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Abstract— In this paper, the first algorithm for learning
hybrid Bayesian Networks with Gaussian mixture and Dirac
mixture conditional densities from data given their structure
is presented. The mixture densities to be learned allow for
nonlinear dependencies between the variables and exact closed-
form inference. For learning the network’s parameters, an
incremental gradient ascent algorithm is derived. Analytic
expressions for the partial derivatives and their combination
with messages are presented. This hybrid approach subsumes
the existing approach for purely discrete-valued networks
and is applicable to partially observable networks, too. Its
practicability is demonstrated by a reference example.

I. INTRODUCTION

Ever since their introduction, Bayesian Networks (BN)
[1] are widely used for machine learning, robotics, control,
and information fusion problems. As probabilistic graphical
models, they allow for an intuitive modeling of causal rela-
tions along with a probabilistic description of the quality of
the dependencies. Formally, a BN is an augmented directed
acyclic graph G = (E,V ) consisting of nodes vi ∈ V and
edges ei j ∈ E. Nodes vi correspond to random variables xi
and edges ei j = (vi,v j) correspond to conditional densities
f (x j|xi). Even though BN are most often used for modeling
dependencies between discrete-valued variables, they may be
used to relate continuous variables [2], [3] or mixed-valued
sets of variables [4], [5]. The use of hybrid BN is advan-
tageous for many applications: they avoid discretization of
continuous variables and allow an intuitive modeling of the
problem at hand. This is especially the case, when nonlinear
dependencies can be represented. Yet, the modeling freedom
offered comes along with problems instantiating the BN.
Typically, a BN is created on the basis of expert knowledge
and known data cases. As the models and the available data
amounts grow, the need for automated learning algorithms
of BN parameters based on a rough initial estimate becomes
increasingly relevant, in particular this includes dynamic
systems.

This paper presents the first algorithm for learning the pa-
rameters of BN with Gaussian and Dirac mixture conditional
densities [5] with given structure from data. This is a very
powerful class of models, as it allows for modeling nonlinear
dependencies between the variables, including discrete chil-
dren of continuous parent nodes. The Dirac mixtures are em-
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ployed to map the discrete random variables’ symbols to the
continuous domain, so that all calculations may be performed
entirely in the continuous domain. Gaussian mixtures are
used to model dependencies between continuous variables
and a combination of Gaussian and Dirac mixtures is used
for representing hybrid densities. The devised algorithm is
capable of learning the parameters of this type of densities, in
the case of fully and only partially observable node values,
i.e., hidden nodes. The rest of this paper is structured as
follows. Initially, related work will be presented and the
specific type of hybrid BN will be introduced. After giving
the mathematical problem formulation, the actual algorithm
will be derived and its applicability demonstrated by a
reference experiment [5].

II. RELATED WORK

Parameter learning for BN has been an active research
topic for long [6]. The existing approaches can be catego-
rized according to full or partial observability of the nodes,
the type of conditional density, Bayesian or frequentistic
learning, and the specific algorithm applied. In the case of
full observable data, conditional densities need to be learned
from value assignments of the nodes and their parents. The
learning problem decomposes over the network. In contrast,
for partial observability, the values of some nodes are not
available. In this case, learning the conditional densities is
not independent of the rest of the network, as the values are
replaced by corresponding posterior densities, obtained from
standard BN inference. In each learning step, the network
needs to be evaluated to obtain the posterior densities based
on the new parameters of the entire network. The unobserved
parts of the BN can be understood as an imposition of
an inner structure facilitating the larger learning task. The
parameters of the unobserved parts are learned, too.

