Tilburg University

Parameter identification in ARMA processes in the presence of regular but incomplete sampling

Nijman, T.E.; Palm, F.C.

Publication date:
1990

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Nijman, T. E., \& Palm, F. C. (1990). Parameter identification in ARMA processes in the presence of regular but incomplete sampling. (Reprint series / CentER for Economic Research; Vol. 38). Unknown Publisher.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Parameter Identification in ARMA

Processes in the Presence of Regular but Incomplete Sampling

by

Theo Nijman and
Franz Palm

Reprinted from Journal of Time Series Analysis, Vol. 11, No. 3, 1990

C \mathbf{R}

 for
Economic Research

Parameter Identification in ARMA Processes in the Presence of Regular but Incomplete Sampling

by
Theo Nijman and Franz Palm

Reprinted from Journal of Time Series Analysis,
Vol. 11, No. 3, 1990

Reprint Series
no. 38

PARAMETER IDENTIFICATION IN ARMA PROCESSES IN TIIE PRIESENCE OF REGULAR BUT INCOMPLETE SAMPIIING

By Tileo Numan and Franz Palm
Tillourg University and University of Limburg

First version received Octoher 1988

Abstract

We discuss the parameter identification of multivariate AR (1) models and of univariate ARMA $(2,1)$ and AR (2) models if the variables in the model are observed every m th period where m is some integer greater than unity. The results indicate that the models will often not be globally identified even if they are locally identified and that the likelihood function can have a large number of local maxima.

Keywords. Identifiability; missing data; ARMA models.

1. INTRODUCTION

In the analysis of time series it is usually assumed that the data consist of observations on the variables in the model for T subsequent time periods that are considered appropriate on a priori grounds. This assumption is often not met in applied work because, for example, economic theory suggests a monthly model and only quarterly data are available or one would like to construct a one-period-ahead forecast of some chemical process which is only observed every other period because of cost considerations. We have shown elsewhere (Nijman and Palm, 1987) that if a variable is known to be generated by an autoregressive integrated moving-average (ARIMA) model it is possible to construct minimum mean square error (MSE) one-period-ahead forecasts even if the variable is only observed every m th period, where m is some interger greater than unity. If, for instance, a monthly ARIMA model is assumed, monthly forecasts can be constructed from quarterly data. Moreover we have shown that the forecast error variance of the forecasts based on the regularly sampled data is not necessarily much larger than the error variance associated with forecasts based on complete data. An important question in this respect is whether the one-period (e.g. monthly) ARIMA model can be identified from regularly sampled (e.g. quarterly) data, i.e. whether the parameters of the one-period model can be uniquely determined from the sample information. Parameter identification is also required if, for instance, an ARIMA model is used to construct approximations for the missing observations as conditional expectations given the available sample information, as suggested by Harvey and Pierse (1984) among others. If the model is identified, efficient parameter estimates can be obtained, for example, using the fact that the observed data series is
(C) 1990 T. Nijman and F. Palm
generated by a (possibly constrained) autoregressive moving-average (ARMA) process as will be shown below. The identification and estimation problem might then be viewed as a two-stage problem, of determining the coefficients of the model for the observations and then trying to solve for the underlying parameters. This approach will be adopted in the remainder of this paper.

Some results for the identification of ARIMA models if the variables are only observed every m th period were obtained by Telser (1967) and by Palm and Nijman (1984). The latter authors concentrated on conditions for local identification and showed that $q \leq p+d$ is a necessary condition for identification of a regularly sampled ARIMA (p, d, q) process observed every m th period. Additional a priori knowledge will often be required for global identification even if the model is locally identified. Robinson (1980), among others, considers the identification of a univariate continuous-parameter stationary process with rational spectral density which is sampled at times which themselves form a stationary point process.

In this paper we consider the case where the process has a discrete time parameter and is observed every m th period. The global identification conditions are discussed in detail for a multivariate AR(1) model in Section 2 and for univariate ARMA $(2,1)$ and $\operatorname{AR}(2)$ models in Section 3.

We conclude that many observationally equivalent locally identified models can easily arise when the observations are incomplete and that, even if the model is globally identified (i.e. if the likelihood function has an overall maximum), the likelihood function will often contain several local maxima.

