 0.34 and 0.32
in the case of the aTIF-W model. The fitting coincidence factor
rarely exceeds 0.6 for any record, while the validation coincidence
factor rarely exceeds 0.5 for any record. The largest difference
between fitting and validation coincidence factors is 0.172 in the
CS and FOCS for the aTIF-W model in problem 1, which is

the highest case for the other algorithms too, and the smallest
difference is 0.09, which is seen for the GA in the aEIF model
in problem 1.

6. CONCLUSION

Three algorithms were introduced to the problem of fitting
spike trains of experimental neuron data. These algorithms are
the MPA, CS, and FOCS. The issue was formulated into two
optimization problems. The coincidence window achieved by
the second problem was higher than the first problem due
to the increased number of parameters, and the aEIF model
obtained better fitness function values than the aTIF-W model.
However, upon performing cross-validation on all 13 recordings
of the experimental dataset, the fitting coincidence factors for
problem 2 decreased below those of problem 1. The newly
utilized algorithms showed consistent fitness function results
across independent trials. However, parameter consistency across
independent trials was not achieved. This explains why many
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TABLE 6 | Histograms of all the fitting and validation coincidence factors achieved from all the independent trials when calculated for each experimental recording (cross

validation).

papers in the literature only report the fitness values, not the
parameter values. Moreover, the objective function values were
at least at 95% of their final values at 2, 000 iterations. This
means that the number of iterations used in this work can be
reduced significantly without sacrificing the optimal objective
function value.

The common problem formulation used in the literature is
problem 2, which failed to achieve a higher fitting coincidence
factor upon cross-validation. This is despite the larger search
space of problem 2 when compared to problem 1. Based on
this observation, researchers should consider the formulation
mentioned in problem 1 and optimize the mean coincidence
factor instead of optimizing the coincidence factor of each record
individually, as done in problem 2. Another important note is
that GA achieved the highest validation coincidence factor in
case of aEIF model on problem 2 and the aTIF-W model on
problem 1 despite using smaller number of iterations than other

algorithm in this study. Also, the only case when an algorithm
achieved the highest fitting and validation coincidence factor
is for the aEIF model in problem 1, and it was achieved by
the MPA. In the other cases, the best validation and fitting
performance were not achieved by the same algorithm, which
is a sign of overfitting. The improvement that is achieved by
the new algorithms in the fitting coincidence factor was less
than 10% when compared to the more common algorithms
for this problem (the GA and PSO). However, the aim of
this work is to introduce a modified methodology other than
the ones in the literature, which mainly depend on GA and
PSO algorithms, which is a similar motivation for the work in
Marín et al. (2021). Thus, this opens the door for researchers to
investigate other newly introduced meta-heuristic algorithms to
tackle the two problems presented in this paper. Algorithms with
faster convergence and a lower number of function evaluations
are recommended.
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