Most research has been limited to discrete-valued BN only.
The introduction of BN with conditional Gaussian densities
[2], [7] led to the development of learning algorithms for
hybrid BN [8]. Learning hybrid BN with mixture conditional
densities has not received much attention so far. The most
prominent approaches are Hierarchical Mixture of Experts
(HME) [9] and Mixture Density Networks (MDN) [10].
Both are nonlinear function approximators augmented by
probabilistic output. HME are trees of expert functions
composing a nonlinear function, where each function is given
a probabilistic interpretation. In contrast, MDN consist of
nonlinear processing of input values by an artificial neural
network whose outputs are the parameters of a conditional
density mapping from the input to the output. This approach



Pa(x)

Fig. 1. Hybrid BN with variable x, parent variables xp
i and child variables

xs
i . The square (circular) nodes correspond to discrete-(continuous-)valued

variables and the rounded rectangle represents a variable that can be discrete
or continuous.

is also capable of handling mixed-valued sets of variables.
Yet, both approaches are only meant to be used in forward
inference.

So far, no frequentistic or Bayesian learning algorithm for
hybrid BN has been proposed for mixtures of the type of
[5], [11] presented in more detail in Sec. III. Even though
less general than the above approaches, this conditional
density representation allows for closed-form analytic in-
ference, like message passing. The proposed frequentistic
learning algorithm of a point parameter estimate may serve
as a preparatory work to Bayesian learning of BN with
mixture densities, which is still an open field of research.
In contrast to frequentistic learning, a Bayesian approach
aims at determining a distribution over the parameter sets
[12]. Regarding frequentist learning algorithms, approaches
can be distinguished as using the Expectation Maximization
algorithm [13] and gradient ascent [14], [15].

In this paper, a gradient ascent approach for learning the
mixture densities is proposed. In Sec. V, the approach will be
shown to subsume the known gradient approach for discrete-
valued BN under certain assumptions.

III. HYBRID BAYESIAN NETWORKS

In this section, the type of hybrid BN to be learned is
explicated and some definitions are given, e.g., the normal
density N (x−µ,σ) := 1√

2πσ
exp
{
− 1

2
(x−µ)2

σ2

}
and the Dirac

delta function δ (x− µ). The parent function Pa(x) returns
the set of variables corresponding to nodes that are par-
ents of the node representing x. Using this, the shorthand
f (x|xp

1 , . . . ,xp
m) = f (x|Pa(x)) is introduced, cf. Fig. 1. Reali-

zations of random variables will be denoted by i≡ (x = i).
The posterior distribution of a variable x in the hybrid BN
of [5], [11] is then given by

f (x) =

{
∑
|x|
i=1 αi δ (x− i) discrete x ,

∑
M
i=1 γi N (x−µi,σi) continuous x .

(1)

In (1), the discrete events of the variables are mapped to
integers i in the continuous domain. This mapping is arbitrary
but fixed. Assuming w.l.o.g. a node partition, as in Fig. 1,

Fig. 2. Unnormalized hybrid cond. density: f (z|y,u = 1) and f (z|y,u = 2).

the conditional densities of the BN [5] are

f (x|Pa(x)) = ∑
M
j=1 γ j f j(x)∏

m
k=1 f j,k(x

p
k ) (2)

= ∑
M
j=1 γ j f j(x)

n

∏
k=1

f j,k(x
p
k )︸ ︷︷ ︸

discrete

m

∏
k=n+1

f j,k(x
p
k )︸ ︷︷ ︸

continuous

.

The structure of (2) is favorable for learning the parameters
due to its decomposition in axis-aligned densities for x and
each variable in Pa(x). Specializing (2) according to the type
of densities is performed by substituting f (.) with a normal
density or a weighted sum of Dirac delta functions. To clarify
the definitions, we explicate a modified example from [5].

In Ex. 1, m is the number of normal densities necessary for
describing the nonlinearity f (z|y,u = i). The two columns of
Tab. 1 correspond to the parameters for the two distinct den-
sities, relative to the value of u. Each value β jk corresponds
to selecting the j-th component assigned from the value
u = k of the discrete parent node. In case of more discrete-
valued parent variables, the combination yields a value for
the respective value combination of the parent nodes, i.e.,
Pa(x) = i.