2. TIIE MULTIVARIATE AR(1) MODEL

In this section we consider the global identification of a first-order vector autogressive process for which all the variables in the model are observed every m th period only. The global identification criteria for the scalar AR(1) model have already been discussed by Palm and Nijman (1984). The multivariate $\operatorname{AR}(1)$ model is as follows:

$$
\begin{equation*}
y_{t}=\Pi y_{t-1}+\varepsilon_{t} \tag{1}
\end{equation*}
$$

where $y_{\text {, }}$ is a $K \times 1$ vector of variables observed for $t \in T_{m}=\{m$, $2 m, \ldots, T\}$, where without loss of generality T is assumed to be a multiple of m. We assume that the eigenvalues of Π lie inside the unit circle and that the ε_{i} are independent and normally distributed vectors with mean zero and covariance matrix Σ. Of course, the assumption of Gaussianity restricts the possibilities of achieving identification because higher-order moments could contain identifying information if Gaussianity does not hold (e.g. Kapteyn and Wansbeek, 1983). Because the pseudo-maximum likelihood estimators which impose Gaussianity are consistent in these models without Gaussian assumptions, however, the results which we obtain can be used to assess the consistency of these estimators even if Gaussianity does not hold.

If $y_{\text {, }}$ is observed every m th period only, the data-generating process (DGP) is given by

$$
\begin{equation*}
y_{t}=I^{m} y_{t-m}+u_{t} \tag{2}
\end{equation*}
$$

where u_{1} is independent normal and has zero mean and covariance matrix $\Omega \Omega$ defined by $\Omega=\sum_{i=0}^{m-1} \Pi^{i} \Sigma \Pi^{i}$, where $\Pi^{0}=I$. The question is whether $I I$ and Σ can be obtained from the parameters of the $\operatorname{DGP}\left(\Pi^{m}, \Omega\right)$. Once $I I$ is known, Σ can be determined from Ω. Therefore we concentrate on the identification of Π.

If the eigenvalues of Π are all distinct we can write (e.g. Rao, 1968) $\Pi=P \Delta P^{-1}$, where Δ is the diagonal matrix with its i th diagonal element equal to the i th eigenvalue of Π and P is the corresponding matrix of eigenvectors. From the above we have that $\Pi^{m}=P \Delta^{m} P^{-1}$, so that (if the m th powers of all eigenvalues are distinct) the eigenvalues of Π and the m th powers of their eigenvalues are identified. Compare this with the corresponding result for differential equation models given by Phillips (1973).

If all eigenvalues are real and m is odd, the eigenvalues and Π are identified. If all eigenvalues are real and m is even, 2^{K} possibilities remain where, as before, K is the dimension of the model. However, the critique by Hansen and Sargent (1983) of the results obtained by Phillips (1973) for the model in continuous time applies here as well: only those matrices Π^{*} that satisfy $\Pi^{* m}=\Pi^{m}$ cannot be distinguished from Π for which the corresponding solution Σ^{*} of $\Omega=\sum_{i=0}^{m-1} \Pi^{* i} \Sigma^{*} \Pi^{* \prime \prime}$ is positive definite. If m is even, this condition is satisfied by (Π, Σ) and $(-\Pi, \Sigma)$ at least so that the model is not globally identified, as in the univariate case.

If some eigenvalues of Π are complex, the number of solutions can be even larger than 2^{κ}, as $\lambda^{* m}=\lambda^{m}$ has m solutions in the set of complex numbers. If we ignore the restriction implied by the positive definiteness of Ω and note that complex eigenvalues have to be in conjugate pairs, the number of solutions is at most $m^{K / 2}$ if K is even and $2 m^{(K-1) / 2}$ if K is odd. There is no guarantee that the argument of Hansen and Sargent (1983) will reduce this often considerable number of observationally equivalent models as Σ^{*} will be close to Ω and therefore positive definite if the eigenvalues of Π are sufficiently small in absolute values. These results could again be compared with the results for the differential equations equivalent to (2) where the number of observationally equivalent models can be infinite even if all eigenvalues are distinct (see Hansen and Sargent, 1983).

In order to illustrate the above results, consider a bivariate AR(1) model and define the matrices

$$
\begin{gathered}
P_{1}=\left[\begin{array}{ll}
0.7 & 0.3 \\
0.3 & 0.6
\end{array}\right] \quad P_{2}=\left[\begin{array}{lc}
0.7 & -0.3 \\
0.3 & 0.6
\end{array}\right] \quad P_{3}=\left[\begin{array}{ll}
0.41 & 0.64 \\
0.64 & 0.20
\end{array}\right] \\
S_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad S_{2}=\left[\begin{array}{cc}
1 & -3 \\
-3 & 10
\end{array}\right]
\end{gathered}
$$

TABIE1
 (1) Ior Variohis Cinhees on II, Σ ANI) m

	$I I=P_{1}$			$I I=r:$			
	$m=2$	$m=3$	$m=4$	$m=2$	$m=3$	$m=4$	$m=12$
$\Sigma=S_{1}$	4	1	4	2	3	4	12
$\Sigma=S$	2	1	2	2	1	2	4

In Table I we present the number of observationally equivalent models for several values of the number of periods between two observations and for the case where $I I$ and Σ coincide with P_{1} or P_{2} and S_{1} or S_{2} respectively. Note that P_{1} has real eigenvalues while those of P_{2} are complex and that Σ varied to illustrate the impact of the condition that Σ^{*} should be positive definite.

