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Abstract

We propose a method of simultaneously calibrating the radial distortion function of a camera and

the other internal calibration parameters. The method relies on the use of a planar (or alternatively

non-planar) calibration grid, which is captured in several images. In this way, the determination of

the radial distortion is an easy add-on to the popular calibration method proposed by Zhang [24].

The method is entirely non-iterative, and hence is extremely rapid and immune from the problem

of local minima.

Our method determines the radial distortion in a parameter-free way, not relying on any par-

ticular radial distortion model. This makes it applicable to a large range of cameras from narrow-

angle to fish-eye lenses. The method also computes the centre of radial distortion, which we argue

is important in obtaining optimal results. Experiments show that this point may be significantly

displaced from the centre of the image, or the principal point of the camera.

1 Introduction

Radial distortion is a significant problem in the analysis of digital images. Although this problem

was widely studied by photogrammetrists, striving for extreme accuracy, it has been largely ignored

in the extensive literature of Structure and Motion of the past decade or so. (Less than 5 pages are

devoted to this topic in [12].) Almost exclusively, methods have involved iterative techniques such

as bundle-adjustment.

At the same time, several different camera models have been proposed for different types of

cameras. The most popular radial distortion model is the even-order polynomial model that models

radial distortion as scaling by a factor 1 + κ1r
2 + κ2r

4 + . . ..

Different papers suggest the alternatives of multiplying or dividing by this factor. The idea of

using only even order terms is questionable at best, and in any case, such a model does not hold for

fish-eye lenses where the distortion becomes infinite towards the periphery, and hence can not be

accurately modelled by a polynomial. Iterative optimization techniques can (in theory) handle any

parametrized model, but issues of convergence, initialization and overfitting can be troublesome.

Parametrized distortion curves may not extrapolate well. In addition, by building the model into

the bundle-adjustment problem, one can not take advantage of more sophisticated techniques of

polynomial or function approximation (see [1]).

In this paper we prefer to ignore the issue of choosing any particular radial distortion model, by

adopting a model-free approach. The only assumption we make on the radial distortion function
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is that it is monotonic. Despite this, it is possible to determine the radial distortion curve. This

way, the problem of fitting a parametrized function model (if required) is separated out from the

estimation of the distortion curve, and makes our method applicable to all (or at least most) lenses.

Iterative optimization methods can be troublesome, due to lack of convergence, choosing an

initial estimate, and determining a stopping criterion. The advantage of our algorithm is that it is

entirely non-iterative. This makes it fast and immune from these problems of iterative techniques.

Sometimes, the cost of using a non-iterative technique is that it can minimize some arbitrary cost

function unrelated to the noise model. Thus, they can be very sensitive to noise. On the other

hand, the linear models that we use are closely associated with the optimal model. Although

iterative refinement gives some improvement, it is minimal.

Another feature of our method that distinguishes it from most of the computer-vision ap-

proaches to radial distortion is that we also compute the centre of distortion.

It is common in the literature to assume that the centre of distortion e is known, usually at

the centre of the image. This is not a safe assumption in general. The centre of distortion can

be displaced from the image centre by many factors, such as offset of the lens centre from the

CCD centre, slight tilt of the sensor plane with respect to the lens, misalignment of individual

components of a compound lens and cropping of the image. In cheap consumer cameras, available

at a cost of a few hundred dollars, it should not be assumed that the optics of the camera are

accurate, since these effects make little difference to subjective image quality.

The importance of determining the centre of distortion has long been recognized in the pho-

togrammetry community. As enunciated in by Clarke et al [6]: “attention must be paid to even

small details, such as the location of the principal point1, if residuals are to be optimally mini-

mized.” They further state: “There will be an optimum location of this point as a result of correctly

modelling the distortion. It will not be possible to correct for [errors due to incorrect estimation

of the centre of distortion] by using the decentering distortion parameters to compensate [...]. Fur-

thermore, it will not be possible to correct for this error using the exterior orientation parameters

[...].”

By experimentation, we show that the usual assumption that the centre of distortion is at the

centre of the image is not valid.

The disadvantage of our method is that it requires a simple calibration grid. We briefly explore

the extension of our method to autocalibration methods that do not use a calibration grid. This is

indeed possible, and works with exact measurements, but our observation is that it is extremely

sensitive to noise.

1Clarke et al. use the term principal point to mean the centre of distortion.
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2 Prior work

The work on radial distortion removal is extensive. Photogrammetry methods usually rely on

known calibration points or structures (e.g., [3, 4, 7, 21]). Most often cited is the plum line tech-

nique of Brown ([4]) which carries out radial distortion correction by straightening the images of

straight lines in the world. Tsai [21] uses corners of regularly spaced boxes of known dimensions

for full camera calibration, including radial distortion, whereas Faig [7] requires that the points

used be coplanar. Wei and Ma [22] use projective invariants to recover radial distortion coeffi-

cients.

Becker and Bove [2] map straight lines onto a unit sphere and find both radial and decentering

coefficients that minimize the vanishing point dispersion. (The user has to manually group parallel

lines together – each group should have a unique vanishing point.) Swaminathan and Nayar [17]

proposed a user-guided self-calibration approach. The distortion parameters are computed from

user-selected points along projections of straight lines in the image. Stein [16] describes a more

flexible approach, requiring only point correspondences between multiple views. He uses epipolar

and trilinear constraints, and searches for radial distortion parameters that minimize the errors in

these constraints.

Interestingly, there is much less work published on fish-eye lens calibration. Most approaches

use an ideal projection model (e.g., [5]) or use the distortion model meant for rectilinear lenses

by adding more nonlinear terms (e.g., [15]). Xiong and Turkowski [23] use a cubic polynomial

to represent the mapping between the latitude angle and polar distance for fish-eye lenses. They

use multiple overlapping images to extract these coefficients (minimizing brightness difference in

the overlap areas). Strictly speaking, fish-eye lenses are non-central, i.e., they do not have a single

point of projection. However, the deviation of light rays from an effective single point of projection

is slight (see, for example, [14]), and we make the central assumption for fish-eye lenses in our

work. In addition, because of the wide field of view of fish-eye lenses, we characterize radial

distortion in terms of angles rather than pixels.

