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a b s t r a c t

This paper proposes a procedure for the parameter identification of Tamura’s wake-
oscillator model. A multiple timescale analysis of the dimensionless model shows that
the response is governed by two dimensionless groups D0 and D1, highlighting the
importance of the forcing terms in the two governing equations, the total (aerodynamic
and structural) damping and the coefficient ε of the fluid Van der Pol oscillator. In
particular, this approach provides a simple closed form expression for the steady state
amplitude of the structural displacement, which is usually measured in wind tunnel
experiments. The proposed method of identification consists in fitting the parameters
of the model by adjusting the closed-form expression of the VIV curve on experimental
points. It is developed into two variants: a least-square fitting and a fitting based on
some simple geometrical indicators (height, width, asymmetry). The model is sufficiently
versatile to estimate the maximum amplitude and lock-in range. Applications of VIV
in air for different geometries and Scruton numbers show that the two variants give
equivalent results thanks to the robustness of the method. The paper is first intended
for experimenters looking for a simple robust procedure to identify the parameters of
the wake-oscillator, which can then be used in a prediction phase. The derivation of the
slow phase version of Tamura’s model might also be appealing to better understand the
main features of this model.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

Vortex-Induced Vibration (VIV) of bluff bodies subjected to smooth flows is a fluid–structure interaction. For medium
o high Reynolds number (Lienhard, 1966), the flow behind bluff bodies is separated and vortices are ejected alternatively
n both sides of the body. According to the Strouhal law, the vortex shedding frequency varies linearly with the incoming
luid velocity. Once this frequency matches the natural frequency of the structure left free to vibrate, the coupling between
oth degrees-of-freedom (structure and fluid) leads to the resonance of the structure. When the structure vibrates, the
ortex shedding frequency does not follow the Strouhal law anymore and is locked to the natural frequency during a
ertain lock-in range of the fluid velocity (Païdoussis et al., 2010). The observable effect of VIV is a bell shape of the
tructural vibration amplitude versus fluid velocity, the resonance starting at the critical VIV velocity. There are many
pplications of VIV (in different fluids), which explains the amount of available VIV models (Gabbai and Benaroya, 2005).
n wind engineering applications, flexible structures are subjected to various wind velocities during their lifetime. In

∗ Corresponding author at: Wind Tunnel Lab, University of Liège, Belgium.
E-mail address: francois.rigo@uliege.be (F. Rigo).
ttps://doi.org/10.1016/j.jfluidstructs.2021.103474
889-9746/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jfluidstructs.2021.103474
http://www.elsevier.com/locate/jfs
http://www.elsevier.com/locate/jfs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfluidstructs.2021.103474&domain=pdf
mailto:francois.rigo@uliege.be
https://doi.org/10.1016/j.jfluidstructs.2021.103474


F. Rigo, T. Andrianne and V. Denoël Journal of Fluids and Structures 109 (2022) 103474

c
o
a
a
s
s
i
w
r
t
d
t
a
a
p

s
t
F
T
n
v
i
p
l
1
f
g
i
i
v
t
m
Z
e
w
o
t
m
f
p
a
(
i

P
a
w
a

w
p
t

o
e

d

these applications, a study on the potential presence of VIV has to be carried out in order to avoid undesirable vibrations,
which can be very high (comparable to the cross-flow dimension of the structure) when the structure is light and slightly
damped.

Vortex-Induced Vibration in air can be experimentally investigated in Wind Tunnel (WT) using rigid or flexible
ylinders, instrumented with displacement transducer or laser for the structural motion and pressure sensor, cobra probe
r hot wire for the fluid flow (wake) (Feng, 1968). For VIV experiments in one dimension, rigid cylinders with end-plates
re used and two kinds of dynamic experiments can be made depending on cylinder supports: (i) forced (actuators)
nd (ii) free vibration (elastically-mounted). For a cylinder forced to move with an imposed motion, the amplitude is
et between a fraction and the order of magnitude of the diameter and the forcing frequency is imposed around the
tatic cylinder shedding frequency. When the amplitude and frequency are changed, it is possible to observes changes
n the flow pattern (2S and 2P modes) (Williamson and Roshko, 1988). For a forcing frequency that would be observed
ith a cylinder at rest, there is no change in pattern but the shedding frequency does not follow anymore the Strouhal
elation and is equal to the forcing frequency (wake capture). In free vibration, the elastically mounted cylinder is free
o move and the motion is a result of its interaction with the wake. The cylinder dynamics depends on the mass and
amping ratios, wind velocity, Reynolds number, natural frequency and cross section geometry. The VIV corresponds to
he frequency matching between the shedding and natural frequency. This type of vibration is easy to implement in WT
nd the purpose is to measure the structural displacement as a function of the wind velocity. Some experimental studies
lso focus on 3D effects (Brika and Laneville, 1993; Gabbai and Benaroya, 2005) but they are not discussed here since the
aper is based on two degrees-of-freedom models.
Different models have been proposed to represent this phenomenon. They are all based on an equation for the

