
ar
X

iv
:2

30
4.

03
90

4v
1

 [
st

at
.C

O
]

 8
 A

pr
 2

02
3

Parameter-Expanded ECME Algorithms for

Logistic and Penalized Logistic Regression

Nicholas C. Henderson1 and Zhongzhe Ouyang1

1Department of Biostatistics, University of Michigan, Ann Arbor

Abstract

Parameter estimation in logistic regression is a well-studied problem with the Newton-
Raphson method being one of the most prominent optimization techniques used in prac-
tice. A number of monotone optimization methods including minorization-maximization
(MM) algorithms, expectation-maximization (EM) algorithms and related variational
Bayes approaches offer a family of useful alternatives guaranteed to increase the lo-
gistic regression likelihood at every iteration. In this article, we propose a modified
version of a logistic regression EM algorithm which can substantially improve compu-
tationally efficiency while preserving the monotonicity of EM and the simplicity of the
EM parameter updates. By introducing an additional latent parameter and selecting
this parameter to maximize the penalized observed-data log-likelihood at every itera-
tion, our iterative algorithm can be interpreted as a parameter-expanded expectation-
condition maximization either (ECME) algorithm, and we demonstrate how to use the
parameter-expanded ECME with an arbitrary choice of weights and penalty function.
In addition, we describe a generalized version of our parameter-expanded ECME algo-
rithm that can be tailored to the challenges encountered in specific high-dimensional
problems, and we study several interesting connections between this generalized algo-
rithm and other well-known methods. Performance comparisons between our method,
the EM algorithm, and several other optimization methods are presented using a series
of simulation studies based upon both real and synthetic datasets.

Keywords: convergence acceleration; EM algorithm; MM algorithm; Pólya-Gamma augmen-
tation; parameter expansion; weighted maximum likelihood

1

http://arxiv.org/abs/2304.03904v1

1 Introduction

Logistic regression is one of the most well-known statistical methods for modeling the rela-

tionship between a binomial outcome and a vector of covariates. Popular iterative method

for optimizing the logistic regression objective function include the Newton-Raphson/Fisher

scoring method and gradient descent methods. While typically converging very rapidly,

Newton-Raphson is not guaranteed to converge without additional algorithm safeguards im-

posed such as step-halving (Marschner (2011), Lange (2012)), and the behavior of Newton-

Raphson can be very unstable for many starting values. Because of this, more stable, mono-

tone algorithms which are guaranteed to improve the value of the objective function at each

iteration can provide a useful alternative. While gradient descent and proximal gradient

descent methods have seen a recent resurgence due to their scalability in problems with a

large number of parameters, the convergence of gradient descent can be extremely sluggish,

particularly if one does not use an adaptive steplength finding procedure.

In this article, we propose and explore a new monotone iterative method for param-

eter estimation in logistic regression. Our method builds upon an EM algorithm derived

from the Pólya-Gamma latent variable representation of the distribution of a binomial ran-

dom variable with a logistic link function (Polson et al. 2013, Scott & Sun 2013). Specif-

ically, we use a parameter-expanded version of the Pólya-Gamma representation to build

a parameter-expanded expectation-conditional maximization either (PX-ECME) algorithm

(Lewandowski et al. 2010) for maximizing the weighted log-likelihood of interest. Our ap-

proach combines the parameter-expanded EM framework (Liu et al. 1998) and conditional

maximization versions of the EM algorithm described in, for example, Meng & Rubin (1993)

and Liu & Rubin (1994). More specifically, we perform two conditional maximization steps

where the first step performs an “M-step” with a fixed value of a latent scale parameter and

the second step finds the value of the latent scale parameter maximizing the observed-data

log-likelihood. Combining these steps leads to a direct parameter-updating scheme that is

essentially a scalar multiple of the EM parameter update in each iteration.

While Newton-Raphson and gradient descent procedures are highly effective and will

continue to be widely used computational techniques for logistic regression, EM-type al-

gorithms for logistic regression and accelerated versions thereof have a number of distinct

2

advantages, and hence, these algorithms merit further study and development. First, a

major benefit of EM-type algorithms is that each iteration increases the likelihood which

results in a very stable, directly implementable algorithm that does not require one to im-

plement additional safeguards or step length finding procedures. Another main advantage

of EM-type procedures is that they often work well in more complex models where one has

additional latent variables within a larger, overall probability model. For example, a com-

mon use of the EM algorithm is in settings where one has missing covariate values (e.g.,

Ibrahim (1990), Ibrahim et al. (1999)). In such cases, one can often obtain a straightforward

EM update of the regression parameters of interest whereas the Newton-Raphson method

or other procedures can have very different forms with potentially unknown performance.

While EM algorithms have several notable advantages, slow convergence of EM is a

common issue that often hampers their more widespread adoption. Fortunately, there are

numerous techniques which can accelerate the convergence of EM while maintaining both

the monotonicity property of EM and the simplicity of the original EM parameter updates.

One useful acceleration technique is based on the parameter-expansion framework where one

embeds the probability model of interest within a larger probability model that is identifi-

able from the complete data (Liu et al. (1998)). The resulting EM algorithm for the larger

probability model is referred to as a parameter-expanded EM (PX-EM) algorithm, and in

certain contexts, PX-EM algorithms can be developed so that both the parameter updates

of interest have a direct, closed form and the overall convergence speed is substantially im-

proved. Another variation of the EM algorithm which can aid more efficient computation is

the expectation-conditional maximization (ECM) algorithm (Meng & Rubin (1993)). While

not necessarily improving the rate of convergence, the ECM algorithm is a technique for

simplifying the form of the parameter updates by breaking the required maximization in the

M-step into a series of conditional maximization steps. A useful modification of ECM which

can accelerate convergence is the expectation/conditional maximization either (ECME) al-

gorithm (Liu & Rubin (1994)) which replaces one of the conditional maximization steps with

a “full” maximization step where one performs maximization with respect to the observed-

data likelihood. For certain statistical models, parameter-expanded versions of ECME can

be derived and these algorithms can be termed PX-ECME algorithms (Lewandowski et al.

(2010)). PX-ECME algorithms have been used successfully in the context of parameter

3

estimation for multivariate t-distributions (Liu (1997)) and in fitting mixed effects mod-

els (Van Dyk (2000)). While not usually converging as quickly as a pure PX-EM algorithm,

PX-ECME algorithms will, as argued in Lewandowski et al. (2010), typically converge faster

than the EM algorithm, and hence, can be effective in cases when finding the full PX-EM

parameter update is cumbersome or infeasible.

The purpose of the current work is to explore the relative performance of a PX-ECME

algorithm versus the associated EM algorithm for penalized weighted logistic regression with

user-specified weights, and moreover, to show its connections with and relative performance

compared to several other commonly used optimization methods. We show that PX-ECME

is indeed consistently faster than the associated EM algorithm and that it can be somewhat

competitive with the speed of Newton-Raphson in certain scenarios. In addition, we provide

examples where Newton-Raphson often diverges whereas the PX-ECME algorithm provides

quick, yet stable convergence to the maximizer of the weighted log-likelihood.

The organization of this article is as follows. Section 2 reviews the Pólya-Gamma rep-

resentation of a binomially distributed random variable with logistic link function and de-

scribes the associated EM algorithm for weighted logistic regression. Next, Section 3 reviews

the construction of parameter-expanded EM algorithms and related PX-ECME algorithms.

Then, Section 3 outlines a parameter-expanded version of the Pólya-Gamma model and

uses this parameter-expanded model to derive a PX-ECME algorithm for weighted logistic

regression. Section 3 also includes results on the rates of convergence of the EM and PX-

ECME algorithms. Section 4 outlines a more general PX-ECME algorithm and describes

its connections to several other well-known procedures including proximal gradient descent

(Parikh & Boyd 2014) and an MM algorithm for logistic regression (Böhning & Lindsay

1988). Section 5 briefly describes a PX-ECME-type coordinate descent algorithm for logis-

tic regression. Through a series of simulation studies, Section 6 investigates the performance

of our PX-ECME algorithms and compares its performance with several other procedures,

and we then conclude with a brief discussion in Section 7.

4

2 Review of Pólya-Gamma Data Augmentation for Lo-

gistic Regression

Suppose we have n responses y = (y1, . . . , yn) where each yi is an integer satisfying 0 ≤ yi ≤

mi, and for each yi, we also have an associated covariate vector xi ∈ R
p. A logistic regression

model assumes that the yi are independent and that the distribution of each yi is given by

yi ∼ Binomial
(

mi, {1 + exp(−xT
i β)}

−1
)

, (1)

where β = (β1, . . . , βp)
T is the vector of regression coefficients. It is common in practice to

estimate β by maximizing the observed-data log-likelihood ℓo(β|y) or a weighted observed

log-likelihood function ℓo,s(β|y). Under the assumed distribution (1) and a nonnegative

vector of weights s = (s1, . . . , sn), the weighted observed log-likelihood function is given by

ℓo,s(β|y) =

n
∑

i=1

si log

(

mi

yi

)

+

n
∑

i=1

siyix
T
i β −

n
∑

i=1

simi log
(

1 + exp{xT
i β}

)

. (2)

As outlined in Scott & Sun (2013), an EM algorithm for maximizing ℓo,s(β|y) can be

constructed by exploiting the Pólya-Gamma latent variable representation of the distribution

of yi described in Polson et al. (2013). A random variableW is said to follow a Pólya-Gamma

distribution with parameters b > 0 and c (denoted by W ∼ PG(b, c)) if W has the same

distribution as an infinite convolution of independent Gamma-distributed random variables.

Specifically,

W
D
=

1

2π2

∞
∑

k=1

Gk

(k − 1/2)2 + c2/(4π2)
,

where Gk ∼ Gamma(b, 1) and
D
= denotes equality in distribution. The relevance of the

Pólya-Gamma family of distributions to logistic regression follows from the following key

identity
2mi exp(mix

T
i β/2)

{1 + exp(xT
i β)}

mi
=

∫ ∞

0

exp
{

− w(xT
i β)

2/2
}

pPG(w;mi, 0)dw,

where pPG(w; b, c) denotes the density of a PG(b, c) random variable and from the fact that

5

the density of a PG(mi,x
T
i β) random variable is given by

pPG(w;mi,x
T
i β) = 2−mi exp(−mix

T
i β/2){1+ exp(xT

i β)}
mi exp{−w(xT

i β)
2/2}pPG(w;mi, 0).

Consequently, if one assumes that the observed responses y1, . . . , yn and latent random vari-

ables W1, . . . ,Wn arise from the following model

yi|Wi ∼ Binomial
(

mi, {1 + exp(−xT
i β)}

−1
)

Wi ∼ PG(mi,x
T
i β), (3)

then each yi has the correct marginal distribution, and the (weighted) complete-data log-

likelihood ℓc,s(β|v) corresponding to the complete data v = {(y1,W1), . . . , (yn,Wn)} is

ℓc,s(β|v) =
n
∑

i=1

si log

(

mi

yi

)

+

n
∑

i=1

si log
(exp(yix

T
i β)

{1 + exp(xT
i β)}

mi

)

+

n
∑

i=1

si log
(

exp(−mix
T
i β/2)

)

+
n
∑

i=1

simi log
(

1 + exp(xT
i β)

)

−
1

2

n
∑

i=1

siWi(x
T
i β)

2 +
n
∑

i=1

si log{pPG(Wi;mi, 0)/2
mi}

=

n
∑

i=1

siuix
T
i β −

1

2

n
∑

i=1

siWi(x
T
i β)

2 +

n
∑

i=1

si

(

log

(

mi

yi

)

+ log
{

pPG(Wi;mi, 0)/2
mi
}

)

,(4)

where ui = yi − mi/2. In other words, the complete-data log-likelihood is a quadratic

form in the vector of regression coefficients β. As noted in Scott & Sun (2013), this is very

useful for constructing an EM algorithm as the M-step reduces to solving a weighted least-

squares problem. The form of the complete-data log-likelihood is also useful in the context of

Bayesian logistic regression (e.g., Polson et al. (2013), Choi et al. (2013)) as the conditional

distribution of β given the latent variables W1, . . . ,Wn is multivariate Gaussian.

