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PARAMETER IDENTIFICATION IN ARMA PROCESSES IN THE
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Abstract. We discuss the parameter dentification of multivariate AR (1) models
and of univanate ARMA (2, 1) and AR (2) models if the vanables in the model are
observed every mth period where mois some integer greater than unity. The results
indicate that the models will often not be globally wdentificd even if they are locally
identificd and that the likelihood function can have a large number of local maxima

Keywords. Idenufiability; missing data; ARMA models,

1. INTRODUCTION

In the analysis of time series it is usually assumed that the data consist of
observations on the variables in the model for T subsequent time periods that
are considered appropriate on a priori grounds. This assumption is often not
met in applied work because, for example, economic theory suggests a
monthly model and only quarterly data are available or one would like to
construct a one-period-ahead forecast of some chemical process which is only
observed every other period because of cost considerations. We have shown
clsewhere (Nijman and Palm, 1987) that if a variable is known to be
generated by an autoregressive integrated moving-average (ARIMA) model it
is possible to construct minimum mean square error (MSE) one-period-ahead
forecasts even if the variable is only observed every mth period, where m is
some interger greater than unity. If, for instance, a monthly ARIMA model
is assumed, monthly forecasts can be constructed from quarterly data.
Moreover we have shown that the forecast error variance of the forecasts
based on the regularly sampled data is not necessarily much larger than the
error variance associated with forecasts based on complete data. An impor-
tant question in this respect is whether the one-period (e.g. monthly)
ARIMA model can be identified from regularly sampled (e.g. quarterly)
data, i.c. whether the parameters of the one-period model can be uniquely
determined from the sample information. Parameter identification is also
required if, for instance, an ARIMA model is used to construct approxima-
tions for the missing observations as conditional expectations given the
available sample information, as suggested by Harvey and Pierse (1984)
among others. If the model is identified, efficient parameter estimates can be
obtained, for example, using the fact that the observed data scries is
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240 T. NUMAN AND F. PALM

generated by a  (possibly constrained) autoregressive  MOVING-average
(ARMA) process as will be shown below. The identification and estimation
problem might then be viewed as a two-stage problem, of determining the
coefficients of the model for the observations and then trying to solve for the
underlying parameters. This approach will be adopted in the remainder of
this paper.

Some results for the identification of ARIMA models if the variables are
only observed every mth period were obtained by Telser (1967) and by Palm
and Nijman (1984). The latter authors concentrated on conditions for local
identification and showed that ¢ = p + d is a necessary condition for identi-
fication of a regularly sampled ARIMA (p, d, q) process observed every mth
period. Additional a priori knowledge will often be required for global
identification even if the model is locally identified. Robinson (1980), among
others, considers the identification of a wunivariate continuous-parameter
stationary process with rational spectral density which is sampled at times
which themselves form a stationary point process.

In this paper we consider the case where the process has a discrete time
parameter and is observed every mth period. The global identification
conditions are discussed in detail for a multivariate AR(1) model in Section 2
and for univariate ARMA(2,1) and AR(2) models in Section 3.

We conclude that many observationally equivalent locally identified models
can easily arise when the observations are incomplete and that, even if the
model is globally identified (i.e. if the likelihood function has an overall
maximum), the likelihood function will often contain several local maxima.

2. THE MULTIVARIATE AR(1) MODEL

In this section we consider the global identification of a first-order vector
autogressive process for which all the variables in the model are observed
every mth period only. The global identification criteria for the scalar AR(1)
model have already been discussed by Palm and Nijman (1984). The
multivariate AR(1) model is as follows:

yo=My. . + & (n
where vy, s a K x 1 vector of vaniables observed for te T, = {m,
2m,. .., T}, where without loss of generality T is assumed to be a multiple of

ni. We assume that the ecigenvalues of IT lie inside the unit circle and that the
¢, are independent and normally distributed vectors with mean zero and
covariance matrix Y. Of course, the assumption of Gaussianity restricts the
possibilities of achieving identification because higher-order moments could
contain identifying information if Gaussianity does not hold (e.g. Kapteyn
and Wuansbeek, 1983). Because the pscudo-maximum likelihood estimators
which impose Gaussianity are consistent in these models without Gaussiun
assumpuions, however, the results which we obtain can be used 1o assess the
consistency of these estimators even if Gaussianity does not hold.
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If y, is observed every mth period only, the data-generating process (DGP)
1s given by

ye=M"yim + u, )

where i, is independent normal and has zero mean and covariance matrix £2
defined by = ' ITETT, where IT' = . The question is whether [T and
Y can be obtained from the parameters of the DGP (11", ). Once I1is
known, X can be determined from €. Therefore we concentrate on the
identification of I1.