Example 1 (Hybrid Conditional Density): Given the ran-
dom variables y,z ∈ R and u ∈ {1,2}, an example hybrid
conditional density for a nonlinearity similar to [5] is

f (z|y,u) = ∑
M
j=1 γ j f j(z) f j,u(u) f j,y(y)

= ∑
M
j=1 γ j N (z−µ j,σ j)

·
[
∑
|u|
l=1 β jl δ (u− l)

]
N (y−µ jy,σ jy)

as depicted in Fig. 2, having the following parameters

j≤m, (u = 1) j > m, (u = 2)
µ j = ν j +0.75 · (ν j)3

µ jy = υ j−5
β j1 = 1
β j2 = 0

µ j =−ν( j−m)
+0.75 · (−ν( j−m))3

µ jy = υ( j−m)−5
β j1 = 0
β j2 = 1

and σ j = σ jy = 1.75, m = 5, υ = 10/m, M = m · |u|, ν = 3/m,
and ∑

M
j=1 γ j = D. Here, D is the size of the interval in which

y values are obtained.
In this section, the hybrid BN representation was intro-

duced. We refer the interested reader to [5], [11] for details
on inference with this model. Ex. 1 demonstrates the roles
of the parameters to be learned.

IV. PROBLEM FORMULATION

The idea of learning a BN can be phrased as an optimiza-
tion problem: given a data set D = {d1, . . . ,d|D |}, calculate



the parameters θ of a given hybrid BN that are most likely
to produce D . Here, the data, the structure of the hybrid
BN, and an initial set of parameters θ0 are assumed to be
given. This means that for a hybrid Bayesian network the
parameters of the Gaussian mixtures and Dirac mixtures in
the conditional densities are to be estimated on the basis of
data points. For setting the initial parameters of the Gaussian
mixtures, i.e., the appropriate number of components and
the weights, means and variances, advice can be found in
[16]. Note the component positions in the Dirac mixtures
correspond to symbols of discrete variables and are fixed
points in the continuous domain. The component weights
are the probabilities for the corresponding discrete events.

Regarding the data, each data point is a full or partial
value assignment to the variables in the hybrid BN. In order
to solve the optimization problem, the commonly used log-
likelihood is applied as a performance criterion [6], [14],
[15]. It is given by

LD (θ)≡ 1
|D | log f (D |θ) = 1

|D | ∑
d∈D

log f (d|θ) . (3)

V. LEARNING ALGORITHM

In order to find the maximum of LD (θ), we propose a
gradient ascent method. In this section, we introduce the
overall learning algorithm. A detailed derivation can be found
in Sec. VI. The following constraints need to be kept so that
the results are valid conditional densities

f (a|b)≥ 0 , ∫ f (x|b) dx = 1 . (4)

These constraints postulate conditional probabilities to be
positive and the integral of the conditional density f (x|b)
to equal 1 for any given Pa(x) = b. For conditional densities
with continuous x, the samples are assumed to be restricted to
b∈ [bmin,bmax]. The latter constraint is then approximated by
∑

M
j=1 γ j = (bmax−bmin) =: D. Note that the approximate con-

straint will require a normalization for a fixed value of Pa(x)
ex post in general. To meet the constraints for the weights,
the penalty P(θk) := exp(−(γ j/c))+exp(−(∑M

j=1 γ j−D)/c))
and for the discrete probabilities C(θk) [15]

C(θk) :=

{
∑
|x|
o=1

∂

∂αk,oi
LD (θk) θk,i = αk,i j ,

0 else ,
(5)

were added to the target function. Note that for all parameters
λ ∈ θ , except for αi j and γ j, the constraint terms are zero,
yielding the following update equation

θk+1 = θk +η

(
∂

∂θ
LD (θk)−C(θk)

)
− ∂

∂θ
P(θk) . (6)

The update equation (6) comprises two intuitive factors: the
first may be understood as an update on the current parameter
estimate, while the other asserts the constraints. Alg. 1
summarizes this section. In Sec. VI, the analytic expressions
for ∂

∂θ
LD (θk) used in Alg. 1 will be derived.