To utilize the latent variable representation (3) to construct an EM algorithm for es-

timating β, one needs to find the expectation of Wi given yi and current values of the

regression coefficients. Curiously, the distribution of yi does not depend on Wi in (3), and

hence, the expectations in the “E-step” do not depend on the observed data. That is,

E{Wi|yi,β
(t)} = E{Wi|β

(t)} for i = 1, . . . , n, and as shown in Polson et al. (2013), this

6

expectation is given by

ω(xT
i β

(t), mi) = E{Wi|β
(t)} =

mi

2xT
i β

(t)
tanh

(

xT
i β

(t)/2
)

=
mi

xT
i β

(t)

(1

1 + exp(−xT
i β)

−
1

2

)

,

with the understanding that, whenever xT
i β

(t) = 0, ω(xT
i β

(t), mi) is set to limy−→0
mi

2y
tanh(y

2
) =

mi/4. It is useful to note the following connection between the ω(xT
i β

(t), mi) and the mean

function E(y) = µ(Xβ)

W(β)Xβ = µ(Xβ)− 1
2
m, where W(β) = diag

{

ω(xT
1β, m1), . . . , ω(x

T
nβ, mn)

}

. (5)

In (5), µ(Xβ) = E(y) is the n×1 vector whose ith component [µ(Xβ)]i is given by [µ(Xβ)]i =

mi/{1 + exp(xT
i β)}, and m is the n× 1 vector m = (m1, . . . , mn)

T .

Parameter updates for the EM algorithm based on the latent variable model (3) are found

by maximizing the “Q-function” Q(β|β(t)) which is defined as the expectation of ℓc,s(β|x)

given y and the current vector of parameter estimates β(t). From (4), the Q-function is

found by replacing Wi with ω(xT
i β

(t), mi) which allows the Q-function to be written as

Q(β|β(t)) = E{ℓc,s(β|x)|y,β
(t)} = −

1

2
βTXTSW(β(t))Xβ + βTXTSu+ C,

where u = (u1, . . . , un)
T , W(β(t)) is as defined in (5), S = diag{s1, . . . , sn}, and C is a

constant not depending on β. The EM update β(t+1) of β(t) is found by maximizing Q(β|β(t))

with respect to β, and hence we can represent β(t+1) as the solution of the following weighted

least-squares problem

β(t+1) = argmin
β∈Rp

1

2

(

W−1(β(t))u−Xβ
)T

SW(β(t))
(

W−1(β(t))u−Xβ
)

= (XTSW(β(t))X)−1XTSu. (6)

It is interesting to note that the EM algorithm parameter update (6) is identical to the

parameter update defined in Jaakkola & Jordan (2000) which was based on variational Bayes

arguments.

Based on (6), this EM algorithm for logistic regression can be viewed as an “iteratively

reweighted least squares” (IRLS) algorithm with weights s1ω(x
T
1β

(t), m1), . . . , snω(x
T
nβ

(t), mn)

7

and “response vector” W−1(β(t))u. In this sense, this EM algorithm closely resembles the

common Newton-Raphson/Fisher scoring algorithm (Green (1984)) used for logistic regres-

sion where one performs iteratively reweighted least squares using the weights siω
NR(xT

i β
(t), mi),

where ωNR(xT
i β

(t), mi) = mi exp(−xT
i β

(t))/[{1 + exp(−xT
i β

(t))}2]. Note that, in the case of

logistic regression, Newton-Raphson and Fisher scoring are equivalent methods, and we will

refer to this procedure as Newton-Raphson in the remainder of the article.

To better see the resemblance between the EM and Newton-Raphson updates, it inter-

esting to note that we can also express the EM update (6) of β(t) as

β(t+1) = β(t) + (XTSW(β(t))X)−1XTS{y − µ(Xβ(t))}.

The above expression for the EM update is a consequence of the equality W(β)Xβ =

µ(Xβ)− 1
2
m stated in (5). The main difference between the EM weight function ω(xTβ, m)

and the Newton-Raphson weight function ωNR(xTβ, m) is that, for a fixed value of m,

ω(xTβ, m) has much heavier tails than ωNR(xTβ, m). This is illustrated in Figure 1 which

plots ω(xTβ, m) and ωNR(xTβ, m) when it is assumed that m = 1.

A main advantage of the EM algorithm over the Newton-Raphson algorithm is that

the EM algorithm is monotone; namely, iterates from the EM algorithm are guaranteed to

increase the weighted log-likelihood at every iteration and the iterates are guaranteed to

converge to a fixed-point of the algorithm. It is interesting to note that the first iterations

of the EM and Newton-Raphson are identical whenever all components of the initial iterate

β(0) are set to zero. This is a consequence of the fact that ωEM(0, mi) = ωNR(0, mi) = mi/4.

While the Newton-Raphson algorithm is not monotone and does not possess any global

convergence guarantees, the fact that the first step of Newton-Raphson increases the value

of the log-likelihood when setting β(0) = 0 is one reason for the relatively robust performance

of Newton-Raphson for logistic regression. The monotonicity of the Newton-Raphson first

step when setting β(0) = 0 was also noted in Böhning & Lindsay (1988).

8

−20 −10 0 10 20

0.00

0.05

0.10

0.15

0.20

0.25

xTβ

ω(
xT β,

 1
)

EM weight function
Newton−Raphson weight function

Figure 1: (Color Figure) Weight functions ω(xTβ, m) and ωNR(xTβ, m) used in the EM
and Newton-Raphson algorithms respectively for m = 1. This figure shows the considerably
heavier tails of the EM algorithm weight function.

3 A Parameter-Expanded ECME Algorithm for Logis-

tic Regression

3.1 Review of Parameter-Expanded EM and ECME Algorithms

In a variety of estimation problems, the convergence speed of the EM algorithm can be

improved by viewing the complete-data model as embedded within a larger model that has

additional parameters and then performing parameter updates with respect to the larger

model. An EM algorithm constructed from a larger, parameter-expanded model is typically

referred to as a parameter-expanded EM algorithm (PX-EM) algorithm (Liu et al. (1998)).

To describe the steps involved in the PX-EM algorithm, we consider a general setup

where one is interested in estimating a parameter vector β ∈ B and one has defined a

complete-data vector v with density function gc(v|β). The complete-data vector v ∈ V

and observed-data vector y ∈ Y are connected through y = h(v) where h : V −→ Y is

the data-reducing mapping to be used for developing the EM algorithm. As described in

9

Liu et al. (1998), to generate a PX-EM algorithm one must first consider an expanded prob-

ability model for the complete-data vector v, and we let gPX(v|θ, α) denote the probability

density function for this expanded probability model where (θ, α) are the parameters of the

expanded model and Θ denotes the parameter space for (θ, α). As outlined in Liu et al.

(1998) and Lewandowski et al. (2010), the expanded probability model should satisfy the

following conditions in order to generate a well-defined PX-EM algorithm

1. The observed-data model is preserved in the sense that there is a many-to-one reduction

function R : Θ −→ B such that

gO
{

y|β = R(θ, α)
}

=

∫

V(y)

gPX(v|θ, α)dv, for all (θ, α) ∈ Θ,

where V(y) = {v ∈ V : h(v) = y}.

2. There is a “null value” α0 of α such that the complete-data model is preserved at the

null value in the sense that

gPX(v|β, α0) = gc(v|β), for all β ∈ B.

Similar to the EM algorithm, the PX-EM algorithm consists of two steps: a “PX–E” step

followed by a “PX–M” step. The PX–E step is similar to the usual “E–step” of an EM

algorithm in that a “Q-function” is formed by taking the expectation of the (parameter-

expanded) complete-data log likelihood conditional on the observed data and parameter

values (θ, α) = (β(t), α0). The “PX–M” step then proceeds by finding the expanded pa-

rameter values (θ(t+1), α(t+1)) which maximize this Q-function and computing the parameter

update β(t+1) by applying the reduction function to (θ(t+1), α(t+1)). The two steps of the

PX-EM algorithm can be summarized as:

1. PX–E step: Compute the parameter-expanded Q-function

QPX(θ, α|β
(t), α0) = E

{

log gPX(v|θ, α)
∣

∣

∣
y, θ = β(t), α = α0

}

. (7)

10

2. PX–M step: Find

(θ(t+1), α(t+1)) = argmax
θ,α

QPX(θ, α|β
(t), α0),

and update β(t) using

β(t+1) = R(θ(t+1), α(t+1)).

A chief advantage of the PX-EM algorithm is that it is guaranteed to converge at least as

fast as the corresponding EM algorithm. When the parameter-expanded model is constructed

so that all parameter updates have a direct, closed-form, the PX-EM algorithm can have

substantially faster convergence speed than the EM algorithm while maintaining the stability

and computational simplicity of the original EM algorithm.

The Expectation-Conditional Maximization (ECM) algorithm (Meng & Rubin (1993))

and the Expectation-Conditional Maximization Either (ECME) algorithms (Liu & Rubin

(1994)) are variations of the EM algorithm where the M-step is replaced by a sequence of

conditional maximization steps. In the ECM algorithm, one breaks up the maximization of

the Q-function into several conditional maximization steps where, in each conditional maxi-

mization step, one only maximizes the Q-function with respect to a subset of the parameters

while keeping the remaining parameter values fixed. In the ECME algorithm, one also per-

forms a series of conditional maximization steps. However, in the ECME algorithm, some of

the conditional maximization are performed with respect to the observed-data log-likelihood

function while the remaining conditional maximization steps are performed with respect to

the usual Q-function.

As in the original ECME algorithm, in a parameter-expanded version of ECME (PX-

ECME), one performs a sequence of conditional maximization steps for the expanded param-

eters (θ, α) with some of the conditional maximization steps being performed with respect

to the parameter-expanded Q-function while the other conditional maximization steps are

performed with respect to the observed-data log-likelihood function. Specifically, when us-

ing the observed-data log-likelihood function for conditional maximization one will maximize

ℓo,s{R(θ, α)|y} with respect to the subset of parameters being maximized in that conditional

maximization step. After all of the expanded parameters have been updated through the

11

sequence of conditional maximization steps, the update for the parameter of interest β is

found by applying the reduction function R(·) to the updated expanded parameters.

One example of a PX-ECME algorithm is the procedure described in Liu (1997) for esti-

mating the parameters of a multivariate-t distribution. Here, the EM algorithm exploits the

representation of the multivariate-t distribution as a scale mixture of multivariate normal dis-

tributions, and the parameter-expanded model utilized by Liu (1997) includes an expanded

scale parameter that plays a role in both the covariance matrix of the normal distribution

and the scale of the latent Gamma distribution. This expanded parameter is updated in each

iteration through a conditional maximization step maximizing the observed-data likelihood.

One point worth noting is that a PX-ECME algorithm can often be constructed even if the

expanded parameter vector (θ, α) is not identifiable from the complete data. A PX-ECME

algorithm can work if the subsets of parameters used in each conditional maximization step

are conditionally identifiable from the observed data. Specifically, the parameters in each

of the subsets should be identifiable from the observed data assuming that all the other

parameters are fixed. For example, if we construct our PX-ECME algorithm so that θ is

updated first followed by an update of α, then θ should be identifiable for a fixed value of

α, and α should be identifiable from the observed data for a fixed value of θ.