There has recently been a renewed interest in estimating radial distortion, based on techniques

of projective geometry. By incorporating one lens distortion parameter into the epipolar constraint

involving the fundamental matrix, Fitzgibbon [8] simultaneously solves for both. He casts the

problem as a quadratic-eigenvalue problem, which can then be easily solved using a numerical

library. This technique was later generalized to omnidirectional cameras [13]. Independently of

our work, Thirthala and Pollefeys [20] proposed a linear technique to recover radial distortion

using multifocal tensors. They assume the centre of distortion is known (at the image centre), and
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use the observation that the vectors between the distorted and undistorted points pass through a

common point to reduce the problem to estimating a 2D trifocal tensor. They extended this work

to non-planar scenes using a quadrifocal tensor in [19]. Most recently Tardif and Sturm ([18])

have considered self-calibration of a general circularly symmetric calibration model, including the

estimation of radial distortion, using geometric techniques.

3 Overview

Our main technique for radial distortion correction involves the use of a calibration pattern, on

which are marked points with known locations. The pattern may be planar or 3-dimensional,

though in practical applications, a planar calibration pattern is perhaps simpler to use, and works

just as well. Points on a planar calibration pattern would ideally be mapped to undistorted points

in the image under perspective camera geometry by a 2D homography. In reality, in the presence

of radial distortion we do not observe these ideal, or undistorted points. Nevertheless, the essence

of radial distortion calibration is to compute this ideal homography, thereby correcting the radial

distortion.

A sequence of images of the calibration pattern are taken, in different orientations. The method

can work with a single image, though best results are obtained with several images (10 images

would be a reasonable number). This acquisition of calibration images is similar to the way it is

done in the popular method of Zhang ([24]) for camera calibration. Once the images are acquired,

the next step is to identify and find the coordinates of the known calibration points in the images.

It is not necessary to find all such points. To simplify this procedure, we prefer to use a calibration

grid with a checker-board pattern, since it is relatively easy to extract the vertices automatically

from the images. However, any other pattern may be used.

Our procedure for computing the radial distortion of the camera is based on two main ideas.

The first idea is to exploit the analogy between the radial displacement of points under radial

distortion, and the motion of points away from a focus of expansion when a camera moves towards

a scene. By using techniques originally applied to two-view structure and motion (specifically, the

fundamental matrix), we are able to compute the centre of radial distortion, and also, up to three

remaining degrees of ambiguity, the homographies mapping the points on the calibration grid to

their corresponding undistorted or ideal points in the image.

The second idea is that the remaining ambiguity in these homographies may be resolved by

enforcing two simple constraints: the distortion is circularly symmetric, meaning that the amount

of distortion is dependent only on a point’s distance from the centre of distortion; and that the
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correspondence between the undistorted radius of a point and its distorted radius is a monotonic

function – in other words the order of points in terms of their distance from the centre of dis-

tortion is not changed by the radial distortion. With these two simple assumptions, it is possible

to remove the ambiguity and compute the imaging homographies uniquely. In fact, with a slight

simplification, this may be done by a linear algorithm.

Once the image homographies have been computed, we are in possession of both undistorted

and the distorted points. If many images are used, then we have a large number of such pairs. A

scatter plot of the undistorted radius versus the distorted radius shows the form of the calibration

curve. This curve may then be used to correct any other images captured with the same camera.

The procedure outlined computes the homographies relating the calibration grid and the image.

This allows us now to use the calibration procedure of Zhang ([24]) for calibration of a projective

(pinhole) camera. At least three images are required for this. Thus, both the radial distortion and

the internal camera calibration parameters are computed from the same set of calibration images.

Using a 3D calibration pattern. Much the same procedure applies in the case where a 3D

calibration pattern is used. Instead of image homographies, we are concerned with pinhole camera

projection. The role of the fundamental matrix in the above description is taken by an analogous

3 × 4 matrix with similar properties.

Methods not using a calibration grid. The use of the calibration grid allows for the greatest

degree of accuracy. However, in some instances it might be convenient to do without a calibration

grid at all. This is a natural extension, analogous to the way ordinary calibration of a camera may be

performed using a calibration grid, or alternatively by auto-calibration using only correspondences

between multiple images. Some autocalibration methods involve the use of multi-view tensors

([12]) that relate corresponding points in several views. Similarly, our methods for calibration-

grid-free radial distortion correction involve the use of multi-view tensors.

We briefly describe methods for computing radial distortion using images of a planar or non-

planar scene using multi-view tensors. These involve the use of a trifocal 3 × 3 × 3 tensor for

the planar scene case, or a similar quadrifocal tensor for the case of a general scene. In these

methods, we also as before compute the centre of distortion of the camera. Although these methods

are correct in theory, it has been our observation that they are sensitive even to extremely small

amounts of noise, and are not suited for practical use. For this reason, we do not carry out extensive

testing.

The situation is much more favourable if we assume that the centre of distortion is known. In
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Figure 1: Overview of techniques for radial distortion correction.

this case, the tensors involved become much smaller. In the planar scene case, instead of a trifocal

tensors of size 3×3×3 a tensor of size 2×2×2 may be used. For the general case, the quadrifocal

tensor decreases from size 3× 3× 3× 3 to 2× 2× 2× 2. Radial distortion correction with known

centre of distortion using these tensors has been investigated thoroughly in independent work by

Thirthala and Pollefeys ([20, 19]), and for that reason will not be considered further in this paper.

The range of techniques covered in this article is shown in Fig 1. The emphasis is on techniques

associated with the use of a planar calibration grid. The method is simple, robust, has a linear

solution, and is an easy add-on to the popular calibration method of Zhang [24]. The other methods

are included for completeness, but are not likely to be as useful as this preferred method.