Algorithm 1 Learning Hybrid Bayesian Networks
Input: Hybrid BN, θk=0 initial parameters, D data set

1: repeat
2: for all families {x,Pa(x)} do
3: for all d ∈D do
4: Set BN values according to d
5: // Inference mechanism of choice
6: Calculate posterior probabilities
7: Calculate relative factors and constraints for λ

8: end for
9: θk+1 = θk +η

∂

∂θ
(LD (θk)−C(θk))− ∂

∂θ
P(θk)

10: end for
11: until ∆(θk+1,θk)≈ 0

VI. ANALYTIC EXPRESSIONS FOR THE DERIVATIVES

Due to the additivity of (3), the gradient ∂

∂λ
LD (θ) may be

decomposed with respect to the parameters of the conditional
densities per data point d. Setting f (d) := f (d|θ), omitting
the normalization, and applying the chain rule gives

∂

∂λ
LD (θ) = ∑

d∈D
∂

∂λ
log f (d) = ∑

d∈D
1

f (d) · ∂

∂λ
f (d)︸ ︷︷ ︸

∂

∂λ
ld(θ)

. (7)

As has been shown in Ex. 1, the value combinations for the
discrete-valued variables determine the continuous part of the
conditional density. Given a fixed assignment for the discrete
part, the gradient has to be determined for the parameters λ

governing the respective continuous density. For the rest of
this section ∂

∂λ
ld(θ) will be considered only and w.l.o.g.

λ implies fixed value combinations x = a and Pa(x) = b =
{b1, . . . ,bn}. Parameter tying is ignored and all integrations
range over (−∞, +∞). Like in [14], further simplification of
∂

∂λ
ld(θ) gives

∂

∂λ
ld(θ) = ∂

∂λ

∫ ···∫ f (d,x,Pa(x)) dx dPa(x)

=
∫ ···∫ f (x,Pa(x)|d) 1

f (x|Pa(x))

·
(

∂

∂λ
f (x|Pa(x))

)
dx dPa(x) . (8)

The first two factors in (8) correspond to the probability for
a value assignment of {x, Pa(x)} given the data divided by
the probability of the conditional for this assignment. Note
that the numerator equals the posterior probability obtainable
from junction tree inference. If the posterior probability for
the {x,Pa(x)} is not given, it may be calculated from the
messages passed to them and the conditional probability
density. With a normalization ψ and d :=

{
d,d
}

, one obtains

f (x,Pa(x)|d)
f (x|Pa(x)) = ψ f (d|x) f (Pa(x)|d) . (9)

Here, d and d denote the data in the BN from below and
above x, cf. [5]. In the following, the partial derivatives for
all parameters λ will be derived. Combined with (9), these
give rise to an analytic expression for (8).



A. Partial Derivatives

The main idea behind calculating ∂

∂λ
f (x|Pa(x)) is to

calculate the derivatives for fixed discrete value combinations
b. For fixed b, this yields

s j(Pa(x)) :=
n

∏
k=1

f j,k(bk) =
n

∏
k=1

|xp
k |

∑
l=1

β jkl δ (xp
k − l) ,︸ ︷︷ ︸

=β jkbk
δ (xp

k−bk)

(10)

which is only non-zero if b is attained. In this case, we define
β jkbk = 1. The term ∂

∂λ
ld(θ) simplifies for a fixed parameter

λ , i.e., a fixed component j, and a fixed value b to

∂

∂λ
f (x|Pa(x)) =

∂

∂λ
γ j f j(x)s j(Pa(x))

(
m

∏
k=n+1

N (xp
k ,µk j,σk j)

)
︸ ︷︷ ︸

g j(x|Pa(x))

, (11)

and the set of parameters for x and the continuous Pa(x) is

λ ∈ {γ j, φ f j︸︷︷︸
∼x

, µn+1, j, σn+1, j, . . . , µm, j, σm, j︸ ︷︷ ︸
∼cont.Pa(x)

} . (12)

The term f j(x) in (11) inherits the dependence on the type
of x from the conditional density—φ f j := {µ j, σ j} or φ f j :=
{α j}. For all λ , (11) can be given in the following form

∂

∂λ
f (x|Pa(x)) = cλ (x,Pa(x))g j(x|Pa(x)) (13)

with

cλ (x,Pa(x)) ∈
{

1/γ j,
(x−µ)

σ2 , 1
σ

[(
(x−µ)2

σ2

)
−1
]}

.

