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Abstract. In this paper, we investigate the L2-consistency and the strong
consistency of the maximum likelihood estimators (MLE) of the mean and
variance of the sub-fractional Brownian motion with drift at discrete obser-
vation. By combining the Stein’s method with Malliavin calculus, we obtain
the central limit theorem and the Berry–Esséen bounds for these estimators.

1 Introduction and main results

We consider the sub-fractional Brownian motion with drift determined by the fol-
lowing stochastic differential equation:

dXt = μdt + σ dSH
t , t ≥ 0,X0 = 0, (1.1)

where SH is a sub-fractional Brownian motion with Hurst index H ∈ (1
2 ,1), μ

and σ are unknown parameters to be estimated from discrete observations of
the process X. We assume that the process is observed at discrete time instants
(t1, t2, . . . , tn). To simplify notation, we assume tk = kh, k = 1,2, . . . , n for some
fixed length h > 0. Thus, the observation vector is X = (Xt1,Xt2, . . . ,Xtn). We
will obtain the maximum likelihood estimators μ̂ and σ̂ 2 of μ and σ 2, respectively,
and study their asymptotic behaviors (as n → ∞ for a fixed h), in particular, the
almost sure convergence, the central limit theorem, and the Berry–Esséen bounds.
Shen and Yan (2014) discussed the problem of efficient estimation for the drift of
sub-fractional Brownian motion using technique based on the Girsanov theorem
and constructed a class of biased estimators of the James–Stein type.

The parameter estimation problem for long memory processes, in particular, the
estimation for the Hurst parameter H , were extensively studied (see Beran (1994),
Fox and Taqqu (1986), Hannan (1973), Palma (2007)). One of the most famous
approaches for estimating H is the so-called R/S (rescaled analysis) method. Due
to this fact, we will not discuss the estimation of H and will concentrate on μ

and σ 2. Although most works require the process to be stationary, we may still
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adapt their idea to analyze the above model (1.1). But we shall use the method of
Hu and Nualart (2010) which seems to be the simplest one to us. This method is
based on a result of Nualart and Ortiz-Latorre (2008) and uses the idea of Malli-
avin calculus (see also Privault and Réveillac (2008)). To obtain the Berry–Esséen
bounds, we use the Stein’s method, following the works of Nourdin and Peccati
(2009) and Hu et al. (2011).

We introduce the notation

X = μt + σSH
t , (1.2)

where, also for the rest of the paper, t = (h,2h, . . . , nh)′ and SH
t = (SH

h , . . . , SH
nh)

′.
The joint probability density function of X is

f (X) = 1

(
√

2πσ 2)n|�H |1/2
exp

(
− 1

2σ 2 (X − μt)′�−1
H (X − μt)

)
,

where

�H = (
Cov

(
SH

ih, SH
jh

))
i,j=1,2,...,n

= h2H

(
i2H + j2H − 1

2

(
(i + j)2H + |i − j |2H ))

i,j=1,2,...,n

.

The maximum likelihood estimators of μ and σ 2 from the observation X are given
by

μ̂ = t′�−1
H X

t′�−1
H t

, (1.3)

σ̂ 2 = 1

n

(X′�−1
H X)(t′�−1

H t) − (t′�−1
H X)2

t′�−1
H t

. (1.4)

Now we state our main results as follows.

Theorem 1.1. The estimator μ̂ of μ is unbiased and converges in mean square to
μ as n → ∞.

Theorem 1.2. We have

E
(
σ̂ 2) = n − 1

n
σ 2 and Var

(
σ̂ 2) a.s.−→ 0 as n → ∞. (1.5)

Theorem 1.3. The estimators μ̂ and σ̂ 2 are strongly consistent, that is,

μ̂
a.s.−→ μ as n → ∞, (1.6)

σ̂ 2 a.s.−→ σ 2 as n → ∞. (1.7)
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Theorem 1.4. We have√
t′�−1

H t(μ̂ − μ)
law−→ N

(
0, σ 2)

as n → ∞, (1.8)

1

σ 2

√
n

2

(
σ̂ 2 − σ 2) law−→ N(0,1) as n → ∞, (1.9)

where N(μ,σ 2) is normal distribution.