tructural motion, complemented with some terms or equation(s) to take into account the interaction of the fluid with
he structure. According to Païdoussis (Païdoussis et al., 2010), two-dimensional models are classified into three families.
orced systemmodels (type A) use the fluid as an external excitation through a lift force (from static cylinder experiments).
his classical linear vibration problem is able to predict amplitude at large Skop–Griffin (SG) numbers and the lock-in is
ot captured. Fluid elastic models (type B) use a feedback to make the lift force dependent of the motion (amplitude,
elocity, acceleration or a combination). The modified forcing model of Blevins (1990) uses data of an oscillating cylinder
n forced motion to obtain the variation of lift with amplitude, allowing to capture the self-limiting features of the
henomenon (Larsen, 1995; Marra et al., 2011; Lupi et al., 2018). Other advanced forcing models use the concept of phased
ift coefficients. Time domain fluidelastic models of Chen (Chen et al., 1995) or Simiu and Scanlan (Simiu and Scanlan,
996) have an explicit use of the time dependency by using added mass, damping, stiffness or a nonlinear term to account
or amplitude effect in the lift force expression. Types A and B are nevertheless limited to harmonic motions (difficult to
eneralize to more complex motions and do not physically interpret the wake as an additional degree-of-freedom having
ts own dynamics. In type C, wake-oscillator models use the principle that "fluid force is the result of the wake dynamics,
tself influenced by the cylinder motion" (Païdoussis et al., 2010). This leads to a coupled differential system with two
ariables : the structure and the wake. The fluid has thus its own dynamics, with a limit cycle which makes it susceptible
o synchronize. Van der Pol or Rayleigh oscillators are known to present these features and have been used in various
odels (Hartlen and Currie, 1970; Tamura, 1981; Facchinetti et al., 2004; Krenk and Nielsen, 1999; Farshidianfar and
anganeh, 2010). Models differ on the fluid variable and the type of forcing of the fluid equation. Facchinetti (Facchinetti
t al., 2004) used a reduced lift and a forcing term proportional to the structural acceleration. This paper focuses on the
ake-oscillator model proposed by Tamura (1981). It relies on Birkhoff’s concept about the oscillating wake. The forcing
f the fluid equation depends on a combination of structural acceleration and velocity. Despite the number of models,
heir practical use is often difficult because of the need for simple methods to identify model parameters, which is the
ain motivation of the present study. To the authors’ knowledge, there is currently no general identification method

or wake-oscillator models (type C) from free vibration tests. In this paper, we describe a novel method to identify the
arameters of Tamura’s model on the basis of typically available experimental observations. The potential candidates
re: (i) the maximum displacement amplitude, (ii) the size of the lock-in region and (iii) sometimes the wake dynamic
phase) to predict entirely the instability. Nevertheless, the phase is difficult to measure experimentally so that the present
dentification procedure is solely based on the displacement and lockin range (Varty and Currie, 1984; Labraga et al., 2007).

This phase angle is actually varying slowly with time; it plays a major role in synchronization problems (Denoël, 2020;
ikovsky et al., 2003). In the present study, it allows to understand the coupled dynamics between the structural motion
nd the oscillating wake. Nevertheless, the experimental measurement of the phase is difficult because it depends on the
ake degree-of-freedom, which can be measured using the separation points but is practically complex to capture (Varty
nd Currie, 1984).
In this study, we avoid solving the fast dynamics of the problem but only resolve its slow dynamics using the phase,

hich results in a simple algebraic equation. The structure and wake response envelopes are then derived from the slow
hase. This asymptotic analysis at first order allows to express the response using only three dimensionless groups and
wo other parameters.

Because it is based on the fitting of a simple analytical expression, the proposed model simplifies the identification
f the parameters of Tamura’s model and makes it more robust. Indeed, a lot of parameters have to be measured or
mpirically derived, to use the model.
The paper is organized as follows. In Section 2, Tamura’s model is introduced, with its main parameters, in a

imensionless version. The averaged version of the system is derived, leading to a slow phase model. The effect of
2
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dimensionless groups on the VIV response is analysed through model features in Section 3, with a focus on ranges of
numerical values of typical applications. The parameter identification methodology is then presented in Section 4. It shows
the possibility to obtain model parameters in two cases : (i) a least-square fitting for detailed experimental VIV curve and
(ii) a fitting based on global geometric indicators of the VIV curve. Applications are shown in Section 6 to get typical
values of model parameters and compare the two variants of the proposed method. A discussion on physical parameters
and their use in a prediction procedure is finally presented in Section 7.

Nomenclature

Wake-oscillator parameters
t Time (s)
(·)′ = d(·)/dτ Derivative with respect to τ
τ = 2π f0t = ω0t Dimensionless time
µ Air dynamic viscosity (kg/m/s)
ρ Air density (kg/m3)
y Transverse displacement of the oscillating cylinder (m)
Y = y/D Dimensionless transverse displacement of the cylinder
D Diameter, cross-flow dimension (m)
α Angular position of the wake (rad)
f0 Natural frequency of transverse vibration (Hz)
fvs Vortex shedding frequency (Hz)
m Mass per unit length of the oscillating body (kg/m)
mr = ρπD2/4m Fluid/Structure mass ratio
U Wind velocity (m/s)
Ucr = f0D/St Critical VIV velocity (m/s)
CD Drag force coefficient
CL0 Amplitude of oscillation of the lift coefficient
Re = ρUD/µ Reynolds number
Sc = π2ξ/mr Scruton number (Scruton, 1981)
SG = 4π2St2Sc Skop–Griffin number
St = f0D/U Strouhal number
f Lift coefficient per unit rotation of the equivalent wake coordinate (Magnus effect)
L∗, λ = 1/(0.5 + L∗) Dimensionless half length of wake-oscillator
ε = f

√
2π2L∗ Coefficient on nonlinear damping term in the wake equation (Van der Pol coefficient)

Dimensionless model parameters
ξs, ξa Structural and aerodynamic damping ratios
ξ = ξs + ξa Total damping ratio
ξ0 = ξ/ε Reduced damping ratio
T = ετ Slow time
Ω = U/Ucr Velocity ratio, mistuning, bifurcation parameter
δ = (Ω − 1)/ξ Centred and scaled mistuning, bifurcation parameter
M0 Dimensionless fluid/structure mass ratio
D0,D1 Dimensionless groups characterizing the response of the wake oscillator model
Ry(T ) Envelope of the structural response Ỹ = Y/ε
Rα(T ) Envelope of the wake variable α̃ = α/(CL0/2f )
ψ(T ) Slow phase between Ỹ and α̃
3
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2. The wake-oscillator model

2.1. Dimensionless governing equations

The present study is based on the wake-oscillator model from Tamura (1981). This model is a generalization of other
ake-oscillator models such as Facchinetti et al. (2004) or Hartlen and Currie (1970). It is based on physical and empirical

nterpretation and is expressed using a system of two degree-of-freedom differential equations. The dimensionless version
f Tamura model reads :

Y ′′
+

(
2ξs + mr (f + CD)

Ω

2πSt

)
Y ′

+ Y = −
fmrΩ

2

(2πSt)2
α (1)

α′′
+ εΩ

(
4f 2

C2
L0
α2

− 1
)
α′

+Ω2α = −λY ′′
−Ω2πStY ′ (2)

where Y = y/D is the dimensionless cross-flow structural motion, D the cylinder diameter (or characteristic cross-
flow dimension), α the position of the wake lamina due to vortex shedding. (·)′ denotes the derivative with respect to
τ = 2π f0t = ω0t , where ω0 =

√
ks/m with ks the stiffness of the structure and m the mass of the oscillating body

(m = ms + mf is the sum of the structural mass ms and equivalent mass of displaced fluid mf (negligible in wind
engineering applications). The structural damping ratio is ξs = cs/(2

√
ksm) where cs is the viscosity of the structure.