The partial derivatives for µ and σ need to be specialized
for µ j, σ j or µk, j, σk, j. For discrete x, a fixed value gives

f j(a) :=
|x|
∑
i=1

αi j δ (x−a) = αa j δ (x−a) (14)

which in turn gives rise to

cα(x,Pa(x)) :=
1

αa j
. (15)

This definition is necessary, as the chain rule cannot be
applied in (8) for discrete probabilities.

B. Combining Partial Derivatives with Messages

After calculating the partial derivatives, these need to
be combined with the evidence (9) according to (8). The
solution will be obtained in two steps: First, (8) will be
simplified by calculating the product of the factors for
discrete (continuous) Pa(x) only. Second, the terms involving
x will be simplified. This involves distinguishing between
discrete (continuous) x. For a generic parent set, one obtains

f (Pa(x)|d) =

(
n

∏
i=1

fd(x
p
i |d)

)
·
(

m

∏
i=n+1

fc(x
p
i |d)

)
(16)

with the factors, cf. [5], [11],

fd(x
p
i |d) = ∑

|xp
i |

l=1 β il δ (xp
i − l) , (17)

fc(x
p
i |d) = ∑

S
s=1 γs N (xp

i −µsi,σ si) . (18)

Solving for all discrete Pa(x) corresponds to calculating∫ ···∫ s j(Pa(x))
(
∏

n
i=1 fd(x

p
i |d)

)
dxp

1 . . . dxp
n

=

(
n

∏
i=1

β jibi β il

)
=: cd,i j . (19)

Note that cd is independent of the remaining variables.
Solving for the continuous Pa(x) amounts to solving the
following integral for each continuous xp

i∫
cλ (x,Pa(x))N (xp

i ,µi j,σ
2
i j) fc(x

p
i |d)dxp

i =: cc,si j. (20)

Since fc(x
p
i |d) is a normal density, (20) results in a normal

density with a constant factor. Solving (20) amounts to
distinguishing the different cases for λ . Using the defini-

tions ηsi j = N (µi j−µsi,
√

σ2
i j +σ

2
si), µsi j =

µsiσ
2
i j+µi jσ

2
si

σ2
i j+σ

2
si

and

σsi j :=
√

σ2
i jσ

2
si

σ2
i j+σ

2
si

, one obtains

cc,si j = ηsi j ·


1

σ2
i j
(µsi j−µi j) λ = µi j ,

1
σ3

i j
[(µsi j−µi j)2 +ξ σ2

si j−σ2
i j] λ = σi j ,

1 else .
The results reflect whether λ is a parameter of the continuous
xp

i being integrated out or not. We observed the estimator
reduces variances to extremely small values in the partially
observable case. Based on empirical findings, the factor ξ :=
1 was set to ξ := 2, which corrected this problem. Note,
that this factor changes the optimization problem, is given
without proof, and applicability in general is questionable.
Inserting cc,i j = ∑

S
s=1 γs cc,si j and cd into (8) yields

∂

∂λ
ld(θ) = ψ cd,i j cc,i j

∫
cλ (x,Pa(x)) f (d|x) f j(x)dx (21)

with the following factors depending on the type of x

fd(d|x) = ∑
M
t=1 γt ∑

|x|
r=1 β

tr
δ (x− r) , (22)

fc(d|x) = ∑
T
t=1 γt N (x−µ

t
,σ t) . (23)

After some minor calculations, the following results are
obtained for the different types of x. For discrete x, the
integral in (21) simplifies to

