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I Parameter Estimation Using the
Lo.m.c.oommans | QUasi-Linear Viscoelastic Model
A.A.H.J. Sauren § PrOPOSEd by Fung

Using the quasi-linear viscoelastic model proposed by Fung for the description of
E.P. M. Roussea u the viscoelastic properties of soft biological tissues, the parameters governing their
time-dependent behavior are commonly estimated from relaxation experiments.
Exact quantification is possible from the response to a Step change in the strain.
Eindhoven University of Technology, Since it is physically impossible to realize a true step change in the strain, in practice
Department of Mechanical Engineering, the response to a steplike strain Cchange is used. In the present study the
Eindhoven, The Netherlands discrepancies between the exact and the estimated Pparameter values are investigated
using a hypothetical quasi-linear viscoelastic material. T he parameter 7 1> governing
the fast viscous Phenomena, is found to be subject to the largest errors. Methods for

obtaining better estimates o f 7; are outlined in a number of special cases.

Introductionr

The quasi-linear viscoelastic model proposed by Fung [1] 7, and 7, can be determined from the stress response to a step
provides a relatively easily handled and useful tool for the change in the strain € from zero to ¢, at r = @ (Fig. 1(a)).
description of the behavior of many soft biological tissues ¢ (e;) = o(0*) and G@®) = a(®/0(0%) apply in this case.
[2-11]. The relation between stress ¢ and strain e in simple
elongation is given by

ot) = jo G(t—1)(do* /de)(de/dndr 1)

with

(=)

ot)=0and e(r) = Oforz < 0
Git=0)=1 eT

G(r) and o°(e) represeit the “reduced relaxation function”’
and the “‘elastic response,”” respectively. A polynomial or
exponential function of strain € may be chosen for the elastic
response, whereas the reduced relaxation function can be

formulated in terms of a relaxation  spectrum. Fung [1] 'T’
proposed a relaxation spectrum of the form

C/t for0<r <7< T With 7 << 7, )
S(7)=

0 elsewhere

which, for the reduced relaxation function, yields

1
GO)=[1+CLE\(t/7)~ E,(t/m)})/[1 + Cln(ry/7,)] 3) \ 1
with GT "T

Ei(x)= 2

l

i
l
The dimensionless positive constant C determines the C — ts —_ tm
degree to which viscous effects are present whereas the time t t
constants 7, and 7, govern the fast and slow viscous a b

phenomena, respectively, [12]. Theoretically the values of G, - ’ -

}o (exp(—»)/y)dy, the exponential integral function [13].
y=x

Fig. 1 Schematic diagrams showing the course of stress and strain

with time for (a) step change of the strain; (b) steplike change of the
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Fig. 2 The relative errors as a function of ts with B as parameter. The
different curves represent: 1) € for B = 0.1, 2) ¢,y for B = 100,
3) erp for B = 0.1,4) ¢,5 tor B = 100, §) ec forB = 0.1,6) ¢¢ forB =
100.

However, it is physically impossible to realize a true step
change in the strain. It is therefore assumed in practice that
the stress response to a fast steplike change in the strain (Fig.
1(d)) can be used as a fair approximation of the response to a
true step change. The steplike change in strain in an ex-
periment is realized by straining a sample from ¢ = 0t0 ¢ =
€, at a high strain rate within a time interval [0, £], followed
by maintaining ¢ = ¢, during the time interval {ts, 2,1 (Fig.

1()). The parameter quantification follows the lines depicted -

in a previous paper [11], using the approximations
G* ()= o()/o(t;) for t=¢,, @
G () =G*(t,,).

The parameter values thus obtained will be approximations
of the true values. In this paper some_investigations are
presented as to the influence of the t; and ¢, values upon the
discrepancies between the true constants C, 7, and 7, and the
approximations C*, 7}, 73. Furthermore, methods for ob-
taining a better approximation of 7; Will be outlined for some
special cases.