4 The radial distortion model

In our model for radial distortion correction, we ignore decentering distortion, which is commonly

due to lack of alignment of different lens elements. This can lead to non-radial (tangential) com-

ponents of lens distortion. We assume that distortion is radial. The imaging process therefore is

made up of several steps:

1. Projection. Points are projected onto the image plane by the ideal camera, via the mapping

x̃u = [I|0]X,

where X is expressed in the camera coordinate frame.

2. Radial distortion. The distorted point x̃d is given by

x̃d⊤ = ẽ + λ(x̃u − ẽ),
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where λ represents the distortion ratio, and ẽ is the centre of distortion. The distortion ratio

λ depends on the point x̃u, and might perhaps more properly be written as λ(x̃u).

3. Pixel sampling. The details of the pixel coordinate system are encapsulated in the calibra-

tion matrix K. The point x̃d is mapped to the pixel image point

xd = Kx̃d .

In this formulation, the tilde in x̃u, x̃d and ẽ indicates that it is measured in geometric focal

length units. We may also define xu = Kx̃u and e = Kẽu, to get the undistorted point and centre

of distortion in pixel coordinates. Since K represents an affine transformation of coordinates, and

affine transformation preserve length ratios along straight lines, we see that the pixel coordinates

are related by the equation

xd = e + λ(xu − e),

with the same λ as before.

Ambiguity. There is an ambiguity between the degree of radial distortion, represented by λ

and the magnification factor (focal length parameter) of the calibration matrix K. In particular, if

λ is replaced by αλ (where α is constant for all points) and K is multiplied on the right by the

diagonal matrix diag(α, α, 1), then the resulting mapping from world to pixel coordinates in the

image is unchanged. A reasonable and usual way of resolving this ambiguity is to choose the radial

distortion ratio λ(x̃u) such that to first order, it is equal to unity near the centre of distortion. Thus,

to first order near the centre of distortion, we may write xd = xu.

In this paper, we will not always enforce this condition during the computations, but the esti-

mated radial distortion function λ and calibration matrix K can be corrected at the end to conform

to this convention.

Radial symmetry. Since lenses are generally ground to be circularly symmetric, without de-

centering distortion, it may be assumed that the distortion factor λ is a function only of the radius

r̃ = ||x̃u − ẽ||. It is often assumed that it may be expressed as a function of the “pixel radius”,

r = ||xu − e||. However, this is not the same thing unless the image has square pixels, in which

case K represents a scaled Euclidean coordinate transform. At one point in the description of the

algorithm it will be assumed that the radial distortion factor λ is circularly symmetric. Later on,

it will be pointed out that there is a practical way in which non-square pixels can be dealt with

effectively.
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5 Distortion Estimation Using a Planar Pattern

We now proceed to describe our method for estimating the radial distortion curve.

5.1 Finding the distortion centre

Throughout this paper our major assumption relating to radial distortion is that a point in an

image is moved radially from its undistorted point xu to its distorted point xd. Thus, the distortion

is referenced to a centre of radial distortion, e, according to a relationship

xd = e + λ(xu − e),

where

xu = K [I | 0] E X = P X ,

with E being a 3D Euclidean coordinate transformation that maps the point X into the camera

coordinate system.

Our simplest method for estimating the centre of radial distortion involves the use of a cali-

bration rig, consisting of a plane with several distinguishable points. The positions of the points

are assumed known in a Euclidean coordinate frame on the plane. A suitable such rig would be a

checkerboard pattern, the vertices of the squares forming our set of points; it is not necessary to

recognize a distinguished vertex, since any vertex can serve as the coordinate origin.

We give an intuitive description of our idea before writing the mathematical formalities. The

pattern of known points is projected into the image by an ideal non-distorted camera, and then the

points are each moved from their “initial” to their “final” position by expansion away from (or

towards) a centre of distortion. We can compare this with the motion of points seen by a camera

moving forwards towards a scene. In this case, the points also undergo a radial expansion, and

the centre of expansion is known as the centre of expansion, or more generally the epipole. It is

well known how to find the epipole – we compute the fundamental matrix ([12]). The situation

is entirely analogous here, and we can compute the centre of radial distortion, by computing the

fundamental matrix relating the known coordinates of points on our calibration pattern, and the

measured positions of the points in the distorted image. The centre of radial distortion is simply

the epipole computed from this fundamental matrix.

Let xc
i be points with known coordinates on a planar calibration grid, and xd

i be the corre-

sponding points in the distorted image. The calibration pattern points xc
i and the undistorted image
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points xu
i (in pixel coordinates) are related by a homography H, according to xu

i = Hxc
i . Note that

the superscripts u, d and c are used to distinguish the undistorted, distorted and calibration points,

and the subscript i runs over all points.

The points xu
i are next distorted radially away from the centre of distortion e, to give

xd
i = e + λi(x

u
i − e) .

Note that the distortion factor λi is typically different for each point. We multiply this expression

on the left by [e]× (the skew-symmetric 3 × 3 matrix representing the cross product), resulting

in [e]×xd
i = λi[e]×xu

i , where the terms e disappear when multiplied by [e]×. However, since

xu
i = Hxc

i , we have

[e]×xd
i = λi[e]×Hx

c
i .

Finally, multiplying on the right by xd
i
⊤, and observing that xd

i
⊤[e]×xd

i = 0, because [e]× is skew-

symmetric, we obtain

0 = λix
d
i
⊤([e]×H)x

c
i .

Writing F = [e]×H, we have the usual fundamental matrix relation xd
i
⊤
Fxc

i = 0. The matrix F

may be called the fundamental matrix for radial distortion. It F may be computed in the usual way

([12]) from several point correspondences, and the centre of radial distortion can be extracted as

the left epipole.

In the case where there is no radial distortion at all, the above computation of the fundamental

matrix is unstable, and the estimated value of e is essentially arbitrary and meaningless. If there is

no radial distortion, then it does not make much sense to talk about a centre of distortion. Without

radial distortion, the distortion factor λi will equal unity for each point, and the distortion equation

xd
i = e + λi(x

u
i − e) reduces to xd

i = xu
i independent of e. This degenerate situation is easily

detected during the computation of the fundamental matrix. In such a case, there will exist a 2-

parameter family of possible fundamental matrices consistent with the data ([12]). An example of

this situation is given in the results section.

