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Abstract Mathematical modeling and the development

of predictive dynamic models are of paramount importance

for the optimization, state estimation, and control of bio-

processes. This study is dedicated to the identification of a

simple model of microalgae growth under substrate

limitation, i.e., Droop model, and describes the design and

instrumentation of a lab-scale flat-plate photobioreactor,

the associated on-line and off-line instrumentation, the

collection of experimental data, and the parameter identi-

fication procedure. In particular, a dedicated methodology

for parameter identification is discussed, including the

determination of an initial parameter set using an analytical

procedure, the selection of a cost function, the evaluation

of confidence intervals as well as direct and cross-valida-

tion tests.

Keywords Mathematical modeling � Parameter

estimation � Droop model � Photobioreactor � Bioprocesses

Introduction

Research and applications of microalgal cultivation have

experienced a fantastic boom in the last two decades due to

a renewed interest in alternative energy sources, and the

potential of microalgae to produce large quantities of

neutral lipids (e.g., 20–50 % dry cell weight) for biodiesel

production [1, 2]. Besides, microalgae have a large spec-

trum of applications ranging from the production of pig-

ments, cosmetics, animal fodder to wastewater treatment

[2, 3].

These ever increasing applications motivate the devel-

opment of process monitoring and control, aiming at im-

proving process reliability and productivity. In this context,

it is necessary to develop predictive dynamic models that

could be used for the design of software sensors [4], i.e.,

state estimation techniques blending the information of the

process model with available instrumentation to recon-

struct nonmeasured variables, or for the design of opti-

mizing controllers.

Several models describing microalgal growth in open

pounds, or bioreactors, have been proposed, for instance in

[5–7]. A good overview of recent developments is given in

[8]. One of the earlier, and nowadays classical, models of

microalgal cultivation under substrate limitation has been

originally developed by Droop [9]. This model uncouples

substrate uptake (leading to the formation of a so-called

internal quota), and biomass growth. It is often the corner

stone of more elaborate models, including additional ef-

fects such as light photoacclimation and inhibition [8, 10].

Even though Droop model is well established and there

are many reports of successful applications, there is still a

need for the development of a systematic identification

procedure and its experimental evaluation. The objective of

this work is to assess the experimental effort needed to
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estimate the parameters of Droop model, and to discuss an

experimental case study, based on a lab-scale flat-plate

photobioreactor. Attention is focused on the on-line and

off-line instrumentation, and the development of an iden-

tification procedure including initialization, cost function

selection, evaluation of confidence intervals, and model

validation.

This paper is organized as follows. The next section

introduces Droop model, while Sect. 3 presents the

laboratory set-up including the flat-panel photobioreactors

and their associated off-line and on-line instrumentation.

Section 4 is dedicated to the parameter estimation proce-

dure and discusses data collection, model identification,

and validation. Finally, in Sect. 5, some conclusions are

drawn and prospects are envisioned.

Droop model

Droop model [9] describes the growth of microalgae cul-

tivated in a photobioreactor, under constant temperature

and illumination conditions. Droop model uncouples

growth from substrate uptake, leading to the definition of

an internal cell quota (i.e., the internal nutrient quantity per

unit of biomass), and describes the growth rate as a func-

tion of this internal quota only. Below a so-called subsis-

tence quota, the algae cannot grow.

Originally, Droop considered vitamin B12 as a limiting

nutrient. Since then, it has been demonstrated that the

model is applicable to other limiting substrates such as

nitrate, phosphate, and silicate [5]. In our work, nitrogen is

the limiting nutrient as considered in [8]. Nitrogen deple-

tion enhances the accumulation of lipids within the mi-

croalgae, and corresponds to bioreactor operating

conditions used for the production of biofuels.

The mass balance differential equation model presented

in Eq. (1) involves three state variables: the concentration

of biomass X, the concentration of substrate S, and the

intracellular quota Q.

_X ¼ l Qð ÞX � DX

_S ¼ �q Sð ÞX þ DðSin � SÞ

_Q ¼ q Sð Þ � l Qð ÞQ

ð1Þ

The dilution rate D ¼ Fin=V is the ratio of the inlet flowrate

to the volume of the culture.

The uptake rate qðSÞ is defined by a Michaelis–Menten

law:

q Sð Þ ¼ qm
S

Sþ Ks

; ð2Þ

where Ks is the half saturation constant and qm is the

maximum inorganic nitrogen absorption rate.