3.2 A Parameter-Expanded ECME Algorithm for Logistic and Pe-

nalized Logistic Regression

We consider the following parameter-expanded version of model (3) for the complete-data

vector v = {(y1,W1), . . . , (yn,Wn)}

yi|Wi ∼ Binomial
(

mi, {1 + exp(−αxT
i θ)}

−1
)

Wi ∼ PG(mi, αx
T
i θ), (8)

where the parameters in this model are θ ∈ R
p and α ∈ R. Under this expanded model, the

observed-data model is preserved when using the reduction function β = R(θ, α) = αθ, and

the original complete-data model (3) is preserved whenever α = α0 = 1.

We now turn to describing how to use the parameter-expanded model (8) to construct

a PX-ECME algorithm for maximizing a penalized weighted log-likelihood function with

12

penalty function Pη(β). A PX-ECME algorithm for maximizing a penalized log-likelihood

is very similar to that of maximizing a log-likelihood function the only difference being that

a penalty function will be subtracted from either the parameter-expanded Q-function or

the observed-data log-likelihood function. Throughout the remainder of this paper, we will

assume the penalty function has the form Pη(β) =
∑p

j=1 Pη,j(βj), where η ∈ R
q is a vector

of tuning parameters. The observed-data weighted penalized log-likelihood function pℓηo,s

that we seek to maximize is then

pℓηo,s(β|y) =
n
∑

i=1

si log

(

mi

yi

)

+
n
∑

i=1

siyix
T
i β −

n
∑

i=1

simi log
(

1 + exp{xT
i β}

)

− Pη(β),

and the complete-data penalized weighted log-likelihood corresponding to model (8) is

pℓηc,PX(θ, α|v) = α

n
∑

i=1

siuix
T
i θ −

α2

2

n
∑

i=1

siWi(x
T
i θ)

2 − Pη(αθ) + C,

where C is a constant that does not depend on (θ, α). The penalized, parameter-expanded Q-

function Qη
PX(θ, α|β

(t), α0) is obtained by just subtracting Pη(αθ) from the usual parameter-

expanded Q-function (7). For model (8), this is given by

Qη
PX(θ, α|β

(t), α0) = αθTXTSu−
α2

2
θTXTSW(β(t))Xθ − Pη(αθ) + C, (9)

where W(β(t)) is the n× n weight matrix defined in (5).

One feature of the parameter-expanded model (8) is that the parameter vector (θ, α) is

not identifiable from the complete-data vector v. This may be seen by noting that, for a

positive scalar c, the parameters (α, θ) and (α/c, cθ) both lead to the same complete-data

penalized log-likelihood. Nevertheless, (θ, α) are conditionally identifiable meaning that, for

a fixed θ, α is identifiable, and for a fixed α, θ is identifiable. Hence, we can first update

θ(t) by fixing α = α(t) and maximizing Qη
PX(θ, α|β

(t), α0) with respect to θ

θ(t+1) = argmax
θ∈Rp

Qη
PX(θ, α

(t)|β(t), α0)

= argmin
θ∈Rp

[

− α(t)θTXTSu+
(α(t))2

2
θTXTSW(β(t))Xθ + Pη(α

(t)θ)− C

]

. (10)

13

We then update α(t) by maximizing the observed-data penalized log-likelihood

α(t+1) = argmax
α∈R

pℓηo (αθ
(t+1)|y).

The PX-ECME parameter update of β(t) is given by β(t+1) = R(θ(t+1), α(t+1)) = α(t+1)θ(t+1).

It is worth noting that one can express θ(t+1) in terms of the EM parameter update as

θ(t+1) = β(t+1),EM/α(t) where the EM update β(t+1),EM is obtained from β(t) by maximizing

Qη
PX(θ, 1|β

(t), 1) with respect to θ. Hence, we can express the PX-ECME update as

β(t+1) =
1

α(t)
β(t+1),EM

[

argmax
α∈R

pℓηo,s(αβ
(t+1),EM/α(t)|y)

]

= ρ(t+1)β(t+1),EM ,

where ρ(t+1) = argmaxρ∈R pℓ
η
o,s(ρβ

(t+1),EM |y). In other words, the PX-ECME update is

found by simply first computing the EM update β(t+1),EM of the regression coefficients and

then multiplying β(t+1),EM by the scaling factor ρ(t+1), where ρ(t+1) is the scalar maximizing

the weighted observed-data penalized log-likelihood function among regression coefficients

of the form ρβ(t+1),EM . The complete PX-ECME procedure is summarized in Algorithm 1.

Finding ρ(t+1) only involves solving a one-dimensional root-finding problem, namely,

∂pℓηo,s(ρβ
(t+1),EM |y)/∂ρ = 0, of which there are a wide range of available numerical methods,

and in such cases, robust root-finding methods such as Brent’s method (Brent (2013)) may

be directly used to find ρ(t+1).

14

Algorithm 1 (PX-ECME for Penalized Logistic Regression). In the description of the
algorithm, S = diag{s1, . . . , sn} and u = (u1, . . . , un)

T , where ui = yi −mi/2.

1: Given β(0) ∈ R
p.

2: for t=0,1,2,... until convergence do

3: Compute the n× n diagonal weight matrix W(β(t)) whose ith diagonal element is

ω(xT
i β, mi) =

mi

2xT
i β

(t)
tanh

(

xT
i β

(t)/2
)

.

4: Compute β(t+1),EM :

β(t+1),EM = argmin
β∈Rp

[1

2
βTXTSW(β(t))Xβ − βTXTSu+ Pη(β)

]

.

5: Compute

ρ(t+1) = argmax
ρ∈R

[

pℓηo,s(ρβ
(t+1),EM |y)

]

.

6: Set β(t+1) = ρ(t+1)β(t+1),EM .

An attractive feature of the PX-ECME algorithm (Algorithm 1) is that it is, like the

EM algorithm, a monotone algorithm. The monotonicity property helps to ensure that

the procedure stable and robust in practice. The monotonicity of PX-ECME directly follows

from the fact that the EM algorithm is monotone with respect to the penalized log-likelihood

(i.e., pℓηo,s(β
(t+1),EM |y) ≥ pℓηo,s(β

(t)|y)) and that pℓηo,s(ρ
(t+1)β(t+1),EM |y) ≥ pℓηo,s(β

(t+1),EM |y).

3.3 Monotone acceleration of EM via order-1 Anderson accelera-

tion

The PX-ECME algorithm accelerates convergence by multiplying the EM parameter up-

date by a single scalar, and there are likely other straightforward modifications of the EM

algorithm that can produce substantial speed-ups in convergence without sacrificing the

monotonicity property.

An attractive class of methods with straightforward parameter updates are those that

simply take a linear combination of the previous two EM parameter updates with the weights

in the linear combination determined adaptively. One can ensure that this scheme is mono-

tone by comparing the value of the objective function for a parameter update versus that of

the current parameter value. One method for finding the weights in this linear combination

15

is the order-1 Anderson acceleration (Walker & Ni (2011)). Applying the order-1 Ander-

son acceleration to the EM algorithm for penalized logistic regression leads to the following

parameter updating scheme

β(t+1) =

(1− γ(t))β(t+1),EM + γ(t)β(t),EM if pℓηo,s(β
(t+1)|y) ≥ pℓηo,s(β

(t+1),EM |y)

β(t+1),EM otherwise,

where γ(t) is the scalar γ(t) = vT
t rt/v

T
t vt and where rt = β(t+1),EM−β(t) and vt = β(t+1),EM−

β(t) + β(t−1) − β(t),EM . Because the underlying EM algorithm is monotone, only accepting

the linear combination β(t+1) if pℓηo,s(β
(t+1)|y) ≥ pℓηo,s(β

(t+1),EM |y) ensures that the above

iterative scheme is monotone.

3.4 Rate of Convergence of EM and PX-ECME for Logistic Re-

gression

The PX-ECME updating scheme outlined in Algorithm 1 implicitly defines a mapping G :

R
p −→ R

p which performs the PX-ECME update of β(t), i.e., β(t+1) = GPX(β
(t)). Likewise,

the EM algorithm also defines a mapping β(t+1),EM = GEM(β(t),EM) which, from (6), has

the form GEM(β) = (XTSW(β)X)−1XTSu. Because the PX-ECME parameter update is a

scalar multiple of the EM update, we can express the mapping GPX in terms of GEM as

GPX(β) = h{GEM(β)}GEM(β), (11)

where h : Rp −→ R is the function defined as h(β) = argmaxρ[pℓ
η
o,s(ρβ|y)].

The rate of convergence of a fixed-point iteration of the form β(t+1) = G(β(t)) is typi-

cally defined as the maximum eigenvalue of the Jacobian matrix of G when the Jacobian

is evaluated at the convergence point β∗ of the algorithm (see, e.g., McLachlan & Krishnan

(2007)). As shown in Durante & Rigon (2018), the Jacobian matrix JEM(β) associated with

the mapping GEM(β) = (XTSW(β)X)−1XTSu is given by

JEM(β) = Ip − (XTSW(β)X)−1XTSR(β)X, (12)

where R(β) is the n×n diagonal matrix whose ith diagonal element is miπ(x
T
i β)[1−π(xT

i β)]

16

and π(u) = 1/{1 + exp(−u)}. As we show in Theorem 1 below, the maximum eigenvalue of

the Jacobian matrix ofGPX at β∗ can be no larger than the maximum eigenvalue of JEM(β∗),

and hence the rate of convergence of PX-ECME is no slower than the EM algorithm.

Theorem 1 When assuming the penalty function equals zero for all β (i.e., Pη(β) ≡ 0)

and β∗ 6= 0, the Jacobian JPX(β) = ∂GPX(β)/∂β of the PX-ECME mapping at β = β∗ is

given by

JPX(β
∗) = Ip − E−1(β∗)V(β∗)− [c(β∗)]−1β∗(β∗)TV(β∗)

{

V−1(β∗)− E−1(β∗)
}

V(β∗)T

= JEM(β∗)− [c(β∗)]−1β∗(β∗)TV(β∗)
{

V−1(β∗)− E−1(β∗)
}

V(β∗)T ,

where JEM(β∗) is the Jacobian matrix of the EM mapping at β = β∗, c(β∗) = (β∗)TXTSR(β∗)Xβ∗,

E(β∗) = XTSW(β∗)X, and V(β∗) = XTSR(β∗)X. In addition, we have rPX ≤ rEM , where

rPX and rEM are the maximal eigenvalues of JPX(β
∗) and JEM(β∗) respectively.

4 A Generalized PX-ECME Algorithm for Logistic Re-

gression

4.1 Description of the Aproach

For many penalty functions, the maximization in (10) does not yield an easily-computable

solution and may require the use of a time-consuming iterative procedure to compute θ(t+1).

To better handle such cases, we consider a generalized PX-ECME algorithm where θ(t+1)

maximizes a more manageable, surrogate parameter-expanded Q-function. The more man-

ageable surrogate Q-functions Q̃η
PX(θ, α|β

(t), α0) are assumed to have the form

Q̃η
PX(θ, α|β

(t), α0) = Qη
PX(θ, α|β

(t), α0)−
1

2
(αθ − β(t))TH(t)(αθ − β(t))

= αθT [XTSu+H(t)β(t)]−
α2

2
θT
[

XTSW(β(t))X+H(t)
]

θ − Pη(αθ) + C, (13)

where H(t) is a positive semi-definite p × p matrix. As in the PX-ECME algorithm for

penalized logistic regression, to update β(t) one first finds θ(t+1) and α(t+1) by performing

two conditional maximization steps with respect to Q̃η
PX and then sets β(t+1) = α(t+1)θ(t+1).

17

We will refer to an algorithm which updates β(t) in this manner as a generalized parameter-

expanded ECME (GPX-ECME) algorithm for penalized weighted logistic regression.