Theorem 1.5. Let

Gn = 1

σ 2

√
n

2

(
σ̂ 2 − σ 2)

, (1.10)

Ḡn = Gn − E(Gn). (1.11)

Then we have
(1) supz∈R |P(Ḡn ≤ z) − �(z)| ≤

√
2n−1
n

, where �(z) = ∫ z
−∞ 1√

2π
e−x2/2 dx.

(2) n√
2n−1

(P(Ḡn ≤ z) − �(z)) → −�(3)(z)
3 , for every z ∈ R, as n → ∞, where

�(3)(z) = (z2 − 1) 1√
2π

e−x2/2 is the third-order derivative of �(z).
(3) There exists a constant C ∈ (0,1), as well as an integer n0 ≥ 1, such that

C <
n√

2n − 1
sup
z∈R

∣∣P(Ḡn ≤ z) − �(z)
∣∣ ≤ 1,

for every n ≥ n0.

The rest of our paper is organized as follows. Section 2 contains the preliminar-
ies tools that we will need throughout the paper: sub-fractional Brownian motion,
Malliavin derivative and Skorohod integral. Section 3 contains proofs of our re-
sults.

2 Preliminaries

In this section, we describe some basic facts on the stochastic calculus with respect
to sub-fractional Brownian motion. Some surveys and complete literatures could
be found in Alòs et al. (2001), Nualart (2006) and Tudor (2008). As an extension of
Brownian motion, recently, Bojdecki et al. (2004) introduced and studied a rather
special class of self-similar Gaussian processes which preserves many properties
of fractional Brownian motion. This process arises from occupation time fluctu-
ations of branching particle systems with poisson initial condition. This process
is called the sub-fractional Brownian motion with index H ∈ (0,1) is mean zero
Gaussian process {SH

t , t ≥ 0} with SH
0 = 0 and the covariance

CH(s, t) = E
(
SH

s SH
t

)
(2.1)

= s2H + t2H − 1

2

[
(s + t)2H + |s − t |2H ]

, t ≥ 0, s ≥ 0.
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For H = 1
2 , SH coincides with the standard Brownian motion W . SH is neither

a semimartingale nor a Markov process unless H = 1
2 , so many of the powerful

techniques from stochastic analysis are not available when dealing with SH . The
sub-fractional Brownian motion has properties analogous to those of fractional
Brownian motion (self-similarity, long-range dependence, Hölder paths), and sat-
isfies the following estimates:

[(
2 − 22H−1) ∧ 1

]|t − s|2H ≤ E
∣∣SH

t − SH
s

∣∣2
(2.2)

≤ [(
2 − 22H−1) ∨ 1

]|t − s|2H .

Let (SH
t , t ∈ [0, T ]) be a sub-fractional Brownian motion with 1

2 < H < 1, defined
on the complete probability space (�,F,P ). By Kolmogorov’s continuity crite-
rion and (2.2), we deduce that SH has Hölder continuous paths of order H − ε,
for all ε ∈ (0,H). The main properties of a sub-fractional Brownian motion were
studied by Bojdecki et al. (2004).

Fix a time interval [0, T ]. We denote by HSH canonical Hilbert space associated
to the sub-fractional Brownian motion SH . That is, HSH is the closure of the linear
span ε generated by the indicator function with respect to the scalar product

〈I[0,s], I[0,t]〉 = CH(s, t).

We know that the covariance of sub-fractional Brownian motion can be written as

CH(s, t) = E
(
SH

s SH
t

) =
∫ t

0

∫ s

0
φH (u, v) dudv, (2.3)

where φH (u, v) = H(2H − 1)[|u − v|2H−2 − (u + v)2H−2] and 1
2 < H < 1.