It is evident from Table 1 that the number of observationally equivalent models can be large. Moreover, non-trivial a priori information will often be required to eliminate all but one of the observationally equivalent models. If $\Pi=P_{1}, \Sigma=S_{1}$ and $m=2$ or $m=4$, the four observationally equivalent models are $\left(P_{1}, S_{1}\right),\left(-P_{1}, S_{1}\right),\left(P_{3}, S_{1}\right)$ and $\left(-P_{3}, S_{1}\right)$ as can be easily checked. The choice between the first and third of these models requires much more prior information than just the sign of a single coefficient as is the case in the scalar AR(1) model considered by Palm and Nijman (1984). Note that only $\left(-P_{1}, S_{2}\right)$ is ooservationally equivalent to $\left(P_{1}, S_{2}\right)$ if $m=2$ or $m=4$, because the models with $\Pi=P_{3}$ are excluded by the requirement that Σ^{*} should be positive definite.

Until now we have assumed that the eigenvalues of Π^{m} are all distinct. In this case the parameters of $I I$ and Σ are locally identifiable although the number of equivalent solutions can be large. If not all eigenvalues are distinct, local identifiability is no longer guaranteed. If, for example. Π is a 2×2 diagonal matrix where the $(1,1)$ and $(2,2)$ elements are ρ and $-\rho$ respectively, we can readily check that, for

$$
I^{*}=\rho\left[\begin{array}{cc}
\sqrt{ } 1-b c & b \\
c & -\sqrt{ } 1-b c
\end{array}\right]
$$

$I I^{*}=I I^{2}$ for all real numbers b, c such that $b c \leq 1$. Therefore there are points in the parameter space arbitrarily close to the true parameter value that are observationally equivalent to it if $K=2$ and y, is observed every second period only, and so the model is not locally identified. The discussion of the general case where the eigenvalues are not necessarily distinct is omitted as it is hampered (here and in the continuous-time equivalent) by the fact that the decomposition $\Pi=P \Delta P^{-1}$ no longer applies.

In applied work we have to choose one of the equivalent solutions $\left(I I^{*}, 2^{*}\right)$. As illustrated in Table I, this choice requires far more a priori information than in the univariate AR(1) case where knowledge of the sign of the autoregressive parameter is sufficient.

3. UNIVARIATE ARMA(2.1) AND AR(2) MODELS

In the previous section we have shown that the number of models which are observationally equivalent to a multivariate AR(1) model can be large if all variables in the model are observed every m th period only. We could consider a large number of generalizations of this, for example, to cases where subsets of the variables are always observed or to higher-order AR or ARMA models. In this section we consider the extension to $\operatorname{AR}(2)$ and ARMA $(2,1)$ models only, restricting ourselves moreover to the univariate case. As these models can of course be written in the vector AR(1) representation discussed in the previous section, we might expect the results obtained there to have direct implications for the models to be considered in this section. Unfortunately, however, in the vector AR representation of the higher-order univariate models the assumption made in the previous section that all the variables in the state vector are observed every m th period no longer holds.

Consider the univariate ARMA $(2,1)$ model

$$
\begin{equation*}
\rho(L) y_{t}=\phi(L) \varepsilon_{1} \tag{3}
\end{equation*}
$$

where $\rho(L)=1-\rho_{1} L-\rho_{2} L^{2}, \quad \phi(L)=1+\phi L$ and $\varepsilon_{1} \sim \operatorname{IN}\left(0, \sigma_{1}^{2}\right)$ and assume that $y_{\text {, }}$ is observed for $t \in T_{m}$ only. The roots of $1-\rho_{1} z^{1}-\rho_{2} z^{2}=0$ are denoted by α_{1} and α_{2} respectively and it is assumed that $\left|\alpha_{1}\right|<1$ and $\alpha_{i} \neq-\phi(i=1,2)$.

Multiplication of

$$
\begin{equation*}
\left(1-a_{1} L\right)\left(1-a_{2} L\right) y_{t}=(1+\phi L) \varepsilon_{t} \tag{4}
\end{equation*}
$$

by $s_{m}\left(a_{1} L.\right) s_{m}\left(a_{2} L\right)$, where $s_{m}(\alpha L)=1+\alpha L+a^{2} L^{2}+\ldots+a^{m-1} L^{m}$ yields

$$
\begin{equation*}
\left(1-a_{1}^{m} L^{m}\right)\left(1-a_{2}^{m} L^{m}\right) y_{1}=s_{m}\left(\alpha_{1} L\right) s_{m}\left(\alpha_{2} L\right)(1+\phi L) z_{1} . \tag{5}
\end{equation*}
$$