The steps involved in a GPX-ECME are outlined in Algorithm 2. Notice in this Al-

gorithm that, as in the case of a PX-ECME algorithm, the process of first computing

θ(t+1) and α(t+1) and then setting β(t+1) = α(t+1)θ(t+1) may be equivalently expressed as

β(t+1) = ρ(t+1)β(t+1),GEM , where β(t+1),GEM maximizes Q̃η
PX(β, 1|β

(t), α0) and ρ(t+1) maxi-

mizes pℓηo,s(ρβ
(t+1),GEM |y) with respect to ρ ∈ R. As stated in the following proposition,

as long as H(t) is a positive semi-definite matrix for each t, each iterate generated from a

GPX-ECME algorithm will increase the value of the penalized log-likelihood.

Proposition 1 IfH(t) is a positive semi-definite matrix for each t, then iterates β(0),β(1),β(2), ...

produced by a GPX-ECME algorithm (Algorithm 2) increase the penalized log-likelihood func-

tion at each iteration. That is, for any t ≥ 0,

pℓηo,s(β
(t+1)|y) ≥ pℓηo,s(β

(t)|y).

The main purpose for considering surrogate Q-functions of the form (13) in a GPX-

ECME algorithm is to allow for more easily-computable parameter updates. A choice of

H(t) which typically ensures an easy-to-compute maximizer of Q̃η
PX(β, 1|β

(t), α0) is H(t) =

D(t)−XTSW(β(t))X, where D(t) is a p×p diagonal matrix with nonnegative diagonal entries

d
(t)
jj . When using a matrix H(t) of this form, the surrogate Q-function (13) with arguments

(β, 1) reduces to

Q̃η
PX(β, 1|β

(t), α0) = βT [XTSu+ at]−
1

2
βTD(t)β − Pη(β) + C, (14)

where at = [D(t) −XTSW(β(t))X]β(t). Because D(t) is diagonal, maximizing (14) is often

straightforward as one can maximize each component βj of Q̃
η
PX(β, 1|β

(t), α0) separately by

maximizing a quadratic function plus the jth component of the penalty function Pη,j(βj).

18

Algorithm 2 (GPX-ECME for Penalized Logistic Regression). In the description of the
algorithm, u = (u1, . . . , un)

T , where ui = yi −mi/2.

1: Given β(0) ∈ R
p.

2: for t=0,1,2,... until convergence do

3: Compute the n× n diagonal weight matrix W(β(t)) whose ith diagonal element is

ω(xT
i β, mi) =

mi

2xT
i β

(t)
tanh

(

xT
i β

(t)/2
)

.

4: Compute β(t+1),GEM :

β(t+1),GEM = argmin
β∈Rp

[1

2
βTXTSW(β(t))Xβ−βTXTSu+

1

2
(β−β(t))TH(t)(β−β(t))+Pη(β)

]

.

5: Compute

ρ(t+1) = argmax
ρ∈R

[

pℓηo,s(ρβ
(t+1),GEM |y)

]

.

6: Set β(t+1) = ρ(t+1)β(t+1),GEM .

If choosing H(t) = D(t) − XTW(β(t))X and setting all the diagonal elements of D(t)

equal so that D(t) = κ−1
t Ip for some κt > 0, H(t) will be positive semi-definite provided

that κ−1
t ≥ λmax

(

XTSW(β(t))X
)

, where λmax

(

XTSW(β(t))X
)

is the maximum eigenvalue

of XTSW(β(t))X. When using D(t) = κ−1
t Ip, it follows from (7) that the term β(t+1),GEM

computed in Step 4 of Algorithm 2 can be be expressed as

β(t+1),GEM = argmin
β∈Rp

[1

2
βTβ − κtβ

T [XTSu+ at] + κtPη(β)
]

. (15)

Each component β
(t+1),GEM
j of β(t+1),GEM can be updated independently of the other com-

ponents via

β
(t+1),GEM
j = argmin

βj∈R

[

β2
j

κt
− 2
(

n
∑

i=1

xijsiui + aj,t

)

βj + 2Pη,j(βj)

]

, (16)

where aj,t denotes the jth component of at.

The updates (16) have a closed form for a number of common penalty functions. For

example, in the case of the elastic net penalty function where Pη,j(βj) = λ1|βj| +
λ2

2
β2
j , the

19

update for the jth component of β(t) is given by

β
(t+1),GEM
j =

1
1/κt+λ2

(

∑n
i=1 xijsiui + aj,t − λ1

)

if
∑n

i=1 xijsiui + aj,t > λ1

1
1/κt+λ2

(

∑n
i=1 xijsiui + aj,t + λ1

)

if
∑n

i=1 xijsiui + aj,t < −λ1

0 if
∣

∣

∣

∑n
i=1 xijsiui + aj,t

∣

∣

∣
≤ λ1

While other popular choices of the penalty function such as the smoothly clipped absolute

deviation (SCAD) (Fan & Li (2001)) penalty may not necessarily yield direct, closed-form

solutions, the parameter updates may be directly found by performing a univariate mini-

mization separately for each component of the parameter vector.

4.2 Connections to Proximal Gradient Descent

Proximal gradient methods (Parikh & Boyd (2014)) are commonly used to optimize a func-

tion which can be expressed as the sum of a continuously differentiable function and a

non-smooth function. In the context of penalized logistic regression where the aim is to

minimize the composite function pℓηo,s(β|y) = −ℓo,s(β|y) + Pη(β), the proximal gradient

descent update with steplength κt of a current parameter estimate β(t) is given by

β(t+1) = proxκtPη

(

β(t) + κt∇ℓo,s(β
(t)|y)

)

, (17)

where the proximal operator proxκtPη
: Rp −→ R

p of the function κtPη is defined as

proxκtPη
(γ) = argmin

β

[1

2
βTβ − βTγ + κtPη(β)

]

.

To elaborate on the connection between the proximal gradient update and the GPX-ECME

procedure, we first note that the gradient of the observed-data log-likelihood function (2)

is ∇ℓo,s(β|y) = XTS{y − µ(Xβ)}, where µ(Xβ) is an n × 1 vector whose ith component

[µ(Xβ)]i is given by [µ(Xβ)]i = miexpit(x
T
i β). Using the connection (5) between the mean

function µ(Xβ) and the weight matrix W(β), we can write the gradient of ℓo,s(β|y) as

∇ℓo,s(β|y) = XTS{u−W(β)Xβ}.

20

Thus, the proximal gradient update (17) for penalized logistic can be expressed as

β(t+1),PGD = proxκtPη

(

β(t) + κtX
TS{u−W(β(t))Xβ(t)}

)

= argmin
β∈Rp

[1

2
βTβ − βT

(

β(t) + κtX
TS{u−W(β(t))Xβ(t)}

)

+ κtPη(β)
]

.(18)

It is interesting to note that the proximal gradient descent update (18) is exactly the

same as the update β(t+1),GEM in (15), which is part of a GPX-ECME algorithm with

H(t) = κ−1
t Ip −XTSW(β(t))X. In other words, the GPX-ECME algorithm with this choice

of H(t) may be interpreted as a proximal gradient descent algorithm where one first takes

a proximal gradient descent step with steplength κt and then multiplies this update by the

optimal scalar ρ(t+1) which is optimal in the sense that it leads to the largest increase in the

observed-data penalized log-likelihood.

4.3 Connection to an MM algorithm for Logistic Regression

If one chooses H(t) to be H(t) = XTS[κtIp − W(β(t))]X for a positive scalar κt > 0 in a

GPX-ECME algorithm, the surrogate Q-function becomes

Q̃η
PX(β, 1|β

(t), α0) = βTXTSb(t)(κt)−
κt

2
βTXTSXβ − Pη(β) + C, (19)

where b(t)(κt) = u + [κtIp − W(β(t))]Xβ(t) and C is a constant independent of β. In this

context, the matrix H(t) is guaranteed to be positive semi-definite if κt greater than or equal

to the largest diagonal element of W(β(t)). For example, setting κt = κ∗
t where

κ∗
t = max

{

ω(xT
1β

(t), m1), . . . , ω(x
T
nβ

(t), mn)
}

guarantees that H(t) is positive semi-definite. When there is no penalty (i.e., Pη(β) = 0),

maximizing Q̃η
PX(β, 1|β

(t), α0) with respect to β leads to the following formula for β(t+1),GEM

β(t+1),GEM = argmax
β∈Rp

Q̃η
PX(β, 1|β

(t), α0) =
1

κt
(XTSX)−1XTSb(t)(κt). (20)

The update β(t+1) is then found by finding ρ(t+1) = argmaxρ∈R pℓo,s(ρβ
(t+1),GEM |y) and

setting β(t+1) = ρ(t+1)β(t+1),GEM .

21

The algorithm defined by the update (20) is closely related to the MM algorithm for logis-

tic regression described in Böhning & Lindsay (1988) and also detailed in Hunter & Lange

(2004). To see why, if we use the fact that (5) implies

b(t)(κt) = u+
[

κtI−W(β(t))
]

Xβ(t) = κtXβ(t) + y − µ(XTβ(t)),

then (20) can be rewritten as

β(t+1),GEM = β(t) +
1

κt
(XTSX)−1XTS

{

y − µ(XTβ(t))
}

. (21)

If we were to set κt = 1/4 for each t in (21), then in the case ofm1 = m2 = . . . = mn = 1, then

(21) would correspond exactly to the MM algorithm for logistic regression update described

by Böhning & Lindsay (1988). Note that, in the case when all mi equal 1, setting κt = 1/4

guarantees that H(t) is positive semi-definite because ω(xTβ, 1) ≤ 1/4 for any value of xTβ.

One advantage of using κt = 1/4 rather than κt = κ∗
t is that one does not need to compute

the maximum of the weights in each iteration; however, this could result in taking slightly

smaller “steps” when compared with using κ∗
t .

In the case of an L2 penalty where Pη(β) =
λ
2

∑p
j=1 β

2
j , one would, in (21), simply replace

(XTSX)−1 with the matrix (XTSX + λ
κt
Ip)

−1. This approach for the L2-penalized logistic

regression problem, which we label the “PX-MM” algorithm is summarized in Algorithm 3.

22

Algorithm 3 (PX-MM algorithm for Logistic Regression with L2 penalty Pη(β) =
λ
2
βTβ).

In the description of the algorithm, u = (u1, . . . , un)
T , where ui = yi −mi/2.

1: Given β(0) ∈ R
p.

2: for t=0,1,2,... until convergence do

3: Compute the n× n diagonal weight matrix W(β(t)) whose ith diagonal element is

ω(xT
i β, mi) =

mi

2xT
i β

(t)
tanh

(

xT
i β

(t)/2
)

.

4: Set κ∗
t = max

{

ω(xT
1β

(t), m1), . . . , ω(x
T
nβ

(t), mn)
}

.

5: Compute β(t+1),GEM :

β(t+1),GEM =
(

XTSX+ λ
κ∗

t
Ip
)−1

XTSXβ(t) +
1

κ∗
t

(

XTSX+ λ
κ∗

t
Ip
)−1

XTS
{

y− µ(XTβ(t))
}

.

6: Compute

ρ(t+1) = argmax
ρ∈R

[

pℓηo,s(ρβ
(t+1),GEM |y)

]

.

7: Set β(t+1) = ρ(t+1)β(t+1),GEM .

5 PX-ECME and Coordinate Descent

Coordinate descent is often used in the context of L1-penalized regression (Friedman et al.

(2007)) and L1-penalized generalized linear models (Friedman et al. (2010)). Coordinate

descent proceeds by updating each regression coefficient one at a time while holding the

remaining coefficients fixed. This is frequently an efficient approach as the parameter updates

usually have a simple, closed form, and many of the parameters do not change after being

mapped to zero.

One could also consider a coordinate descent version of the PX-ECME algorithm where

one instead updates the elements of the vector θ one at a time rather than in a single step.