The velocity ratio is Ω = U/Ucr where U is the fluid velocity and Ucr = f0D/St is the critical VIV velocity. CD and CL0
are the stationary drag coefficient and the magnitude of the lift coefficient fluctuations on the fixed body, St the Strouhal
number. Force measurement in static cylinder experiments allows to obtain CD and CL0. Wake analysis in static cylinder
experiments gives St . Some parameters have to be adjusted and are obtained from an empirical procedure: f is the lift
coefficient per unit rotation of the equivalent wake coordinate (linked to Magnus effect), λ is related to the length of the
oscillating wake and ε is the damping ratio of the wake-oscillator. This dimensionless parameter describes the memory in
the wake equation and is linked to the magnitude of the nonlinearity in the Van der Pol equation for the wake, therefore
to the strength of the limit cycle. The present study is a generalization of a similar study of Facchinetti model, for which
an asymptotic analysis has already been developed, showing that the timescales can be advantageously separated; more
details on the procedure can be found in Denoël (2020).

2.2. Asymptotic analysis

Instead of solving this two degree-of-freedom multiple scale problem (1)–(2), a perturbation method is used (Hinch,
1991). This perturbation analysis requires the identification of small numbers in the physical quantities (Mannini, 2020).
The small parameter ε in the wake equation plays a crucial role in the dynamics by controlling the nonlinearity of the Van
der Pol wake equation and is used to derive an asymptotic solution of this problem. Experimentally, the dimensionless
transverse amplitude Y is limited to small oscillations, typically 0.1–0.3 (2S vortex shedding regime (Williamson and
Roshko, 1988)). This motivates to express Y = εỸ , where ε ≪ 1 and Ỹ ∼ 1. The wake coordinate α is expressed as
α̃ = α/α∗ with α∗

= CL0/2f to simplify the nonlinear term in Eq. (2). The distinguished limit is fulfilled as long as the
mass ratiomr is of the order ε2. The mass ratio is then written asmr = ε2mr,0 withmr,0 ∼ 1. Indeed, the fluid to solid mass
ratio in wind engineering applications (light structures submitted to wind) is typically very small (mr ∼ 10−4

−10−3). The
total damping ξ is the sum of the structural (ξs) and aerodynamic damping (ξa = mr (f +CD)Ω/4πSt). For steel structures
in wind engineering applications, a low damping is considered (typically ξ ∼ 0.1 − 0.3%). For this reason, we suppose
ξ = εξ0. Another choice could be ξ = ε2ξ0, as proposed by Denoël (2020) who showed that it will lead to the same
results after mathematical developments as soon as ξ is as large as ε.

The system is solved to obtain the VIV response, for wind velocities in the lock-in range. This interval corresponds to
wind velocities close to the critical one, suggesting a small mistuning, i.e. Ω ∼ 1. In forced vibration, Ω is driven by ε
whilst in free vibration (present case), it is more appropriate to rescale the mistuning as Ω = 1+ ξδ, see (Denoël, 2020),
it is justified by results below. Because ξ is a small parameter, δ is the mistuning parameter of order 1. The short and
compact version of the governing equations is:

Ỹ ′′
+ 2ξ Ỹ ′

+ Ỹ = 2εM0α̃ (3)

α̃′′
+ εΩ

(
α̃2

− 1
)
α̃′

+Ω2α̃ = 2ε(A0Ỹ ′′
+ A1Ω Ỹ ′) (4)

where

M0 = −
mrCL0

16π2ε2

(
Ω

St

)2

= −
CL0ξΩ

2π

2ε2SG
, A0 = −

λf
CL0
, A1 = −

2πStf
CL0

. (5)

These equations are now expressed using two variables of order 1 (Ỹ and α̃) and three dimensionless groups (A0, A1
and M ). By using a multiple scale approach (averaging), a solution is sought with two time scales t = τ (fast) and
0 1

4
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t2 = T = ετ (slow). An Ansatz is used for both variables: Ỹ = Ỹ0 + εỸ1 + O(ε2) and α̃ = α̃0 + εα̃1 + O(ε2) and its
substitution into Eq. (3)–(4) gives, at leading order:

Ỹ0 = Ry(T ) cos(τ + φ(T )) (6)

α̃0 = Rα(T ) cos(τ + φ(T ) + ψ(T )). (7)

or both degrees of freedom, the solution at leading order is a fast oscillation modulated by a slow envelope and featuring
slow phase ψ(T ). Solving the system for the envelopes Ry, Rα and the phase ψ , the secularity conditions at the next order
llow to obtain three first order differential equations (details in Appendix A.1). In steady-state condition, all lefthand sides
anish and solving for the steady phase gives:

cot3 ψ + δ cot2 ψ + (1 + D0) cotψ + δ − D1 = 0 (8)

Ry = 2
M0

ξ0
sinψ

√
1 + 2ξ0D0 sin2 ψ + ξ0D1 sin 2ψ (9)

Rα = 2
√
1 + 2ξ0D0 sin2 ψ + ξ0D1 sin 2ψ (10)

here

D0 =
A0M0

ξ 20
=
πλfΩ2

2ξSG
, D1 =

A1M0

ξ 20
=
π2StfΩ2

ξSG
(11)

otice that a scaling of Ω with ε would have introduced δε/ξ instead of δ in Eq. (8). This justifies the choice of
= 1 + ξδ in free vibration. D0 and D1 are the driving parameters of VIV response predicted by the Tamura’s model.