If we assume for simplicity that (5) contains no common factors, the observations are generated by the $\operatorname{ARMA}(2,1)$ model

$$
\begin{equation*}
\left(1-\psi_{1} L^{m}\right)\left(1-\psi_{2} L^{m}\right) y_{t}=\left(1-(1) L^{m}\right) v_{t} \tag{6}
\end{equation*}
$$

where v_{t} is a white noise for $t \in T_{m}$. Its variance σ_{v}^{2} and the moving-average parameter ω can be obtained by solving the moment equations subject to the condition that $|\omega|<1$. As an illustration, we first discuss the case when $m=2$. Then

$$
\begin{equation*}
\psi_{1}=\alpha_{1}^{2} \tag{7a}
\end{equation*}
$$

$$
\begin{equation*}
\omega \sigma_{v}^{2}=\left\{\alpha_{1} \alpha_{2}+\phi \alpha_{1}+\phi \alpha_{2}+\phi \alpha_{1} \alpha_{2}\left(\alpha_{1}+\alpha_{2}+\phi\right)\right\} \sigma_{t}^{2} \tag{7b}
\end{equation*}
$$

and the first-order autocorrelation

$$
\begin{align*}
\frac{\omega}{1+\left(\omega^{2}\right.} & =\left\{\alpha_{1} \alpha_{2}+\phi \alpha_{1}+\phi \alpha_{2}+\phi \alpha_{1} \alpha_{2}\left(\alpha_{1}+\alpha_{2}+\phi\right)\right\} \\
& \times\left\{1+\left(\alpha_{1}+\alpha_{2}+\phi\right)^{2}+\left(\alpha_{1} \alpha_{2}+\phi \alpha_{1}+\phi \alpha_{2}\right)^{2}+\phi^{2} \alpha_{1}^{2} \alpha_{2}^{2}\right\}^{-1} . \tag{7c}
\end{align*}
$$

The identification conditions of an ARMA $(2,1)$ model observed every second period can easily be checked from (7). The special case with $\alpha_{2}=0$ (i.e. the ARMA $(1,1)$ model) has already been considered by Palm and Nijman (1984). For the ARMA $(2,1)$ model (3), if the standard conditions for identification of $\left(\psi_{1}, \psi_{2}, \omega, \sigma_{v}^{2}\right)$ in (6) are satisfied, $\left|\alpha_{1}\right|$ and $\left|\alpha_{2}\right|$ can be identified from ψ_{1} and ψ_{2} which yields four admissible solutions for α_{1} and α_{2}. For every admissible solution for $\left(\alpha_{1}, \alpha_{2}\right)$ the corresponding value for ϕ will have to satisfy (7c). If $\phi=\bar{\phi}$ satisfies this moment equation, so will $\phi=\bar{\phi}^{-1}$ as can easily be verified. Expression (7c) yields a quadratic equation with a unique value for ϕ within the unit circle for every choice of (α_{1}, α_{2}). Subsequently a unique value for σ_{ε}^{2} can be obtained from (7b). Four ARMA(2,1) models, corresponding to the different solutions to $\alpha_{i}^{2}=\psi_{i}(i=1,2)$, are observationally equivalent but they are locally identified. If cancelling of factors in (6) is not excluded, the model may not even be locally identified, although the necessary condition for identification given by Palm and Nijman (1984), which requires that the number of moving-average parameters is not larger than the number of autoregressive parameters, is clearly satisfied.

If $\rho_{1}=0$ in (3), which implies that $\alpha_{1}=-\alpha_{2}$, the observations $y_{1}, t \in T_{2}$, are generated by $\left(1-\rho_{2} L^{2}\right) y_{t}=v_{t}$ with $\sigma_{v}^{2}=\left(1+\phi^{2}\right) \sigma_{r}^{2}$. Obviously, the parameters ϕ and σ_{t}^{2} cannot be identified from σ_{v}^{2}.

Returning now to the general case where m is not necessarily equal to 2 , we see that (6) implies that if m is odd and if α_{1} and α_{2} are real and unequal, the parameters α_{1} and α_{2} can be obtained from ψ_{1} and σ_{2}. The only admissible solution of $\lambda_{1}^{m}=\psi_{1}$ and $\lambda_{2}^{m}=\psi_{2}$ is $\left(\lambda_{1}, \lambda_{2}\right)=\left(\alpha_{1}, \alpha_{2}\right)$. The parameters ϕ and σ_{ε}^{2} can then be obtained from ω and ρ_{v}^{2}. The model is therefore globally identified in this case. If, in contrast, m is even and α_{1} and α_{2} are real with $\left|\alpha_{1}\right| \neq\left|\alpha_{2}\right|$, four solution pairs $\left(\lambda_{1}, \lambda_{2}\right)$ are in agreement with $\left(\psi_{1}, \psi^{\prime}\right)$. We cannot exclude the possibility that all four solutions are compatible with values for ϕ and σ_{ℓ}^{2} that are also in agreement with ω and σ_{v}^{2}, so that four equivalent models exist. If the roots of $\rho\left(z^{-1}\right)=0$ are complex or $a_{1}^{m}=\alpha_{2}^{m}$, the number of equivalent models may be even larger. In this case all m solutions of $\lambda_{1}^{m}=\psi_{1}$ in the complex plane cannot be rejected as their conjugates are solutions to $\lambda_{2}^{m}=\psi_{2}$. Analogous to the situation discussed before, we cannot in general expect any information on the correct choice of these roots from ω and σ_{v}^{2}. The number of observationally equivalent models can therefore be equal to m. The results for the