To be more specific, consider the parameter-expanded Q-function defined in (9) with the

“elastic net” penalty Pη,j(βj) = λ1|βj|+
λ2

2
β2
j and where the first j−1 components of θ have

23

already been updated

Qλ
PX(θ

(t+1)
1 , . . . , θ

(t+1)
j−1 , θj , θ

(t)
j+1, . . . , θ

(t)
p , α(t)|θ(t), α(t)) = α(t)θj

(

n
∑

i=1

xijsiui

)

−

−
(α(t))2

2

(

θ2j

{

n
∑

i=1

(A
(t)
ij)

2 + λ2

}

+ 2θj

n
∑

i=1

A
(t)
ij

∑

k 6=j

θ
(t+j/p)
k A

(t)
ik

)

− |α(t)|λ1|θj|+ C̃, (22)

where A
(t)
ij denotes the (i, j) element of S1/2W1/2(β(t))X, C̃ is a constant not depending on

θj . Maximizing (22) with respect to θj leads to an update of θ
(t)
j which has the form

θ
(t+1)
j = sign

(

1
α(t)Vj(β

(t))−Uj(β
(t), θ

(t+j/p)
−j)

)

max
{
∣

∣

∣

1
α(t)Vj(β

(t))−Uj(β
(t), θ

(t+j/p)
−j)

∣

∣

∣
− 1

α(t) λ̃(β
(t)), 0

}

.

(23)

Expressions for the terms Vj(β
(t)), Uj(β

(t), θ
(t+j/p)
−j), and λ̃(β(t)) are given in Appendix C.

After completing one “cycle” of coordinate descent where all p components of θ are updated

using (23), one can update the value of α(t) by maximizing pℓηo,s(αθ|y) with respect to

α. After completing this cycle, the regression coefficients would be updated via β(t+1) =

α(t+1)θ(t+1).

Rather than waiting an entire cycle to update α(t) and the weight matrix W(β(t)), an

alternative is to perform this updating after a “block” of k of the components (for k ≤ p)

of θ(t) have been updated rather than all p components. This can often reduce the total

number of coordinate cycles required to converge; however, this comes at the expense of

a greater computational cost to perform each coordinate descent cycle. The more general

PX-ECME algorithm which updates the value of α and the regression weights after every k

coordinate updates is outlined in Algorithm 4 of Appendix C. Note that when k = p, this

algorithm reduces to the case where α and the weight matrix are only updated after a full

cycle of coordinate descent is completed.

Our experience with running the PX-ECME version of coordinate descent suggests that

it typically offers very modest improvements in the total number of iterations compared

to coordinate descent with no parameter expansion (i.e., α(t) = 1 for all t), and the extra

computational effort involved in updating α(t) often nullifies any reduction in the total num-

ber of coordinate descent iterations. Nevertheless, experimenting with different values of

the “block size” parameter k can have a positive impact in some cases, and hence, in some

24

settings, it may be worth exploring different values of k to determine if there are any gains

to be had over a “classic” coordinate descent algorithm which does not have any parameter

expansion whatsoever.

6 Simulations

6.1 A Weighted Logistic Regression Example

In the standard logistic regression setting where all the weights si are equal, the usual starting

values used for the Newton-Raphson algorithm (i.e., β(0) = 0) are generally quite robust,

and using these starting values with Newton-Raphson produces iterates which converge to

the maximum likelihood estimates of the regression coefficients. However, in many weighted

logistic regression problems where there is large variability in the weights, the Newton-

Raphson algorithm can result in failure even when the starting values of β(0) = 0 are used.

To illustrate this, we consider the following small numerical example with responses yi, scalar

covariates xi, and regression weights si:

(y1, . . . , y7) = (1, 0, 1, 1, 1, 0, 1)

(x1, . . . , x7) = (0, 0, 0.001, 100,−1,−1, 0.5)

(s1, . . . , s7) = (0.4, 0.01, 0.4, 0.01, 0.04, 0.1, 0.04). (24)

The performance of Newton-Raphson, PX-ECME, and EM using the data and regression

weights in (24) and with no penalty term is summarized in Table 1. We ran each method for

63 iterations because this was the number of iterations required for PX-ECME to converge

when using the stopping criterion
√

∑p
j=1(β

(t+1)
j − β

(t)
j)2 < 10−9. As shown in Table 1, the

Newton-Raphson procedure diverges even when using the starting values β(0) = 0. While

the first iteration of Newton-Raphson improves the value of the weighted log-likelihood, the

subsequent iterates begin to quickly diverge. In contrast to Newton-Raphson, the PX-ECME

algorithm provides more stable monotone convergence to the weighted maximum likelihood

estimates (β̂0, β̂1) = (4.39, 5.30). While the EM algorithm also enjoys monotone convergence,

the convergence is considerably slower than PX-EMCE, and it takes 419 iterations for EM

to converge when using the same convergence tolerance as PX-ECME.

25

Newton-Raphson PX-ECME EM

k β
(k)
0 β

(k)
1 ℓ

(k)
o,s β

(k)
0 β

(k)
1 ℓ

(k)
o,s β

(k)
0 β

(k)
1 ℓ

(k)
o,s

0 0.0 0.0 -0.6931 0.0 0.0 -0.6931 0.0 0.0 -0.6931
1 4.26 1.97 -0.2972 1.55 0.01 -0.3611 1.55 0.01 -0.3611
2 -79.22 -10.17 -80.4768 2.09 0.02 -0.3441 1.85 0.01 -0.3471
3 1.87× 1016 4.31× 1015 −1.62× 1015 2.10 0.03 -0.3432 1.97 0.02 -0.3441
4 9.60× 1015 4.43× 1015 −6.13× 1014 2.10 0.03 -0.3424 2.03 0.03 -0.3429
5 4.88× 1014 4.56× 1015 −1.67× 1014 2.10 0.05 -0.3414 2.05 0.04 -0.3420
6 5.28× 1014 4.51× 1015 −1.64× 1014 2.11 0.06 -0.3404 2.07 0.05 -0.3410
7 5.68× 1014 4.46× 1015 −1.61× 1014 2.12 0.07 -0.3392 2.07 0.06 -0.3400
8 6.08× 1014 4.42× 1015 −1.58× 1014 2.13 0.09 -0.3377 2.08 0.08 -0.3388
9 6.48× 1014 4.37× 1015 −1.55× 1014 2.14 0.11 -0.3360 2.08 0.09 -0.3373
10 6.88× 1014 4.33× 1015 −1.52× 1014 2.15 0.14 -0.3339 2.08 0.11 -0.3357
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
63 −6.71× 1015 2.51× 1015 −5.95× 1015 4.39 5.30 -0.1376 4.01 4.83 -0.1386

Table 1: Comparison of Newton-Raphson, PX-ECME, and EM using the data and regression

weights provided in (24) and with initial values of (β
(0)
0 , β

(0)
1) = (0.0, 0.0) for all methods.

Values of the regression coefficients β
(k)
0 , β

(k)
1 and the associated weighted log-likelihood values

ℓ
(k)
o,s are shown for each method and iterations k = 0, 1, ..., 10 and k = 63. Iterates from the
Newton-Raphson algorithm do not converge while both PX-ECME and EM converge to
the maximum likelihood estimates of the regression coefficients albeit with notably slower
convergence from the EM algorithm.

6.2 The Kyphosis Data

In this simulation study, we utilized the Kyphosis data described in Chambers & Hastie

(1992) (pg. 200) and also considered in Liu et al. (1998). This dataset contains 81 ob-

servations from children who had undergone a corrective spinal surgery. The binary out-

come in this dataset indicates whether or not kyphosis was present after the operation, and

the following additional 3 covariates were also recorded: the age of the child in months,

the number of vertebrae, and the number of the topmost vertebra involved in the surgery.

For this simulation study, we did not use the observed binary outcomes but instead only

used the observed covariates and simulated binary responses. Similar to the simulation de-

scribed in Liu et al. (1998), we generated pseudo-binary outcomes yi assuming P (yi = 1) =

1/[1 + exp(−3xi,num + xi,start)], where xi,num and xi,start denote the number of vertebrae and

the number of topmost vertebra for the ith child respectively. We generated 500 datasets in

26

this manner so that each dataset contained the 3 covariate vectors in the original Kyphosis

data and the vector of simulated pseudo-outcomes. When estimating the parameters of this

model, we did not include a penalty term, and we included an intercept term so that, in

total, four regression coefficients needed to be estimated.

Method
Number of iterations Timing logL(θ̂)

median mean std. dev. median mean std. dev. mean

EM 424 756.96 1099.89 0.0215 0.0410 0.0671 -10.524639

PX-ECME 49 51.61 19.43 0.0050 0.0061 0.0058 -10.524639

MM 2242 7079.57 18123.52 0.0765 0.2577 0.6738 -10.524639

PX-MM 139 177.88 140.69 0.0130 0.0181 0.0170 -10.524639

NR 10 10.14 1.14 0.0010 0.0015 0.0014 -10.524639

AA1 59 71.53 49.86 0.0040 0.0050 0.0036 -10.524639

Table 2: Simulation results based on the Kyphosis data with simulated outcomes. Median
number of iterations required to converge and median timing across simulation replications
are presented. The mean value of the log-likelihood at convergence is also shown. Methods
evaluated include the EM algorithm, PX-ECME algorithm, the MM algorithm described in
Section 4.3, the parameter expanded MM (PX-MM) algorithm (Algorithm 3), the Newton-
Raphson (NR) algorithm, and the order-1 Anderson acceleration of EM described in Section
3.3.

Using these 500 simulated datasets, we compared the following methods for computing

the four regression coefficient estimates: the EM algorithm, Newton-Raphson, the PX-ECME

algorithm (Algorithm 1), the MM algorithm of Section 4.3, the PX-MM algorithm (Algo-

rithm 3), and the order-1 Anderson acceleration of EM (AA1). For each method, all regres-

sion coefficients were initialized at 0, and the stopping criteria of
√

∑p
j=1(β

(t+1)
j − β

(t)
j)2 <

10−7 was used for each method.

The performance of these procedures is summarized in Table 2. As shown in Table 2,

the Newton-Raphson procedure performed the best requiring only a median of 10 Newton-

Raphson iterations to converge and a median of 0.001 seconds to achieve convergence. The

PX-ECME was the second-fastest algorithm in terms of number of iterations only requiring

a median of 49 iterations for convergence. Compared to the EM algorithm, this was a

roughly ten-fold reduction in the median number of iterations. PX-ECME and AA1 were

quite close in performance with AA1 requiring a few more iterations than PX-EMCE while

having better time performance than PX-ECME due to a mildly cheaper per iteration cost

27

than PX-ECME. A notable result from the Kyphosis data simulations was that PX-MM was

substantially faster than the MM algorithm. Compared to the MM algorithm, PX-MM had

a nearly 17-fold reduction in the median number of iterations and a nearly six-fold reduction

in the median time to converge.

6.3 Simulated Outcomes with Autocorrelated Covariates

For this simulation study, we generated the elements xi,j of an n× p design matrix X using

an autoregressive process of order 1 with autocorrelation parameter ρ ≥ 0. Specifically, for

each i, the xi,j were generated as xi,1 = 1, and

xi,j = ρxi,j−1 + εj, for j = 3, . . . , p,

where xi,2 ∼ Normal(0, 1) and εj ∼ Normal(0, 1). This simulation design implies the cor-

relation between xi,j and xi,j−1 is ρ for any j ≥ 3. The regression coefficients β1, . . . , βp

were generated independently as βj = ZjTj , where Zj ∼ Bernoulli(0.75) and Tj follows a

t distribution with 3 degrees of freedom. Given the generated covariate vectors x1, . . . ,xn

and regression coefficient vector β, the responses yi were then generated independently as

yi ∼ Bernoulli
(

{1 + exp(−xT
i β)}

−1
)

.

We considered two choices for the number of observations: n ∈ {500, 2000}, three settings

for the number of covariates: p ∈ {5, 50, 200}, and three values for the autocorrelation

parameter ρ ∈ {0, 0.9, 0.99}. For each of the 18 simulation settings (i.e., each setting of n,

p, and ρ), we ran each procedure for computing the maximum likelihood estimate of β with

no penalty term on 50 simulated datasets. For all methods considered, we used a maximum

of 100, 000 iterations.