Methods

For a hypothetical quasi-linear viscoelastic material, an
expression for the true stress response during the constant
strain phase (f, < ¢ < t,.), preceeded by a strain change
realized at a constant high strain rate y = €,/t; in the time
interval [0, 4], as depicted in Fig. 1(b), was determined from
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Fig. 3 The relative errors as a function of ts with C as parameter. The
different curves represent: 1) ¢x1 for C = 0.005,0.05 and 0.5, 2) €2 for
C = 0.005,0.05and 0.5, 3) ¢ forC = 0.005, 0.05 and 0.5.

equation (1) after substitution of equation (3) and an elastic
response of the form

o°(e) =Alexp(Be) - 1] p 3
yielding
o(6) = Alexp(Be,) — 11G(t - 1,)
= [CA/{1+ Cln(ry /1) E (¢ — £,)*
"/ 7 +Bu))—E (¢ —1,)(1/T, + Bv))
+E({(1/7, + Bv)) - E,(((1/7, + Bv))jexp(Be,)
+E1 (t/Tz) _EI (t/TI) +E1 ((t_ts)/Tl)
~Ey((t=t)/m)] fort=t,. ©)
The o(¢) values were calculated for given values of A, B, C,
715 T2 €, Is and £, and subsequently fed into a computer
program, previously developed to fit the model to ex-
perimental data [11], with approximations C*, 7f and 74 as
the outcome. These approximations are thus the result of
treating the o(?) values in the interval [#5; t.,] as the response to
a true step change in the strain as is commonly done with the
results of real experiments. The constants C*, 71 and 75 were
calculated from the function G*(#) (equation (4)) by means of

the method presented in [11]. These were compared with the
true values in terms of relative errors defined as

€, =(@* —p)/p*100 percent with p = T OF 75 @)
ec =(C—C*)/C*100 percent

AUGUST 1984, Vol. 106/ 199
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Fig.4 The relative errors as afunctionof t, w

ith 74 as parameter. The

different curves represent. 1) ¢4 for 74 = 0.0005 S, 2) ¢, forry =
0.005 s, 3) ¢4 for 71 = 0058, 4) ¢, for 7y = 0.0005, 0.05 and 0.5 s,

5) ec forry = 0.0005,0.05 and0.5s.

These errors were evaluated as functions of #, and tn,.B, C,
71 and 7, were varied around the standard values B = (.1, C
= 0.05, 7, = 0.005 s and 7, = 50's, while 4 and €, Temained

constant (1 N/m? and 0.1, respectively).
100 s was used unless otherwise stated.

Results

Furthermore, ¢,, =

In Figs. 2-5 the relative errors in 7y, 7, and C are given as

functions of t; with B, C, , and T, as p
and 5 show the course of the errors as a fi
different values of B and T3, respectively,
4 similar data are presented for the diffe

arameters. Figures 2
unction of ¢, for two
» while in Figs. 3 and
rent values of C and

7. It is clear that, with increasing values of t; the relative

eIrors increase. In the presentation an
results, attention will be mainly focused
Z; — values of about 0.1 S, as values of t
obtained in experiments [6, 7, 10}. From

d discussion of the
on what happens at
his order are mostly
Figs. 2-5 ¢_; can be

seen to attain rather dramatic values, whereas ¢, and €c are
about a factor of 10 smaller than e,;. Figure 2 shows that the
weaker the nonlinearity of the elastic response (decreasing B),
the larger are the errors which are found. Variation of C has
no effect on the relative errors (Fig. 3). The influence of
variations of 7, on € and e is negligible, but In(e,;) appears
to be almost inversely proportional to 7, (Fig. 4). Variation of

7 results in only slight variations of e,

» € and ec (Fig. 5).

Apart from the risetime L, the duration ¢,, — 7, of the constant

strain phase is also likely to have some
curacy of the approximations. In Fig. 6¢

200/ Vol. 106, AUGUST 1984
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Fig. 5 The relative errors as a function of tg with 72 @s parameter. The
different curves represent: 1) ¢,q forry = 50 s, 2 e forr =5 g
3) €0 forry; = 50s,4) ¢, forry =5 5, 5) ec forry = 50s,6) ec for
72 =5 s.

presented as functions of 1y (€, = 0.15;-10 < 1, =< 1000 s).
€71_appears to be independent of i, Whereas ¢, and €c are
only independent of tn for t, > 100 s and L, > 200 s,
respectively.