TABLE II
The Maxinum Nunber of Observationaliy Equivaleni Models for the ARMA $(2,1)$ Moplt

	mth power of α_{1} and α_{2}	m	Maximum number of observationally equivalent models
Roots of AR polynomial	Unequal Real	Odd Real	Unequal
Complex	Unequal	Odd/even Edd/even	1
Real/complex	Equal	Odd/er	m

maximum number of observationally equivalent models for the ARMA(2,1) case are summarized in Table II.

Now consider the AR(2) model where it is known that $\phi=0$ in (4). The observations on $y_{t}, t \in T_{m}$, are again generated by (6), and the discussion of possible solutions of $\lambda_{1}^{m}=\psi_{1}$ and $\lambda_{2}^{m}=\psi_{2}$ goes through as before. However, there is a difference in that ω contains information on the choice of the roots. An incorrect choice for these roots can no longer be compensated by an incorrect choice for ϕ. However, the signs of α_{1} and α_{2} cannot be uniquely determined if m is even, because a simultaneous change in them does not affect ω. Therefore two observationally equivalent models exist for the AR(2) model if m is even and ρ_{2} is globally identified. The information on the choice of the roots λ_{1} and λ_{2} has to come from ω, the value of which is close to zero for all models that were considered. We should therefore not be surprised if local maxima of the likelihood function close to the overall maxima show up for this model in applications where ω has to be estimated from a finite sample. The difference with the ARMA $(2,1)$ model in this respect will be smaller than suggested by large-sample theory.

To illustrate the points made above we present plots of the approximate log likelihood function for an $\operatorname{AR}(2)$ model with $\left(\rho_{1}, \rho_{2}\right)=(1.4,-0.74)$, $T=50 m$, and $m=2$ and $m=3$ respectively. More details and other examples are given by Nijman and Palm (1985).

We define $\psi\left(L^{m}\right)=\left(1-\psi_{1} L^{m}\right)\left(1-\psi_{2} L^{m}\right), \quad \omega\left(L^{m}\right)=1-\omega L^{m} \quad$ and $\left(\psi_{1}, \psi_{2}, \omega, \sigma_{v}^{2}\right)=g\left(\rho_{1}, \rho_{2}, \sigma_{\varepsilon}^{2}\right)$. If the sum of squared residuals in the concentrated log likelihood function $L\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right)$ is replaced by its expectation or its probability limit for given values of $\hat{\rho}_{1}$ and $\hat{\rho}_{2}, L\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right)$ is approximated by

$$
\begin{equation*}
f\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right)=\frac{-T\left[1+\ln E\left\{\hat{\psi}\left(L^{m}\right) \psi^{-1}\left(L^{m}\right) \hat{\omega}^{-1}\left(L^{m}\right) \omega\left(L^{m}\right) v_{t}\right\}^{2}\right]}{2 m} \tag{8}
\end{equation*}
$$

where $\left(\hat{\psi}_{1}, \hat{\psi}_{2}, \hat{\omega}, \hat{\sigma}_{v}^{2}\right)=g\left(\hat{\rho}_{1}, \hat{\rho}_{2}, \hat{\sigma}_{f}^{2}\right)$. We plot $f\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right)$ for admissible values ($\hat{\rho}_{1}, \hat{\rho}_{2}$) which are not significantly different from the true parameter values $\left(\rho_{1}, \rho_{2}\right)$ at which $f\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right)$ reaches a maximum, and we plot $f\left(\rho_{1}, \rho_{2}\right)-3.00$ if $f\left(\rho_{1}, \rho_{2}\right)-f\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right) \geq 3.00$ which indicates that the hypothesis $\rho_{i}=\hat{\rho}_{i}$ would be rejected at the 5% level. The value $f\left(\rho_{1}, \rho_{2}\right)-3.50$ was assigned to parameter points which imply roots of the
autoregressive polynomial inside the unit circle.
For $\left(\rho_{1}, \rho_{2}\right)=(1.4,-0.74)$ and $m=2$, the equations $\lambda_{1}^{m}=\psi_{1}$ and $\lambda_{2}^{m}=\psi_{\prime}^{\prime}$ have two solution pairs $\left(\lambda_{1}, \lambda_{2}\right),(0.7+0.5 i, 0.7-0.5 i)$ and $(-0.7-0.5 i,-0.7+0.5 i)$, if we neglect solutions where only the roles of λ_{1} and λ_{2} are interchanged. Both roots imply the same values of ω as

$$
\frac{\omega}{1+\omega^{2}}=\frac{\lambda_{1} \lambda_{2}}{1+\left(\lambda_{1}+\lambda_{2}\right)^{2}+\lambda_{1}^{2} \lambda_{2}^{2}} .
$$