Table 3 shows summary performance measures of 8 methods for estimating the logistic

regression coefficients in these simulation scenarios. With the exception of Newton-Raphson,

each procedure displayed in Table 3 is a monotone algorithm as the steplength in gradient

descent and a GPX-ECME algorithm (Algorithm 2) were chosen to guarantee an increase

in the log-likelihood at each iteration. The GPX-ECME algorithm used here chooses H(t) =

κ−1
t Ip −XTSW(β(t))X (where κ−1

t is the maximum eigenvalue of XTSW(β(t))X) so that

the GPX-ECME update is simply the gradient descent update multiplied by the scalar

28

which maximizies the observed-data log-likelihood. The summary measures shown in Table

3 correspond to performance measures aggregated across all 18 simulation settings.

For the results shown in the top half of Table 3, the initial value β(0) was set to the zero

vector. While Newton-Raphson has the best overall performance when setting β(0) = 0, PX-

ECME shows clear advantages over the EM algorithm and the MM and PX-MM algorithms.

Indeed, PX-ECME shows a more than ten-fold reduction from EM in the median number of

iterations required to converge, and PX-ECME shows a more than three-fold reduction in

the median number of iterations when compared with PX-MM. When compared with EM,

PX-ECME also reduced the number of cases with very long times to converge which can be

observed by noting the even greater reduction in mean number of iterations for PX-ECME

versus EM when compared to the reduction in median iterations for PX-ECME versus EM.

While each iteration of PX-ECME requires moderately more computational time than EM,

the timing comparisons show that the median time to convergence of PX-ECME is nearly

10 times less than that of the EM algorithm.

The lower half of Table 3 shows the performance of each method when the components of

the initial vector β(0) are set by sampling from a standard normal distribution. With these

random starting values, all of the methods except Newton-Raphson demonstrated robust

performance with all of these methods having very similar performance to the simulation

runs where β(0) = 0. Newton-Raphson, however, showed very erratic performance when the

initial values were not set to zero demonstrating this method’s considerable sensitivity to

the choice of starting values, and in the majority of simulation runs, Newton-Raphson did

not converge. As with the simulation runs with β(0) = 0, PX-ECME with random starting

values provides a roughly 10-fold improvement in convergence speed over the EM algorithm.

6.4 The Madelon Data

In this simulation study, we consider a weighted logistic regression example with both an

L1 penalty (i.e, Pη(β) = η
∑p

j=1 |βj|) and an L2 penalty function (i.e., Pη(β) =
η
2

∑p
j=1 β

2
j).

We used the Madelon dataset (Guyon et al. (2004)) which is available for download from

the UCI machine learning repository. This dataset has n = 2600 observations and p = 500

covariates. While the same Madelon dataset was used for all simulation replications, a

different set of weights s1, . . . , s2600 were drawn for each of 10 simulation replications. The

29

weights si were sampled independently from an exponential distribution with rate parameter

1. We generated 10 sets of weights for both the L2 and L1 penalized cases.

For each of the ten sets of weights, we obtained parameter estimates β̂(ηk) across a

decreasing sequence η1 > η2 > . . . > η9 of nine tuning parameters. The same values of

ηk were used for both the L1 and L2-penalized simulation runs. These values were η1 =

5000, η2 = 1000, η3 = 500, η4 = 200, η5 = 50, η6 = 10, η7 = 2, η2, η9 = 0.1. For

a given set of weights, the parameter estimate β for the previous value of η was used as

the starting value for the subsequent value of η. That is, β̂(ηk) was used as the starting

value for each method when η was equal to ηk+1. The following methods were evaluated for

the L1-penalized case: coordinate descent with EM-based weights, coordinate descent with

Newton-Raphson-based weights, proximal gradient descent (PGD) with a fixed steplength,

parameter-expanded proximal gradient descent (GPX-ECME), and gradient descent with

backtracking. The following methods were evaluated for the L2-penalized case: EM, PX-

ECME, MM, PX-MM, Newton-Raphson, fixed steplength gradient descent, GPX-ECME,

gradient descent with backtracking, and order-1 Anderson acceleration. For the L1-penalized

simulations, we set a maximum of 100000 iterations for the non-coordinate descent methods

and a maximum of 1000 iterations for the coordinate descent methods (one iteration for

this case is a full cycle that updates all the regression coefficients), and for the L2-penalized

simulations, we set a maximum of 10000 iterations.

The madelon-data simulation results are shown in Table 4. Note that the summary

measures for the number of iterations and timings are aggregated across all 10 replications

and all values of η and are not separated by value of η. In the L1-penalized simulations, the

parameter-expanded version (GPX-ECME) of proximal gradient descent (PGD) performs

well in terms of both timing and final value of the objective function. Specifically, the

timing required by GPX-ECME was not much greater than PGD while the average value of

the objective function achieved by GPX-ECME at the final iteration was much better than

that achieved by PGD. While proximal gradient descent with backtracking achieved better

log-likelihood values after 100, 000 iterations, this was at a cost of much slower speeds than

either PGD or GPX-ECME.

In the L2-penalized simulations, Newton-Raphson had the smallest median number of

iterations needed for convergence. However, of the 90 simulation runs, there were 14 runs

30

where Newton-Raphson diverged which led to a very large mean time spent and mean number

of iterations needed. In contrast to Newton-Raphson, both EM and MM had more robust

performance without sacrificing much computational speed relative to Newton-Raphson.

Overall, both PX-ECME and PX-MM delivered speed advantages over the EM and MM

algorithms respectively, but the additional gains in computational speed were, overall, quite

modest. This seems to be an example where both EM and MM are quite fast relative to

Newton-Raphson (when Newton-Raphson converges), and hence, it is difficult for PX-ECME

or PX-MM to make substantial improvements. The strong performance of order-1 Anderson

acceleration (AA1) in the L2-penalized simulations is also interesting to note. In addition

to demonstrating considerable robustness by converging to the maximizer of the objective

function in every simulation run, AA1 was somewhat faster than PX-ECME and was even

competitive with Newton-Raphson in median timing.

7 Discussion

In this article, we have proposed and investigated the performance of an accelerated version of

a Pólya-Gamma-based EM algorithm for weighted penalized logistic regression. Our method

provides a useful alternative algorithm that is stable, efficient, directly implementable, and

provides monotone convergence regardless of the weights or starting values chosen by the

user. We established that our PX-ECME algorithm has a convergence rate guaranteed to

be as fast as the original Pólya-Gamma EM algorithm, and empirically, across a range of

different simulation examples, our PX-ECME algorithm accelerates the convergence speed

roughly by a factor of ten when compared to the EM algorithm. We also proposed a gen-

eralized version of the Pólya-Gamma EM algorithm and explored a PX-ECME version of

this generalized EM algorithm. This generalization of EM can be useful in certain high

dimensional contexts where performing the full M-step in every iteration of the EM algo-

rithm can become computationally expensive. Our generalized EM algorithm includes both

proximal gradient descent and the logistic regression MM algorithm as special cases, and in

our simulations, we showed that the parameter-expanded version of the MM algorithm can

have substantially faster convergence than the corresponding MM algorithm.

While Newton-Raphson typically converges very quickly in cases where Newton-Raphson

is well-behaved, a chief motivation behind the development of the PX-ECME algorithm was

31

to explore an alternative optimization procedure which has relatively fast convergence yet

still has stable, robust performance regardless of the choice of starting values and choice of

weights. Improving the robustness of Newton-Raphson becomes a more salient issue in cases

where one is optimizing a weighted log-likelihood with highly variable weights. Indeed, the

first example in Section 6 shows a simple case where Newton-Raphson regularly diverges

even when the initial values are set to the typically robust starting value of zero for all

parameters, and in this case, both EM and PX-ECME converge to the correct value. In

addition to greater robustness and stability, another important issue is the fact that the EM

algorithm framework can often be more easily adapted to generate stable, straightforward

parameter updates in more complex variations of a logistic regression model where there

are additional latent variables in the probability model of interest. A common example

of this is when one posits an additional probability model for the covariates in order to

perform parameter estimation in the context of missing data. In Appendix A, we describe a

PX-ECME algorithm for one example of a missing-data model, and we demonstrate how the

PX-ECME parameter updates for this missing-data model are very similar to the PX-ECME

updates for fully observed covariates.

While PX-ECME is a straightforward modification of EM that substantially boosts con-

vergence speed, it is certainly possible that applying other monotone acceleration schemes to

the PX-ECME iteration could improve convergence speed even further. Specifically, using

“off-the-shelf” acceleration schemes which directly accelerate the convergence of an itera-

tive sequence without modifying the “base” optimization algorithm in any way could be

applied directly to iterates of the PX-ECME algorithm. One such approach would be to

apply the monotone order-1 Anderson acceleration to the PX-ECME updates rather than

the EM updates as was done in Section 3.3. This would likely provide further speed gains

in addition to those of PX-ECME over EM. It would also be of interest to explore the per-

formance of applying other, higher-order off-the-shelf acceleration schemes to iterates of the

PX-ECME algorithms such as the SQUAREM procedure (Varadhan & Roland (2008)) or

the quasi-Newton acceleration scheme of Zhou et al. (2011).

The PX-ECME parameter update corresponds to multiplying the EM parameter update

by a single scalar, where the scalar is chosen to maximize the observed log-likelihood. This

can be thought of as finding the parameter update by searching across parameter updates

32

which are a scalar multiple of the EM update. This type of “multiplicative search” was chosen

because it fits naturally into the parameter-expansion framework, and because a similar

type of multiplicative update has been found to work well in the context of accelerating

EM algorithms for probit regression. Though not explored here, it is likely that alternative

approaches based on using the EM algorithm search direction could deliver relatively similar

performance to our PX-ECME algorithm. For example, searching across parameter updates

that are linear combinations of the previous parameter value and the EM update could be

an effective strategy that has relatively similar performance to our PX-ECME algorithm.

SUPPLEMENTARY MATERIAL

R-package: An R-package pxlogistic implementing the methods described in the article

is available at https://github.com/nchenderson/pxlogistic

A A PX-ECME algorithm with Missing Covariates

As an example of a direct EM algorithm that can incorporate modeling of missing covariates,

we consider a setting similar to that described in Ibrahim (1990). Specifically, we consider

the case where all of the covariates are binary. To develop an EM algorithm in this context,

we let xic denote the “complete version” of the vector xi, where we allow for the possibility

that xi can contain missing values. We can express xic = (xi,obs,xi,mis), where xi,obs is the

collection of observed values from xic and xi,mis is the collection of missing values from xic.

The assumed joint distribution for the covariate vector xic is given by

p(xic|γ) =
2p−1
∏

k=1

γ
Ik(xic)
k , (25)

where k = 1, . . . , 2p−1 indexes the 2p−1 possible observed values of xic = (1, zTic)
T , where

zic ∈ {0, 1}p−1. In (25), Ik(xic) = 1 if xic equals the kth possible observed value of xic and

equals 0 otherwise. Note that this missing data model is only useful in practice when p is

relatively small.

33

https://github.com/nchenderson/pxlogistic

Using similar notation to that used in our main manuscript, we consider the following Pólya-

Gamma representation of the logistic regression model

yi|Wi,xic ∼ Binomial
(

mi, {1 + exp(−xT
icβ)}

−1
)

Wi|xic ∼ PG(mi,x
T
icβ)

xic ∼ p(·|γ), (26)

where p(·|γ) refers to the same probability model stated in (25). We would also assume

that the data are missing at random (MAR) so that if ri denotes the vector of missingness

indicators, then

p(xic|xi,obs, ri,γ) = p(xic|xi,obs,γ) =
p(xic|γ)

∑

k p(xic = dk|γ)I(k ∈ Ai)
,

where xi,obs is the collection of observed values from xi, and Ai is the set of configurations

of xic that is consistent with the values in xi,obs.