If the eigenvalues of IT are all distinct we can write (e.g. Rao, 1968)
[T= PAP™', where A is the diagonal matrix with its ith diagonal clement
cqual to the ith eigenvalue of IT and P is the corresponding matrix of
cigenvectors. From the above we have that IT" = PA™ P!, so that (if the
mth powers of all eigenvalues are distinct) the eigenvalues of IT and the mth
powers of their eigenvalues are identified. Compare this with the correspond-
ing result for differential equation models given by Phillips (1973).

If all eigenvalues are real and m is odd, the cigenvalues and [ are
identified. If all eigenvalues are real and m is even, 2% possibilities remain
where, as before, K is the dimension of the model. However, the critique by
Hansen and Sargent (1983) of the results obtained by Phillips (1973) for the
model in continuous time applies here as well: only those matrices IT* that
satisfy IT*™ = IT™ cannot be distinguished from [T for which the correspond-
ing solution X* of 2 = smo T s [T is positive definite. If m is even, this
condition is satisfied by (/T, X) and (=11, X) at least so that the model is not
globally identified, as in the univariate casc.

If some cigenvalues of IT are complex, the number of solutions can be even
larger than 2%, as A*™ = A™ has m solutions in the set of complex numbers. If
we ignore the restriction implied by the positive definiteness of € and note
that complex cigenvalues have to be in conjugate pairs, the number of
solutions is at most m*?2 if K is even and 2m*="2 jf K is odd. There is no
guarantee that the argument of Hansen and Sargent (1983) will reduce this
often considerable number of observationally equivalent models as 2* will be
close 1o  and therefore positive definite if the eigenvalues of IT are
sufficiently small in absolute values. These results could again be compared
with the results for the differential equations equivalent to (2) where the
number of observationally equivalent models can be infinite even if all
cigenvalues are distinct (see Hansen and Sargent, 1983).

In order to illustrate the above results, consider a bivariate AR(1) model
and define the matrices

po_[07 03 p._[07 03 po_[ 041 064
'TLo3 e 2= 03 0.6 PTloes 020

wele 17 s=ll 7]
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In Table I we present the number of observationally equivalent models for
several values of the number of periods between two observations and for the
case where 11 and X coincide with Py or > and 8, or 5 respectively. Note
that P, has real eigenvalues while those of P> are complex and that X is
varied to illustrate the impact of the condition that 2* should be positive
definite.

It is evident from Table 1 that the number of observationally equivalent
models can be large. Moreover, non-trivial a priori information will often be
required to eliminate all but one of the observationally equivalent models. If
n=pr, =5, and m =2 or m = 4, the four observationally equivalent
models are (P, 5), (=P, 8)), (P3, 5)) and (—P;,5,) as can be casily
checked. The choice between the first and third of these models requires
much more prior information than just the sign of a single cocfficient as is the
case in the scalar AR(1) model considered by Palm and Nijman (1984). Note
that only (—P,. §;) is ooservationally equivalent to (P, 5:) if m =2 or
m = 4, because the models with IT= P, are excluded by the requirement
that £* should be positive definite.

Until now we have assumed that the eigenvalues of [T are all distinct. In
this case the parameters of [T and X are locally identifiable although the
number of equivalent solutions can be large. If not all cigenvalues are
distinct, local identifiability is no longer guaranteed. If, for example. [T is a
2 x 2 diagonal matrix where the (1,1) and (2,2) elements are p and —p
respectively, we can readily check that, for

. Vi1-be b
I =p[ c - VIi-be ]

IT" = I for all real numbers b, ¢ such that be = . Therefore there are
pomts in the parameter space arbitrarily close to the true parameter value
that are observationally equivalent to it il K =2 and y, is observed every
second pernod only, and so the model is not locally identificd. The discussion
of the peneral case where the cigenvalues are not necessarily distinet s
omitted as it is hampered (here and in the continuous-time cquivalent) by the
fact that the decomposition I'T= PAP ' no longer applies.
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In applicd work we have to choose one of the equivalent solutions
(11", X*). As illustrated in Table 1, this choice requires far more a priorn
information than in the umvariate AR(1) case where knowledge ol the sign of
the autoregressive parameter is sufficient,

3. UNIVARIATE ARMA(2.1) AND AR({2) MODELS

In the previous section we have shown that the number of models which are
observationally equivalent to a multivanate AR(1) model can be large if all
variables in the model are observed every mth period only. We could
consider a large number of generalizations of this, for example, to cases
where subsets of the variables are always observed or to higher-order AR or
ARMA models. In this section we consider the extension to AR(2) and
ARMA(2,1) models only, restricting ourselves morcover to the univariate
casc. As these models can of course be written in the vector AR(1)
representation discussed in the previous section, we might expect the results
obtained there to have direct implications for the models to be considered in
this section. Unfortunately, however, in the vector AR representation of the
higher-order univariate models the assumption made in the previous section
that all the variables in the state vector are observed every mith period no
longer holds.
Consider the univariate ARMA(2,1) model

p(L)y. = ¢(L)g, 3)

where p(L)=1—=p L —p2L?, ¢p(L)=1+¢L and & ~ IN(, o) and
assume  that vy, is  observed for 1€ T, only. The roots of
Il =z ' —psz P =0 are denoted by a, and a; respectively and it is
assumed that |a,| < landa, # ¢ (i = 1, 2).

