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Parameter multi-domain “hp” empirical

interpolation

Jens L. Eftang and Benjamin Stamm

February 8, 2011

In this paper, we introduce two parameter multi-domain “hp” techniques for
the empirical interpolation method (EIM). In both approaches, we construct
a partition of the original parameter domain into parameter subdomains: h-
refinement. We apply the standard EIM independently within each subdomain
to yield local (in parameter) approximation spaces: p-refinement. Further, for a
particularly simple case we introduce a priori convergence theory for the parti-
tion procedure. We show through two numerical examples that our approaches
provide significant reduction in the EIM approximation space dimension, and
thus significantly reduce the computational cost associated with EIM approxi-
mations.

Keywords: empirical interpolation method; hp-EIM; hp-convergence

1 Introduction

The Empirical Interpolation Method (EIM) was first introduced in [1, 7] as a tool within the
Reduced Basis (RB) framework [11] for parametrized partial differential equations (PDEs).
The EIM serves to construct “affine” (more precisely, affine in functions of the parameter)
approximations of non-affine parametrized differential operators. This approximation is
achieved through an affine approximation of the coefficient function which separates the
parameter and spatial dependence. An affine decomposition of the differential operator is
necessary to enable efficient RB offline-online computational procedures. The EIM thus
expands the class of PDEs amenable to RB treatment; other applications of the EIM
include rapid numerical approximation of parametrized integrals and are discussed in [9].

Given “any” parametrized function, the EIM precomputation (henceforth offline) stage
serves to construct an approximation space spanned by “snapshots” of this function for
judiciously chosen parameter values from a predefined parameter domain and a set of
judiciously chosen spatial interpolation nodes from the spatial domain. In the EIM online
stage, given any new parameter value from the parameter domain, the EIM approximation
to the original function is the particular linear combination of the EIM basis functions that
interpolates the original function at the spatial interpolation nodes.
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Under the assumption that the function under consideration depends sufficiently smoothly
on the parameters, the EIM typically provides exponential convergence [9]. However, for
many problems in which the function exhibits large (albeit smooth) variations with the
parameters, a snapshot from one region of the parameter domain contributes little to the
approximation of the function associated with a parameter value from another region of the
parameter domain. The global (in parameter, but of course also space) EIM approximation
space is thus in some sense unnecessecarily large, and consequently the online computation
of the EIM approximation is unnecessecarily expensive.

In this paper, we introduce two approaches that both serve to reduce the dimension of
the EIM approximation space. Both approaches share the same underlying idea: an adap-
tive partition of the parameter domain into parameter subdomains — h-refinement —
and construction of standard EIM approximation spaces and associated EIM interpolation
nodes restricted to each of these parameter subdomains — p-refinement. This parameter
multi-domain, or hp, strategy provides significant dimension reduction since the smaller
local (in parameter) EIM approximation spaces are optimized with respect to the para-
metric variations within each subdomain; the online evaluation of the EIM interpolant is
thus much faster.

Our first approach is the anchor point (AP) splitting scheme. This method is an adaption
of the hp-RB method introduced in [4] to the context of the EIM. The parameter subdo-
mains are hierarchically defined based on proximity to “anchor points” identified by the
EIM Greedy sampling procedure within each subdomain at each level of h-refinement; sub-
sequently, in the p-refinement stage, the standard EIM is applied within each subdomain.
Our second approach is the gravity center (GC) splitting scheme. The parameter subdo-
mains are hierarchically defined based on the “gravity center” of a cloud of points identified
by the EIM Greedy sampling procedure at each level of concurrent h- and p-refinement.

We provide in the next section the problem statement along with notation required later.
We then review in Section 3 the standard EIM applied to the entire parameter domain
D. Then, we present in Section 4 and Section 5 the AP and GC splitting procedures,
respectively. In Section 6 we discuss the computational cost associated with both methods.
In Section 7 we compare our two approaches relative to the standard EIM through two
model problems. Finally, we provide some concluding remarks in Section 8.

2 Problem Statement

We introduce a spatial domain Ω ⊂ Rd for some integer d > 0; we shall denote a particular
spatial point x ∈ Ω as x = (x(1), . . . , x(d)). We next introduce a parameter domain D ⊂ RP ;
we shall denote a particular parameter value µ ∈ D as (µ(1), . . . , µ(P )). We then introduce
a (given) parametrized function G : Ω × D → R such that G(·;µ) ∈ L∞(Ω) for all µ ∈ D;
here L∞(Ω) = {v : ess supx∈Ω |v(x)| < ∞}. We finally introduce a triangulation T N (Ω)
with N vertices over which we shall in practice realize G(·;µ), µ ∈ D, as a piecewise linear
function.1

For any µ ∈ D, we consider the construction of an approximation GM (·;µ) ≈ G(·;µ),
where GM (·;µ) resides in a parameter-independent M -dimensional linear approximation
space WM , M < ∞. The problem is thus twofold: i) the construction of a good M -
dimensional approximation space WM = span{q1, . . . , qM} and ii) given any µ ∈ D and
the space WM , the computation of parameter dependent coefficients ϕ1(µ), . . . , ϕM (µ) such

1We emphasize that the EIM is not restricted to functions that are piecewise linear; however, for the
computational procedures involved, a finite-dimensional representation of G(·;µ), µ ∈ D, is required.
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that

GM (·;µ) =
M
∑

i=1

ϕi(µ)qi ≈ G(·;µ) (1)

is a good approximation. Clearly, classical polynomial interpolation procedures may be
considered for this problem; however in our context here standard polynomial approxi-
mation spaces are far too general and hence the required dimension M is too large to
accomodate efficient online evaluation of ϕ1(µ), . . . , ϕM (µ). In contrast, the EIM provides
a much smaller approximation space specifically targeted at the parametrized function at
hand.