We can find a linear space of functions contained in HSH in the following way.
Let |HSH | be the linear space of measurable functions on [0, T ] such that

‖ϕ‖2|H
SH | = c2(H)

∫ T

0

(∫ T

s
|ϕt |∂nH

∂t
(t, s) dt

)2

ds < ∞,

where

c2(H) = �(1 + 2H) sin(πH)

π
,

nH (t, s) = 21−H
√

πs3/2−H

�(H − 1/2)

(∫ t

s

(
x2 − s2)H−3/2

dx

)
I(0,t)(s).

It is easy to check that (see Mendy (2013))

‖ϕ‖2|H
SH | =

∫ T

0

∫ T

0
|ϕt‖ϕs |φH (t, s) dt ds.

It is not difficult to show that |HSH | is a Banach space with the norm ‖ · ‖|H
SH | and

ε is dense in |HSH |. We have L2([0, T ]) ⊂ L1/H ([0, T ]) ⊂ |HSH | ⊂ HSH .
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We will introduce some elements of the Malliavin calculus associated with SH .
We refer to Nualart (2006) for detailed account these notions. Let C∞

b (Rn,R) be
the class of infinitely differentiable functions f : Rn → R such that f and all its
partial derivatives are bounded. We denote by S the class of smooth cylindrical
random variables F = f (SH (ϕ1), . . . , S

H (ϕn)), for ϕi ∈ HSH , i = 1, . . . , n and
f ∈ C∞

b (Rn,R). The Malliavin derivative operator D of a smooth cylindrical ran-
dom variables F = f (SH (ϕ1), . . . , S

H (ϕn)) is defined as the HSH -valued random
variable

DsF =
n∑

j=1

∂f

∂xj

(
SH (ϕ1), . . . , S

H (ϕn)
)
ϕj (s), s ∈ [0, T ].

In particular, DsS
H
t = I[0,t](s). As usual, D1,2 denotes the closure of the set of

smooth random variables with respect to the norm

‖F‖2
1,2 = E

(
F 2) + E

[‖DF‖2
H

SH

]
.

The Skorohod integral δ is the adjoint of the derivative operator D. If a random
variable u ∈ L2(�,HSH ) belongs to the domain of the Skorohod integral (denoted
by dom δ), that is, if it verifies

∣∣E〈DF,u〉H
SH

∣∣ ≤ cu

√
E

(
F 2

)
for any F ∈ S,

then δ(u) is defined by the duality relationship

E
[
δ(u)F

] = E
[〈DF,u〉H

SH

]
,

for every F ∈ D1,2.
For every q ≥ 1, let Hq be the qth Wiener chaos of SH , that is, the closed

linear subspace of L2(�) generated by the random variables {Hq(SH (h)), h ∈
HSH ,‖h‖H

SH
= 1}, where Hq is the qth Hermite polynomial. The mapping

Iq(h
⊗q) = Hq(S

H (h)) provides a linear isometry between the symmetric tensor
product H�q

SH (equipped with the modified norm ‖ · ‖H�q

SH
= √

q!‖ · ‖H⊗q

SH
) and Hq .

Specifically, for all f,g ∈ H�q

SH and q ≥ 1, one has

E
[
Iq(f )Iq(g)

] = q!〈f,g〉H⊗q

SH
.

On the other hand, it is well known that any random variable Z belonging to L2(�)

admits the following chaotic expansion:

Z = E[Z] +
∞∑

q=1

Iq(fq),

where the series converges in L2(�) and the kernels fq , belonging to H�q

SH , are
uniquely determined by Z.