5.2 Multiview methods

Instead of using a single image for computation of the distortion centre, we may consider how

to take advantage of several views of a calibration grid. We consider all the points in all images

indexed by a single index i, and denote by k(i) the image that the i-th point belongs to. The

fundamental equation then becomes

xd
i
⊤([e]×Hk(i))x

c
i = xd

i
⊤
Fk(i)x

c
i = 0 .
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From this, one can compute each of the matrices Fk individually.

Next, one wished to find the vector e as the simultaneous left null-space generator of all the Fk.

Since the matrices Fk are computed separately, there will not be a single vector satisfying e⊤
Fk = 0

for all k. Instead, we find the least-squares solution to the set of equations e⊤
Fk = 0, where this

is solved using all Fk at once. For each value of k indexing all the available images we obtain a

set of 3 equations of the form e⊤fkj = 0. Here j = 1, . . . , 3 and fkj is the j-th column of Fk. The

least-squares solution to the set of all such equations gives an estimate of the centre of distortion.

5.3 Mapping Calibration Grid to Image Plane

Next, we wish to find the homographies Hk mapping the calibration grid to the image plane. We

can solve for the homography matrix Hk by factoring the fundamental matrix as Fk = [e]×Hk.

Note however that this factorization is not unique, because [e]× is singular. In addition, an exact

factorization is not possible unless the vector e is in the left null-space of Fk.

The result of the computation of e in the previous section will be a vector e that does not

exactly satisfy e⊤
Fk for any k. It is possible to correct each Fk by projecting onto the subspace

perpendicular to e⊤. However, this a posteriori correction of each of the matrices Fk is not ideal.

A preferable method is to repeat the computation of each Fk with known epipole. In doing this, it

is convenient to change the image coordinates first so that e is the coordinate origin (0, 0, 1)⊤ (in

homogeneous coordinates). We carry out all subsequent computations in this coordinate system

and make an appropriate correction at the end.

Thus, we may compute Fk and Hk directly by solving the equations

xd
i
⊤
Fkx

c
i = xd

i
⊤([e]×Hk)x

c
i = 0 (1)

individually for each image k using points belonging to that image. Note that if e = (0, 0, 1)⊤, then

the final row of Fk is zero, so we only solve for the 6 other entries of Fk. Then, the homography Hk

can be written down directly from Fk. Namely, Hk = [f2
⊤;−f1

⊤; 0], where the semicolon means

that we stack the rows f i
⊤ of F on top of each other.

This technique of computing epipoles first and subsequently reverting to the original point

correspondences to solve for the projection matrices was used in [12, 11] for computing the trifocal

tensor. A further refinement described in [11] is to iterate over the value of the epipole e to

minimize the residual corresponding to the solution of the system (1).

Each Hk is not uniquely defined by this method, since it computes only the first two rows of each

Hk. In fact the last row of Hk may be arbitrary. Generally, in factoring F = [e]×H, we may replace
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H by Hk + ev⊤ for any arbitrary v without changing the form of the equation. This is because ev⊤

cancels with [e]×. Note that since e = (0, 0, 1)⊤, only the third row of ev⊤ is non-zero, so all the

ambiguity of Hk occurs in the third row.

We now turn to finding the final row of each homography Hk. Various methods of determining

the unknown vector v are available. Essentially this problem is solved in [20] by considering

a specific polynomial parametrization of the radial-distortion curve. We prefer a parameter-free

method of doing this based on two assumptions:

1. The distortion is circularly symmetric. Thus, the radial distortion of an image point depends

only on its distance from the centre of distortion.

2. An ordering, or monotonicity condition: the radial distance of points from the radial centre

after distortion is a monotonic function of their distance before distortion.

The first condition will not hold in general unless the pixels are square. However, it turns out in

practice not to be critical to the success of our method, which works well even with non-square

pixels, and in fact the aspect ratio of the pixels falls naturally out of the computation. The second

condition is an essential property of any camera, and indeed it would be a strange camera that

did not satisfy this condition, since it would mean that the correspondence between distorted and

undistorted image points was not one-to-one. Otherwise stated, some points in the scene would

appear at more than one point in the image.

We consider a single homography Hk and temporarily drop the subscript k. Once we know

the centre of distortion of the camera, we may change coordinates in the image so that the centre

of distortion is the origin of pixel coordinates. In this case, e = (0, 0, 1)⊤ in homogeneous co-

ordinates, and so the ambiguity in H + ev⊤ consists only in the last row of H. Let Ĥ consist of

the first two rows of H so that H = [Ĥ;v⊤], (this notation means that v⊤ is the final row of H). In

the following discussion, xd and xu are intended to represent 2-vectors, the dehomogenized vector

representation of the points. On the other hand, xc represents a homogeneous 3-vector representa-

tion of the calibration point. Now, defining (x̂u, ŷu)⊤ = x̂u = Ĥxc, we see that Hxc = [Ĥxc;v⊤xc],

and dehomogenizing, we obtain

xu = (x̂u, ŷu)/(v⊤xc) = Ĥxc/(v⊤xc) .

Thus the effect of v⊤ is to stretch the point x̂u by the factor 1/(v⊤xc), which depends on the point

xc.
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We now compute the radii of the distorted and undistorted points, setting r d = ‖xd‖ and

r̂u = ‖x̂u‖, and finally ru = ‖x̂u/(v⊤xc)‖ = r̂u/|v⊤xc|. The notation ‖ · ‖ is used here to mean

the radius of the point (its distance from the centre of distortion).

These are the positive radii of the points. However, we need to consider a signed radius ru,

whereby the positive radial direction for a point xu is oriented towards the distorted point xd.

Consequently, we define the signed radius r̂u to be positive or negative depending on whether

xd⊤x̂
u is positive or negative. That is,

r̂u = sign(xd⊤x̂u)‖x̂u‖

and

ru = r̂u/(v⊤xc)

where the absolute value no longer appears in the denominator. This radius ru may be positive

or negative, and is positive if the radial vector towards xu is in the same direction as the distorted

point xd. If v⊤ is correctly chosen, both the distorted and undistorted points will be in the same

direction, so ru will be positive.