The following simple problem illustrates how the EIM may be invoked in practice. Con-
sider the integral

F (µ) =

∫

Ω
f(·;µ)u, (2)

where f : Ω × D → R with f(·;µ) ∈ L∞(Ω) for any µ ∈ D and u : Ω → R is a parameter
independent function (we assume that the product f(·;µ)u is integrable). In general,
evaluation of F (µ) with standard quadrature rules may be expensive; in particular, the
evaluation cost may be prohibitive when F (µ) has to be computed for many µ ∈ D or in
real time. The EIM serves to construct an approximation fM (·;µ) =

∑M
m=1 ϕm(µ)qm to

f(·;µ) such that

FM (µ) ≡

∫

Ω
fM (·;µ)u =

M
∑

m=1

ϕm(µ)

∫

Ω
qmu (3)

is a good approximation to F (µ). The key point is that the separation provided by the
EIM allows precomputation of the integrals in (3) (by for example standard quadrature
rules). Hence subsequent evaluation µ → FM (µ) may be performed very fast.

3 The Empirical Interpolation Method

The EIM was originally proposed in [1] (see also [7] for a more elaborate presentation).
In this paper however we shall employ the particular version of the EIM introduced in
[9], which invokes the less expensive interpolation error rather than the more expensive
projection error as a tool in the offline construction of the EIM approximation space. We
now briefly review the EIM applied to the entire parameter domain D; in the next sections
we then consider the EIM within the hp context.

We first introduce the empirical interpolation of a function G : Ω × D → R; we require
that G(·;µ) ∈ L∞(Ω) for all µ ∈ D. We introduce the EIM space WM = span{qm}Mm=1 of
dimension M and the M EIM interpolation nodes t1, . . . , tM ∈ Ω (the EIM basis functions
qm, 1 ≤ m ≤ M , and interpolation nodes will be defined shortly). We may now define,
for any µ ∈ D, the empirical interpolation GM (·;µ) ≈ G(·;µ), as the particular function in
WM that interpolates G(·;µ) at the M interpolation nodes:

GM (·;µ) =
M
∑

i=1

ϕi(µ)qi, (4)
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where the coefficients ϕi(µ), 1 ≤ i ≤ M , solve the linear system

M
∑

j=1

ϕj(µ)qj(ti) = G(ti;µ), 1 ≤ i ≤ M. (5)

It is easy to see that GM (ti;µ) = G(ti;µ), 1 ≤ i ≤ M , for all µ ∈ D.

We now define the EIM basis functions and the EIM interpolation nodes recursively
through a Greedy sampling algorithm. To this end we require a (typically rich) training
set Ξtrain ⊂ D of finite size |Ξtrain| which shall serve as our computational surrogate for
D. First, for M = 1, we choose (randomly, say) an initial parameter value µ1 ∈ D;
the first EIM interpolation node is then t1 ≡ arg supx∈Ω |G(x;µM )|;2 the first EIM basis
function is qM ≡ G(·;µM )/G(tM ;µM ). Then, for 2 ≤ M ≤ Mmax < ∞, we compute for
all µ ∈ Ξtrain ⊂ D the empirical interpolation GM−1(·;µ) ≈ G(·;µ); the next parameter is
then chosen as the maximizer of the L∞(Ω) interpolation error over Ξtrain:

µM ≡ arg max
µ∈Ξtrain

‖GM−1(·;µ)− G(·;µ)‖L∞ . (6)

We define rM ≡ GM−1(·;µM )− G(·;µM ) and choose the next EIM interpolation node as

tM ≡ arg sup
x∈Ω

|rM (x)|. (7)

We may now finally define the next EIM basis function as

qM ≡
rM

rM (tM )
. (8)

We have thus obtained Mmax basis functions and Mmax interpolation nodes. We note
that by construction rM (ti) = 0 for 1 ≤ i ≤ M − 1; hence qM (ti) = 0 for 1 ≤ i ≤ M − 1
and qM (tM ) = 1 thanks to the normalization (8). The matrix {qj(ti)}i j in (5) is thus
lower triangular with unity diagonal; as a result, for any µ ∈ D, the cost associated with
the computation of the coefficients ϕj(µ), 1 ≤ j ≤ M , is O(M2).

For 1 ≤ M ≤ Mmax, we define the “Lebesgue constant” [10]

ΛM ≡ sup
x∈Ω

M
∑

m=1

|V M
m (x)|, (9)

where V M
m ∈ WM , 1 ≤ m ≤ M , are the “characteristic functions” of WM , which satisfy

V M
m (tn) = δmn; here δmn is the Kronecker delta symbol. It can be proven [1, 7] that the

EIM approximation error satisfies

‖G(·;µ)− GM (·;µ)‖L∞ ≤ (1 + ΛM ) inf
z∈WM

‖G(·;µ)− z‖L∞ , 1 ≤ M ≤ Mmax, (10)

Furthermore, it can be proven that ΛM ≤ 2M − 1; however in actual practice the behavior
of ΛM is much better [1, 7, 9].

2Note that sup
x∈Ω

|G(x;µ)| is in practice realized as the maximum of |G(x;µ)| over the N vertices of
T N (Ω).
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4 An Anchor Point Splitting Scheme

4.1 Procedure

In this section we introduce the anchor point (AP) splitting procedure for the partition of
the parameter domain; this procedure is an adaption of the approach introduced for the hp
reduced basis method in [4, 2]. We shall require a distance function d : D×D → R, which
we choose in this paper as the Euclidean distance between the two arguments; however,
other distance functions may be considered.