The specific growth rate is defined as a function of the

intracellular quota (Q) as follows:

l Qð Þ ¼ lm 1�
Q0

Q

� �

; ð3Þ

where Q0 is the minimal cell quota or subsistence quota,

i.e., the parameter identified by Droop under which the

algae do no longer grow, and lm is the maximum specific

growth rate. In [11], it has been proved that the cell quota

remains between two bounds: Q0 �Q�Qm, where the

maximum cell quota Qm obtained in conditions of non-

limiting nutrient is given by

Qm ¼ Q0 þ
qm
lm

:

The physical units of the several variables and parameters

considered in this work are presented in Table 1.

In this work, the saline microalgae Dunaliella tertiolecta

is cultivated in a culture medium with limiting quantities of

nitrate. The experimental set-up is described in the next

section. The cultures are achieved in batch mode (D ¼ 0)

so that the model reduces to

_X ¼ l Qð ÞX

_S ¼ �q Sð ÞX

_Q ¼ q Sð Þ � l Qð ÞQ:

ð4Þ

Materials and methods

Photobioreactor set-up

The cultivation of microalgae is achieved in an in-house

lab-scale process, which consists of a flat-panel reactor, a

light source, and a set of probes for on-line measurements.

Figure 1a shows a sketch of the photobioreactor (PBR),

which has a culture volume of 13 L and is illuminated from

one side by a set of six fluorescent tubes placed vertically

and parallel to the front side of the reactor, with the same

height and width as the reactor. These fluorescent tubes of

Table 1 Model variables and parameters

Variables Parameters

Biomass, X (mgC/L) Maximum absorption rate,

qm (mgN/mgC/day)

Substrate, S (mgN/L) Half saturation constant, Ks (mgN/L)

Intracellular quota, Q (gN/gC) Maximum growth rate, lm (per day)

Minimal cell quota, Q0 (mgN/mgC)

Inflow substrate, Sin (mgN/L)

Dilution rate, D (per day)
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18 W each are dimmable and used generally in horticulture

applications (Fluora 18 W/77, Osram). The main emitted

wavelengths are located in the visible spectrum [blue

(430 nm) and red (620 nm)] to promote photosynthesis.

A constant light intensity of 150 lmol=m2=s was

measured.

To have a well-distributed culture medium, the air-lift

principle is used, with an air pump delivering compressed

air at 0.1 L/min.

Pure gaseous carbon dioxide CO2 is injected at the

bottom of the reactor using a microporous diffuser. The

CO2 flow is modulated by an electromagnetic valve, con-

trolled by a pH control module. Figure 1b shows a picture

of the laboratory set-up.

Microalgal culture

Batch experiments were performed for the culture of the

microalgal D. tertiolecta. The medium consists of the fol-

lowing components: NaCl (10 g/L), MnCl2�6H2O (1.5 g/L),

KNO3 (0.2446 g/L), MgSO4�7H2O (0.5 g/L), CaCl2�2H2O

(0.2 g/L), KCl (0.2 g/L), K2HPO4 (0.045 g/L), and mi-

cronutrients. The medium was prepared using deionized

water.

Data collection

An advantage of the flat-panel PBR design is that sensors

can be installed through the top of the reactor, according to

the project needs. For monitoring the microalgae growth,

several variables are measured on-line, including pH,

temperature, biomass, and nitrate concentrations. The on-

line probes are connected to a portable PC to collect the

measurements using LabView data acquisition tools. Other

variables are measured off-line, including the intracellular

nitrogen quota, as well as additional measurements of

biomass and nitrate concentrations (which can be used as a

cross-check).

The pH probe is an electrode, which is connected to an

on/off pH controller unit (HANNA Instruments BL

931700) with a programmable set point. In this work, the

pH is established at 7.5 and an error of �0.2 is observed.

Temperature is measured using a probe EI-1034 together

with a DAQ module LABJACK U3. The temperature probe

consists of a silicon-type temperature sensor mounted in a

waterproof stainless steel tube. It uses the LM34 sensor from

the National Semiconductor, with a typical room tem-

perature accuracy of �0.4 �F, and a linear voltage output in

relation to the temperature. The cultures were performed in a

laboratory environment where the temperature is kept above

23 �C and with a maximum temperature of 28 �C.