5.4 The monotonicity assumption for radial distortion function

If we were able to select the correct value of the vector v, then the points (rd, ru) would lie along

(or with noise, close to) a monotonic curve, as illustrated in the scatter plot of Fig 8. For any

other (incorrect) value of v, the scatter plot would be irregularly scattered, because of the different

scaling of each value ru according to v⊤xc. It is our goal to find the value of v that reduces the

scatter plot to a monotonic smooth curve. Perhaps surprisingly, this can be accomplished well by

simple least-squares techniques.

We begin by arranging the values of rd in ascending order, and indexing them in order by an

index i: we write rd
i ; i = 1, . . . , N . Note that the ordering of the radii rd

i is done only once. The

corresponding value of ru
i = r̂u

i /(v⊤xc) may be thought of as a discrete function of the values rd
i .

We define the total squared variation of this function to be

V =
N−1
∑

i=1

(ru
i+1 − ru

i )2 .

If the values of ru
i are a monotonic function of rd

i , then the total squared variation of this

function will be relatively small, compared with that of an irregular function. In fact, it is easily

seen that for a monotonic function, V < (ru
N − ru

1 )2, and in fact if the values of ru
i are evenly
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scattered between ru
1 and ru

N , then V �→ 0 as N �→ ∞. In measurements involving a large number

of points, the radii will in general be well scattered and the value of the total squared variation will

be small, although we do not expect it to vanish completely. Our method therefore is to minimize

the total squared variation V as a function of the parameter vector v.

The above discussion extends easily to the case of multiple images. In this case, we consider

the radii of the points in all images together and order them in one single list. The undistorted

radius ru is equal to r̂u/(vk
⊤xc), where k is an index representing the image number. For each

image k there will be a different homography Hk, and a different corresponding vector vk. The

total square variation must be minimized over the choice of all vk.

5.5 Minimizing total squared variation

We wish to minimize

N−1
∑

i=1

(ru
i+1 − ru

i )2 =
N−1
∑

i=1

(

r̂u
i+1

vk(i+1)
⊤xc

i+1

−
r̂u
i

vk(i)
⊤xc

i

)2

, (2)

where k(i) represents the image number corresponding to the i-th point. As it stands, this is not a

linear least-squares problem. However, multiplying each term by (vk(i+1)
⊤xc

i+1)
2(vk(i)

⊤xc
i)

2 leads

to
N−1
∑

i=1

(

r̂u
i+1vk(i)

⊤xc
i − r̂u

i vk(i+1)
⊤xc

i+1

)2
, (3)

which must be minimized over all vk. Note that apart from the values of vk, all other quantities

appearing in this expression are known. The minimization problem is one of minimizing the

squared norm of the (N − 1)-dimensional vector with entries

r̂u
i+1vk(i)

⊤xc
i − r̂u

i vk(i+1)
⊤xc

i , (4)

which are linear in the entries of the vectors vk.

Evidently, as it stands, the norm of the above vector is minimized by setting all v k to zero. In

order to avoid this, we may impose the supplementary condition that
∑

k ‖vk‖
2 = 1. As discussed

in section 4, there is an ambiguity between the focal length of the camera (or equivalently in

this case the scale of the homography) and a multiplicative factor applied to the radial distortion

function that allows us to enforce such a condition.

Now, we may write the vector with entries given in (4) as AV, where V is a vector containing

all the entries of the vk, and A is the matrix of coefficients, which may be constructed easily from

the known values of all the r̂u
i and xc

i . This problem can be solved by minimizing ‖AV‖ subject
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to the condition ‖V‖ = 1. An alternative (which we prefer) is to impose the condition on vk(N)

that ensures that rd
N = ru

N = r̂u
N/(vk(N)

⊤xc
N), namely that the distorted and undistorted radii are

equal for the point most distant from the centre of distortion. This gives a linear equality condition

on vk(N), and leads to a simple linear least-squares estimation problem. (Note that we are free to

make this assumption that rd
N = ru

N because of the ambiguity between the scale of the distortion

and the overall scale represented by the calibration matrix, specifically the focal length.)

Note that we linearized the problem by multiplication by (vk(i+1)
⊤xc

i+1)
2(vk(i)

⊤xc
i)

2, which

results in an unequal weighting of the individual equations, and means that we do not exactly min-

imize the total squared variance of the distortion curve. However, this effect is quite benign, since

the values of vk(i)
⊤xc

i represent the depth of the calibration point in the direction of the camera’s

principal ray. Under the assumption that all these depths are approximately equal, all the equa-

tions are weighted approximately equally. The advantage is that it changes a non-linear estimation

problem into a linear one. When testing this algorithm, we followed the linear estimation step by

non-linear refinement to minimize the true total squared variance, as well as various other geomet-

rically derived conditions designed to lead to a smooth monotonic distortion curve. Suffice it to

say that the improvements achieved were minimal.2

5.6 Local linearity of radial distortion

An alternative method for enforcing the monotonicity constraint on the radial-distortion function

makes use of a different criterion than the total squared-variance criterion discussed above.

Instead, we use an assumption of local linearity, which means that the radial distortion curve

(see Fig 8 for an example) is locally linear, at least on the scale of the distance between consecutive

radial samples. As seen in the graph, typically we have a very large number of such samples, and

the distance between them (radially) is quite small. Thus, an assumption of linearity is easily

justifiable.

Let rd
i−1, rd

i and rd
i+1 be three consecutive values for the distorted radial distance from the

centre of distortion, ordered by their magnitude as before. There exists a constant αi such that

rd
i = (1−αi)r

d
i−1 +αir

d
i+1. These values αi may be computed in advance. Under an assumption of

linearity, the undistorted radii satisfy a similar relationship: ru
i = (1−αi)r

u
i−1 +αir

u
i+1. Therefore,

we define an error term

ei = (1 − αi)r
u
i−1 − ru

i + αir
u
i+1 (5)

2To be precise, non-linear refinement caused less than 1.2% decrease in residual in the example of Fig 3, and no

improvement in the final result.
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= (1 − αi)
r̂u
i−1

vk(i−1)
⊤xc

i−1

−
r̂u
i

vk(i)
⊤xc

i

+ αi

r̂u
i+1

vk(i+1)
⊤xc

i+1

for i = 2, . . . , N − 1 .