We first describe the splitting of an arbitrary subdomain V ⊆ D into two distinct sub-
domains V0 ⊂ V and V1 ⊂ V; the application of this splitting step to the construction of a
partition of D is straightforward and is discussed shortly. We assume that V is equipped
with a sufficiently dense training set ΞV

train ⊂ V . Given an anchor point µ∗
0 ∈ V , we set

µ1 = µ∗
0; we then compute G(·;µ1), t1 = arg supx∈Ω |G(x;µ1)|, and perform one iteration

of the standard EIM Greedy procedure restricted to ΞV
train (hence Mmax = 2). We then

define µ∗
1 ≡ µ2 and we denote the maximum interpolation error over ΞV

train by

ǫV ≡ max
µ∈ΞV

train

‖G1(·;µ)− G(·;µ)‖L∞ . (11)

We can now define two distinct subdomains V0 ⊂ V and V1 ⊂ V based on proximity to the
two points µ∗

0 and µ∗
1 as

V0 = {µ ∈ V : d(µ, µ∗
0) < d(µ, µ∗

1)}, (12)

V1 = {µ ∈ V : d(µ, µ∗
1) ≤ d(µ, µ∗

0)}. (13)

We say that µ∗
0 is to the anchor point of V0 and that µ∗

1 is the anchor point of V1.
We apply this “h-refinement” splitting scheme in a recursive manner in order to con-

struct a hierarchical partition of the entire domain D: we first choose the initial anchor
point—typically a corner of D—and split D into two new subdomains. We then apply the
splitting scheme within each of the two generated subdomains. We continue recursively
until convergence: we split a subdomain V as long as the maximum error ǫV in (11) is larger
than a prescribed tolerance ǫhtol > 0. If ǫV < ǫhtol we stop the splitting process. We note
that each subdomain (except the “root” D) has a single “parent” and one “sibling.” Thanks
to this structure we may organize the splitting procedure in a binary tree as illustrated in
Figure 1.

When the tolerance ǫhtol is satisfied over ΞV
train, we perform “p-refinement” within V :

application of the standard EIM to V for specified Mmax > 1 and target tolerance ǫptol < ǫhtol.
If the target tolerance ǫptol is not satisfied after p-refinement (for Mmax basis functions), we
successively perform additional “h” and “p” refinement steps until the tolerance is satisfied
for at most Mmax EIM basis functions. Our procedure thus enables simultaneous control
over the EIM error (over the training set) and the EIM space dimension (and thus online
cost).

This hp-EIM anchor point refinement procedure results in a finite number K of parameter
subdomains, which we label V1, . . . ,VK . Each of these subdomains has an associated nested
set of EIM approximation spaces, W k

M = span{qkm}Mm=1, 1 ≤ M ≤ Mk
max, 1 ≤ k ≤ K, and

an associated set of nested EIM interpolation nodes T k
M = {tk1, . . . , t

k
M}, 1 ≤ M ≤ Mk

max,
1 ≤ k ≤ K. Here, the qkm denote the EIM basis functions, and Mk

max denotes the space
dimension required in order to reach the target tolerance for subdomain k. Note that the
Mk

max, 1 ≤ k ≤ K, are in general different but bounded by Mmax.
Given the partition of D into K subdomains with associated EIM approximation spaces

and interpolation nodes, we now define the AP hp-EIM interpolant. Given any µ ∈ D, we
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h-refinement
p-refinement

D

Figure 1: Two levels of h-refinement and subsequent p-refinement for the anchor point
splitting procedure.

first determine k∗ = k∗(µ) such that µ ∈ Vk∗ . Note that thanks to the binary tree structure
of the partition, determination of k∗ is an efficient binary search. We then compute the
EIM approximation as

GM,K(·;µ) ≡ Gk∗

M,K(·;µ) =
M
∑

i=1

ϕk∗

M,i(µ)q
k∗

i , (14)

where the coefficients ϕk∗

M,i(µ), 1 ≤ i ≤ M , solve the linear system

M
∑

j=1

ϕk∗

M,j(µ)q
k∗

j (tk
∗

i ) = G(tk
∗

i ;µ), 1 ≤ i ≤ M, (15)

Remark 1. We note that the partition of D can be organized in a binary tree as indicated in
Figure 1 regardless of the parameter dimension P , since we always subdivide a subdomain
into two new subdomains at each level of refinement. The method thus allows the partition
to reflect anisotropy in the underlying parameter dependence of G(·;µ).

4.2 An a priori convergence theory for the AP procedure

We present here an a priori theory for the convergence of the initial partition algorithm (h-
refinement) presented above. The theory does not consider the subsequent p-refinements
however this step will ultimately (trivially) converge since the training sets are of finite
size. Our interest is not in the asymptotic convergence of the partition procedure per se,
since in practice we will always invoke an hp-type approximation rather than a pure h-type
approximation. However, the theory suggests that our procedure generates a meaningful
partition, and furthermore guarantees that the partition procedure does in fact terminate
for specified ǫhtol. We consider the case with P = 1 parameter for simplicity.

Proposition 1. Let D ⊂ R and let |D| denote the length of D. Suppose that G(·;µ) is
Lipschitz-contunuous in µ with Lipschitz constant L < ∞: for any µ1 ∈ D, µ2 ∈ D,

‖G(·;µ1)− G(·;µ2)‖L∞ ≤ L|µ1 − µ2|. (16)

For any specified ǫhtol > 0, the AP splitting procedure is then convergent for K = K(ǫhtol)
subdomains; moreover, the convergence is first order in the sense that

K(ǫhtol) ≤ max

{

1,
4L|D|

ǫhtol

}

, (17)

where |D| is the length of D.
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Proof: We consider our splitting procedure after generation of K̃ subdomains. Either
we obtain convergence for K̃ = 1 (i.e., K = 1) — in which case the proof is complete —
or K̃ > 1. We henceforth consider the case K̃ > 1.