The Ornstein–Uhlenbeck operator L is defined by LF = −δDF . If F = Iq(fq)

is in the qth Wiener chaos of SH , namely, fq ∈H�q

SH , then LF = −qF .
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3 Proofs of theorems

This section is devoted to the proofs of Theorems 1.1–1.5. In what follows, we use
the same symbol c for all constants whose precise value is not important for our
consideration.

Proof of Theorem 1.1. By (1.2) and (1.3), we have

μ̂ = μ + σ
t′�−1

H SH
t

t′�−1
H t

. (3.1)

Thus, E(μ̂) = μ, and hence μ̂ is unbiased. On the other hand, we have

E
[
(μ̂ − μ)2] = σ 2E

[
t′�−1

H SH
t (SH

t )′�−1
H t

(t′�−1
H t)2

]

= σ 2 t′�−1
H �H�−1

H t

(t′�−1
H t)2

= σ 2

t′�−1
H t

.

Denote

M = (mij )i,j=1,2,...,n, where mij = i2H + j2H − 1

2

[
(i + j)2H + |i − j |2H ]

,

and denote by m−1
ij the entry of the inverse matrix M−1 of M . Then we may write

E
[
(μ̂ − μ)2] = h2H σ 2

t′M−1t

= h2H−2σ 2

∑n
i,j=1 ijm−1

ij

.

We shall use the following inequality (with x = n = (1,2, . . . , n)):

x′M−1x ≥ ‖x‖2
2

λmax
,

where λmax is the largest eigenvalue of the matrix M . Thus, we have

E
[
(μ̂ − μ)2] ≤ h2H−2σ 2 λmax

‖n‖2
2

.

Since ‖n‖2
2 = n(n+1)(2n+1)

6 , we know that ‖n‖2
2 ≈ 1

3n3. On the other hand, by the
Gerschgorin circle theorem (see Golub and van Loan (1996), Theorem 8.1.3), we
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have

λmax ≤ max
i=1,2,...,n

n∑
j=1

|mij | ≤ cn2H+1.

Consequently, we have

E
[
(μ̂ − μ)2] ≤ ch2H−2σ 2n2H+1n−3 ≤ cn2H−2,

which converges to zero as n → ∞. Therefore, the proof is complete. �

Remark. The essence of the proof of Theorem 1.1 is the same as that of Theo-
rem 1 in Kuang and Xie (2013), however, we express μ̂ in (3.1) in the form of
matrix, and it is simpler on aspect of calculation than (5) in Kuang and Xie (2013).

Proof of Theorem 1.2. By (1.2) and (1.4), we have

σ̂ 2 = σ 2

n

((
SH

t
)′
�−1

H SH
t − (t′�−1

H SH
t )2

t′�−1
H t

)
.

Thus,

E
(
σ̂ 2) = σ 2

n
E

((
SH

t
)′
�−1

H SH
t − (t′�−1

H SH
t )2

t′�−1
H t

)

= σ 2

n

(
n − t′�−1

H E[SH
t (SH

t )′]�−1
H t

t′�−1
H t

)

= n − 1

n
σ 2.

To compute the variance of σ̂ 2, we introduce Y = �
−1/2
H SH

t . Then

E
(
YY′) = E

(
�

−1/2
H SH

t
(
SH

t
)′
�

−1/2
H

) = I.

Therefore, Y is a standard Gaussian vector of dimension n. For any λ small enough
and ε ∈ R, let us compute the following expectation:

E
(
exp

(
λ
(
SH

t
)′
�−1

H SH
t + εt′�−1

H SH
t

))

= E
(
exp

(
λ‖Y‖2 + εt′�−1/2

H Y
))

= 1

(
√

2π)n

∫
Rn

exp
(
−‖Y‖2

2
+ λ‖Y‖2 + εt′�−1/2

H Y
)

dY.