∂

∂λ
ld(θ) = ψ cd,i j cc,i j

M

∑
t=1

γt αa j β
ta j

(24)

and for continuous x, one obtains

∂

∂λ
ld(θ) = ψ cd,i j cc,i j

M

∑
t=1

γt cλ ,x,ti j (25)
with

cλ ,x,ti j = ηt j ·


1

σ2
j
(µt j−µ j) λ = µ j ,

1
σ3

j
[(µt j−µ j)2 +ξ σ2

t j−σ2
j ] λ = σ j ,

1 else ,



and ηt j = N (µ
t
− µ j,

√
σ2

t +σ2
j ), σt j :=

√
σ2

j σ2
t

σ2
j +σ2

t
as well

as µt j :=
(

µt σ
2
j +µ jσ

2
t

σ2
j +σ2

t

)
. The final expressions in (24) and

(25) are analytic and allow for a simple implementation of
Alg. 1, i.e., ∂

∂λ
LD can be replaced by a summation over the

above partial derivatives for all data according to (3).

VII. SUBSUMPTION OF THE DISCRETE CASE

In this section, the proposed approach is shown to subsume
the results for BN of purely discrete-valued variables [14].
In this case, (2) simplifies to

f (x|Pa(x)) =
M

∑
j=1

γ j f j(x)
n

∏
k=1

f j,k(x
p
k )

=
M

∑
j=1

γ j

|x|
∑
i=1

αi j δ (x− i)
n

∏
k=1

|xp
k|

∑
l=1

β jkl δ (xp
k − l) . (26)

The derivatives are considered with respect to a value com-
bination {a, b} only. In (26), M is the total number of value
combinations of the parent variables. Setting γ j = 1, β jkl = 1
for l = bk, and αi j = pa|b = P(a|b), one may simplify (26)

f (a|b) = pa|b δ (x−a)
n

∏
k=1

δ (xp
k −bk) .

Using (15), one obtains

∂

∂ pa|b
f (a|b) = 1

pa|b
f (a|b) = δ (x−a)

n

∏
k=1

δ (xp
k −bk) .

This result inserted into (8) yields

∂

∂ pa|b
ld(θ) =∫ ···∫ f (a,b|d)

f (a|b)
(

∂

∂ pa|b
f (a|b)

)
dx dPa(x) =

pab|d
pa|b

,

the default gradient approach for purely discrete BN [14].

VIII. LIMITATIONS - COMPLEXITY, IDENTIFIABILITY,
CONVERGENCE, AND BIAS

The learning algorithm is at least as complex as the
inference algorithms for BN, as it is used as a subfunction.
Inference for BN is known to be NP-hard [12] in general.
Inference in hybrid BN is at least as complex as in the
subsumed class of discrete-valued BN. In fact, it is known
[4] that exact inference in polytree hybrid BN with Gaussian
densities is NP-hard, even though the inference in polytree
discrete BN takes only linear time. This renders learning
hybrid BN with mixture densities for general graphs and
polytrees NP-hard. Note that expensive computations due to
complex Gaussian mixture densities may be alleviated by
well known mixture reduction algorithms. From a practical
standpoint, whenever BN inference is performed, part of
the work of the proposed algorithm has been done already.
The parameters may be adapted, as described in Alg. 1,
using a batch of observations or single observations at a
time. Regarding identifiability, the presented approach in-
herits all problems involved with learning mixture densi-
ties, i.e., identifiability only under certain conditions, e.g.,

x µy σy

1 −5 2
2 5 2

,
v P (u = 1 v) P (u = 2 v)
1 0.2 0.8
2 0.6 0.4

.