We consider the splitting of an arbitrary subdomain V ⊂ D into distinct subdomains
V0 ⊂ V and V1 ⊂ V as discussed in the previous subsection. We assume that the error
tolerance ǫhtol is not satisfied, hence ǫV > ǫhtol. Let µ∗

0 ∈ V denote the anchor point associated
with V . We then consider the empirical interpolation G̃(·;µ) = ϕ̃(µ)G(·;µ∗

0) ≈ G(·;µ) for
any µ ∈ V. For the error in this approximation we obtain

‖G(·;µ)− G̃(·;µ)‖L∞ ≤ (1 + Λ(M=1)) inf
z∈span{G(·;µ∗

0
)}
‖G(·;µ)− z‖L∞

≤ 2‖G(·;µ)− G(·;µ∗
0)‖L∞

≤ 2L|µ− µ∗
0|, (18)

where we first invoke (10), then choose z = G(·;µ∗
0), and finally invoke (16). Note that it

follows from the definition of Λ1 (Eq. (9)) and the characteristic function V 1
1 that Λ1 = 1.

We now let µ = µ∗
1 denote the anchor point associated with V1, identified by the single

EIM Greedy iteration over V . Eq. (18) then yields

‖G(·;µ)− G̃(·;µ)‖L∞ ≤ 2L|µ∗
1 − µ∗

0|. (19)

Since the error tolerance is not satisfied over V , we have ǫV = ‖G(·;µ∗
1)−G1(·;µ

∗
1)‖L∞ > ǫhtol.

Hence

ǫhtol < 2L|µ∗
1 − µ∗

0|. (20)

We split V into V0 ⊂ V , V1 ⊂ V based on Euclidian distance to the two anchor points. It
is clear that the length of each subdomain, |V0| and |V1|, is at least as large as half the
distance between the anchor points. We thus obtain

|Vi| ≥
|µ∗

1 − µ∗
0|

2
>

ǫhtol
4L

, i = 0, 1. (21)

We denote the K̃ subdomains generated by the algorithm so far by Sk ⊂ D, 1 ≤ k ≤ K̃;
we denote the length of Sk by |Sk|. Each of these subdomains results from a splitting of a
subdomain S̃k ⊃ Sk one level further up in the tree. Since V above was arbitrary, we can
for any k, 1 ≤ k ≤ K̃, set V = S̃k and conclude that

|Sk| >
ǫhtol
4L

, 1 ≤ k ≤ K̃. (22)

We define the length of the smallest subdomain as δK̃ ≡ min1≤k≤K̃ |Sk|, and hence in

particular δK̃ > ǫhtol/(4L).

We complete the proof by a contradiction argument. Assume that K̃ > C/ǫhtol. In this
case

K̃δK̃ >
4L|D|

ǫhtol
δK̃ >

4L|D|

ǫhtol
·
ǫhtol
4L

= |D|. (23)

On the other hand, it is clear that K̃δK̃ ≤ |D| for K̃ subdomains. We have thus reached

a contradiction, and we conclude that the algorithm can not generate K̃ > 4L|D|/ǫhtol
subdomains as long as the error tolerance is not satisfied. Hence the error tolerence be
satisfied for, and thus the algorithm must terminate for, some K ≤ 4L|D|/ǫhtol. �
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Figure 2: Two levels of parameter domain splitting for the gravity center procedure.

5 A Gravity Center Splitting Scheme

5.1 Procedure

In this section we introduce the gravity center (GC) splitting procedure. The GC proce-
dure is similar to the AP procedure of the previous section: both approaches invoke the
standard EIM greedy sampling procedure in a recursive way in order to generate hierarchi-
cal partitions. However the GC procedures also differs significantly from the AP procedure
in several ways: the GC procedure splits a given subdomain in a structured way based
on the location of the gravity center of M > 2 parameter values. Hence the GC splitting
procedure also involves higher order approximation terms and, in contrast to the AP split-
ting, leads to a tensorized partition structure. Below, we shall require an operation op(i, j)
defined as

op(i, j) =

{

≤ if bin(i− 1)(j) = 0

> if bin(i− 1)(j) = 1
(24)

where bin(i) is the binary representation of i as a vector in {0, 1}P .
We first describe the splitting of an “arbitrary” subdomain V = [a(1), b(1)] × . . . ×

[a(P ), b(P )] ⊂ D into 2P distinct subdomains Vi ⊂ V, 1 ≤ i ≤ 2P , each of which may
be written on tensor-product form Vi = [ai(1), b

i
(1)] × . . . × [ai(P ), b

i
(P )]. The application of

this splitting step to the construction of a partition of D is discussed shortly.
First, we perform a standard EIM procedure within V for a target tolerance ǫptol and a

maximum EIM space dimension Mmax. If the target tolerance is satisfied over V , i.e., ǫV <
ǫptol, we terminate the procedure since further splitting of V domain is not required. If the
target tolerance is not satisfied over V , we obtain Mmax parameter values {µ1, . . . , µMmax

}
from the EIM greedy procedure. We then define the gravity point of the point cloud
{µi}

Mmax

i=1 by

g =
1

Mmax

Mmax
∑

i=1

µi. (25)

The ith subdomain Vi is defined by

Vi = {µ ∈ V : µ(j) op(i, j) g(j), ∀ 1 ≤ j ≤ P}; (26)

where µ(j) and g(j) represents the jth element of µ and g, respectively,
As with the AP procedure, we apply the GC splitting scheme recursively in order to

construct a hierarchical partition of the original domain D: we start with a standard EIM
greedy procedure within D, and split D into 2P new subdomains. We then apply the
GC scheme within each of these subdomains, and continue the procedure recursively until
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convergence: the target tolerance is achieved over each subdomains with maximum EIM
space dimension Mmax.