Different methods are applied to measure the biomass

concentration, nitrate concentration, and the internal ni-

trogen. The following subsections explain these methods.

Biomass concentration acquisition methods

There are a number of off-line and on-line methods, which

have been developed to sense and quantify biomass. In this

work, two optical density methods were applied to measure

the biomass. The first one is an off-line measurement

method performed with a Shimadzu UV-mini 1240 spec-

trophotometer. The second one is an on-line method, which

uses an optical Optek sensor model ASD19-N to measure

the optical density in concentration units. In both cases, the

dry weight method was used as reference to correlate the

absorbance measurements with the biomass concentration.

Spectrophotometer. This is an optical method where the

value of the biomass concentration is measured indirectly

by light absorption. For each measurement, a sample

(4 mL of medium) is taken from the photobioreactor, put

into a square cell, and measured with a spectrophotometer

Shimadzu UV-mini 1240, Fig. 2a.

Since the maximum absorbance value for the target

microalgae was observed at 680 nm, this wavelength was

selected to measure the absorbance of the sample.
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Fig. 1 a Schematic

representation of the PBR,

b actual view of the PBR
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In order to obtain the biomass concentration measure-

ment in mg/L, it is necessary to establish a correlation

between the optical density and the dry weight. Figure 2b

shows this linear correlation (optical density at 680 nm and

dry weight of a sample diluted 20 times), with a coefficient

of correlation of 0.9994. The model equation is given by

Dry biomass mg=Lð Þ ¼ 431:27� OD680 � 10:537 ð5Þ

The sensitivity of this calibration is 0.002 Abs/mg/L. The

photometric accuracy of the equipment is �0.005 Abs (at

1.0 Abs) and �0.003 Abs (at 0.5 Abs) and the measure-

ment range is from �0.3 to 3.0 Abs. Since the calibration

curve is established with a maximum value of 1.1 Abs, the

maximum measurable concentration value is 464 mg/L. To

measure concentration values larger than this value, it is

necessary to dilute the sample.

On-line turbidity (Optek probe). Another method used to

measure the biomass concentration is based on the near

infrared (NIR) absorption probe (Optek, model ASD19-N),

as shown in Fig. 3a. The main advantage of the Optek

probe is that it can take the measurements on-line, been

immersed into the photobioreactor.

Results from the Optek equipment are displayed in

Concentration Units (CU—the measurement range is from

0 to 4 CU).

Following the same procedure as in the previous section,

a calibration curve of the Optek sensor has been obtained.

Moreover, ten samples were taken during the exponential

growth of the microalgae D. tertiolecta and the biomass

concentration indirectly obtained from the UV-mini was

used as a reference. Figure 3b shows the quadratic corre-

lation between CU and biomass concentration with corre-

lation coefficient of R2 ¼ 0:9953.

Nitrate concentration acquisition methods

The nitrate concentration in the medium is measured using

absorption spectroscopy. This method uses the absorption

properties of nitrate: when dissolved in water, nitrate ab-

sorbs the ultraviolet (UV) light at wavelengths of less than

250 nm [12]. Due to this self-absorption property, the ni-

trate concentration can be measured with the spectropho-

tometer Shimadzu UV-mini using the deuterium light

source. Since the turbidity of the sample causes interfer-

ence in the measurement of the absorbance, the nitrate

concentration measurement takes two wavelength into ac-

count: 220 and 275 nm. At 220 nm, the measurement

(ABS220) considers the nitrate absorption plus the inter-

ference, while at 275 nm, only the interference due to the

turbidity (ABS275) is considered. Consequently, the nitrate

Fig. 2 a Optek sensor (http://

www.optek.com). b Calibration

curve for the absorbance mea-

surement in cultures of D.

tertiolecta

(a)

y = -863.81x2 + 1846.7x - 301.54

R² = 0.9953
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Fig. 3 a Optek sensor (http://

www.optek.com). b Correlation

between CU (Optek) and dry

biomass of the strain D.

tertiolecta
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concentration is obtained from the difference of both

measurements ABS220–ABS275.

The calibration follows the manual method [13]. A re-

lationship between absorbance and nitrate concentration is

obtained by preparing six dilutions of a nitrate solution,

from 1.1 to 17.6 mgN/L. Figure 4a shows the spectrum of

these sample dilutions using a wavelength from 190 to

290 nm, performed with the Shimadzu UV-mini using a

5 mm quartz cell. For these results, demineralized water

was used to set the zero absorbance. The absorbance dif-

ference (ABS220–ABS275) is related with the nitrate con-

centration value to obtain the calibration curve, as shown in

Fig. 4b.