These dimensionless groups are always positive. The dimensionless group D1 leads to asymmetric VIV curves. It is equal
o zero in the Facchinetti’s model (Denoël, 2020). The mistuning δ is the driving parameter in Eq. (8)–(10). The phase ψ
he main unique variable from which the structural envelope Ry is deduced. Indeed, knowing physical parameters in D0
nd D1, the phase can be directly computed as a function of δ by solving Eq. (8). Then, the envelope of the displacement
s obtained from Eq. (9) The main result of this method is the transition from a differential system to simple algebraic
quations (Eq. (8)–(9)).

. Effect of dimensionless groups

The perturbation method presented in Section 2 showed the key role of the phase ψ in the results. Eq. (8) is solved in
ig. 1 to obtain the cotangent of the phase, cotψ , as a function of the mistuning δ for different values of the constants D0
nd D1. When D0 = D1 = 0, there is no coupling term and it corresponds to type A (forced models). The cases D0 = 0 or
1 = 0 are shown to make the link with other kinds of VIV models that use only one coupling term in the fluid equation
only the acceleration (D1 = 0) for Facchinetti model (Facchinetti et al., 2004; Denoël, 2020) or the velocity (D0 = 0)
or Hartlen–Currie model (Hartlen and Currie, 1970)). Tamura’s wake-oscillator model is thus a generalized model that
ombines the features of Facchinetti and Hartlen–Currie models. When cotψ = 0, the phase ψ = π/2 and the fluid force
right hand side of the structural equation (3)) is in phase with the structural velocity, leading to a maximum energy
ransfer between the flow and the structural motion. This results possibly in large transverse vibration if SG ≪ 1 (critical
elocity Ω = 1 when δ = 0). Note that when δ = 0, cotψ ̸= 0 if D1 > 0. Instead the maximum energy transfer
orresponding to cotψ = 0 occurs for δ > 0 or Ω ≥ 1, i.e. above the frequency matching as observed experimentally.
lso, by inspecting Eq. (8), cotψ = 0 leads to δ = D1 (independently of D0), as illustrated in Fig. 1 by symbols ◦ (D1 = 0)
nd ♦ (δ = D1 = 12). For cotψ close to 0, the phase is still close to π/2 and vibration amplitudes can be still large, in the
ock-in range. It is observed from Fig. 1 that D1 = 0 (black lines) gives a symmetric lock-in. In that case, a critical value
f D0 is 8 (from Cardano formula) with a vertical tangent point near δ = −5 in Eq. (8). There is a hysteresis (three real
oots in Eq. (8)) in cotψ for D0 > 8 meaning that: (i) two stable branches are present and can be accessed depending
n an increasing or decreasing δ and (ii) one unstable branch is present between the two others. The effect of D1 is an
symmetrisation of the response, that grows with D1. For a sufficiently high D1, the hysteresis for δ < 0 created by D0 > 8
an disappear, e.g. D0 = 16 and D1 = 12 in Fig. 1.
Fig. 2 shows the envelope of the transverse displacement Ry as a function of the mistuning δ for D0 = 1 and D1 = 8.

hese values were chosen to have only one hysteresis in the right part of the VIV curve and a case study for comparison
ith simulations. Black lines are analytical results obtained by substituting cotψ in Eq. (9). The blue and red lines are
he transient numerical solutions of the full model by slowly ramping up or down the mistuning. The blue dots and red
rosses are numerical results from the full model (Eq. (1)–(2) or (3)–(4), with parameters given in the caption) representing
he steady state solution, using initial conditions chosen as the steady state solution of the previous one. The mistuning
arameter δ is ramped up or down.
The introduction of dimensionless groups (D0,D1) allow to study characteristic of the different VIV responses. Systems

ith different physical parameters (such as SG and CL) but with the same dimensionless groups D0,D1 lead to the same
ype of response.
5
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Fig. 1. Phase vs mistuning: effect of D0 and D1 on the solution of Eq. (8), cotψ = 0 at ◦ (δ = 0,D1 = 0) and at ♦ (δ = D1 = 12). (For interpretation
f the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Amplitude vs mistuning: analytic (in black, with D0 = 1, D1 = 8) and numerical results (in red, blue, with ξ = 0.005, ε = 0.05,M0 =

.1, A0 = 0.1, A1 = 0.8).

Fig. 3. Features of the model: VIV curve shape and hysteresis as a function of D0 and D1: (1) no hysteresis, (2) hysteresis on both sides and (3)
ysteresis on the right. The orange line shows symmetric VIV curves (D1 = 0) of Facchinetti model (Facchinetti et al., 2004) and the green one shows
he case D0 = 0 of Hartlen–Currie model (Hartlen and Currie, 1970). Red dots correspond to experimental results of Section 6. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3 presents the features of the model: the shape and hysteresis behaviour of Ry depending on D0,D1. Only positive
alues of D0,D1 are represented because the parameters in their definition of Eq. (11), associated to wind engineering
pplications, always lead to positive values.
On the vertical axis, VIV curves are symmetric and correspond to the particular case of Facchinetti model (D1 = 0).

or D between 0 and 8, there is no hysteresis (zone (1)). For D > 8, hysteresis are present on both sides (zone
0 0

6
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(2)). When D1 increases, the curve is asymmetric to the right with hysteresis on both sides. When D1 increases (and
0 < 8), the curve is asymmetric to the right (blue region (3)) and becomes a right hysteresis for D1 greater than the

boundary between zones (1) and (3). For D1 greater than the black line boundary between zone (2) and (3), the left
hysteresis disappears, leading to the blue region. This kind of hysteresis behaviour is well known in nonlinear control
theories and a link with the Winged Cusp unfolding (Golubitsky et al., 1989; Glendinning, 1994) can be made with
x → cotψ, λ2 → δ, β → 1 + D0, γ → −D1.