This hp-EIM refinement procedure results in K parameter subdomains, which we label
V1, . . . ,VK . Each of these subdomains has an associated nested set of EIM approximation
spaces, W k

M = span{qkm}Mm=1, 1 ≤ M ≤ Mk
max, 1 ≤ k ≤ K, and an associated set of nested

EIM interpolation nodes T k
M = {tk1, . . . , t

k
M}, 1 ≤ M ≤ Mk

max, 1 ≤ k ≤ K; as before
Mk

max denotes the space dimension required in order to satisfy the target tolerance ǫptol for
subdomain k.3

Given the partition of D into K subdomains with associated EIM approximation spaces
and interpolation nodes, we now define the GC hp-EIM approximation. Given any µ ∈ D,
we first determine k∗ = k∗(µ) such that µ ∈ Vk∗ . Note that thanks to the hierarchical
structure of the partition, determination of k∗ is an efficient 2P -order search. We then
compute the EIM approximation as

GM,K(·;µ) ≡ Gk∗

M,K(·;µ) =
M
∑

i=1

ϕk∗

M,i(µ)q
k∗

i , (27)

where the coefficients ϕk∗

M,i(µ), 1 ≤ i ≤ M , solve the linear system

M
∑

j=1

ϕk∗

M,j(·;µ)q
k∗

j (tk
∗

i ) = G(tk
∗

i ;µ), 1 ≤ i ≤ M. (28)

Remark 2. We note that the partition of D can be organized in a 2P order tree as indi-
cated in Figure 2, since at each level of refinement we subdivide a subdomain into 2P new
subdomains. As a result, the scheme does only take anisotropy in the underlying parame-
ter dependence into account in a weak manner, and as a consequence may construct more
subdomains than required. We provide further comments on this issue in Section 7.

5.2 An a priori convergence theory for the GC procedure

We present here an a priori theory for the convergence of the GC partition algorithm. The
theory ensures that the algorithm does in fact terminate for specified ǫptol and Mmax. We
consider the case with P = 1 parameter for simplicity.

Proposition 2. Let D ⊂ R and let |D| denote the length of D. Suppose that G(·;µ) is
Lipschitz-continuous in µ with Lipschitz constant L < ∞: for any µ1 ∈ D, µ2 ∈ D,

‖G(·;µ1)− G(·;µ2)‖L∞ ≤ L|µ1 − µ2|. (29)

For any specified ǫptol > 0 and Mmax ≥ 1, the “gravity center” splitting procedure is then
convergent for K = K(ǫptol) subdomains; moreover, the convergence is first order in the
sense that

K(ǫhtol) ≤ max

{

1,
(1 + ΛMmax

)L|D|

ǫptol

}

, (30)

where |D| is the length of D.

3Strictly speaking, we should here introduce separate notatition for the AP and GC splitting procedures.
In particular, the number of subdomains K as well as entities associated with each subdomain (such as
W k

M , T k

M ,Mk

max) should bear subscripts AP and GC. However, we omit these subscripts for simplicity
of notation. When we later compare the two approches in terms of numerical results, we introduce
separate notation only as necessary.
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Proof: We demonstrate here only a lower bound for the length of a subdomain (analo-
gously to (21)). The remainder of the proof is then identical to the proof of Proposition
1.

We consider the splitting of an arbitrary subdomain V = [a, b] ⊂ D into distinct sub-
domains V0 and V1 as discussed in the previous subsection. We assume that the error
tolerance ǫptol is not satisfied. In V we choose by virtue of the standard EIM proce-
dure Mmax parameter values µm, 1 ≤ m ≤ Mmax, and compute the associated snap-
shots G(·;µm), 1 ≤ m ≤ Mmax. For any µ ∈ V we consider the empirical interpolation
G̃(·;µ) =

∑Mmax

m=1 ϕ̃m(µ)G(·;µm) ≈ G(·;µ). Let W̃ = span{G(·;µm)}Mmax

m=1 . For the EIM
approximation error we obtain

‖G(·;µ)− G̃(·;µ)‖L∞ ≤ (1 + ΛMmax
) inf
z∈W̃

‖G(·;µ)− z‖L∞ (31)

≤ (1 + ΛMmax
)‖G(·;µ)− G(·;µm)‖L∞ (32)

≤ (1 + ΛMmax
)L|µ− µm| (33)

for any µ ∈ D and 1 ≤ m ≤ Mmax. Since the error tolerance is not satisfied we thus obtain

|µ− µm| ≥
ǫptol

(1 + ΛMmax
)L

(34)

for any µ ∈ V and 1 ≤ m ≤ Mmax.
The subdomain V is split at its gravity center g defined in (25): V0 = [a, g] and V1 =

(g, b]. We now bound g away from a and b, and thus obtain a lower bound for |V0| = |g−a|
and |V1| = |g− b|. If a and b, respectively, are equal to µm for some m, 1 ≤ m ≤ Mmax we
obtain

|Vi| ≥
ǫptol

(1 + ΛMmax
)L

, i = 0, 1, (35)

directly from (34). If a is not equal to µm for 1 ≤ m ≤ Mmax it is clear that for some m,n,
1 ≤ m,n ≤ Mmax, we must have µn < g < µm, and hence in particular |a− µm| > |a− g|
since a is the left boundary point of the domain; the argument for |b − g| is analogous.
Hence (35) still holds.

The remainder of the argument is now identical to the argument for the proof of Propo-
sition 1. �

6 Computational Cost

We now discuss the computational cost associated with the hp-EIM approaches presented
above. We discuss the cost for the two methods concurrently since the separation of the
computations in offline and online stages is very similar.