Fig. 3. Hybrid network example similar to [5] and all γi = 1.
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Fig. 4. Log-likelihood of the non-hidden nodes, x,v, and z, of the BN
on training (solid) and test (dashed) sets for no, small, and large levels of
noise in the data (red, black, blue) in case of partially observable data.

up to a permutation [16]. Additionally, BN may be used
for modeling unsupervised learning problems. A prominent
example is blind source separation problem (BSS), i.e.,
an inverse to a nonlinear mixing of independent signals
shall be learned. It is known that solving BSS is possible
for certain sets of functions only [17]. It remains an open
question, whether this approach yields favorable behavior
for more complicated unsupervised problems with structure
assumptions, e.g., multiple consecutive hidden nodes. Fur-
thermore, convergence needs to be proven and is so far not
guaranteed. As this is a nonlinear optimization problem, it
can be expected that convergence to a local maximum within
a restricted vicinity may be guaranteed at most. Due to all
these restrictions, the proposed algorithm should be applied
to the most reduced problem possible, e.g., in case parts of
the net are fully observable it is preferable to decompose
these parts. As mentioned in Sect. VI-B, a heuristic factor
for correcting too small variances was introduced. For this a
proof of correctness and generality needs to be performed.
Furthermore, this change in the partial derivatives changes
the optimization problem, so that the result of the estimator
may only be close to the maximum likelihood estimator.

IX. EXPERIMENTS

In this section, the results of applying the learning algo-
rithm to a nonlinear example similar to [5] are presented. The
reference BN consists of the parameters and the graph given
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Fig. 5. Log-likelihood of the BN on training (solid) and test (dashed) sets
for no, small, and large levels of noise in the data (red, black, blue) in case
of fully observable data.

in Ex. 1 as well as Fig. 3. The example is representative as it
entails a purely discrete CPT and hybrid conditional densities
in the form a single Gaussian density and a Gaussian mixture
density. The effective number of parameters to be learned is
36. For the experiments, a set of complete data cases was
randomly generated. Partial observability was achieved by
hiding the values of the non-leaf and non-root nodes. The
initial parameter estimates θ0 were obtained by adding white
noise to the true model. In the first experiment, a total of 500
data cases was generated (red). The training set consisted
of 450 and the test set of 50 examples. Additionally, this
data was subjected to two levels of noise. For a small
level of noise in the data (black), 10% of the data was
corrupted by noise at random. The binary discrete values for
x and v were toggled and additive white Gaussian noise was
added to the continuous measurements of z with σ = 0.25.
For the large noise level (blue), twice the number of data
points were changed and twice the standard deviation was
used. For the partially observable learning case, the log-
likelihood of the non-leaf and non-root nodes for the three
data sets with respect to the number of iterations are given
in Fig. 4. Clearly, all log-likelihood scores improve, but note
that around iteration 175 for the non-noisy data set the
learning algorithm produces a slightly higher likelihood for
the training set than at the end of learning. We think this
abnormality is due to the heuristic change in the gradient.
Yet, removing the heuristic factor will result in low variance
hybrid conditional densities that give numerical issues. Note
that overfitting occurs, which can be seen between 175 to 200
in Fig. 4. For the fully observable case, the log-likelihood
of the data is presented for the same data sets. Note that
the heuristic variance correction cancels out for this case
by default and therefore does not impact this case. All
likelihoods improve monotonically. Again, overfitting can be
observed in Fig. 5 after iteration 500.

X. CONCLUSIONS

In this paper, the first algorithm for learning hybrid
Bayesian Networks with Gaussian mixture and Dirac mixture

conditional densities [5], [11] from data given their structure
is presented. A gradient ascent learning algorithm for max-
imizing the log-likelihood was derived. In conjunction with
an adaption rate, the analytic gradient expressions yield an
incremental learning algorithm. The proposed algorithm can
be used for learning the parameters of fully and only partially
observable BN and is shown to subsume existing algorithms
for purely discrete BN. The practicability of this approach is
demonstrated on the basis of a default example. It remains
future work to prove convergence, to prove the correctness of
the given variance correction factor and to investigate more
efficient ways of asserting the constraints of the learning
algorithm necessary to determine valid conditional densities.
As overfitting occurs, it appears promising to improve the
generalization capability of the algorithm, especially with
regard to learning with small number of samples only.
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