A standard technique of completing the squares yields

E
(
exp

(
λ
(
SH

t
)′
�−1

H SH
t + εt′�−1

H SH
t

))

= (1 − 2λ)−n/2 exp
(

ε2t′�−1
H t

2(1 − 2λ)

)
=: f (λ, ε).
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We are only interested in the coefficients of λ2, λε2 and ε4 in the above expression.
We have

f (λ, ε) =
(

1 + nλ + n(n + 2)

2
λ2 + · · ·

)(
1 + ε2t′�−1

H t
2

(1 + 2λ + · · ·)

+ ε4(t′�−1
H t)2

8
(1 + 2λ + · · ·)2 + · · ·

)

= 1 + nλ + n(n + 2)

2
λ2 + · · · + 1

2
(n + 2)λε2t′�−1

H t

+ · · · + ε4(t′�−1
H t)2

8
+ · · · .

Comparing the coefficients of λ2, λε2 and ε4, we have

E
(((

SH
t

)′
�−1

H SH
t

)2) = n(n + 2),

E
((

SH
t

)′
�−1

H SH
t

(
t′�−1

H SH
t

)2) = (n + 2)
(
t′�−1

H t
)
,

E
((

t′�−1
H SH

t
)4) = 3

(
t′�−1

H t
)2

.

Finally, we obtain

Var
(
σ̂ 2) = E

[(
σ̂ 2)2] − [

E
(
σ̂ 2)]2

= σ 4

n2

{
E

(((
SH

t
)′
�−1

H SH
t

)2) − 2

t′�−1
H t

E
((

SH
t

)′
�−1

H SH
t

(
t′�−1

H SH
t

)2)

+ 1

(t′�−1
H t)2

E
((

t′�−1
H SH

t
)4) − (n − 1)2

}

= σ 4

n2

(
n(n + 2) − 2(n + 2) + 3 − (n − 1)2)

= 2(n − 1)

n2 σ 4,

which is convergent to 0. Thus, we complete the proof of (1.5). �

Proof of Theorem 1.3. Let us prove the convergence of μ̂ first. We will use the
Borel–Cantelli lemma. To this end, we will show that

∞∑
n=1

P
(
|μ̂ − μ| > 1

nγ

)
< ∞, (3.2)

for some γ > 0.
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Take 0 < γ < 1 − H . Then from the Chebyshev’s inequality and the Nelson’s
hypercontractivity inequality (see Hu (2000)), we have

P
(
|μ̂ − μ| > 1

nγ

)
≤ nqγ E

(|μ̂ − μ|q)

≤ cnqγ (
E

(|μ̂ − μ|2))q/2

≤ cσqh(H−1)qnqγ+(H−1)q .

For sufficiently large q , we have qγ + (H −1)q < −1. Thus (3.2) is proved, which
implies (1.6) by the Borel–Cantelli lemma.

Now we prove the convergence of σ̂ 2. Take 0 < γ < 1
2 , then

P
(∣∣σ̂ 2 − σ 2∣∣ >

1

nγ

)
≤ nqγ E

(∣∣σ̂ 2 − σ 2∣∣q)

≤ cnqγ (
E

(∣∣σ̂ 2 − σ 2∣∣2))q/2
.

Since

E
(∣∣σ̂ 2 − σ 2∣∣2) = 2n − 1

n2 σ 4,

we have

P
(∣∣σ̂ 2 − σ 2∣∣ >

1

nγ

)
≤ cnqγ

(
2n − 1

n2

)q/2

σ 2q

≤ cnqγ

(
2

n

)q/2

σ 2q

≤ cnq(γ−1/2).

For sufficiently large q , we have q(γ − 1
2) < −1. Thus, (1.7) is proved by Borel–

Cantelli lemma. �

In order to prove Theorem 1.4, we need the following lemma.

Lemma 3.1. Recall the definition of Gn defined by (1.10). We have

‖DGn‖2
H

SH
= 2σ̂ 2

σ 2 .