Letting ṽ = {(y1,W1,x1c), . . . , (yn,Wn,xnc)} denote the “complete data”, the complete-

data log-likelihood associated with (26) is

ℓc(β,γ|ṽ) = C +

n
∑

i=1

uix
T
icβ −

1

2

n
∑

i=1

Wi(x
T
icβ)

2 +

n
∑

i=1

2p−1
∑

k=1

Ik(xi) log(γk),

where C is a term that does not depend on (β,γ). The “Q-function” associated with

ℓc(β,γ|ṽ) is then

Q(β,γ|β(t),γ(t)) = E{ℓc(β,γ|ṽ) | y,β
(t),γ(t)}

= C +

n
∑

i=1

uiE{xT
ic | y,β

(t),γ(t)}β

−
1

2

n
∑

i=1

E
{

Wiβ
Txicx

T
icβ | y,β(t),γ(t)}+

2p−1
∑

k=1

log(γk)
n
∑

i=1

Ik(xic)

= C +

n
∑

i=1

ui(a
(t)
i)Tβ −

1

2

n
∑

i=1

βTB
(t)
i β +

2p−1
∑

k=1

G
(t)
k. log(γk), (27)

34

where a
(t)
i , B

(t)
i , and G

(t)
k. are defined as

a
(t)
i = E{xic | y,xi,obs,β

(t),γ(t)}

B
(t)
i = E{Wixicx

T
ic | y,xi,obs,β

(t),γ(t)}

G
(t)
k. =

n
∑

i=1

E{Ik(xi) | y,xi,obs,β
(t),γ(t)}.

Thus, we can re-write the Q-function (27) as

Q(β,γ|β(t),γ(t)) = C + βT (A(t))Tu−
1

2
βTB(t)β +

2p−1
∑

k=1

G
(t)
k. log(γk), (28)

where A(t) is the n× p matrix whose ith row is a
(t)
i and B(t) is the p× p matrix defined as

B(t) =

n
∑

i=1

E{Wixicx
T
ic|y,β

(t),γ(t)}.

Maximizing (28) subject to the constraint that γk ≥ 0 and
∑2p−1

k=1 γk = 1 yields the following

parameter updates:

β(t+1),EM =
[

B(t)
]−1

(A(t))Tu

γ
(t+1),EM
k =

G
(t)
k.

∑2p−1

k=1 G
(t)
k.

To complete the description of this EM algorithm, we just need to describe how to compute

A(t) and B(t). To this end, note that

a
(t)
i =

2p
∑

k=1

p
(t)
ik dk,

where dk is one of the 2p possible values of xic and p
(t)
ik is defined as

p
(t)
ik = P (xic = dk|yi,xi,obs,β

(t),γ(t)) =
p(yi|xic = dk,β

(t))γ
(t)
k I(k ∈ Ai)

∑

h∈Ai
p(yi|xic = dh,β

(t))γ
(t)
h

. (29)

35

In (29), Ai is the set of configurations of xic that is consistent with the observed covariate

vector xi,obs. Regarding B(t), one can note that

B(t) =

n
∑

i=1

ω(xT
i β

(t))E{xicx
T
ic | y,β

(t),γ(t)} =

n
∑

i=1

ω(xT
i β

(t))

2p
∑

k=1

p
(t)
ik dkd

T
k ,

where p
(t)
ik is as defined in (29).

One option for a PX-ECME version of this EM algorithm is to define γ
(t+1)
k = γ

(t+1),EM
k

and β(t+1) = ρ(t+1)β(t+1),EM where ρ(t+1) is chosen to maximize the following “observed”

log-likelihood

ℓo(ρβ
(t+1),EM) =

n
∑

i=1

log
(

p(yi|xi,obs)
)

=
n
∑

i=1

log

(

2p
∑

k=1

p(yi|xic = dk,β = ρβ(t+1),EM)p(xic = dk|xi,obs,γ
(t+1),EM)I(k ∈ Ai)

)

.

B Proof of Proposition 1 and Theorem 1

Proof of Proposition 1. First, note that

Qη
PX(β

(t+1),GEM , 1|β(t), α0)−Qη
PX(β

(t), 1|β(t), α0)

= Q̃η
PX(β

(t+1),GEM , 1|β(t), α0)− Q̃η
PX(β

(t), 1|β(t), α0) +
1

2
(β(t+1),GEM − β(t))TH(t)(β(t+1),GEM − β(t))

≥ Q̃η
PX(β

(t+1),GEM , 1|β(t), α0)− Q̃η
PX(β

(t), 1|β(t), α0)

≥ 0,

where the first inequality follows from the fact that H(t) is positive semi-definite and the

second inequality follows from the fact that β(t+1),GEM maximizes Q̃η
PX(β, 1|β

(t), α0). It then

follows from Jensen’s inequality and the above inequality that

pℓηo,s(β
(t+1),GEM |y)− pℓηo,s(β

(t)|y) ≥ Q̃η
PX(β

(t+1),GEM , 1|β(t), α0)− Q̃η
PX(β

(t), 1|β(t), α0) ≥ 0

36

Then, since ρ(t+1) = argmaxρ∈R pℓ
η
o,s(ρβ

(t+1),GEM |y), we have that

pℓηo,s(β
(t+1)|y) = pℓηo,s(ρ

(t+1)β(t+1),GEM |y)

≥ pℓηo,s(β
(t+1),GEM |y)

≥ pℓηo,s(β
(t)|y).

Proof of Theorem 1. First, recall that the PX-ECME mapping GPX can be expressed in

terms of the EM mapping GEM as

GPX(β) = h(GEM(β))GEM(β) = a(β)GEM(β),

where h(β) = argmaxρ∈R ℓo,s(ρβ|y) and a(β) = h(GEM(β)). Hence, if [GPX(β)]j de-

notes the jth component of GPX(β), then ∂[GPX(β)]j/∂βk = a(GEM(β))∂[GEM(β)]j/∂βk +

[GEM(β)]j∂a(β)/∂βk. This implies that the Jacobian matrix JPX(β) of GPX(β) can be

expressed as

JPX(β) =
∂GPX(β)

∂β
= a(β)JEM(β) +GEM(β)∇a(β)T , (30)

where ∇a(β) denotes the gradient of a(β) and JEM(β) is the Jacobian matrix associated

with the EM mapping GEM(β).

Now, note that we can express the gradient of a(β) in terms of the gradient of h(β)

evaluated at GEM(β) as

∇a(β)T = ∇h(GEM(β))TJEM(β) (31)

To derive an explicit formula for ∇h(β), we first note that h(β) is defined implicitly by

the equation s(β, h(β)) = 0 where the score function s(β, h(β)) is defined as

s(β, h(β)) =

n
∑

i=1

siyix
T
i β −

n
∑

i=1

simix
T
i βπ{h(β)x

T
i β}

= βTXTSy − βTXSµ{h(β)Xβ},

where µ{h(β)Xβ} is the length-n vector whose ith element is miπ{h(β)x
T
i β}. If we differ-

37

entiate s(β, h(β)) with respect to h(β), we obtain

∂s(β, h(β))

∂h
= −

n
∑

i=1

misi(x
T
i β)

2π{h(β)xT
i β}

[

1− π{h(β)xT
i β}

]

= βTXTSR(β)Xβ

= c(β),

where R(β) is the diagonal matrix whose ith diagonal element ismiπ{h(β)x
T
i β}[1−π{h(β)xT

i β}]

and π(u) = {1+exp(−u)}−1. Now, if we differentiate s(β, h(β)) with respect to βk (keeping

h(β) fixed), we obtain

∂s(β, h(β))

∂βk
=

n
∑

i=1

siyixik −

n
∑

i=1

simixikπ{h(β)x
T
i β}

− h(β)
n
∑

i=1

simixikx
T
i βπ{h(β)x

T
i β}[1− π{h(β)xT

i β}].

So, we can write the p× 1 fixed-h gradient ∇βs(β, h(β)) =
(

∂s(β,h(β))
∂β1

,, ∂s(β,h(β))
∂βp

)T
as

∇βs(β, h(β)) = XTS[y − µ{h(β)Xβ}]− h(β)XTSR(β)Xβ.

By the implicit function theorem for continuously differentiable functions, we can express

the gradient ∇h(β) as

∇h(β) = −
[s(β, h(β))

∂h

]−1

∇βs(β, h(β))

=
1

c(β)

[

XTS[y − µ{h(β)Xβ}]− h(β)XTSR(β)Xβ
]

.

At the point of convergence β∗ = GEM(β∗), h(β∗) = 1 and XTS[y − µ{h(β∗)Xβ∗}] = 0

and hence

∇h(GEM(β∗)) =
−1

c(β∗)

[

XTSR(β∗)Xβ∗
]

.

38

Finally, returning to (30), we have that

JPX(β
∗) = a(β∗)JEM(β∗) +GEM(β∗)∇a(β∗)T

= a(β∗)JEM(β∗) +GEM(β∗)∇h(GEM(β∗))TJEM(β∗)

= JEM(β∗) + β∗∇h(GEM(β∗))TJEM(β∗)

= JEM(β∗)−
1

c(β∗)
β∗(β∗)TXTSR(β∗)XJEM(β∗)

= JEM(β∗)−
1

c(β∗)
β∗(β∗)TXTSR(β∗)X

[

Ip − (XTSW(β∗)X)−1XTSR(β∗)X
]

= JEM(β∗)−
1

c(β∗)
β∗(β∗)TV(β∗)A(β∗)V(β∗)T ,

where V(β∗) and A(β∗) are defined as

V(β∗) = XTSR(β∗)X

A(β∗) = (XTSR(β∗)X)−1 − (XTSW(β∗)X)−1.

We now turn to the question of comparing the spectral radii of JPX(β
∗) and JEM(β∗). To

address this, we first consider the matrices SPX and SEM defined as

SPX = I− JPX(β
∗) = I− JEM(β∗) + [c(β∗)]−1β∗(β∗)TV(β∗)A(β∗)V(β∗)T

SEM = I− JEM(β∗).

Because the diagonal elements of W(β∗) are greater than the corresponding diagonal ele-

ments of R(β∗) (i.e., π(xT
i β){1 − π(xT

i β)} ≤ tanh(xT
i β/2)/2x

T
i β), A(β∗) is a symmetric

positive definite matrix. This implies that V(β∗)A(β∗)V(β∗)T is also a symmetric positive

definite matrix. Hence, β∗(β∗)TV(β∗)A(β∗)V(β∗)T is symmetric positive definite as it is

the product of two symmetric positive definite matrices. Hence, because c(β∗) > 0, we have

SPX � SEM , which then implies that the rPX ≤ rEM , where rPX and rEM are the largest

eigenvalues of JPX(β
∗) and JEM(β∗) respectively.

39

C PX-ECME and Coordinate Descent

Algorithm 4 (PX-ECME Coordinate Descent for Logistic Regression with Elastic Net
Penalty). In the description of the algorithm, u = (u1, . . . , un)

T , where ui = yi −mi/2.

1: Given an integer 1 ≤ k ≤ p, β(0) ∈ R
p and α(0) ∈ R. Set θ(0) = α(0)β(0).

2: Set W(β(0)) = diag{m1/4, . . . , mn/4}.

3: for t=0,1,2,... until convergence do

4: for j = 1,..., p do

Update the components θ
(t+1)
j of θ(t+j/p):

θ
(t+1)
j = sign

(

1
α(t+j/p)Vj(β

(t+j/p))− Uj(β
(t+j/p), θ(t+j/p))

)

× max
{
∣

∣

∣

1
α(t+j/p)Vj(β

(t+j/p))− Uj(β
(t+j/p), θ(t+j/p))

∣

∣

∣
− 1

α(t+j/p) λ̃(β
(t+j/p)), 0

}

,

where Vj(β
(t+j/p)), Uj(β

(t+j/p), θ
(t+j/p)
−j), and λ̃(β(t+j/p)) are as defined in (32).

