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Parameter Identification of Unknown Radial Grids

for Theft Detection
Sam Weckx, Graduate Student Member, IEEE, Carlos Gonzalez, Jeroen Tant, Graduate Student Member, IEEE,

Tom De Rybel, Johan Driesen, Senior Member, IEEE

Abstract—This paper proposes an algorithm to detect the
stealing of electricity by illegal connections in smart grids with
unknown or uncertain cable lengths. Many new applications in
the rising smart grid context will require information of the
grid topology. We show that with measurement data of smart
meters, the grid can be identified, as well as the phase of
connection. One of the applications requiring grid information
is the detection of electricity theft by double feeding. Electricity
theft is a problem faced by all power utilities. Financial impacts
are a reduced income for the system operator and the necessity to
charge more to other customers. Stealing of electricity by double
feeding can not be detected by the smart meter or by analysing
the load profiles. Therefore it is suggested in this paper to use
measurements of smart meters to identify the grid parameters
and detect irregularities of specific customers.

Index Terms—Smart metering, theft detection, grid parameter
identification

I. INTRODUCTION

High penetration of distributed generators and electric ve-

hicles in low voltage distribution network challenges the

future grid operation. More intelligent methods should be used

for better utilization of the distribution network, in order to

maintain, or even to improve, the power-supply reliability and

quality. A lot of these new control methods are based on

accurate network information of the distribution grid. Grid

topology information is required for example when including

grid constraints in the coordinated charging of vehicles [1],

for Volt-Var optimization [2] and State-Estimation [3] in

distribution grids as well as for electricity theft detection based

on a load flow algorithm [4]. This grid topology information

is however often not available in an easy accessible digital

structure, as the requirements for distribution grids were low

in the past, especially for low voltage grids. Therefore there

is a need towards automated grid topology identification. This

paper presents an algorithm to extract a linearised load flow

model out of smart meter data and applies this to the detection

of electricity theft.

Electricity theft is one of the main concerns of utility com-

panies. The amount of theft is small (1-2%) in terms of elec-

tricity generated in many systems, however the corresponding

financial loss is high due to the large amount of electricity

distributed [5]. It is shown that electricity theft is increasing

in most regions of the world [5]. Lost earnings might result

in decreased investments in power system improvement or
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in increased tariffs for other customers by rising distribution

tariffs for electricity. Besides that, stolen energy might be used

for illegal activities, like the production of narcotics [4].

Different types of theft exist: Fraud, stealing of electricity

and unpaid bills. When committing fraud, a customer tries to

deceive the utility by tampering the meter so that a lower con-

sumption is measured. Stealing of electricity can be performed

by double feeding, bypassing the meter so that the consump-

tion for additional feeding is not registered. The introduction of

smart meters and the modernization of measurement systems

will make electricity theft harder [6]. Different features are

included in smart meters itself to make them tamper proof.

Another way to detect fraud with smart meters is by analysing

the measured load profiles with supervised learning methods

like support vector machines [7], extreme machine learning [8]

or decision trees [9]. Stealing of electricity by double feeding

remains hard to detect without a visual inspection, as this does

not involve the smart meter itself, it will not be detected by

it. Also the load profile might not be influenced.

Radial distribution networks are either overhead or under-

ground. In both of these cases it is hard to make an illegal

connection directly to the network. Therefore, electricity theft

usually takes place in the customers house. By checking all

customers equipment, the illegal lines can be detected. The

illegal lines are often easy to detect as they are highly visible.

If they are not visible, Time Domain Reflectometry (TDR)

techniques can be used to detect the illegal connection between

the home service entrance and the metering point [10]. This

remains a time consuming task and might require too much

of the Distribution System Operators (DSO) human resources.

Besides that, sometimes the illegal lines might be well hidden,

especially when applied for illegal activities.