Furthermore, it is possible to use this principle to obtain

on-line measurements of nitrate concentration. To this end,

an optical fiber immersed directly in the medium was used.

A deuterium light source provides the light that will travel

through the fiber optics into the medium and be detected by

a spectrometer. The calibration procedure is the same as

explained above.

Intracellular nitrogen acquisition method

To measure intracellular components, it is necessary to

stop the metabolism very abruptly and to disintegrate the

cells quantitatively. For this analysis, a Shimadzu TOC-

VCPH analyzer working with a Total Nitrogen Module

(TNM-1, Shimadzu) is exploited. This unit works with

chemiluminescence to measure total nitrogen. In this

process, the sample is combusted to nitrogen monoxide

and nitrogen dioxide. The nitrogen species reacts with

ozone to form an excited state of nitrogen dioxide. Upon

returning to the ground state, light energy is emitted.

Then, total nitrogen (TN) is measured using a chemilu-

minescence detector.

The measurements can be taken over a wide range from

0.1 to 4000 mg/L, and their accuracy has a coefficient of

variation of 3 % max. Shimadzu TNM-1 can also simul-

taneously measure the total organic carbon (TOC).

To proceed with the measure of total nitrate, the TNM-1

was calibrated using 100 mg/L of KNO3 standard solution,

and the dilutions were obtained automatically from the

unit. After calibration, the measurement is realized with a

sample volume of 15 mL of microalgae which is cen-

trifuged and washed two times with milli-Q water. The

instrument achieves three replicated injections for each

sample in order to have a reproducibility test and give the

average value as a result.

Parameter estimation

Background methodology

The goal of parameter identification is to find the best or

optimal value of the parameters that allows an accurate

prediction of the experimental data by the model MðhÞ.

The identification problem is solved considering the output

measurements, the control inputs, and the model structure.

The method to select the optimal parameter value can be

seen as the minimization of a cost function, or the pre-

diction error denoted by J.

This latter function can be selected in various ways. The

weighted least-squares method is the most popular choice,

where the minimization of the following cost function with

respect to the parameters h leads to a nonlinear program-

ming problem

J hð Þ ¼
X

N

i¼1

yi hð Þ � yi;meas

� �T
�W�1

i � yi hð Þ � yi;meas

� �

h i

ð6Þ

In this expression, yi;meas is the measurement vector, yi is

the prediction vector according to the model, h is the pa-

rameter vector, N is the number of measurement points,

and W�1
i is the error-weighting matrix.

If the statistics of the measurement noise ti is consid-

ered, i.e., yi;meas ¼ yi þ ti, then an optimal (in the

Fig. 4 a Absorbance spectrum

of six dilutions of a nitrate

solution. b Calibration curve
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maximum likelihood sense) choice for Wi is the measure-

ment error variance–covariance matrix Ri at each time

point.

The minimization of the cost function

ĥ ¼ argmin
h

J hð Þ ð7Þ

can be achieved with well-established software library

tools. In this study, a Nelder–Mead algorithm, as imple-

mented in the MatlabTM routine ‘fminsearch’ was used.

In order to evaluate the parameter estimate precision, the

Fisher Information Matrix [14] can be evaluated, which is

defined as follows:

F ¼
X

N

i¼1

oy

oh
tið Þ

� �T

R
�1
i

oy

oh
tið Þ

� �

ð8Þ

The FIM contains information about the measurement

noise (via the inverse of the covariance matrix R�1
i ), and

the output sensitivity function oy=oh at each point i in time.

The estimation of the parameter variance–covariance ma-

trix can be approximated from the inverse of the Fisher

information matrix, as follows:

CN ¼ F�1 ð9Þ

Finally, the standard deviation of the estimated parameters

ĥi can be obtained from the square root of the ith diagonal

element of the parameter variance–covariance matrix:

rðĥiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CNði; iÞ
p

: ð10Þ

With the standard deviation, it is possible to estimate the

confidence intervals at a given confidence level:

ĥi � ta;ðN�pÞri; ĥi þ ta;ðN�pÞri

h i

; ð11Þ

where a is the desired significance level and the confidence

level is 100ð1� aÞ %, N is the number of measurement

points and p is the number of parameters in the model.