Since three potentially different terms appear in the denominator of this expression, there is no

obvious way in which this can be made into a linear function of the vk. Nevertheless, it is possi-

ble to apply iterative minimization techniques (such as Levenberg-Marquardt) to this problem, to

minimize the cost over all choices of the vectors vk.

Note that it is not vitally essential that all the values of the rd
i be precisely ordered during this

minimization. Approximate ordering is sufficient for an assumption of local linearity to be valid.

During non-linear iterative optimization of this function, the value (and hence the ordering) of a

radial distance value rd
k does not change. However, it is possible to include the coordinates of

the radial distortion centre as a parameter in a full bundle adjustment to refine the final solution.

In this case, the radial distances change, and so does their order. Note that the radial distance

changes most significantly for points near the centre of distortion; however for these points, the

radial distortion function is most nearly linear, so the local linearity assumption is still valid during

movement of the centre of distortion.

5.7 Estimation of the radial distortion function

In this paper we deliberately do not consider parametrization of the distortion function. This dis-

tortion function is often modelled as rd = ru(1 + κ1r
u2 + κ2r

u4 + ...). Such a distortion function

does not work well for large distortion such as those given by fish-eye lenses. It is a strength of our

method that it does not rely on any particular distortion model, and it has been tested successfully

on fish-eye, wide angle, and narrow angle lenses.

Of course, ultimately the curve must be approximated by some technique to be useful for im-

age correction. There is a large literature on the topic of function approximation (see [1] for a

good summary). Separating out the problem of determination of a parametrized approximation

of the correction curve allows more sophisticated techniques and algorithms to be used. These

include approximation of the distortion function by Chebyshev polynomials, or the Remes mini-

max algorithm. Direct estimation of the polynomial coefficient (κi) or use of a Taylor expansion is

ill-conditioned or suboptimal [1]. The method we preferred for the examples given later involved

approximation of the distortion function expressed in terms of angular distortion of points on a

spherical rather than planar retina, though that is not a critical choice, except for very wide angle

lenses. An alternative is to compute a parameter-free model for the distortion curve by computing

the radial displacement at each radial value as a sliding median of local measurements.
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5.8 Camera Calibration

Estimation of the vectors vk allows us to complete the homography matrices Hk. From this, we can

compute the true undistorted projection of each of the calibration points xc into the image. Given

these homographies for at least three images, we are able to compute the calibration matrix of the

undistorted cameras, using the algorithm of [24].

Specifically, knowing the homographies Hk, we may project the images of the circular points

[12], namely (1,±i, 0) into the image plane. The images of the circular points lie on the image

of the the absolute conic (IAC), denoted by ω = (KK⊤)−1. Since the IAC is a conic, it may

be estimated using 5 or more points, hence three or more images. Although these points are

complex points, satisfying x⊤ωx = 0, separation of real and imaginary parts gives two linear

equations in the 5 different entries of the symmetric 3 × 3 matrix ω. The equations take the

form h1
⊤ωh1 = h2

⊤ωh2 and h1
⊤ωh2 = 0, where h1 and h2 are the first two columns of the

homography matrix Hk. Finally, the calibration matrix is computed by solving ω = (KK⊤)−1 by

inversion and Cholesky factorization.

Due to the ambiguity of the distortion function and the focal length, it is customary to scale the

distortion function so that undistorted and distorted points are the same in the limit for small radii.

This is what we do for the reported results.

5.9 Non-square pixels

If the pixels are not square, then distortion is still radial, but the radial distortion function is not

symmetric.

We are faced with a chicken-and-egg situation: if we knew the aspect ratio of the pixels, then

we could correct for it before trying to estimate the distortion curve. However, we can not estimate

the camera calibration without first computing the homographies, which is tied to computing the

distortion curve.

Despite this, we found that by simply proceeding with the algorithm as described, estimation of

the homographies and distortion curve, followed by internal calibration led to an accurate estimate

of the aspect ratio of the pixels. This would allow us to correct for the aspect ratio, and recompute

the distortion curve. The explanation for this is that even with errors in the expansion ratio due

to non-square pixels, the distortion curve has the correct shape, and led to the correct value of the

vk. The effect of assuming square pixels when they in fact were not leads to a slight broadening

of the distortion curve, but not a change to its shape. Note that the assumption of square pixels

is only required in the phase of the algorithm involving computation of the last row of each Hk.
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Computation of the centre of distortion, and the first two rows of each Hk is independent of this

assumption.

5.10 Bundle adjustment

The algorithm we have described is entirely non-iterative, and is consequently very rapid. We do

not suggest that an iterative refinement of the results would not improve accuracy. However, this

method provides a quick and not-so-dirty estimate of the camera calibration and radial distortion.

There are many places where iterative methods could be used along the way.

1. In estimation of the fundamental matrices (we used the simple normalized 8-point algo-

rithm). For the multiview case, the condition that all the epipoles are the same could be

used.

2. In estimation of the vectors vk completing the homographies. We tried iterative techniques

that minimized the total squared variance exactly, and also the method that tends to enforce

local linearity using the cost function (5). The improvement was quite minor.

3. In the computation of the calibration matrix K.

4. For a final bundle adjustment, we should minimize the reprojection error over the parameters

of motion (pose of each camera), the calibration matrix and some description of the distor-

tion curves. This would surely give some small decrease in reprojection error. However,

parametrizing the distortion curve explicitly and non-linear estimation can lead to overfit-

ting. Our linear results obtained an RMS reprojection error of 0.4 pixels, which is close to

the minimum one might expect.

6 Results for the Planar Calibration Grid

In this section, we present distortion removal results for a known planar calibration grid.

The calibration pattern is a checkerboard with black-and-white squares (left image of Fig 2).