Experimentally, most of observed VIV curves correspond to the case where a hysteresis is present on the right, i.e. in
the blue zone (3) of Fig. 3. Red dots in this Figure correspond to examples of value (D0,D1) of WT and wind engineering
(full scale) applications. The VIV curve can be characterized by three geometric indicators as illustrated in Fig. 3. A link
between these indicators and groups D0,D1 is made :

• H: maximum amplitude of the curve,
• W: width of the lock-in range,
• As: asymmetry when D1 > 0 (location of this maximum response).

The present identification method is based on an asymptotic analysis highlighting that dimensionless groups D0,D1
drive the VIV.

4. Identification method

The proposed procedure to identify the wake-oscillator parameters from free vibration WT data is detailed in this
section and its two variants are illustrated Fig. 4. From experimental data, dimensionless groups can be identified by
two different techniques. Then, by returning to their definition, the physical parameters of the wake-oscillator model are
derived and can be further used in a prediction phase.

The two proposed options depends on the VIV curve discretization : (i) a least-square fitting procedure for a detailed
VIV curve and (ii) the use of some geometric indicators when only the envelope is measured. Since the proposed fitting
involves 3 parameters, it is recommended to use at least 10 points for the first option. The second option was imagined
to cover cases with a scarcer density of data points across the VIV curve. The applications will show that both methods
give equivalent and accurate identification results. The use of three geometric indicators can thus be sufficient and there
is no need to measure a detailed VIV curve, as long as H, W and As are accurately captured. In this sense, the perturbation
method developed in Section 2 is robust.

Fig. 4. Parameter identification procedure.

4.1. Option 1 : Least-square fitting

The fitting procedure for a given data set consists in adjusting the model parameters π = {D0,D1, ξ0} in order to
minimize the residuals between the VIV curve Ry derived in the asymptotic analysis and a non-parametric estimate Y ∗

i
of the experimental VIV curve measured for np values of δ. Formally, parameters and dimensionless groups are obtained
by solving the following minimization problem,

π̂ = argmin
π

np∑
i

(
Ry(ψ(δi); π) − Y ∗

i

)2 (12)

where Ry(ψ(δi); π) is given by Eq. (9) and ψ(δi) by Eq. (8). Y ∗

i =
√
2y′

i/D with y′

i the root mean square of the displacement
easured for mistuning δi. The fitting procedure is performed with a nonlinear least-square algorithm as Ry(ψ) and ψ(δ)
re nonlinear in terms of δ.
As introduced in Section 3, typical VIV curve are characterized by a clutch shape shifted to the right with respect to
= 1. Indeed, VIV starts at the critical velocity and lasts over a certain velocity range (lock-in). During the asymptotic

nalysis of Section 2, ξ0 was assumed of order one at most and consequently in the range [0, 1]. As explained in Section 3,
0 and D1 are always positive. In a bounded and known parameters space, inspired by the physics, the search of an
ptimum of the problem, represented by its objective function F (π) =

∑
i

(
Ry(ψ(δi); π) − Y ∗

i

)2, is facilitated.
Numerically, a Levenberg–Marquardt algorithm (implemented by default in Matlab (2019)) has been used and a

ensitivity analysis to initial guesses has been performed to assess the robustness of the procedure. The complete
umerical implementation of such a minimization procedure is not discussed here as many optimization packages are
vailable in shared libraries.
7
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4.2. Option 2 : Geometric indicators

The identification can also be performed on the basis of simple geometric indicators. This section presents the analytical
ink between the model solution (Eqs. (8)–(9)) and these indicators. In short, the direct analysis of the average model
llows to determine the 3 geometrical indicators W, H, As as a function of D0,D1 and ξ0. The basis idea in the second

option is to derive these expressions and to invert them in order to express D0,D1, ξ0 as a function of measured geometric
indicators.

For the sake of simplicity, the amplitude and phase equations (Eq. (8)–(9)) are rewritten using c = cotψ ,

c3 + δc2 + (1 + D0)c + δ − D1 = 0 ⇔ δ =
D1 − c3 − (1 + D0)c

c2 + 1
(13)

Ry = 2
M0

ξ0(c2 + 1)

√
c2 + 1 + 2ξ0D0 + 2cξ0D1. (14)

Label A is the maximum amplitude H = Ry,A. It is obtained by differentiating Ry with respect to δ (and equivalently to
= cotψ as it can be seen in Fig. 5c).

dRy

dδ
= 0 ⇔

dRy

dc
= 0

Appendix A.1
⇐⇒ c3A + 3ξ0D1c2A + (1 + 4ξ0D0)cA − ξ0D1 = 0 (15)

Solving Eq. (15) for cA and injecting in Eq. (13) and (14) gives the analytical expression for maximum amplitude H and
δA respectively.

Fig. 5. Model results for D0 = 5, D1 = 12 with labels (A, B, C) : (a) Amplitude vs mistuning with geometric indicators (H, W, As), (b) Phase vs
istuning, (c) Amplitude vs phase.

Label B corresponds to a conventional end of the lock-in region and mathematically to a local maximum in the δ − c
raph (Fig. 5(b)), such that

dδ
dc

= 0 ⇔ −c4B + c2B (D0 − 2) − 2D1cB − (1 + D0) = 0 (16)

This equation has 4 roots and at least 2 of them are real given the range of D0 and D1 : in Fig. 5(b), they correspond to
abel B (extremum of the VIV curve) and the local minimum on its left (local extremity of the lower hysteresis branch).
rom cB, the corresponding δB is obtained with Eq. (13). This is only valid in the zone where there is some hysteresis on
he right (zone (3) in Fig. 3).