In the hp-EIM offline stage, we perform h- and p-refinement: parameter domain partition
and construction of EIM spaces and EIM interpolation nodes restricted to each parameter
subdomain. The offline stage is expensive, since the cost depends on the (typically large)
number N of vertices in the triangulation T N (Ω). In particular, if we assume that the
generated partition has K subdomains, we must perform KMN function evaluations in
order to construct an EIM space of dimension M associated with each subdomain. For the
GC approach, we must also perform MN function evaluations for each intermediate space
associated with an intermediate subdomain; for this reason we expect the GC approach to
be more expensive than the AP approach in the offline stage.
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In the hp-EIM online stage, given any new parameter value µ ∈ D, we first determine
to which subdomain Vk∗ ⊂ D the new parameter value belongs. For the AP approach this
search can be performed at cost O(log2(K)) for K subdomains since the subdomains can
be organized in a binary tree: at each level in the tree a comparison between the distances
from µ to two anchor points determines whether to proceed to the left or to the right
branch. For the GC approach this search can be performed at cost O(log2P (K)) since the
subdomains can be organized in a tree of order 2P : at each level in the tree an elementwise
comparison between µ and the gravity center g determines to which of the 2P branches
to proceed at the next level. We note that for the same number of subdomains and for
P > 1 parameters, we expect that the GC approach yields the more efficient search since
the tree has fewer levels and the cost at each level is roughly the same — O(P ) for both
approaches. However the cost of this search is in any event typically negligible.

Once the correct subdomain Vk∗ that contains the given parameter value µ has been
determined, we perform the standard EIM online stage: we solve a system of the form (5)
at cost O(M2). The key point is that function evaluations of G(·;µ) are required only at
the M spatial interpolation nodes in T k∗ . Of course, if we wish to additionally visualize
GM (x;µ) for all x ∈ Ω, the cost becomes N -dependent.

We emphasize that our hp-EIM procedures provide a reduction in the O(M2) online
computational cost through reduction in the number of EIM basis functions, M . A smaller
M requires a larger number of subdomains, K. However, the reduction in M does not
balance the increase in K: the product KM increases with K. As a result the hp-EIM
offline stage is more expensive than than the standard EIM offline stage.

We finally note that an alternative “discretely orthogonal” basis for WM is {V M
m , 1 ≤

m ≤ M}. This basis enables O(M)-complexity computation of the EIM approximation
since qj(ti) in (5) is in this case replaced by δji. However, this basis is not hierarchical
since {V M−1

m , 1 ≤ m ≤ M − 1} * {V M
m , 1 ≤ m ≤ M} and hence the computation of the

characteristic functions would have to be computed as an additional final step in the EIM
precomputation procedure. In any event, when the EIM is applied within the reduced basis
framework, the computational cost of the RB online stage scales as M2 independent of the
choice of the EIM basis [7]. For this reason, and for simlicity of exposition, we consider in
this paper the standard EIM basis functions qm, 1 ≤ m ≤ M .

7 Numerical Results

We present in this section numerical results for our two hp-EIM approaches applied to two
model problems. In all cases, the hp-EIM yields signifact (online) speedup compared to
the standard EIM.

7.1 Example 1: 2D Gaussian surface

We define the spatial domain Ω ≡ (0, 1) × (0, 1) ⊂ R2, and we introduce a triangula-
tion T N (Ω) with N = 2601 vertices. We define the parameter domain D ≡ [0.3, 0.7] ×
[0.3, 0.7] ⊂ R2, and we introdue a “tensor-product” train sample Ξtrain ⊂ D of size 1600.
We consider the Gaussian function

G(x;µ) ≡ exp

(

−
(x(1) − µ(1))

2

0.02
−

(x(2) − µ(2))
2

0.02

)

, (36)

for x = (x(1), x(2)) ∈ Ω and µ = (µ(1), µ(2)) ∈ D. The function G is thus parametrized by
the location of the Gaussian source.
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Mmax ǫhtol K(Mmax, ǫ
h
tol)

Computation 1 143 1 2
Computation 2 77 0.99 12
Computation 3 40 0.8 55
Computation 4 30 0.6 106

Table 1: Specified Mmax and ǫhtol, and the required number of subdomains K(Mmax, ǫ
h
tol)

for the anchor point procedure applied to Example 1.
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(a) Anchor point procedure.
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(b) Gravity center procedure.

Figure 3: Convergence for Example 1.

Clearly, G is particularly well suited for hp-adaptivity: snapshots associated with µ in
one region of D do not provide a good approximation for functions assocaited with µ in
another region of D. We thus expect an hp-EIM procedure to provide significant reduction
in M for this example.

To obtain a benchmark for comparison, we first pursue the standard EIM with Mmax =
196, which corresponds to a tolerance 10−8 satisfied over Ξtrain. We note that the standard
EIM is a special case both of the AP procedure and of the GC procedure for K = 1
subdomain.

We next pursue the AP splitting procedure. We specify ǫptol = 10−8 as the tolerance to
be satisfied over the training set on each subdomain. We then perform four computations
for different Mmax and ǫhtol and obtain partitions with K(Mmax, ǫ

h
tol) subdomains as listed

in Table 1. In Figure 3a we show the maximum error during each of the four computations,

ǫK,AP
Mmax = max

µ∈Ξ̃AP
train

‖GAP
M,K(·;µ)− G(·;µ)‖L∞ , (37)

for K = 2, 12, 55, 106; here Ξ̃AP
train denotes the union of the train samples over each of the

subdomains (we also show in Figure 3a the benchmark convergence for the case K = 1).
In Figures 4a and 4b we show the partitions of D with K = 12 and K = 55 subdomains,
respectively. We note that the size of the subdomains is rather uniform over D, which
reflects the uniform parameter dependence of G, as expected.