Multiplication of

(1 = a, L)1 = a:L)yv, = (1 + ¢L)e, (4)

by salayL)sm(asl). where sylal)=1+al +a’l?+ ... +a™ 'L
yields

(1= alL™)(1 — a?L")y, = sula L)su(asL)(1 + @L)e,. (S)

Il we assume for simplicity that (5) contains no common  lactors, the
observations are generated by the ARMA(2,1) model

(I =y ™)1 = g2 L")y, = (1 = wl™)v, (6)

where v, is a white noise for 1 € T,,. Its variance o3 and the moving-average
parameter @ can be obtained by solving the moment equations subject to the
condition that |w| < 1. As an illustration, we first discuss the case when
m = 2. Then

2
L

Y, = a (7a)
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{.U(I‘:, = {(‘t’lﬂ': + ¢ﬂ'| + ¢a2 + ¢ﬂ’|ﬂ'_\(ﬂ'[ + a: + 4?)}(1"1 (‘"'}]
and the first-order autocorrelation

i

T3 et Py Py 3 geyaslay ¥4 % $))

x {1 4 (a, + @2 + ¢)* + (a,a; + pa; + ¢az)’ + Ppajaz} !
(7¢)

The identification conditions of an ARMA(2,1) model observed every second
period can easily be checked from (7). The special case with a; = 0 (i.e. the
ARMAC(1,1) model) has already been considered by Palm and Nijman (1984).
For the ARMA(2,1) madel (3), if the standard conditions for identification of
(Y1, 2. @, 03) in (6) are satisfied, |a| and |a;| can be identified from y,
and y, which yields four admissible solutions for a, and a;. For every
admissible solution for (a,, a;) the corresponding value for ¢ will have to
satisfy (7c). If ¢ = ¢ satisfies this moment equation, so will ¢ = ¢! as can
casily be verified. Expression (7c) yields a quadratic equation with a unique
value for ¢ within the unit circle for every choice of (a;, a;). Subsequently a
unique value for o! can be obtained from (7b). Four ARMA(2,1) models,
corresponding to the different solutions to a? =y, (i = 1,2), arc observa-
tionally equivalent but they are locally identified. If cancelling of factors in
(6) is not excluded, the model may not even be locally identified, although
the necessary condition for identification given by Palm and Nijman (1984),
which requires that the number of moving-average parameters is not larger
than the number of autoregressive parameters, is clearly satisficd.

If py =0 in (3), which implies that a; = —a3, the observations y,, 1 € T,
are generated by (1 — poL?)y, = v, with ol = (1 + ¢?)o;. Obviously, the
parameters ¢ and o? cannot be identified from %

Returning now to the general case where m is not necessarily equal to 2,
we sce that (6) implies that if m is odd and if @, and a; are real and unequal,
the parameters a; and a; can be obtained from vy, and o,. The only
admissible solution of AP =y, and A7 =y, is (4, 4;) = (ay, @2). The
parameters ¢ and o? can then be obtained from w and p]. The model is
therefore globally identified in this case. If, in contrast, m is even and @ and
a- are real with |a,] # |az|, four solution pairs (4,, 4;) are in agreement
with (y,, y). We cannot exclude the possibility that all four solutions are
compatible with values for ¢ and o that are also in agreement with @ and
o, so that four equivalent models exist. If the roots of p(z7') =0 are
complex or a' = a¥', the number of equivalent models may be even larger.
In this case all m solutions of A" = y, in the complex plane cannot be
rejected as their conjugates are solutions to A7 = y. Analogous to the
situation discussed before, we cannot in general expect any information on
the correct choice of these roots from w and ol. The number of observa-
tionally equivalent models can therefore be equal to m. The results for the
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TABLE 11
e Maxinum Nusmser o Ousservanionalry Eouivarent Mobirs ror 1HE ARMA
(2.1) Mopia
Maximum number of
mth power of observationally
Roots of AR polynomial ayand a, m cyguivalent models
Real Unequal Odd |
Real Unequal Even 4
Complex Unequal Odd/even m
Real feomplex Equal Odd/even m

maximum number of observationally equivalent models for the ARMA(2,1)
case are summarized in Table 11.