Label C is associated to the onset of VIV and the simplest criterion for it is to take δC = 0. Other criteria were
nvestigated but appeared arbitrary compared to the systematic nature of δ = 0 and its ease of use for Wind Tunnel
pplications. The width of the VIV curve is then defined as a function of (D0,D1) using labels B and C.
Similarly, the asymmetry is defined with labels A and C. This direct analysis allows to compute the width, asymmetry

nd height as a function of dimensionless groups D0,D1 and ξ0:

W = δB − δC , As = δA − δC , H = Ry,A. (17)

It is unfortunately not possible to express D0,D1 and ξ0 as a function of W, H and As, by means of a simple closed-form
xpression. Instead, the analysis of the expressions for W, H and As allows one to simplify the solution of this inversion
i.e. identification). In particular, from Eq. (14), in the centre of the lock-in range, c ≪ 1, thus Ry ∼ ξ−1

0
√
1 + 2ξ0D0. For

0 ≫ ξ−1
0 and by noting that D0 ∼ ξ−2

0 (from the definition of D0 in Eq. (11)), we have Ry ∼ ξ
−3/2
0 if 2ξ0D0 ≫ 1, which

s the case as ξ0 ∈ [0, 1] and D0 > 1 usually (this will be illustrated in Section 6). A map of Hξ 3/20 can then be computed
epending only on D0 and D1. In case D0 ≫ ξ−1

0 is not verified but if 2ξ0D0 ≪ 1, the approximation to build the map
ξ
3/2
0 can be used. Nevertheless, to be more accurate, the system of three Eqs. (13)–(15)–(16) can be solved but is more

umbersome than this semi-graphical method with Hξ 3/2.
0

8
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From Eq. (15), the solution cA depends on ξ0D0 and ξ0D1 as detailed in Appendix. Nevertheless, the corresponding cA is
very small near the maximum Ry and from Eq. (13), the corresponding δ mainly depends on D1. From Eq. (16), independent
on ξ0, the width W depends on D0 and D1. Based on these observations, a two-way relation can however be derived by
creating maps of H, W and As for different (D0,D1) (Fig. 6).

From experimental measurements of a VIV curve, this procedure allows to deduce the effect of D0 and D1 on H, W and
As: D0 has more influence on H, D1 on As and both equivalently on W. The parameter identification procedure of Fig. 6
is performed in 4 steps:

i determine W, H, As from measured VIV response
ii pick the iso contours corresponding to the observed W and asymmetry As
iii identify the intersection between the W and As isocontours on Hξ 3/20 map to deduce its value and D0,D1.
iv compute ξ0 knowing H from experimental data.

Fig. 6. Influence of D0 and D1 on geometric indicators H, W and As and identification procedure of ξ0 .

5. Numerical validation

The sensitivity of parameters in the proposed procedure has been performed by analysing the objective function
F (π) =

∑
i

(
Ry(ψ(δi); π) − Y ∗

i

)2 in the neighbourhood of the optimal found parameters using experimental data Y ∗

i
presented in Section 6 (the 4:1 rectangle with Sc = 1.9). The parameters space is multidimensional and Fig. 7 shows
cuts of this objective function in different planes: (D0, ξ0), (D1,M0) and (D0,D1). Fig. 7 shows a smoothly varying F (D0, ξ0)
around (10, 0.12) (first line in Table 2). The identified minimum of the objective function over a wide range of parameters
appears to be a global one, which confirms the robustness of the method. The same conclusion can be drawn from the
shape of F (D1,M0): the function is regular and smooth with homogeneous gradients towards the global minimum of F .
In the (D0,D1) plane, gradient in D1 direction is higher than the one along D0. Small variations of D0 have less influence
on the objective function value than D1 but the optimum is well identified.

Fig. 7. Contour plots of the objective function F (π) in log-scale, found optimum in red. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

A validation study has been performed by simulating the response for fixed (known) model parameters π =

(D0,D1, ξ0). One parameter at a time has been modified in a wide interval of values and compared with the estimated
value from the proposed procedure. Fig. 8 shows the comparison between given model parameters π and the estimated
ones π̂ (values in blue dots with the one-to-one red line). The correspondence between them is high in a wide range of
parameters, which again validates the proposed procedure.
9
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Fig. 8. Comparison of given parameters π for simulated response to estimated ones π̂ = (D̂0, D̂1, ξ̂0).

6. Applications

The identification methodology is applied to several wind tunnel data sets obtained from spring mounted rigid models.
Several geometries (circular, square, rectangular) and Scruton number are considered in a Reynolds number range around
104. Literature (Marra et al., 2015; Wawzonek, 1979; Amandolèse and Hémon, 2010; Feng, 1968) results and present
dedicated wind tunnel experiments (at University of Liège, see Appendix A.2) are considered. The main parameters of the
selected experimental data are gathered in Table 1.

Table 1
VIV wind tunnel setup parameters.
Section shape Reference Recr St ξs [%] mr Sc f0 [Hz] D [m]

4:1 Rectangle Marra (Marra et al., 2015) 2 · 104 0.137 0.058–2.34 0.0038 1.9–78.1 7.97 0.075
Square Present 2 · 104 0.12 0.06 0.0016 3.9 8.06 0.05
" Wawzonek (1979) 2.2 · 104 0.12 0.08 0.0013 7.5 5.22 0.051
" Amandolèse (Amandolèse and Hémon, 2010) 8 · 103 0.12 0.09 0.0011 9.4 15.2 0.02
Circular Present 2 · 104 0.2 0.11–0.3 0.0038 3.7–8.9 7.08 0.1
" Feng (1968) 2.5 · 104 0.2 0.1–0.13 0.004 3.1–4 9.04 0.076

Fig. 9 presents the experimental VIV curve from the literature for the 4:1 rectangle, square and circular sections for
different Sc . The main results of the parameter identification procedure are graphically represented by (i) the least-square
model fitting (option 1, left column) and (ii) geometric indicators (option 2, right column). The associated dimensionless
groups are detailed in Table 2. The fitted analytic VIV curves are represented in a ramping up way (increasing velocity).
The apparent discontinuity is due to the presence of a hysteresis on the right in the model, with an unstable branch
in-between that is usually not observed experimentally.

Regardless of Sc and sections shapes, it is noted that VIV starts around Ω = 0.95. There is a very good agreement of
model fitting with 4:1 rectangle and square. Option 2 gives also good results considering the lock-in width and maximal
amplitude prediction. However, the whole VIV curve deviates slightly from experimental data. Indeed, in option 2, the
focus is set to global indicators, but no weight is associated to every single point in the VIV curve.