Discrimination between the models with $\left(\rho_{1}, \rho_{2}\right)=(1.4,-0.74)$ and $\left(\rho_{1}, \rho_{2}\right)=(-1.4,-0.74)$ is therefore not possible as is evident from Figure 1 . If $m=3$, there are three solutions for $\left(\lambda_{1}, \lambda_{2}\right),(0.7+0.5 i, 0.7-0.5 i)$, $(-0.78+0.36 i,-0.78-0.36 i)$ and $(0.08-0.85 i, 0.08+0.85 i)$. The value of ω can now be derived from
$\frac{\omega}{1+\omega^{2}}=\frac{\lambda_{1}^{2} \lambda_{2}+\lambda_{2}^{2} \lambda_{1}+\lambda_{1}^{2} \lambda_{2}^{2}}{1+\left(\lambda_{1}+\lambda_{2}\right)^{2}+\left(\lambda_{1}^{2}+\lambda_{1} \lambda_{2}+\lambda_{2}^{2}\right)^{2}+\left(\lambda_{1}^{2} \lambda_{2}+\lambda_{1} \lambda_{2}^{2}\right)^{2}+\lambda_{1}^{4} \lambda_{2}^{4}}$
so that $\omega=-0.35, \omega=0.27$ and $\omega=-0.11$ respectively. In large samples the different values of ω can be used to select the correct model, which is globally identified. In small samples the information content of ω will be small and local maxima show up for the three solutions for $\left(\lambda_{1}, \lambda_{2}\right)$ in Figure 2. The maxima in that figure are in good agreement with the values of (ρ_{1}, ρ_{2}) implied by the $\left(\lambda_{1}, \lambda_{2}\right)$ solutions which are $(1.4,-0.35)$, $(-1.56,-0.35)$ and $(0.16,-0.35)$ respectively.

Figiori 1. Approximate log likelihood function for an $A R(2)$ model with $\rho_{1}=1.4 . \rho_{2}=-0.74$: $m=2$ and $T=100$.

Figuri 2. As for Figure 1 but with $m=3$ and $T=150$.

Extensions of the above discussion to higher-order ARMA models or observations on flow variables, for example, are straightforward. The number of observationally equivalent models can become large, even if the model is locally identified, especially if the autoregressive polynomial contains complex roots.

4. conctiusions

In this paper we analysed the identification of multivariate AR(1) models and univariate $A R M A(2,1)$ and $A R(2)$ models if the variables in the model are observed every m th period, where m is some integer greater than unity. For a K-variate $\mathrm{AR}(1)$ process the number of observationally equivalent locally identified models can be as large as $m^{\kappa / 2}$. For the univariate $\operatorname{ARMA}(2,1)$ model m observationally equivalent locally identified models can easily arise, while for the univariate $\mathrm{AR}(2)$ process the number of observationally equivalent models will usually be small but the likelihood function will often contain several local maxima as illustrated in Section 3. For empirical work our results imply that often additional a priori information will be required to identify the parameters and that it is very important to check whether a global maximum has been reached when iterative optimization routines are used to maximize the log likelihood function. However, in a finite sample it cannot be guaranteed that the selection of a solution which may be a long way from the true parameter value will be avoided.

ACKNOWLWDGEMENTS

The authors thank Ben Hanzon and an unknown referee for helpful comments.

REFERENCES

Hansen, L. P and Sargent T. J. (1983). The dimensionality of the aliasing problem in models with rational spectral densities. Econometrica 51, 377-88.
Harvey. A. C. and Pierse R. G. (1984) Estimation of missing observations in cconomic time series. J. Am. Statist. Assoc. 79, 125-31.
Kapieyn, A and Wansbeek, T. J. (1983) Identification in the linear errors in variables model: a note. Econometrica 51, 1847-49.
Numan, T. E and Palm, F. C. (1985) Séries temporelles incomplètes en modélisation macroéconomique. Cah. Sémin. Economet. 27, 141-68.
—_ and - (1987) Predictive accuracy gain from disaggregate sampling in ARIMA-models. Research Memorandum 273, Tilburg University.
Paims. F. C. and Niuman, T. E. (1984) Missing observations in the dynamic regression model. Econometrica 52, 1415-35.
Primitips, P. C. B (1973) The problem of identification in finite parameter continuous time models. J. Economet. 1, 351-62.
Rao, C. R. (1968) Linear Statistical Inference and its Applications, 2nd edn. New York: Wiley.
Robinson, P (1980) Continuous model fitting from discrete data. In Directions in Time Series. (eds. D. R. Brillinger and G. C. Tiao) Institute of Mathematical Statistics, pp. 263-78.
Telser, L. G. (1967) Discrete samples and moving sums in stationary stochastic processes. J. Am. Statist. Assoc. 62, 484-99.