Theft localization can also be done based on a load flow al-

gorithm [4]. Errors between measured and simulated voltages

will point out the place of theft. Exact lengths between houses,

or of the connecting cable between smart meter and distribu-

tion feeder are however normally not available. For these cases

an algorithm is proposed in this paper that identifies the grid

and points out the customer which steals electricity by double

feeding or by tampering the meter. The proposed algorithm

assumes that at every customer both active and reactive power

are measured, as well as voltage magnitude by a smart meter.

The system operator can access this data which might be stored

at a database and can identify the time instances of theft by

comparing the measured power at the substation with the sum

of the measured consumed power. The low voltage network

considered is a three-phase, four-wire radial system with a
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Fig. 1. The network used in the simulations. All lengths are drawn to scale.

TABLE I
PROPERTIES OF THE SIMULATED NETWORK

Properties Value Unit

Total feeder length 594 [m]
Average length between houses 9.2 [m]
R (resistance) of feeder 0.206 [Ω/km]
L (inductance) of feeder 0.248 [mH/km]
Connection length between house and feeder 10 [m]

Cross section of connection cable (copper) 16 [m2]

TT earthing arrangement for residential customers. Only radial

operated distribution networks are considered, as these are the

strict majority for the connection of residential customers to

the grid.

II. SIMULATION OF A DISTRIBUTION NETWORK

The network used for simulations is a 3-phase, 4 wire radial

low voltage system with a TT earthing arrangement for resi-

dential customers out of a city-environment of Flanders. The

city feeder has a short average length between two consecutive

households, typically shorter than 10 meters. In total there are

32 customers connected. The first customer connected to the

feeder is far from the substation. The topology of the feeder

is depicted in Fig. 1. However, the algorithm can be applied

to grids with side branches as well. Table I gives the grid

properties.

III. PHASE AND GRID IDENTIFICATION

If distribution grid parameters are available, the voltages

in all nodes of the grid can be calculated with a load flow

algorithm. For radial distribution networks, the backward-

forward sweep method can be applied [11]. The load flow

problem can be represented as a non-linear system of equations

of the complex powers of all customers:

f(V1,k, ..., VN,k, S1,k, ..., SN,k) = 0, (1)

where Vh,k and Sh,k are 3x1 vectors representing the three-

phase voltage magnitude and the complex power consumption

at house h for timestep k, and N is the number of houses

connected to the considered grid.

This non-linear model is approximated with a linear model:

Vh,k = V 0

k +

N∑

h̃=1

ah,h̃Ph̃,k +

N∑

h̃=1

bh,h̃Qh̃,k, (2)

where

• V 0

k is the voltage magnitude at the distribution trans-

former at timestep k

• Ph̃,k is the active power of customer h̃ at timestep k

• Qh̃,k is the reactive power of customer h̃ at timestep k

• ah,h̃ is the influence of active power of customer h̃ on

the voltage magnitude of house h

• bh,h̃ is the influence of reactive power of customer h̃ on

the voltage magnitude of house h

In case the loads would be modelled as current sources,

the system would behave linearly. Therefore, the linearisation

would not introduce errors due to the superposition principle

and (1) and (2) would be identical. In here, loads are modelled

as PQ-sources and therefore linearisation errors will occur.

We assume that smart meters measure active and reactive

power, as well as the voltage magnitude. In case a house

is connected three-phase to the grid, voltage and power are

measured in each phase separately. This data is stored in

a database. If multiple time steps are available, an ordinary

least squares can be recognised in (2) with ah,h̃ and bh,h̃ as

unknowns. If the influence on the voltage of house h needs to

be defined, one can solve the following problem:

min
a
h,h̃

,b
h,h̃

nt∑

k=1

‖Vh,k − V 0

k −
N∑

h̃=1

ah,h̃Ph̃,k +
N∑

h̃=1

bh,h̃Qh̃,k‖
2

2,

(3)

where nt is the total amount of time steps available for least

squares.

This linear least squares problem does not require any

information about the grid. Nor the location or the order of the

customers matters. The data used for the identification in the

grid is historic data of time steps at which there was no theft.