Proof. Note that

Gn = 1√
2n

((
SH

t
)′
�−1

H SH
t − (t′�−1

H SH
t )2

t′�−1
H t

)
−

√
n

2
.
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Denote by (DSH
t )′ the vector (I[0,h], I[0,2h], . . . , I[0,nh])′. Then

DGn = 2√
2n

((
DSH

t
)′
�−1

H SH
t − (t′�−1

H SH
t )(t′�−1

H DSH
t )

t′�−1
H t

)
.

As a consequence,

‖DGn‖2
H

SH
= 2

n

{∥∥(
DSH

t
)′
�−1

H SH
t

∥∥2
H

SH
+

(t′�−1
H SH

t )2‖t′�−1
H DSH

t ‖2
H

SH

(t′�−1
H t)2

− 2(t′�−1
H SH

t )〈(DSH
t )′�−1

H SH
t , t′�−1

H DSH
t 〉H

SH

t′�−1
H t

}
.

Notice that
∥∥(

DSH
t

)′
�−1

H SH
t

∥∥2
H

SH
= ∥∥(

SH
t

)′
�−1

H DSH
t

∥∥2
H

SH

= 〈(
DSH

t
)′
�−1

H SH
t ,

(
SH

t
)′
�−1

H DSH
t

〉
H

SH

= (
SH

t
)′
�−1

H SH
t ,

∥∥t′�−1
H DSH

t
∥∥2
H

SH
= t′�−1

H t,

〈(
DSH

t
)′
�−1

H SH
t , t′�−1

H DSH
t

〉
H

SH
= t′�−1

H SH
t .

Therefore, we obtain

‖DGn‖2
H

SH
= 2

n

((
SH

t
)′
�−1

H SH
t − (t′�−1

H SH
t )2

t′�−1
H t

)

= 2σ̂ 2

σ 2 . �

Proof of Theorem 1.4. First, from (3.1), it is easy to see that (1.8) holds. Second,
by Theorem 1.2, ‖DGn‖2

H
SH

converges in L2 to the constant 2, and we can use
the theorem in Nualart and Ortiz-Latorre to conclude the proof of (1.9). �

Proof of Theorem 1.5. We shall use Theorem 3.1 in Nourdin and Peccati (2009).
When the theorem is applied to our case, it suffices to verify the following:

(i) ϕ(n) :=
√

E[(1 − 〈DGn,−DL−1Gn〉H
SH

)2] converges to 0 as n → ∞.

(ii) The two-dimensional random vector (Ḡn,
1−〈DḠn,−DL−1Ḡn〉H

SH

ϕ(n)
) converges

to the centered two-dimensional standard normal (N1,N2) with covariance ρ.
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First, we have

E
[(

1 − 〈
DḠn,−DL−1Ḡn

〉
H

SH

)2] = E
[(

1 −
〈
DḠn,

1

2
DḠn

〉
H

SH

)2]

= 1

4
E

(‖DGn‖2
H

SH
− 2

)2

= 1

4

(
E‖DGn‖4

H
SH

− 4E‖DGn‖2
H

SH
+ 4

)
.

Thus from Lemma 3.1, we have

E
[(

1 − 〈
DGn,−DL−1Gn

〉
H

SH

)2] = 2n − 1

n2 ,

and hence

ϕ(n) =
√

E
[(

1 − 〈
DGn,−DL−1Gn

〉
H

SH

)2] =
√

2n − 1

n
.

Again from Lemma 3.1, the item (ii) can also be checked easily. Now the com-
putation of ρ is shown by

ρ = 1

2
lim

n→∞ E
(
Ḡn ·

2 − ‖DGn‖2
H

SH

ϕ(n)

)

= lim
n→∞

n√
2n − 1σ 2

E
(
Ḡn · (

σ 2 − σ̂ 2))

= − lim
n→∞

n
√

n√
2(2n − 1)σ 4

Var
(
σ̂ 2)

= −1.

From Theorem 3.1 in Nourdin and Peccati (2009), we obtain the desired result. �
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