Nevertheless, the curve obtained with option 2 matches the envelope of the experimental VIV curve but locally, the
model estimate does not follow all experimental points. The fine discretization of experimental data for the 4:1 rectangle
allows to compare precisely different Sc and fitting procedures. For low Sc , the VIV shape from the model accurately
matches the experimental one. For the largest Sc (78.1), the experimental curve becomes nearly symmetric around
Ω ∼ 1.1. The asymmetric lock-in is well captured by the model but the shape cannot have a symmetric bell shape
about Ω ∼ 1, which explains the discrepancy with the WT data. For the square section, the characteristic shape of the
model is able to capture accurately the WT data curve for all Sc presented.

For the circular cylinder of the present (ULiège) WT setup, it was possible to reproduce the lower (hysteresis) branch
that Feng (Feng, 1968) obtained. Using a small wind velocity increment, the region where the amplitude increases to 0.35
was followed by a sudden drop to 0.2 and a slow decrease to the end of the lock-in at aroundΩ = 1.42. Then, starting from
a higher velocity and using a small decrement, the lower bell shape branch was obtained, without reaching the maximum
amplitude of 0.35. For this lowest Sc of 3.7, the fitting procedure is less accurate. The shape of the experimental curve is
indeed composed of a bell portion with a maximum amplitude of 0.2 and of a sharper zone peaking at 0.35. The model
is obviously not able to capture this particular shape. The fitting of the experiments of Feng (1968), for Sc = 7.1 and 8.9
is better. These Sc correspond to more common values for practical wind engineering applications.

Table 2 presents the numerical values for dimensionless groups D0,D1, ξ0 of VIV applications corresponding to Fig. 9.
D0 ranges from 1 to 11 when Sc decreases for the three geometries. D1 ranges from 3 to 30 for the 4:1 rectangle and
circular cylinders when Sc decreases, while it goes until 60 for the square cylinder. The pairs of values D0,D1 of Table 2
fall well in the region (3) of Fig. 3 (red dots). When Sc increases, ξ0 decreases, while D0 increases. Their values verify the
condition 2ξ D > 1 necessary to have R ∼ ξ

−3/2, which was assumed to develop option 2.
0 0 y 0

10
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Fig. 9. Cylinder amplitude vs velocity ratio: comparison of WT data with fitting procedures for (a) 4:1 rectangle, (b) square and (c) circular cylinders.
Left: least-square fitting (option 1); right: geometric indicators (option 2). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Table 2
Parameter identification results: comparison between fitting options.
Section shape Sc D0 D1 ξ0 2ξ0D0

Fit Geom. ind. Fit Geom. ind. Fit Geom. ind. Fit Geom. ind.

4:1 Rectangle 1.9 10.3 9.8 29.9 28.7 0.12 0.14 2.47 2.74
" 3.3 9.7 9.3 27.6 28 0.15 0.18 2.91 3.35
" 6 7.3 8.7 24.5 24.9 0.21 0.24 3.07 4.18
" 8.7 6.5 6.8 22.7 23.2 0.25 0.27 3.25 3.67
" 13 4.9 5.5 19.1 19.3 0.33 0.3 3.23 3.3
" 21.7 3.4 3.8 12.2 12.7 0.4 0.42 2.72 3.19
" 38.7 2.8 3.2 6.2 7.3 0.52 0.55 2.91 3.52
" 54.4 1.7 2.1 4.5 6.7 0.67 0.61 2.28 2.56
" 78.1 1.1 1.5 3.7 6.1 0.72 0.57 1.58 1.71
Square 3.9 4.6 5 95 102 0.16 0.18 1.47 1.8
" 7.5 2.4 2.8 62 65 0.44 0.36 2.11 2.02
" 9.4 1.8 1.6 29 36 0.5 0.42 1.8 1.34
Circular 3.7 11 14 33 35 0.29 0.31 6.38 8.68
" 7.1 8 9 22 25 0.39 0.43 6.24 7.74
" 8.9 6 7 19 21 0.54 0.62 6.48 8.68

Results showed that the maximum amplitude of VIV curves happens for higher Ω when Sc decreases. It is a
consequence of the synchronization mechanism: as discussed in Fig. 1, cotψ = 0 (ψ = π/2) for δ = D1 which corresponds
to Ω ≥ 1. The parameters in D1 justify this mistuning to the right according to the physical arguments of Tamura’s model
development (Tamura, 1981).

7. Discussion

In the asymptotic developments, some simplifications were made and justified. This led to rather simple analytic
expressions for the phase (cubic algebraic equation), wake and displacement envelopes. These simplifications and the
robustness of the developed asymptotic analysis explains the equivalence of results of options 1 and 2. This shows that
there is no need to measure a very detailed VIV curve and procedure based on the abacus, can be sufficient as long as the
geometric indicators can be accurately measured.

Fig. 10 shows an example of prediction for the case of the 4/1 rectangle. The model parameters D0 and D1 are obtained
from the VIV curve corresponding to Sc = 3.3 only. The resulting model is then used to compute the VIV response for
the other Sc (and ξs), i.e. by adapting the dimensionless groups with the varying damping ratios ξs or (ξ0). It appears that
the prediction approximates correctly the VIV curve for Sc = 1.9 but tends to be less accurate for higher Sc (8.7–13). This
also translates the fact that the model parameters could be Scruton dependent.