We then pursue the GC splitting procedure. We specify ǫptol = 10−8 as the tolerance to
be satisfied over the training set on each subdomain. We then perform four computations
for different Mmax and obtain partitions with K(Mmax) subdomains as listed in Table 2.
In Figure 3b we show the maximum error during each of the four computations,

ǫK,GC
M,max = max

µ∈Ξ̃GC
train

‖GGC
M,K(·;µ)− G(·;µ)‖L∞ , (38)
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(a) Anchor point procedure, K = 12. (b) Anchor point procedure, K = 55.

(c) Gravity center procedure, K = 16. (d) Gravity center procedure, K = 64.

Figure 4: Parameter domain partitions for Example 1.

Mmax K(Mmax)

Computation 1 99 4
Computation 2 58 16
Computation 3 38 64
Computation 4 27 256

Table 2: Specified Mmax and the required number of subdomains K(Mmax) for the gravity
center procedure applied to Example 1.
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Figure 5: The number of required subdomains K as a function of specified Mmax for a
given satisfied tolerance ǫptol.

for K = 4, 16, 64, 256; here Ξ̃GC
train denotes the union of the train samples over each of the

subdomains. In Figures 4c and 4d we show the partitions of D with K = 16 and K = 64
subdomains, respectively. We note that the size of the subdomains is uniform.

We finally compare in Figure 5 our two approaches in terms of the number of required
subdomains K for specified Mmax such that ǫptol = 10−8 is satisfied over train samples over
all subdomains. We note that there is an algebraic relationship between K and Mmax, and
that for Example 1 the two approaches perform very similarly in terms of the number of
subdomains required for a specified tolerance. We further note that the product KMmax

increases with K, and thus a smaller Mmax yields larger offline cost. However, we would
expect less steep curves in Figure 5 had we decreased the half-width of the Gaussian: a
narrower Gaussian would have even more local parameter dependence and hence benefit
more from hp-treatment.

7.2 Example 2: 3D wave function with near-singularity

Denote by BR(O) a ball in R3 with radius R and centred at the origin O. Then, consider
the scalar function

G(x;µ) =
cos (k|x− c(µ)|)

k|x− c(µ)|
, x = (x(1), x(2), x(3)) ∈ Ω = B1(O), (39)

with µ = (k, r, θ, ϕ) ∈ D and c(µ) = r (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) ∈ R3. The
parameter domain D is defined by D = [1, 10] × [1.1, 20] × [0, π/2] × [0, π/2]. The spatial
domain Ω and the parameter domain D are discretized by 15× 15× 15 and 8× 8× 8× 8
tensorized grids, respectively, leading to discrete versions of Ω and Ξtrain, respectively.

We note that G is particularly well suited for hp-adaptivity: the function has a very
different structure for different wave numbers k and different locations of the pulse c ∈ R3.
Snapshots with rapid and slow oscillations have little in common, and thus snapshots
associated with k large contribute little to approximations of functions associated with k
small, and vice versa. Similarly, snapshots with the singularity at c (outside but) close
to Ω have high amplitude close to c and moderate amplitude elsewhere; such functions
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Figure 6: Example of the 3D wave function for a fixed z = 0 and parameter values k = 10,
c = (1.1, 0, 0) (left) and k = 10, c = (0, 20, 0) (right).

Mmax ǫhtol K(Mmax, ǫ
h
tol)

Computation 1 286 8 6
Computation 2 191 5 17
Computation 3 100 4 206

Table 3: Specified Mmax and ǫhtol, and the required number of subdomains K(Mmax, ǫ
h
tol)

for the anchor point procedure applied to Example 2.

contribute little to the approximation of functions associated with c far from Ω, which
have almost constant amplitude. Two examples of G for fixed x(3) = 0 and parameter
values k = 10, c = (1.1, 0, 0) and k = 10, c = (0, 20, 0) are shown in Figure 6; we note in
particular the effect of c on the amplitude of the function.

To obtain a benchmark for comparison, we first pursue the standard EIM with Mmax =
420, which corresponds to a tolerance 10−3 satisfied over Ξtrain.

We next pursue the AP splitting procedure. We specify ǫptol = 10−3 as the tolerance to
be satisfied over the training set on each subdomain. We then perform three computations
for three different Mmax and ǫhtol and obtain partitions with K(Mmax, ǫ

h
tol) subdomains

as listed in Table 3. In Figure 7a we show the maximum error during each of the three
computations, ǫK,AP

M,max for K = 6, 17, 206.

We then pursue the GC splitting procedure. We specify ǫptol = 10−3 as the tolerance to
be satisfied over the training set on each subdomain. We then perform three computations
for four different Mmax and obtain partitions with K(Mmax) subdomains as listed in Table

Mmax K(Mmax)

Computation 1 301 16
Computation 2 238 76
Computation 3 200 151
Computation 4 146 676

Table 4: Specified Mmax and the required number of subdomains K(Mmax) for the gravity
center procedure applied to Example 2.
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(a) Anchor point procedure.
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(b) Gravity center procedure.

Figure 7: Convergence for Example 2.
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Figure 8: The number of required subdomains K as a function of specified Mmax for a
given satisfied tolerance ǫptol.

4. In Figure 7b we show the maximum error during each of the four computations, ǫK,GC
M,max

for K = 16, 76, 151, 676.

We finally compare in Figure 8 our two approaches in terms of the number of required
subdomains K for specified Mmax such that ǫptol = 10−3 is satisfied over the training sample
on each subdomain. We note that there is an algebraic relationship between K and M ,
and that for Example 2 the AP approach seems to provide the somewhat more optimal
partition.