5: if j mod k = 0 or j = p then

6: Compute

α(t+j/p) = argmax
α∈R

[

pℓηo,s(αθ
(t+1)|y)

]

.

7: Set β(t+j/p) = α(t+j/p)θ(t+j/p).

8: Update the diagonals ω(xT
i β

(t+j/p), mi) of the weight matrix W(β(t+j/p))

ω(xT
i β

(t+j/p), mi) =
mi

2xT
i β

(t+j/p)
tanh

(

xT
i β

(t+j/p)/2
)

.

9: else

10: Set β(t+j/p) = βt+(j−1)/p, α(t+j/p) = αt+(j−1)/p, W(β(t+j/p)) = W(β(t+(j−1)/p).

The terms Vj(β
(t)), Uj(β

(t), θ
(t+j/p)
−j), and λ̃(β(t)) mentioned in Section 5 are given by

Vj(β
(t)) =

n
∑

i=1

xijsiui

/

{

n
∑

i=1

(A
(t)
ij)

2 + λ2

}

Uj(β
(t), θ

(t+j/p)
−j) =

n
∑

i=1

{

A
(t)
ij

∑

k 6=j

θ
(t+j/p)
k A

(t)
ik

}/{

n
∑

i=1

(A
(t)
ij)

2 + λ2

}

λ̃(β(t)) = λ1

/

{

n
∑

i=1

(A
(t)
ij)

2 + λ2

}

. (32)

40

References

Böhning, D. & Lindsay, B. G. (1988), ‘Monotonicity of quadratic-approximation algorithms’,

Annals of the Institute of Statistical Mathematics 40(4), 641–663.

Brent, R. P. (2013), Algorithms for minimization without derivatives, Courier Corporation.

Chambers, J. M. & Hastie, T. J. (1992), Statistical models in S, Wadsworth and Brooks/Cole,

Pacific Grove, CA.

Choi, H. M., Hobert, J. P. et al. (2013), ‘The Pólya–Gamma Gibbs sampler for Bayesian

logistic regression is uniformly ergodic’, Electronic Journal of Statistics 7, 2054–2064.

Durante, D. & Rigon, T. (2018), ‘A note on quadratic approximations of logistic log-

likelihoods’, ArXiv 1711.

Fan, J. & Li, R. (2001), ‘Variable selection via nonconcave penalized likelihood and its oracle

properties’, Journal of the American statistical Association 96(456), 1348–1360.

Friedman, J., Hastie, T., Höfling, H., Tibshirani, R. et al. (2007), ‘Pathwise coordinate

optimization’, The annals of applied statistics 1(2), 302–332.

Friedman, J., Hastie, T. & Tibshirani, R. (2010), ‘Regularization paths for generalized linear

models via coordinate descent’, Journal of statistical software 33(1), 1.

Green, P. J. (1984), ‘Iteratively reweighted least squares for maximum likelihood estimation,

and some robust and resistant alternatives’, Journal of the Royal Statistical Society: Series

B 46(2), 149–170.

Guyon, I., Gunn, S., Ben-Hur, A. & Dror, G. (2004), ‘Result analysis of the NIPS 2003

feature selection challenge’, Advances in neural information processing systems 17.

Hunter, D. R. & Lange, K. (2004), ‘A tutorial on MM algorithms’, The American Statistician

58(1), 30–37.

Ibrahim, J. G. (1990), ‘Incomplete data in generalized linear models’, Journal of the Amer-

ican Statistical Association 85(411), 765–769.

41

Ibrahim, J. G., Chen, M.-H. & Lipsitz, S. R. (1999), ‘Monte Carlo EM for missing covariates

in parametric regression models’, Biometrics 55(2), 591–596.

Jaakkola, T. S. & Jordan, M. I. (2000), ‘Bayesian parameter estimation via variational

methods’, Statistics and Computing 10, 25–37.

Lange, K. (2012), Numerical Analysis for Statisticians, 2nd edn, Springer Publishing Com-

pany, Incorporated.

Lewandowski, A., Liu, C. & Wiel, S. V. (2010), ‘Parameter expansion and efficient inference’,

Statistical Science pp. 533–544.

Liu, C. (1997), ‘ML estimation of the multivariate t distribution and the EM algorithm’,

Journal of Multivariate Analysis 63(2), 296–312.

Liu, C. & Rubin, D. B. (1994), ‘The ECME algorithm: a simple extension of EM and ECM

with faster monotone convergence’, Biometrika 81(4), 633–648.

Liu, C., Rubin, D. B. & Wu, Y. N. (1998), ‘Parameter expansion to accelerate EM: the

PX-EM algorithm’, Biometrika 85(4), 755–770.

Marschner, I. C. (2011), ‘glm2: Fitting generalized linear models with convergence problems’,

The R Journal 3(2), 12–15.

McLachlan, G. J. & Krishnan, T. (2007), The EM algorithm and extensions, Vol. 382, John

Wiley & Sons.

Meng, X. L. & Rubin, D. B. (1993), ‘Maximum likelihood estimation via the ECM algorithm:

a general framework’, Biometrika 80(2), 267–278.

Parikh, N. & Boyd, S. (2014), ‘Proximal algorithms’, Foundations and Trends in optimization

1(3), 127–239.

Polson, N. G., Scott, J. G. & Windle, J. (2013), ‘Bayesian inference for logistic models

using Pólya–Gamma latent variables’, Journal of the American Statistical Association

108(504), 1339–1349.

42

Scott, J. G. & Sun, L. (2013), ‘Expectation-maximization for logistic regression’, arXiv

preprint arXiv:1306.0040 .

Van Dyk, D. A. (2000), ‘Fitting mixed-effects models using efficient EM-type algorithms’,

Journal of Computational and Graphical Statistics 9(1), 78–98.

Varadhan, R. & Roland, C. (2008), ‘Simple and globally convergent methods for accelerating

the convergence of any EM algorithm’, Scandinavian Journal of Statistics 35(2), 335–353.

Walker, H. F. & Ni, P. (2011), ‘Anderson acceleration for fixed-point iterations’, SIAM

Journal on Numerical Analysis 49(4), 1715–1735.

Zhou, H., Alexander, D. & Lange, K. (2011), ‘A quasi-Newton accleration for high-

dimensional optimization algorithms’, Statistics and Computing 21(2), 261–273.

43

Method
Number of iterations Timing logL(θ̂)

median mean std. dev. median mean std. dev. mean

initial values of zero:

EM 625 4509.12 13224.93 0.2395 5.5697 23.0756 -210.230466

PX-ECME 48 130.98 315.16 0.0340 0.1980 0.9346 -210.230148

MM 3762 24038.59 36171.98 0.3440 3.3383 6.4779 -210.277489

PX-MM 161 1248.01 5258.13 0.0860 0.8922 6.1386 -210.230148

NR 10 10.51 2.92 0.0060 0.0129 0.0180 -210.230148

GD 33917 48948.32 45435.61 8.6060 44.8929 77.4781 -213.906704

GPX-ECME 13178 38945.89 43830.79 7.3200 54.3209 93.0919 -211.519659

GDBT 9766 39079.08 44644.20 4.0385 44.5298 81.2833 -211.461741

AA1 42 89.09 370.13 0.0200 0.1109 0.8442 -210.230148

random initial values:

EM 596 4431.32 12871.93 0.2480 5.6423 24.3456 -203.681932

PX-ECME 50 122.06 193.26 0.0365 0.1649 0.3405 -203.681930

MM 3680 24055.37 35992.27 0.4185 3.1970 6.0510 -203.720918

PX-MM 158 998.80 2754.27 0.0900 0.6194 2.1296 -203.681930

NR∗ 100000 87223.14 33400.38 39.4695 120.7834 146.0996 -4.02 ×1016

GD 31308 48637.68 45354.11 8.8395 45.1825 78.0428 -207.656757

GPX-ECME 13901 39070.57 43749.47 7.6315 53.8382 91.0420 -205.777709

GDBT 9094 39178.89 44816.03 3.9850 44.9879 81.2179 -204.791037

AA1 46 80.60 172.71 0.0210 0.0917 0.4262 -203.681930

Table 3: Results for simulated outcomes with autocorrelated covariates. PX-MM, NR,
and AA1 denote the parameter-expanded MM algorithm (Algorithm 3), Newton-Raphson,
and order-1 Anderson acceleration respectively. GD denotes gradient descent, and GDBT
denotes gradient descent with backtracking. The GPX-ECME algorithm (Algorithm 2) used
here chooses H(t) so that the parameter update in each iteration is found by multiplying the
gradient descent update by an optimal scalar. Each method was stopped after 100, 000
iterations.
∗Newton-Raphson resulted in numerical errors in 16 out of 900 simulation runs; these runs
were discarded when tabulating the summary measures of performance.

44

Method
Number of iterations Timing logL(θ̂)

median mean std. dev. median mean mean not converged

L1 penalty:

Coord Desc(EM) 1000 1000 0.00 2212.20 2212.06 -1610.69 90

Coord Desc(NR) 1000 1000 0.00 2737.15 2737.40 -1580.09 90

PGD 100000 73635.87 35608.04 852.77 630.84 -1573.44 49

GPX-ECME 100000 75781.66 33794.31 1268.08 964.46 -1515.11 51

PGDBT 100000 72641.41 40250.80 28457.42 20723.50 -1483.10 60

L2 penalty:

EM 31 30.76 4.25 9.61 9.52 -1200.41 0

PX-ECME 24 23.50 3.27 7.58 7.39 -1200.41 0

MM 56 55.04 9.92 0.89 0.89 -1200.41 0

PX-MM 43 41.97 8.30 0.99 1.00 -1200.41 0

NR 9 1563.11 3641.38 5.03 874.79 -8.05 ×1013 14

GD 10000 10000 0 2696.13 2697.28 -1664.13 90

GPX-ECME 10000 10000 0 2735.57 2737.46 -1530.06 90

GDBT 10000 10000 0 2773.56 2782.01 -1597.34 90

AA1 18 18.06 2.30 5.66 5.63 -1200.41 0

Table 4: Results from the madelon simulation study. Ten different weighted log-likelihood
functions were tested using 10 different sets of exponentially distributed weights, and, for
each set of weights, each method was run for 9 different choices of a penalty parameter.
Methods shown include coordinate descent with EM or Newton-Raphson (NR) weights,
proximal gradient descent (PGD), proximal gradient descent with backtracking (PGDBT),
and order-1 Anderson acceleration(AA1). For each method, the number of simulation runs
(out of 90 simulation runs in total) where the method did not converge is also reported.

45

	1 Introduction
	2 Review of Pólya-Gamma Data Augmentation for Logistic Regression
	3 A Parameter-Expanded ECME Algorithm for Logistic Regression
	3.1 Review of Parameter-Expanded EM and ECME Algorithms
	3.2 A Parameter-Expanded ECME Algorithm for Logistic and Penalized Logistic Regression
	3.3 Monotone acceleration of EM via order-1 Anderson acceleration
	3.4 Rate of Convergence of EM and PX-ECME for Logistic Regression

	4 A Generalized PX-ECME Algorithm for Logistic Regression
	4.1 Description of the Aproach
	4.2 Connections to Proximal Gradient Descent
	4.3 Connection to an MM algorithm for Logistic Regression

	5 PX-ECME and Coordinate Descent
	6 Simulations
	6.1 A Weighted Logistic Regression Example
	6.2 The Kyphosis Data
	6.3 Simulated Outcomes with Autocorrelated Covariates
	6.4 The Madelon Data

	7 Discussion
	A A PX-ECME algorithm with Missing Covariates
	B Proof of Proposition 1 and Theorem 1
	C PX-ECME and Coordinate Descent