The corners of the checkerboard are extracted by finding edges and computing intersection points;

sample results are shown on the right of Fig 2. We used 19 images of the checkerboard taken at

various poses.

After we applied our technique as described in Sections 5.1 – 5.8, we obtain the graph of radial

shifts as a function of radial position as shown in Fig 3.
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Figure 2: An image of a checkerboard (left) and the detected grid (right).
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Figure 3: Graph of radial distortion r
u − r

d vs. radial position r
d using corner points from 19 checkboard

images. The number labels are all in pixels; the image resolution is 640 × 480. In this case, we achieved an

RMS error of 0.4 pixels in modelling the measured image points.

In Fig 4 is shown the distribution of the estimated distortion centre in three cases: each image

used separately, 5 images randomly chosen from 19, and 10 randomly chosen images. The distor-

tion centre estimated using all 19 images is (306.7, 260.5), and the image centre is (320, 240). The

principal point distributions extracted using the same experiments are shown in Fig 5. (The princi-

pal point, unrelated to the centre of distortion, is the foot of the perpendicular from the projection

centre to the image plane.) The principal point estimated using all 19 images is (312.0, 244.8).

Note that while the estimated principal point is close to the image centre, the estimated distortion

centre is not.

We used the estimated image noise (based on RMS error fit of σ = 0.4) and performed Monte

Carlo simulation with 1000 random trials. The results are shown in Fig 6. Compare the locations

of the estimated distributions for the centre of distortion and principal point, and the image centre.
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Figure 4: Distributions of distortion centre (from left to right): using single image separately (19 inputs),

using random sets of 5 images chosen from 19 (5 of 19), using random sets of 10 images (10 of 19). Note

the different scales in the graphs. The number labels are all in pixels; the image resolution is 640 × 480.
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Figure 5: Distributions of principal point (from left to right): using random sets of 5 images (5 of 19), using

random sets of 10 images (10 of 19). Note the different scales in the graphs. The number labels are all in

pixels; the image resolution is 640 × 480.
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Figure 6: Monte Carlo simulation (1000 trials with σ = 0.4). The number labels are all in pixels; the image

resolution is 640 × 480.

The mean for the distortion centre is (304.3, 259.2) with standard deviation of (0.87, 0.60). The

mean for the principal point is (310.6, 244.6) with standard deviation of (0.58, 2.26).

We applied the computed radial distortion mapping to a number of different input images for

correction. Two results are shown in Fig 7.

In another set of experiments, we applied our planar calibration technique on three additional

cameras. These three cameras are the same type (PointGrey Fleas, resolution of 1024 × 768),

use the same type of 4mm lens, and have the same settings. The results based on 10 images of the

checkerboard pattern are shown in Table 1. Notice the significant differences in the locations of the

estimated distortion centre, estimated principal point, and image centre. Notice also the significant

differences in the estimated distortion centre and principal point for the same type of cameras.

We also applied our technique to cameras with fish-eye lenses. The first camera has close to

180◦ field of view. A sample image of the checkerboard pattern (we use eight calibration images),

the extracted grid, and radial distortion results are shown in Fig 8. The image resolution is 1536×

1024, and the extracted distortion centre is (744.4, 488.2) and principal point is (767.5, 492.4)

(compared with the image centre (768, 512)). As can be seen, the corrected results look very

reasonable.

The second camera is fitted with a fish-eye lens with about 190◦
field of view. Here the image
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Figure 7: Two distortion removal results: inputs (left column) and corrected outputs (right column).

# cd cp c0

1 (574.4, 401.5) (555.6, 377.7) (512, 384)

2 (545.9, 394.5) (542.6, 396.6) (512, 384)

3 (577.8, 392.3) (574.4, 391.0) (512, 384)

Table 1: Comparison of results for three different cameras (same model and same type of 4mm lens). cd,

cp, and c0 are the distortion centre, principal point, and image centre, respectively. cd and cp were computed

based on ten images of the same checkerboard pattern at different poses.

resolution is only 640 × 480; in this case we manually picked the locations of corners (in three

calibration images) to within a pixel to limit the image errors. The extracted distortion centre is

(321.3, 267.2) and the recovered principal point is (346.4, 258.4), compared with the image centre

at (320, 240). Again our corrected result looks reasonable.

For fish-eye lenses that extend beyond 180◦, the undistorted radii are undefined on a planar
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Figure 8: Fisheye image experiment: an image of the checkerboard and extracted grid (top row), the radial

distortion curve (undistorted versus distorted angle in radians, top row, right), two originals (middle row),

and two radially corrected images (bottom row).
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Figure 9: Another fish-eye image experiment: two darkened images of a checkerboard and manually picked

points (top row), the radial distortion curve (undistorted versus distorted angle in radians, top row, right),

original and radially corrected images (bottom row). (Fish-eye images courtesy of Nick Barnes and Cedric

Pradalier.)

retina (since they become infinite). However, they are well defined on a spherical retina. It is still

possible to apply the linear algorithm for computing the distortion curve in this case, because of

the following observation. There is no problem at all with the phases of the algorithm involving

computation of the centre of distortion (section 5.1), or the estimation of the first two rows of the

homography matrices (section 5.3). There is an apparent difficulty with the definition of the total

squared variance in section 5.5, since some of the terms of (2) may approach infinity. However, in

estimating the final rows vk of the homography matrices by minimizing the total squared variance

using (2) it is not necessary to use all the points. In particular, one may omit points towards the

periphery of the image in carrying out this computation, thereby avoiding the problem of points

with infinite (or beyond-infinite) undistorted radii. In using the linearized cost function (3), the

problem of infinite terms disappears.
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No radial distortion. The previous examples were of cases where there was substantial radial

distortion. The question arises what happens if there is no radial distortion in the first place. As

pointed out previously, in this case the centre of radial distortion is not well defined. We suggested

a test based on the degrees of freedom for the fundamental matrix. Alternatively, a sanity check

can be used to check the value of e (if it is too far away from the image center, for example) and

the shape of the distortion curve (if it is all close to zero distortion with random noise) to decide on

the presence of distortion. In simulations, we obtain very unlikely values for e and virtually zero

distortions. In one typical run, we obtained e = (−593.9,−1576.4)T for a noiseless 640 × 480

image with 100 well-distributed points, and the amount of distortion was virtually zero. Here, the

best fit 4th order distortion polynomial was xu = xd(1 + 1.7 × 10−10|xd| − 1.3 × 10−13|xd|2 +

4.2 × 10−17|xd|3 − 5.1 × 10−21|xd|4).