These time steps can be found by comparing the sum of the

measured power of all smart meters with the measurements at

the substation transformer. The constants ah,h̃ and bh,h̃ allow

to recompute the voltage in a house. For the theft location

algorithm, all constants need to be defined, such that the

voltage across the distribution feeder can be calculated with

measurements of time steps with theft.

The constants ah,h̃ and bh,h̃ obtained by the LS method

will give a measure of the location throughout the grid. They

give also information about the phase connection. In case the

smart meter that had measured the voltage V h is connected to

the same phase as the household h̃, the constant ah,h̃ will be
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Fig. 2. The influence of active power of all houses on the phase voltages of
house 32.

negative, as the active power has created a voltage drop. On the

other hand, when the household is connected on another phase,

ah,h̃ will have a small positive value, due to the neutral point

shift [12]. This allows to group all loads that are connected

at the same phase, based on the constants ah,h̃ and bh,h̃.

Fig. 2 shows the influence of loads of all houses on the phase

voltages of house 32, when all households are connected by a

single phase to the network. This is obtained by applying the

least-squares method for 1000 time steps. It can be seen that

the phase of connection applied to this case was an alternating

sequence of U,V,W,U,V,W,...

This method of phase identification is less computational

intensive as [13], where a mixed-integer program (MIP) is

formed to identify the phase of connection of customers. [14]

solves a combinatorial optimization problem by a Tabu search

method. The phase of connection can also be identified by

a unique signal injection, as proposed by [15]. This would

require adapting the smart meter, which might be costly.

With the obtained linear load flow model, the voltages at the

customers nodes can be computed by evaluating (2) without

any knowledge about the cable lengths. Linearisation errors

will occur in case customer nodes are assumed to behave as

PQ-loads. An exact load flow with perfect knowledge of all

cable lengths would have no voltage errors, however when

uncertainty is added to each of the cable lengths, voltage

errors will occur. To evaluate the linearisation errors occuring

in a linearised load flow and the errors due to uncertainty in

an exact load flow, voltages are calculated for a grid where

an uncertainty of ± 10 % is added to each of the cable

lengths. The linearised load flow model is obtained by a

training set of 1000 time steps and the voltages are simulated

for a validation set consisting of 1000 time steps. Fig. 3

presents the simulation parameters by a modified boxplot.

The modified boxplot consists of an inner box that spans

the 25th to 75th percentiles, the outer box spans the 5th to

95th percentiles, and the whiskers indicate the minimum and

maximum values. The phase of connection, active and reactive

power consumption/production as well as the customer voltage

are depicted. Fig. 4 depicts the voltage error for an exact load

flow with cable lengths that differ up to ± 10 % of the real

Fig. 3. Power consumption and voltage for all customers.

lengths and compares this with the linearised load flow. The

errors in the linearised load flow are significantly smaller and

remain below 1 V. The errors in the exact load flow are biased

to one side due to overestimation of some of the cable lengths.

Therefore we conclude that identifying the radial distribution

grid is beneficial as soon as there is a small uncertainty on the

cable lengths. In case there is no knowledge at all about the

grid, it remains the only option.

When prior knowledge of the grid is available, this can be

included by adding constraints to the LS problem and making

it a convex optimization problem which can be efficiently

solved [16]. When the order of houses is known, but not

the cable lengths or cable type, this can be added to the

optimization problem. For example the voltage drop in house

h caused by a load in house 29 needs to be bigger than the

influence of house 1 on the voltage of house h in case all of

them are connected to the same phase. This can be written as:

min
a
h,h̃

,b
h,h̃

nt∑

k=1

‖Vh,k − V 0

k −

N∑

h̃=1

ah,h̃Ph̃,k +

N∑

h̃=1

bh,h̃Qh̃,k‖
2

2

subj. to ah,29 ≤ ah,1

bh,29 ≥ bh,1.
(4)

Prior knowledge can sligthly improve the results of the

obtained constants ah,h̃ and bh,h̃.