The coefficient of variation (CV) can also be used,

which is defined by

CVðĥiÞ ¼
rðĥiÞ

ĥi
� 100% ð12Þ

Initialization procedure

As parameter estimation involves a nonlinear optimization

problem which can be subject to local minima, it is im-

portant to start the optimization from a reasonable initial

guess. A first estimate of the parameters can be obtained

using an analytic procedure inspired from [7, 15]:

• From the biomass measurement, the initial exponential

phase is used to estimate the maximum growth rate

lmax. In this phase, the mass balance equation (4) can

be approximated as follows:

dX

dt
¼ lmaxX

ln
X

X0

� �

¼ lmaxt

ð13Þ

The parameter lmax is the slope of the straight line

lnðX=Xð0ÞÞ vs time.

• The maximal and minimal intracellular nitrogen quotas,

Qm and Q0, can be estimated from the time evolution of

the internal quota measurements. Qm is obtained at the

time instant the substrate gets exhausted, while Q0 is

assessed when biomass growth stops.

• When the quota is at its maximum value, the maximum

growth rate value lmax is observed, so that

lmax ¼ l Qmð Þ ¼ lm 1�
Q0

Qm

� �

ð14Þ

Solving this equation for the maximum growth rate

lm ¼ lmaxQm=ðQm � Q0Þ gives an additional pa-

rameter estimate.

• At the beginning of the batch (large initial substrate

concentration), qðSÞ � qm and

dQ

dt
� qm ð15Þ

so that an estimate of the maximum absorption rate can

be obtained from the initial slope of the graph of QðtÞ.
• The half saturation constant corresponds to the sub-

strate concentration (S ¼ Ks) at which the absorption

rate is half the maximum value (qðSÞ ¼ qm=2). Con-

sidering that the absorption rate reaches this latter value

when the substrate is almost consumed, an initial guess

for the half saturation constant is obtained from the

lower values of the substrate.

The parameter values shown in Table 2 are obtained from

this initialization procedure. They will be used as the

‘‘initial guess’’ in the parameter identification algorithm.

Nonlinear parameter estimation

Parameter estimation is achieved so as to obtain more

precise values for the parameters qm, Ks, lm, Q0. Besides,

Table 2 Initial parameter estimates

Initial guess First estimates CV (%)

qm 0.048 0.0901 0.95

Ks 2.000 1.6499 4.96

lm 1.137 1.9054 0.39

Q0 0.030 0.0350 0.12
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the initial conditions of the culture Xð0Þ, Sð0Þ, and Qð0Þ,

which are measured and are therefore subject to errors, can

also be estimated so as to improve the model fit.

This task is performed by minimizing the cost function

presented in Eq. 6, with a weighting matrix assuming no

prior knowledge on the statistics of the data, but just

scaling the data

W ¼ diag½maxðX2Þ maxðS2Þ maxðQ2Þ 	 ð16Þ

After minimization of the cost function, an estimate of the

standard deviation is obtained by

r̂2 ¼
JðĥÞ

N � p
ð17Þ

The covariance matrix of the measurement errors can

therefore be roughly estimated as R � r̂2W .

In a first attempt, the experimental data collected from

two batch cultures (denoted in the following as first ex-

periment and second experiment) are considered. Each

culture has a duration of about five days, but differs in their

initial conditions. The biomass concentration is measured

continuously every 5 minutes, while the other measure-

ments are obtained off-line.

Parameter estimation is achieved using the data of the

first experiment only. The estimated parameters are listed

in Table 2 (they are called first estimates). Figure 5a shows

direct validation results, i.e., compares the model predic-

tion, when using the estimated parameters, to the ex-

perimental data used in the evaluation of the cost function.

The experimental data are represented by red dots (and

95 % confidence intervals), while the model prediction is

depicted by blue lines. The second experiment is used for

cross-validation purposes, i.e., the identified model is

Fig. 5 Red dots experimental data, and blue lines model prediction. a Direct validation, b cross validation (color figure online)

Table 3 Parameter and initial

condition estimates
Initial guess Second estimates CV (%) Initial conditions

First exp. CV Second exp. CV

qm 0.048 0.0916 1.30 Xð0Þ 91.483 0.65 192.332 0.45

Ks 2.000 1.7499 6.38 Sð0Þ 14.5148 0.26 17.03 0.27

lm 1.137 1.8102 0.55 Qð0Þ 0.0347 0.95 0.0303 0.92

Q0 0.030 0.0369 0.15
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challenged with fresh data (data that have not been used in

the identification procedure), as shown in Fig. 5b. We can

notice that the identified model does not fit very well in

cross validation.