Summarizing, it can be stated that, for the range of
parameter values considered here, ec does not exceed 20
percent for £, = 0.1 s and the maximum value of €,5 amounts
to 90 percent (Fig. 5). The errors involved with 7, are often
more considerable, reaching values of 1000 percent or even
more,

Discussion of the Results

The independence of €1 and ¢, is consistent with the im-
portance of 7, for the description of fast viscous phenomena
[12). €,; and €c, however, do not become constant until ¢,
exceeds a certain value. Thus an increase in the duration of an
experiment will no longer reduce the values of € and e- when
I, has passed the value at which each stabilizes. Bearing in
mind the definition (7) of ec and the values of €c in Figs. 2-5,
it is seen that C* is an underestimate of C. This can be ex-
plained from the results of the sensitivity analysis mentioned
earlier [12]. There it was demonstrated that an increase of C

consequently C, is underestimated on the basis of the
relaxation relative to oft,).
From the results the largest errors appear to be involved in

Transactions of the ASME
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Fig. 6 |lllustration of the influence of t,, on the relative errors. Curves
1,2 and 3 represent ¢,4, ¢,2 and ¢c, respectively.

the determination of 7;. They are mainly governed by the
ratio ¢,/7} and the nonlinearity of the elastic response, that is
the value of B. The value of A (equation (5)) does not in-
fluence the errors of 7;, 7, and C as it follows from equations
(4) and (6) that G*(¢) is not a function of A. When Be, << 1,
it follows from equation (5) that ¢%(¢,) = ABe, and then the
two elastic parameters have no influence on the function
G*(t), as may be seen from equations (4) and (6). In this case,
there is in fact only one elastic parameter, as ¢° (¢) = ABe =
Ke. When Be, >> 1 the function G*(¢) is affected by the value
of B and ¢,, which implies that 7}, 75 and C* are functions of
B and ¢,. On the other hand, it can be seen from Fig. 2 that
for high values of Be,, the errors are significantly smaller
than for low values of Be,. The errors involved in the
determination of 7, will be investigated further in the next
section.

Further Inquiries of ¢,

Since 7, mainly governs the fast relaxation phenomena [12],
the main cause of the errors involved in its determination will
be obvious. During the straining phase (0 < ¢ < ;) a con-
siderable amount of relaxation can come about. Con-
sequently, the use of ofe,, Z;) as an approximation of o°(e,) on
determining G*(f) will result in an underestimation of the
elastic response, so that

olts) = Bo°(e,) with 8 <1. ®)
On the assumption that ¢, is sufficiently large, hence that
o(t,,) = G(x®)* ¢°(¢,) (equation (6)), and 73 = 7,, C* = C, it
can be derived that 7;, 7} and B are related (see Appendix A)
as

Journal of Biomechanical Engineering
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Fig. 7(a) The relative error ¢, as a function of ts/§ for a weakly and
highly nonlinear material. Curves 1 and 2 represent ¢,4 for B=0.1 and
B =100, respectively.
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Fig. 7(b) The relative error ¢,4 for small values of t/7}

In(7,/7) = (8- 1)/C+Bln(ry/71): ®

e, Will be further investigated below in four cases (see Table
1), in all of which it will be assumed that #,/7, << 1. In the
subdivision into cases, a distinction is made between weakly
and highly nonlinear materials (Be, << 1 and Be, >> 1,
respectively), which have been subjected to relatively slow and
to fast strain changes (¢,/7; ~>> 1 and ¢;/7; << 1, respec-
tively). An approximation of § is derived for each case
(Appendix B) which, together with equation (9), leads to an
expression for e,; (Appendix C). These expressions are given
in Table 1. :

In case 1 (equations (10) and (11) in Table 1) it is seen that
€, approaches infinity for ¢#;/7f = 1.5. In a qualitative sense

AUGUST 1984, Vol. 106/ 201




Table1 Expressions for B and ¢, in four cases

Case 15/1 Be, B.ex
1 >>10 <] Bz[l+C(1~‘y+ln(72/t;)—n/ts}]/
[1+Cin(r,/74)] 10

en=[ri/{ts(1-y=In(t,/7)}-1] (1)
B=[1+ Clln(ry/7}) =0.5ts/71})/

2 <1 <<1

[+ Cln(ry/71)] 12)
€1 =0.5¢5/7% (13)
3 >>1 >>1 B=[1+Cn( + Bvt,)/(1+ Bor )/
4 <1l >>1
[1+Cln(ry/71)] (14)
e ={s/T1)/ (Beo —15/7%) (15)

this result is in accordance with the asymptotic behavior of €
shown in Fig. 7(a). The aforementioned discrepancy between
the value 1.5 and the value 2.0 (for B = 0.1) in Fig. 7(a) is
probably due to the approximations used for the derivation of
B and ¢,,. Equation (11) may provide a starting point for the
determination of a better approximation of 7;. Using the
error definition (7), equation (11) may be rewritten as