8 Closing Remarks

The hp-EIM procedures derived in this paper provide a partition of the full parameter
domain into parameter subdomains; a standard EIM approximation is pursued on each
subdomain in order to satisfy a specified tolerance ǫptol for a specified maximum number
Mmax of EIM basis functions. Two different approaches are discussed. The first approach
— the anchor point splitting procedure — is based on the first two modes associated
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with a standard EIM approximation: a given parameter (sub)domain is split into two new
subdomains by a hyperplane equidistant from the the first two parameter values identified
by the standard EIM Greedy sampling procedure. The second approach — the gravity
center splitting procedure — is based on all Mmax modes associated with a standard EIM
approximation: a given parameter (sub)domain is split into 2P tensorized new subdomains
at the gravity center of the Mmax parameter values identified by the EIM Greedy sampling
procedure (recall that P is the dimension of the parameter domain). For both approaches,
a priori convergence theory guarantees successfull termination of the partition process.

Through two numerical examples we demonstrate that both the AP and GC approaches
provide significant computational speedup (approximation space dimension reduction) in
the EIM online stage through reduction in the required EIM space dimension. Admittedly,
our two examples are particularly well suited for hp-treatment. Functions with very smooth
parameter dependence will be less suited for hp-treatment. In this case we expect that the
required number of subdomains for specified dimension reduction (and specified tolerance)
is large, and hence the offline cost might be large.

The AP approach seems to be somewhat better suited for higher dimensional parameter
domains in particular when the parameter dependence of the function under consideration
is anisotropic: only two new subdomains are introduced for each splitting. The GC ap-
proach is on the other hand arguably simpler in terms of implementation; in particular,
the tensorized subdomain structure enables explicit construction of the parameter training
sets associated with each subdomain.

A straightforward application of the hp-EIM procedures is within the reduced basis (RB)
framework for order reduction of non-affine parametrized partial differential equations.
In this context, the (hp-EIM or) EIM accomodates efficient offline-online computational
procedures through affine approximations of the non-affine differential operator [1, 7, 6, 12,
8]. The cost of the RB online stage grows quadratically with the number of terms in the
affine approximation of the operator (M) and hence the hp-EIM approach will reduce the
RB online cost. Similarly, the hp-EIM approach may be applied within the related hp-RB
framework [4]. In [5] the gravity center approach discussed in this paper is applied within
an RB framework for the electric field integral equation.

The hp-EIM method may also provide an improvement of the rigorous a posteriori
error bounds recently introduced for the EIM [3]. Currently these bounds are global in
parameter, and the hp-EIM thus provides a natural way of localizing, and hence in effect
sharpen, the bounds.

Acknowledgements

We are grateful for many fruitful discussions with Prof. Anthony T. Patera and Prof.
Martin A. Grepl. This work has been supported by the Norwegian University of Science and
Technology, University of California, Berkeley, Lawrence Berkeley National Laboratory,
and OSD/AFOSR Grant Number FA9550-09-1-0613.

References

[1] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An ‘empirical interpola-
tion’ method: application to efficient reduced-basis discretization of partial differential
equations. C. R. Math. Acad. Sci. Paris, 339(9):667–672, 2004.

[2] J. L. Eftang, D. J. Knezevic, and A. T Patera. An hp certified reduced basis method

17



for parametrized parabolic partial differential equations. To appear in Mathematical
and Computer Modelling of Dynamical Systems, 2011. http://augustine.mit.edu/
methodology/papers/atp_MCMDS_revised_Jul2010.pdf.

[3] Jens L. Eftang, Martin A. Grepl, and Anthony T. Patera. A posteriori error bounds for
the empirical interpolation method. C. R. Math. Acad. Sci. Paris, 348(9-10):575–579,
2010.

[4] Jens L. Eftang, Anthony T. Patera, and Einar M. Rønquist. An "hp" certified reduced
basis method for parametrized elliptic partial differential equations. SIAM Journal
on Scientific Computing, 32(6):3170–3200, 2010.

[5] M. Fares, J. Hesthaven, Y. Maday, and B. Stamm. Reduced basis method for the
parametrized electric field integral equation. J. Comput. Physics. Submitted, 2010.

[6] M. Grepl. A Posteriori Error Bounds for Reduced-Basis Approximations of Nonaffine
and Nonlinear Parabolic Partial Differential Equations. Mathematical Models and
Methods in Applied Sciences (M3AS), submitted, 2010.

[7] M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera. Efficient reduced-basis treat-
ment of nonaffine and nonlinear partial differential equations. M2AN Math. Model.
Numer. Anal., 41(3):575–605, 2007.

[8] A. E. Løvgren, Y. Maday, and E. M. Rønquist. The reduced basis element method:
Offline-online decomposition in the nonconforming, nonaffine case. In Timothy J.
Barth, Michael Griebel, David E. Keyes, Risto M. Nieminen, Dirk Roose, Tamar
Schlick, Jan S. Hesthaven, and Einar M. Rønquist, editors, Spectral and High Order
Methods for Partial Differential Equations, volume 76 of Lecture Notes in Computa-
tional Science and Engineering, pages 247–254. Springer Berlin Heidelberg, 2011.

[9] Yvon Maday, Ngoc Cuong Nguyen, Anthony T. Patera, and George S. H. Pau. A
general multipurpose interpolation procedure: The magic points. Communications in
pure and applied mathematics, 8:383–404, 2009.

[10] A. Quarteroni, R. Sacco, and F Saleri. Numerical Mathematics, volume 37. Springer,
New York, 1991.

[11] G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced Basis Approximation and a
posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differ-
ential Equations. Archives of Computational Methods in Engineering, 15(3):229–275,
2008.

[12] Gianluigi Rozza. Reduced basis methods for stokes equations in domains with non-
affine parameter dependence. Computing and Visualization in Science, 12:23–35, 2009.

18