As European distribution networks are generally operated in
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Fig. 4. Voltage estimation error for both the exact load flow as the linearised
load flow for a radial grid with uncertain cable lengths (± 10 %).

a radial way, only these type of networks are evaluated. When

applied to meshed or ring type of networks the linearisation

errors by eq. (2) might increase.

IV. ELECTRICITY THEFT LOCALIZATION IN KNOWN

RADIAL GRIDS

With the measured currents available by the smart meters,

the voltage throughout the network can be estimated by run-

ning a load flow algorithm if the grid is known. The measured

currents however do not coincide with the actual currents due

to electricity theft. This result in a difference between the

measured and the estimated voltage. In [4] it is proposed to use

this estimation error to localize the place of electricity theft.

If the estimation error does not clearly provide an accurate

location, the localization will be extended for another time

frame or the time frames can be aggregated. It is shown in

[4] that this method is already robust against measurement

errors. However, this method requires exact knowledge of the

grid parameters. Cable lengths between subsequent houses are

often not known or not known exactly, as well as the length

of the cable connecting the house to the feeder.

V. ELECTRICITY THEFT LOCALIZATION IN UNKNOWN

RADIAL GRIDS

When the grid is identified by least squares, all customer

voltages at time steps of theft can be computed with (2). The

stolen power will result in a lower voltage at the customer

node then estimated by (2). This allows to identify the place

Voltage

calculation

Measured

Power

Measured

node

voltages

Difference

Theft localization

Smart meter

data and

substation

measurements

Separate time

steps of theft

Identify network

by Least squares

Time steps

with theft

Time steps

without theft

Fig. 5. Flow chart of theft detection procedure.

of theft. At each time step of theft, the difference between

measured and estimated voltage is found. The location where

this difference is most often the maximum is selected as the

most likely place of theft. This is often also the place of

maximal error. The flowchart of the theft detection procedure

is shown in Fig. 5.

To test the algorithm, all customers are considered as unbal-

anced three phase loads. The active power consumed/produced

by a customer in each phase is assumed to be random with a

mean of 1 kW and a variance of 1 kW, the reactive power is

assumed to be random with a mean of 0 kvar and a variance

of 0.2 kvar. Customer 20 commits theft during 10 out of 1000

time steps. The average stolen power is 2 kW, the variance

of the stolen power between different time steps is 20%. It

is assumed that by measurements at the substation, the time

instances of electricity theft are known. The typical cable used

to connect the feeder with the houses is copper 16 mm2,

where the length is modelled as a gaussian distributed number

with a mean of 10 m. The 3σ variance is assumed to be

2 m. Gaussian noise is added to both power (σP =5 W and

σQ=5 VA) and voltage measurements (σV =0.1 V). In Fig. 6

the maximum voltage estimation error for all customers is

plotted. The highest estimation error occurs at the customer

committing theft.

One could argue that the linearisation errors made by

evaluating (2) will result in an incorrectly identified location

of theft. However, the voltage drop over the impedance of

the cable connecting the smart meter with the distribution

feeder is significantly higher then the linearisation errors for

normal lengths of this cable. Fig. 7 shows the influence of the
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length of this cable on the efficient detection of theft. Only for

unlikely lengths shorter then 5 m, efficient detection might be

a problem.

VI. CONCLUSION

Many applications in the rising smart grid context require

information of the grid topology. In this paper it is shown how

by means of smart meter data a linearised load flow model for

unknown radial grids can be identified. The linearised load

flow model provides information about both the location as

well as the phase of each customer. It is shown that errors

due to the linearisation are small. One of the applications

of the linearised load flow model is electricity theft in radial

grids. Electricity theft is a major problem in the distribution

of electricity. The introduction of smart reading provides new

opportunities to automate the detection of electricity theft.

With information of the grid, the measured voltage can be

compared with an estimated voltage that is the result of a load

flow with the measured current. This method is inapplicable

in case the length between houses is not known accurately.

Therefore another method is proposed that improves the local-

ization of electricity theft. The proposed algorithm combines

grid identification and theft localization. Results show that the

location of theft can be easily identified and can be applied to

unknown grids.
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