(/) =1=y—1/1,. (16)

where y = 0.5772. . . is Euler’s constant.

Equation (16) states that, after performing experiments
with different ¢, values, 7, may be computed from the slope of
the In(z,/7§) - (1/1,) curve.

In case 2 from equations (13) (see Table 1) and (7) it can be
found that

=7 +0.5¢. ' 17

As t;/7) << 1, it can be seen that 71 = 7, so that ¢,;, as is fo
be expected, will be relatively small (Fig. 7(b)) because in this
case hardly any relaxation will come about during the con-
stant-strain-rate phase (0 < r < t;). Study of cases 3 and 4
shows that in equation (15) (see Table 1), ¢,, will certainly be
small for low values of t;/7}, whereas e, will be infinitely
large for ¢,/7* values approaching Be, which is in good
agreement with the results shown in Fig. 7(a). Equation (15)
can be rewritten as

=71 +1,/(Be,). 18)

A better approximation of 71 follows immediately from the
extrapolation of the 7} —¢, curve to t; = 0. Moreover, for
known ¢, the constant B can be estimated from the slope S of
this curve, taking

B=1/[e,tan(S)]. 19
Concluding Remarks

Only when there is a true step change in the strain it is
possible to separate the elastic and time dependent effects in
accordance with Osiep(f) = 0%(e,) G(f). The accuracy of the
determination from a relaxation experiment of the constants
71, 72 and C, which describe the time-dependent behavior
depends greatly upon the time required to accomplish a
sudden change in strain. This is not too unexpected because,
during straining within a finite interval [0, £], a certain
amount of relaxation can come about. The stress response
during the relaxation phase (f > z,) will then also be governed
by the elastic material properties, as can be seen from the
occurrence of the elastic constant B in equation (6) (the elastic
constant A cancels out when use is made of expression (4) for
the reduced relaxation function G* in experiments). The
present study reveals a high nonlinearity, i.e., a high value of
B, to correspond to relatively small errors involved in the
quantification of the parameters. For almost linear materials
the deviations are significantly larger, In practice this is not

202/ Vol. 106, AUGUST 1984

expected to give rise to problems because the model is meant
for the description of clearly nonlinear material properties.
Under all circumstances the determination of 7, will be
subject to the largest errors. As was illustrated in the
preceding section, improved approximations of r, may be
obtained from relaxation experiments for one strain level and
different ¢, values. Apart from 7, the value of B is also found
to be obtainable from these data in the case of highly
nonlinear materials. Once B is known, the constant 4 may be
determined using relation (6) for 7— co. This will not be
discussed here as the main aim of this paper is to investigate
the errors involved in the determination of the constants Ty Ty
and C. Estimation of the elastic constants and experimental
testing of the theoretical considerations outlined in the
foregoing will be subjects for forthcoming research.

Acknowledgment

We are greatly indebted to Prof. Dr. J. D. Janssen for his
many valuable comments.

References

1 Fung, Y. C. B., “Stress-Strain History Relations of Soft Tissues in
Simple Elongation,” Biomechanics: Its Foundations and Objectives, eds., Y.
C. Fung, N. Perrone; and M., Anliker, Chap. 7, Prentice Hall, N.J., 1972, PP-
181-208.

2 Haut, R. C., and Little, R. W., “A Constitutive Equation for Collagen
Fibers,”” Journal of Biomechanics, Vol. 5, 1972, pp. 423-430.

3 Chen, Y.L., and Fung, Y. C., “Stress-Strain History Relations of Rabbit
Mesentery in Simple Elongation,” Biomechanical Symposium, ADM-2,
ASME, 1973, pp. 9-10. .