Reprint Series. Center, Tilburg University, The Netherlands:

No. 1 G. Marini and F. van der Ploeg, Monetary and fiscal policy in an optimising model with capital accumulation and finite lives. The Economic Journal, Vol. 98, No. 392, 1988, pp. $772-786$.

No. 2 F. van der Ploeg. International policy coordination in interdependent monetary economies, Journal of International Economics, Vol 25, 1988. pp. 1 - 23.

No. 3 A.P. Barten, The history of Dutch macroeconomic modelling (1936-1986), in W. Driehuis, M.M.G. Fase and H. den Hartog (eds.). Challenges for Macroeconomic Modelling, Contributions to Economic Analysis 178, Amsterdam: North-Holland, 1988, pp. 39-88.

No. 4 F. van der Ploeg, Disposable income, unemployment, inflation and state spending in a dynamic political-economic model. Public Choice. Vol. 60, 1989, pp. 211 - 239.

No. 5 Th. ten Raa and F. van der Ploeg, A statistical approach to the problem of negatives in input-output analysis, Economic Modelling, Vol. 6, No. 1, 1989, pp. 2-19.

No. 6 E. van Damme, Renegotiation-proof equilibria in repeated prisoners' dilemma, Journal of Economic Theory, Vol. 47. No. 1, 1989. pp. 206 - 217 .

No. 7 C. Mulder and F. van der Ploeg, Trade unions, investment and employment in a small open economy: a Dutch perspective, in J. Muysken and C. de Neubourg (eds.). Unemployment in Europe, London: The MacMillan Press Ltd, 1989, pp. 200-229.

No. 8 Th. van de Klundert and F. van der Ploeg, Wage rigidity and capital mobility in an optimizing model of a swall open economy. De Economist 137, nr. 1. 1989. pp. 47-75.

No. 9 G. Dhaene and A.P. Barten, When it all began: the 1936 Tinbergen model revisited. Economic Modelling, Vol. 6, No. 2, 1989. pp. 203 - 219.

No. 10 F. van der Ploeg and A.J. de Zeeuw. Conflict over arms accumulation in market and command economies, in F. van der Ploeg and A.J. de Zeeuw (eds.), Dynamic Policy Games in Economics. Contributions to Economic Analysis 181, Amsterdam: Elsevier Science Publishers B.V. (North-Holland), 1989. pp. 91 - 119.

No. 11 J. Driffill, Macroeconomic policy games with incomplete information: some extensions, in F. van der Ploeg and A.J. de Zeeuw (eds.). Dynamic Policy Games in Economics. Contributions to Economic Analysis 181. Amsterdam: Elsevier Science Publishers B.V. (North-llolland). 1989. pp. 289-322.

No. 12 F. van der Ploeg, Towards monetary integration in Europe, in P. De Grauwe e.a., De Europese Monetaire Integratie: vier visies. Wetenschappelijke Raad voor het Regeringsbeleid V 66, 's-Gravenhage: SDU uitgeverij. 1989, pp. 81 - 106.

No. 13 R.J.M. Alessie and A. Kapteyn, Consumption, savings and demography, in A. Wenig, K.F. Zimmermann (eds.). Demographic Change and Economic Development. Berlin/Heidelberg: Springer-Verlng. 1989. pp. 272 - 305 .

No. 14 A. Hoque, J.R. Magnus and B. Pesaran. The exact multi-period meansquare forecast error for the first-order autoregressive model, Journal of Econometrics, Vol. 39. No. 3. 1988. pp. 327-346.

No. 15 R. Alessie, A. Kapteyn and B. Melenberg. The effects of liquidity constraints on consumption: estimation from household panel data. European Economic Review 33. No. 2/3. 1989. pp. 547-555.

No. 16 A. Holly and J.R. Magnus. A note on instrumental variables and maximum likelihood estimation procedures. Annales d'Économie et de Statistique. No. 10, April-June, 1988. pp. $121-138$.

No. 17 P. ten Hacken, A. Kapteyn and I. Woittiez, Unemployment benefits and the labor market, a micro/macro approach, in B.A. Gustafsson and N. Anders Klevmarken (eds.). The Political Economy of Social Security, Contributions to Economic Analysis 179. Amsterdam: Elsevier Science Publishers B.V. (North-Holland). 1989, pp. 143-164.