The most challenging parameter in Tamura’s model is f , which cannot be directly measured in WT (neither with static
nor oscillating cylinder experiments). The added value of the present study is the identification of wake-oscillator model
parameters. This parameter f is obtained from the parameter identification procedure after fitting (option 1) or geometric
indicators (option 2) use. From the identified total damping ξ , the structural damping ratio ξs is subtracted to get the
aerodynamic damping ξa, then f using the definition of ξa. Fig. 11 compares the f values of Tamura’s prediction and
the identification from the fitting (option 1) and geometric indicators (option 2) procedures. As expected, f depends on
geometries but also on Sc (especially at low Sc). The identified f for the 4:1 rectangle and circular cylinder is close to
the prediction of Tamura (f = 1.16 made for the circular cylinder only). Nevertheless, the identified value of f for the
square cylinder is three times higher. Even higher values of f where used by Mannini et al. (2017) by modifying the size
of the wake lamina. Rather than an adaptation of the wake geometry, in the present study, identified value of f comes
from the data itself, not from a theoretical adaptation of the original model. This evolution of f with Sc can explain the
results of Fig. 10. Indeed, the general shape of the VIV curve is asymmetric to the right but tends to symmetric around a
Ω > 1 when Sc increases (4:1 rectangle). The option 2 needs a VIV curve with a hysteresis and Tamura’s model virtually
accommodates with this hysteresis to obtain a VIV curve not centred on Ω = 1. The aerodynamic damping in Tamura’s
model is based on the average CD measured on a fixed cylinder but as f relies on quasi-steady theory, CFy could be used
(force projected perpendicularly to the flow).

8. Conclusion

In this paper, an asymptotic analysis of the Tamura’s wake-oscillator model was presented, leading to its averaged
version. This developed analysis allows to transform the fast dynamics of the complete differential system to a slow
dynamics model for the phase and response envelopes. The algebraic model has the advantage to be simple and is able
to explain many features of the original model. The phase between the structural motion and wake variable plays a
major role in the dynamics and the displacement envelope is deduced from it. Even if the model is simplified and seems
decoupled, the response is the result of the interaction of the structure and the wake through the phase Eq. (8). The slow
12
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Fig. 10. Amplitude vs wind velocity ratio of a 4:1 rectangle: WT
data (Marra et al., 2015), re-use of parameters from Sc = 3.3 fitting
and adaptation with ξs .

Fig. 11. Comparison of Tamura prediction of f and model pa-
rameter identification for different Sc and shapes from fitting
options.

dynamics of the phase is governed by the dimensionless groups D0,D1. These two groups combine several parameters of
Tamura’s model which drive the VIV phenomenon. Both groups are positive and the corresponding VIV curve is hence
asymmetric to the right, with hysteresis that depends on the combination of D0 and D1. For typical VIV applications, pairs
of D0,D1 correspond to a VIV curve shape with a hysteresis to the right, see Fig. 3. This simple model allows to easily
fit parameters to some WT data (amplitude vs wind velocity). Two options of a method aiming at fitting this simple
closed-form expression to WT data are developed: (i) a least-square fitting and (ii) a fit with geometric indicators (height,
width and asymmetry). Applications of these methods on WT data for 4:1 rectangle, square and circular cylinders showed
accurate and equivalent results. The derivation of model parameters such as f from the identification procedure showed
a dependency on geometry and Sc . This work opens several perspectives. Among others, it offers a simple and robust way
to identify the VIV parameters (such as D0,D1, ξ0) for non-axisymmetric cross-sections as a function of wind incidence or
Reynolds number using other experimental data (WT, in situ). Also, the developments were made for the Tamura’s model
but can be extended to other VIV models from the literature with adapted developments.
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Appendix

The appendix gathers the solutions of the asymptotic analysis and Equations in Section 4.2, an alternative parameter
identification for the width of the VIV curve and a presentation of the setup developed in this study.
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A.1. Asymptotic analysis and geometric indicators equations solutions

Secularity conditions of Section 2.2 give three first order differential equations

R′

y = M0Rα sinψ − ξ0Ry (A.1)

R′

α = A0Ry sinψ + A1Ry cosψ −
R3
α

8
+

Rα
2

(A.2)

ψ ′
=

(
A0

Ry

Rα
+ M0

Rα
Ry

)
cosψ − A1

Ry

Rα
sinψ + ξ0δ. (A.3)

Solutions of Eq. (15) are

c =

3
√
c1/2
3

−

3√2
(
−9a2 + 12b + 3

)
3 3
√
c1

− a

c = −
1 ± i

√
3

6 3
√
c1/2

− +
(1 + ∓i

√
3)

(
−9a2 + 12b + 3

)
3 3√4c1

− a

here, c1 = −54a3 +

√(
−54a3 + 108ab + 54a

)2
+ 4

(
−9a2 + 12b + 3

)3
+ 108ab + 54a, a = ξ0D0 and b = ξ0D1.

Solutions of Eq. (16) are

c = ±
1
2
√
c3 ±

1
2

√
−c3 + 2D0 − 4 +

4D1

c3

here,
c3 =

3√2(D0+4)2

3c2
+

1
3 3√2

c2 +
2D0−4

3 ,

c2 =
6
√
c21 − 4(D0 + 4)6 + c − 1

c1 = 2(2 − D0)3 − 72(D0 + 1)(2 − D0) + 108D2
1.

.2. Present wind tunnel setup

The wind tunnel set-up developed in the present study consists in a smooth circular cylinder suspended vertically and
ree to oscillate horizontally (Fig. A.12a). This PVC cylinder has an external diameter of D = 10 cm, a thickness e = 3 mm
and a length L = 1440 mm. It is supported by extension springs connected to a rigid frame attached to the ceiling and the
ground of the test section of the Wind Tunnel Laboratory of University of Liège. The bending stiffness in the horizontal
direction is equal to 6155 N/m, elastomers are added and a wind-off analysis showed a natural frequency of f0 = 7.8 Hz
and a damping ratio of ξ = 0.1%. The velocity is measured with a Pitot tube (1), the cylinder horizontal displacement is
measured with a laser (2) and a wireless accelerometer measures the horizontal acceleration (3). The flow velocity in the
wake of the model (cobra probe (5)) is measured synchronously with the cylinder displacement (laser (2)) . The second
set-up used in the present study is illustrated in Fig. A.12b, with a similar instrumentation and arrangement as Fig. A.12a
but horizontally suspended and a square section (D = 5 cm).

Fig. A.12. Frontal view of the WT set-up with sensors label for (a) circular and (b) square cylinders.
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