4 Jenkins, R. B., and Little, R. W., “A Constitutive Equation for Parallel-
Fibered Elastic Tissue,”” Journal of Biomechanics, Vol. 7, 1974, pp. 397-402.

5 Tanaka, T. T., and Fung, Y. C., “Elastic and Inelastic Properties of the
Canine Aorta and their Variation Along the Aortic Tree,” Journal of
Biomechanics, Vol. 7, 1974, pp. 357-370.

6 Pinto, J. G., and Patitucci, P. J., ““Visco-Elasticity of Passive Cardiac
Muscle,”” ASME JOURNAL oF BIOMECHANICAL ENGINEERING, Vol. 102; 1980,
pp. 57-61. )

7 Woo, S. L.-Y., Simon, B. R, Huej, S. C., and Akeson, W. H., “Quasi-
Linear Visco-Elastic Properties of Normal Articular Cartilage,” ASME
JOURNAL OF BIOMECHANICAL ENGINEERING, Vol, 102, 1980, pp: 85-90.

8 Woo, S. L.-Y., Gomez, M. A., and Akeson, W. H., “The Time and
History-Dependent Viscoelastic Properties of the Canine Medial Collateral
Ligament,”” ASME JOURNAL OF BIOMECHANICAL ENGINEERING, Vol. 103, 1981,
pp. 293-298.

9 Woo, S. L.-Y., “Mechanical Properties of Tendons and Ligaments; I.
Quasi-Static and Nonlipear Viscoelastic Properties,”’ Biorheology, Vol. 19,
1982, pp. 385-396. _ T

10 Rousseau, E. P, M., Sauren, A. A. H. J., Hout, M. C. van, and
Steenhoven, A. A. van, “Elastic and Viscoelastic Material Behaviour of Fresh
and Gluteraldehyde-Treated Porcine Aortic Valve Tissue,” Journal of
Biomechanics, Vol. 16, No. 5, 1983, pp. 339-348.

11 Sauren, A. A.H.J., Hout, M. C. van, Steenhoven, A. A. van, Veldpaus,
F.E., and Janssen, J. D., “The Mechanical Properties of Porcine Aortic Valve
Tissues,” Journal of Biomechanics, Vol. 16, No. § , 1983, pp. 327-338.

12 Sauren, A. A. H. J., and Rousseau, E. P, M., “A Concise Sensitivity
Analysis of the Quasi-Linear Viscoelastic Model Proposed by Fung,” ASME
JOURNAL OF BIOMECHANICAL ENGINEERING, Vol. 105, 1983, pp. 92-95.

13 Handbook of Mathematical Functions, eds., M. Abramowitz and I. A.
Stegun, Dover Publications, Inc., New York, 1973,

APPENDIX A

Derivation of an Expression Relating 7,, r¥ and 8

From the response to a steplike change in strain €, we obtain
the approximation

G*(o)=olt,,)/ olt,) (20)

On the assumption that t,, is sufficiently large, equation (6)
yields

Ot ) = G() 0% (e, ); £, 0 P3))

After substitution of equations (8) and (21)into equation (20),
we obtain

G* (1) =G()/B. 22)

Transactions of the ASME
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With G*(®) = 1/[1 + C*In(73/7})] and G(ee) = 1/[1 + C

In(7,/7;)] it follows from equation (22) after some
manipulation that
In(73/7}) =(B—1)/C* + B(C/C*)In(r,/7y). 23)
If it is assumed that 73 = 7, and C* =~ Cthe eventual result is
In(7,/19) =(B—1)/C+ Bin(r,/ 7). )
APPENDIX B
Derivation of Expressions for 3 in Four Cases
From equation (6), it follows that
o(eo,t5) =Alexp(Be,)— 1]
—[CA/(1 + Clin(ro/TILE (£,(1/ 7, + Bv)) +
—E (t,(1/7,+Bv))
+1In((r5/71)(1 + Bur;)/(1 + Bvt,)) Jexp(Be,) +
—E(t,/1)+E (t;/75) —In(72/71)]. 24
Casel: ¢;/1y>>15t/7,>>1; Be, <<1
Here it applies that
exp(Be,)—1=Be, (25)
exp(Be,)E; (t,(1/7, + Bv)) =E(t,/7;)
+Be, [E (t:/71) — (11 /1)exp(— £/ 7y)] (26)
exp(Be,)E; (t5(1/7, + Bv)) =E; (£;/72)
+Be, [E (t,/15) — (12 /t)exp(—t;/73)] 7
exp(Be, )In((7o/ 7, )(1 + Bvr,)/(1 + Buts,))
=In(r,/ 7)) + Bey (1) — 173). (28)