7 Extensions of the basic idea

We describe several extensions to this calibration method, based on the general idea of using struc-

ture and motion techniques (similar to the use of the fundamental matrix above) to estimate radial

distortion. We have implemented all of these methods in some form, and verified their correctness.

7.1 Using a non-planar calibration grid

The method was described in section 5 in terms of using a known planar calibration grid. However,

the method carries over entirely to a non-planar calibration rig. Instead of modelling the mapping

of the calibration grid to the image using 3 × 3 homography matrix H, the mappings are modelled

as cameras projections using a standard 3×4 projection matrix, P. Instead of a fundamental-matrix

relation xd
Fxc = 0 when the grid is planar, we would obtain an equation xd

GX
c = xd([e]×P)X

c =

0 when the calibration points X
c are known 3D points. One can estimate the matrix G (which has

dimension 3 × 4) in just the same way one estimates the fundamental matrix. Computation of the

final row v of the projection matrix P proceeds as before, as does estimation of the distortion curve.

The only difference involves the computation of the calibration matrix. Instead of needing three

views to compute K, it can be computed from a single view. A single projection matrix P gives 5

equations in the entries of ω, namely p1
⊤ωp1 = p2

⊤ωp2 = p3
⊤ωp3 and p1

⊤ωp2 = p2
⊤ωp3 =

p1
⊤ωp3 = 0. Thus we can solve for ω, and hence K from a single view, or from many views by

linear least-squares techniques.

We tried this method on synthetic data, and verified that it worked with similar accuracy to
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Figure 10: Four input images of a non-planar calibration grid.
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Figure 11: Results for the non-planar calibation experiment. From left to right: extracted distortion graph,

original image, and corrected images.

the planar method. We also tried the technique on a real non-planar calibration grid. The four

input images (each of resolution 3264 × 2448) are shown in Figure 10; here, we manually find

the 2D coordinates associated with the 3D locations on the calibration box. The accuracy of the

3D locations are within about 1mm (corresponding to 3-5 pixels), and the 2D image locations are

within 1 pixel. The extracted curve and the result of undistorting an image captured using the same

camera are shown in Figure 11. As can be seen, despite the uncertainties associated with the 3D

and 2D locations of the calibration points, the corrected image looked very reasonable.

7.2 Doing without the calibration grid

It is natural to ask whether we could do without the calibration grid entirely. The method described

above used the fundamental matrix as the main algebraic tool. However, the process is analogous to

determining the pose of a camera using line correspondences. Indeed, in the case of 3D points, the

correspondence equation xd⊤
GX

c = 0 is of precisely the same form as the equation l⊤PX = 0 for

the image of a point X to lie on a line l when projected by camera matrix P. Thus, the determination

of the projection matrices and the centre of distortion is similar to that of reconstruction from line
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correspondences. In fact, the line reprojection problem can be solved using the quadrifocal tensor

with 4 views. Corresponding distorted points xj = (x1
j , x

2
j , x

3
j )

⊤ in image j for j = 1, . . . , 4 will

satisfy the relationship
3

∑

p=1

3
∑

q=1

3
∑

r=1

3
∑

s=1

x
p
1x

q
2x

r
3x

s
4Qpqrs = 0,

from which it is possible to compute the quadrifocal tensor Q [10], and hence the projection matri-

ces [9]. There is a slight complication that two solutions exist in both the quadrifocal and trifocal

cases, as pointed out in [9].

We verified that this method will work for the present problem also. A total of 80 point corre-

spondences are needed, since each point gives only one equation. The same method works equally

for calibration using unknown points on a plane. In this case, we need only 3 views, and a trifocal

tensor is used. In this case, 26 points are needed. However, although we verified both practically

and theoretically that this method will work, experiments with synthetic data showed the methods

to be far too sensitive to noise to be useful, at least with unknown centre of distortion.

It is appropriate to point out the relationship of this work with that of [20]. In our work, we

make no assumption on the position of the centre of distortion. Thirthala and Pollefeys, on the

other hand, assume that the centre of distortion is known. In this case, assuming it to be at (0, 0, 1),

we can immediately set most of the entries of the tensor to zero, leaving only 24 = 16 (in the

3D case) or 23 = 8 (in the planar case) non-zero entries to estimate. This large reduction in the

number of unknowns makes it likely that the method will be far more immune to noise. Thirthala

considered this problem for the case of 2D points in [20], but using 3D points is a natural extension,

which was explored by Thirthala in [19].

Since this work has been extensively studied in the work of Thirthala and Pollefeys, we omit

further discussion of it from this paper.

8 Conclusions

The procedure for radial distortion calibration described in this paper represents a very reliable

method of determining the centre of distortion and radial distortion function for a wide range

of cameras, including fish-eye lenses. At the same time it allows computation of the internal

geometric parameters of the camera. As a fast non-iterative procedure, it may be used to initialize

a bundle-adjustment algorithm, though for many applications, not requiring extreme precision, it

can be used on its own as a stand-alone algorithm for camera calibration.
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We argued the necessity of determining the radial distortion centre, and showed that for all

cameras that we tried the distortion centre was significantly displaced from the centre of the image,

typically by as much as 30 pixels in a 640 × 480 image. Our experiments showed that this was

enough to cause an extra 0.4 pixels of error for some points in the image (though the RMS error

only increased by 0.1 pixel). For comparison, we were able to model the measured image points

with RMS error of 0.4 pixels (see the example of Fig 3).

Extensions to auto-calibration techniques involving images of planar or non-planar points are

possible, but may be too sensitive to noise to be useful, when the centre of distortion needs to be

computed as well.
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