No. 18 T. Wansbeek and A. Kapteyn, Estimation of the error-components model with incomplete panels, Journal of Econometrics. Vol. 41. No. 3. 1989. pp. 341 - 361.

No. 19 A. Kapteyn, P. Kooreman and R. Willemse, Some methodological issues in the implementation of subjective poverty definitions. The Journal of Human Resources. Vol. 23. No. 2. 1988, pp. 222-242.

No. 20 Th. van de Klundert and F. van der Ploeg. Fiscal policy and finite lives in interdependent economies with real and nominal wage rigidity, Oxford Economic Papers, Vol. 41, No. 3. 1989. pp. 459 489.

No. 21 J.R. Magnus and B. Pesaran, The exact multi-period mean-square forecast error for the first-order autoregressive model with an intercept, Journal of Econometrics, Vol. 42, No. 2, 1989. pp. 157 - 179 .

No. 22 F. van der Ploeg. Two essays on political economy: (i) The political economy of overvaluation, The Economic Journal, Vol. 99. No. 397. 1989. pp. $850-855$; (ii) Election outcomes and the stockmarket, European Journal of Political Economy, Vol. 5. No. 1, 1989, pp. 21 30.

No. 23 J.R. Magnus and A.D. Woodland, On the maximum likelihood estimation of multivariate regression models containing serially correlated error components. International Economic Review. Vol. 29. No. 4, 1988, pp. 707 - 725 .

No. 24 A.J.J. Talman and Y. Yamamoto, A simplicial algorithm for stationary point problems on polytopes. Mathematics of Operations Research. Vol. 14. No. 3. 1989. pp. $383-399$.
No. 25 E. van Damme, Stable equilibria and forward induction, Journal of
Economic Theory, Vol. 48. No. 2. 1989. pp. $476-496$.

No. $26 \quad$| A.P. Barten and L.J. Bettendorf. Price formation of fish: An |
| :--- |
| application of an inverse demand system, European Economic Review. |
| Vol. 33, No. 8, 1989, pp. 1509-1525. |

No. 27 G. Noldeke and E. van Damme, Signalling in a dynamic labour market,

| Geview of Economic Studies, Vol. 57 |
| :--- | | (1), no. 189, 1990, pp. $1-23$ |
| :--- |

No. 28 P. Kop Jansen and Th. ten Ras. The choice of model in the construction of input-output coefficients matrices, International Economic Review, vol. 31, no. 1, 1990, pp. 213-227.

No. 29 F. van der Ploeg and A.J. de Zeeuw, Perfect equilibrium in a model of competitive arms accumulation, International Economic Review, vol. 31. no. 1, 1990, pp. 131 - 146.

No. 30 J.R. Magnus and A.D. Woodland, Separability and Aggregation, Economica, vol. 57, no. 226, 1990, pp. 239-247.

No. 31 F. van der Ploeg. International interdependence and policy coordination in economies with real and nominal wage rigidity, Greek Economic Review, vol. 10, no. 1, June 1988, pp. $1-48$.

No. 32 E. van Damme, Signaling and forward induction in a market entry context, Operations Research Proceedings 1989. Berlin-Heidelberg: Springer-Verlag. 1990, pp. 45-59.

No. 33 A.P. Barten. Toward a levels version of the Rotterdam and related demand systems. Contributions to Operations Research and Economics. Cambridge: MIT Press, 1989, pp. 441-465.

No. 34 F. van der Ploeg, International coordination of monetary policies under alternative exchange-rate regimes, Advanced Lectures in Quantitative Economics, London-Orlando: Academic Press Ltd. . 1990. pp. 91-121.

No. 35 Th. van de Klundert. On socioeconomic causes of 'wait unemployment', European Economic Review, vol. 34, no. 5, 1990, pp. 1011 - 1022.

No. 36 R.J.M. Alessie. A. Kapteyn, J.B. van Lochem and T.J. Wansbeek, Individual effects in utility consistent models of demand, in J . Hartog. G. Ridder and J. Theeuwes (eds.). Panel Data and Labor Market Studies. Amsterdam: Elsevier Science Publishers B.V. (NorthHolland), 1990, pp. 253-278.

No. 37 F. van der Ploeg, Capital accumulation, inflation and long-run conflict in international objectives, Oxford Economic Papers, vol. 42. no. 3. 1990. pp. $501-525$.

No. 38 Th. Nijman and F. Palm. Parameter identification in ARMA Processes in
the presence of regular but incomplete sampling, Journal of Time
P.O R RX 90153 上nnn I F TII RI IRC THE NICTHEDI ANDS Bibliotheek K. U. Brabant

17000011697035