These equations can be obtained from a series expansion of

the different terms around Be, = 0. Substitution of equations

(25)-(28) into equation (24) gives

aley,t;) =ABe, — [CABe, /(1 + Cin(7o/ 1)) E(E/ T1)
—E\(t;/m)+

+In(ry /7)) + (11 /) =exp(=1;/71)

—(r2/t)(1 —exp(ts/12)) 1] 29

Ast /13 << litistruethat
E,(t;/72) = —y—In(t;/7,)([13]) (30
(7 /1)1 —exp(—t;/ 1)) =1 @31

where y = 0.5772. . . is Euler’s constant.
With the equations (30) and (31) equation (29) may be
rewritten as

o(e,,ts) =[ABe,/(1+ Cln(ry /7 )1 + ClIn(7,/¢)
—E(t;/71) — (11 /1)(1 —exp(— ¢/ 7)) +1 -7}l (32)
From t,/7; >> 1it follows [13] that
E\(t/1) =(1  /t)(exp(~ 1/ 1)) (33)

With the equations (32), (33), (25), (5) and (8), 8 can be
calculated:

B=[1+C{1~y+In(ry/t) = 7,/t,}/[1+Cin(ry/7)]. (10)

Journal of Biomechanical Engineering

Case2: /1y <<1;t;/75 <<1;Be, << 1

Equation (32) has been derived without assumptions as to
the value of the ratio #,/7;, so that this equation can be used
in this case, too. As #;/7; < < 1 it can be stated that

E\(ts/m)= —y—In(t;/7)) + /7
exp(—t;/1)=1—t./7, +0.5(t, /7).
Equations (32), (34), (35), (25),(5) and (8) will result in
B=[1+C{In(r,/7,) —0.5¢,/ 7, }1/[1 + Cln(7,/7))]. (12)
Case3: /7y >> 15t s/ << 1; Be,, >>1

AsB Le, >> 1, the follow ing appr oximations can be used:

(34)
(35)

E,(t,(1/7, + Bv)) =0 (36)
E,(t,(1/7, + Bv)) =0 37
exp(Be,) — 1 ~exp(Be,). (38)

S}Jbstitution of equations (36), (37) and (38) in equation (24)
gives
oleo,t5) = Aexp(Be,)[1 — { C/(1 + Cln(7,/7,))}
{In(7,/7;)(1 + Bur,)/(1 + bory)) )]
so that we eventually obtain
B=[1+CIn((1 + Bv7,)/(1+Bvr ))/[1 + Cln(r,/7y)]. (14)

Cased: t/1; <<1;¢4,/7, << 1;Be, >> 1
In this case also equation (14) is found to apply.

39

APPENDIX C

Derivation of Expressions for ¢, in Four Cases

Case 1. From substitution of equation (10) into equation
(9), after some elaboration, it follows that
In(t;/)=1—vy—1,/1 (40)
or
7 =t (1 —y—In(t;/1})). 41
Substitution of equation (41) into the error definition (7) will
result in equation (11).

Case 2. Substitution of equation (12) into equation (9) will
lead to

In(t,/75) = —0.5¢,/7,. (42)
Ast,/7; << 1, equation (42) can be rewritten as
71/t =exp(—0.5t,/7,)=1~0.5¢,/7,. 3)

From this equation it can be seen that 7, =7} as £, /7, << 1,50
that e, will be small in this case. Even then 7, can be
calculated from equation (43), resulting in

7 =71 —0.5¢,. (44)
Equation (13) can easily be obtained with the error definition
™).
Cases 3 and 4. From equations (14) and (9) it follows that

In(7,/77) =In((t; + Be, 7,)/(t; + Be, 71)) 43)
which can be rewritten, with Be, 7, > > 1,, as
Tt =7 +1,/(Be,). 46)

Combination of equatlons 46) and (7) will lead to equation

(15).
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