Now consider the AR(2) model where it is known that ¢ = 0 in (4). The
observations on y,, t € T,,, are again generated by (6), and the discussion of
possible solutions of A" = y, and AT = y, goes through as before. However,
there is a difference in that w contains information on the choice of the roots.
An incorrect choice for these roots can no longer be compensated by an
incorrect choice for ¢. However, the signs of a; and a; cannot be uniquely
determined if m is even, because a simultaneous change in them does not
affect w. Therefore two observationally equivalent models exist for the AR(2)
model if m is even and p; is globally identified. The information on the
choice of the roots A, and A, has to come from w, the value of which is close
to zero for all models that were considered. We should therefore not be
surprised if local maxima of the likelihood function close to the overall
maxima show up for this model in applications where w has to be estimated
from a finite sample. The difference with the ARMA(2,1) model in this
respect will be smaller than suggested by large-sample theory.

To illustrate the points made above we present plots of the approximate log
likelihood function for an AR(2) model with (p), p2) = (1.4, —0.74),
T=50m, and m =2 and m =3 respectively. More details and other
examples are given by Nijman and Palm (1985).

We define y(L™)=(1—y, L") 1 = yoL™), w(L™)=1-wlL™ and
(v, Y, w, 0) = g(pi, p2, 02). If the sum of squared residuals in the concen-
trated log likelihood function L(3,, §;) is replaced by its expectation or its
probability limit for given values of g, and p,, L(p,, 1) is approximated by

—T{1 + In E{g(L™)y " (L™)® "(L™)o(L™)v,)?]

2m

fii, p2) = (8)
where (Y., Yo, @, 82) = g(py, P2, 32). We plot f(B, p2) for admissible
vitlues (. p») which are not significantly different from the true parameter
values (py, p2) at which f(p,, p.) reaches a maximum, and we plot
(o, p2) = 300 0f f(py, p2) = f(H1, P2) = 3.00 which indicates that the
hypothesis p, = g, would be rejected at the 5% level. The wvalue
f(pr, p2) — 3.50 was assigned to parameter points which imply roots of the
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autoregressive polynomial inside the unit circle.
For (py. p2) = (1.4, —0.74) and m = 2, the equations A" = yy and A" = yr,
have two  solution pairs (44, A2), (0.7 + 05,07 - 0.5) and
(—0.7 = 0.5i, =0.7 + 0.5i), if we negleet solutions where only the roles of 4
and A; are interchanged. Both roots imply the same values of w as

v A|A]

4+ wd 1+ (A 4 L)+ A
Discrimination between  the

models  with (p, p2) = (1.4, =0.74) and
(pr.p2) = (— 1.4, —0.74) is therefore not possible as is evident from Figure 1.
If m =3, there are three solutions for (44, 4;), (0.7 + 0.5, 0.7 = 0.51),

(—0.78 + 0.361, — 0.78 — 0.36i) and (0.08 — 0.85¢, 0.08 + 0.85). The value
of w can now be derived from

w AAr + A4, + AjA3
1+ 00 L+ (A + &)+ (A + 44 + D2 + (A + 2,4H)7% + Akl
so that w= —0.35, w =0.27 and @ = —0.11 respectively. In large samples

the different values of @ can be used to select the correct model, which is
globally identified. In small samples the information content of w will be
small and local maxima show up for the three solutions for (4,, A;) in Figure
2. The maxima in that figure are in good agreement with the values of
(p1, p2) implicd by the (4, 4;) solutions which are (1.4, -0.35),
(—1.56, —0.35) and (0.16, —0.35) respectively.

-5 .A\T%

sReR. \N6 A%

Frivmr |

Approximate log hikehihood function for an AR (2) model with g, = 1.4, o0, -0.74;
m=2and T = 100,
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LpPR. \R6 \\%.

Fiaum: 2

As for Figure 1 but with m = 3 and T = 150

Extensions of the above discussion to higher-order ARMA models or
observations on flow variables, for example, are straightforward. The number
of observationally equivalent models can become large. even if the model is

locally identificd, especially if the autoregressive polynomial contains complex
TOOLs.

4. CONCLUSIONS

In this paper we analysed the identification of multivariate AR(1) models and
umvariate ARMA(2.1) and AR(2) maodels if the variables in the model are
observed every mith period, where m s some integer greater than unity. For
4 K-variate AR (1) process the number of observationally equivalent locally
identificd models can be as large as m*?. For the univariate ARMA(2.1)
model m observationally equivalent locally identified models can casily arise,
while for the univariate AR(2) process the number of obscervationally
cquivalent models will usually be small but the likelihood function will often
contain several local maxima as illustrated in Section 3. For empirical work
our results imply that often additional a priori information will be required o
wentify the parameters and that it is very important to check whether a
elobal maximum has been reached when iterative optimization routines are
used to maximize the log likelihood function. However, in a finite sample it
cannot be guaranteed that the selection of a solution which may be a long
way from the true parameter value will be avoided.
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