The number of experiments (in our case batch cultures)

that have to be considered for parameter estimation de-

pends on the number of parameters to estimate (in our case

study, there are four kinetic parameters and three initial

Fig. 6 Red dots experimental data, and blue lines model prediction—direct validation (color figure online)

Fig. 7 Red dots experimental data, and blue lines model prediction—cross validation (color figure online)
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concentrations), and on the number of samples that can be

collected during the experiments. Usually, a minimum of

two experiments are considered, with different initial

concentrations so as to highlight the influence of the sev-

eral parameters.

Following this approach, two extra cultures (named

third experiment and fourth experiment) are added to the

dataset. The first two cultures will now be used for

parameter estimation and direct validation, while the last

two will be used for cross validation (i.e., to test the pre-

dictive capability of the model with fresh data). The results

are presented in Table 3.

Figure 6 shows the direct validation results (red dots for

the measurements, and blue lines for the model prediction).

Apparently, the model fit is satisfactory.

Cross validation can then be used to evaluate how the

model can reproduce the two next experiments, as shown in

Fig. 7. Notice that for the last experiment, both the biomass

concentration and the substrate concentration could be

measured on-line.

The Initial condition values for these last two ex-

periments have to be estimated and are listed in Table 4

together with their coefficients of variation.

Even though the model prediction is satisfactory in the

first few days, it deteriorates on the long term when bio-

mass is in a maintenance phase and it is observed that the

Table 4 Initial conditions and coefficients of variation (CV) in cross

validation

Initial conditions Third exp. Fourth exp.

Value CV Value CV

Xð0Þ 135 4.49 140 3.48

Sð0Þ 14.5 2.56 16.5 1.79

Qð0Þ 0.028 12.95 0.045 6.79

Table 5 Third parameter and

initial condition estimates
Third estimates CV (%) Initial conditions

First exp. CV Second exp. CV

qm 0.0817 1.48 Xð0Þ 125.02 0.59 224.405 0.44

Ks 1.9268 6.64 Sð0Þ 15.09 0.28 17.161 0.32

lm 1.2088 0.66 Qð0Þ 0.036 0.97 0.0351 0.91

Q0 0.0344 0.21

d 0.0522 0.19

Fig. 8 Red dots experimental data, and blue lines model prediction—direct validation (color figure online)
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internal quota decays. To reproduce the internal quota

decay, it is proposed to introduce an additional term in the

third equation of Eq. 4 with an unknown parameter d. Note

that this situation is however not very interesting from a

practical point of view as long-term culture would be

achieved in continuous mode, where this phenomenon is

not observed.

_X ¼ l Qð ÞX

_S ¼ �q Sð ÞX

_Q ¼ q Sð Þ � l Qð ÞQ� dQ

ð18Þ

A new parameter estimation is carried out considering the

model of Eq. 18 and the new set of estimated parameters

and initial conditions calculated are specified in Table 5.

The direct validation of the new model is shown in Fig. 8,

while cross validation is achieved with the two remaining

sets of experimental data, and shown in Fig. 9 with the

initial conditions given in Table 6. We can observe that the

introduction of parameter d allows a better reproduction of

the final phase of the culture and the internal quota decay.

Conclusions

In this report, a lab-scale experimental set-up for the cul-

tivation of microalgae in flat-panel photobioreactors is

described, together with the associated on-line and off-line

instrumentation. This set-up allows the collection of ex-

perimental data, and the development of dynamic mathe-

matical models that could be used for process optimization

and control. As a first application example, the parameters

of a Droop model for the microalgae D. tertiolecta are

estimated using nonlinear least-squares, from the ex-

perimental data collected from batch experiments. Direct

and cross-validation results show the good model predic-

tive capability. Future prospects include the implementa-

tion of continuous mode to collected data in various

operating modes, and the study of additional environmental

factors, including illumination. The developed platform is

relatively low cost and allows easy further extensions.

Among these, a novel RGB sensor for measuring biomass

on-line has recently been proposed [16].
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