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Abstract
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Various machine learning (ML) approaches have been demonstrated to pro-
duce relatively successful word sense disambiguation (WSD) systems. There
are still unexplained differences among the performance measurements of
different algorithms, hence it is warranted to deepen the investigation into
which algorithm has the right “bias” for this task. In this article we show
that this is not easy to accomplish, due to intricate interactions between in-
formation sources, parameter settings, and properties of the training data.
We investigate the impact of parameter optimization on generalization ac-
curacy in a memory-based learning approach to English and Dutch WSD.
A “word-expert” architecture was adopted, yielding a set of classifiers, each
specialized in one single wordform. The experts consist of multiple memory-
based learning classifiers, each taking different information sources as input,
combined in a voting scheme. We optimized the architectural and paramet-
ric settings for each individual word-expert by performing cross-validation
experiments on the learning material. The results of these experiments show
that the variation of both the algorithmic parameters and the information
sources available to the classifiers leads to large fluctuations in accuracy. We
demonstrate that optimization per word-expert leads to an overall signif-
icant improvement in the generalization accuracies of the produced WSD

systems.
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1 Introduction

The task of word sense disambiguation (WSD) is to assign a sense
label to a word in context. As in most areas of computational linguis-
tics, both knowledge-based and statistical methods have been applied
to the problem. See (Ide and Véronis1998) for an introduction to the
area. More recently, several machine learning methods have been suc-
cesfully applied to this problem. In a seminal paper on the comparison
of the accuracy of different machine learning (ML) methods on the
task of word sense disambiguation, Mooney (1996) tested seven ML
algorithms with different biases on their ability to disambiguate the
word line. In ML, the concept of bias is used to describe the heuristics
implicit in the way a ML algorithm represents its hypotheses about
the concept to be learned, and the way in which it searches the space
of possible hypotheses. E.g. decision-tree learning methods have a bias
towards constructing simple decision trees, and use the information-
theoretic construct of information gain to find maximally short or-
derings of principal components of information to split the learning
material. The more the bias of a learning algorithm fits the proper-
ties of the task, the better its induced model will generalize to new
data of the same task. With WSD in mind, it is therefore relevant
to investigate which algorithm has a bias best suited for the task of

WSD. In (Mooney1996), the conclusion was put forward that within
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the class of symbolic machine learning methods, decision lists, as also
used in (Yarowsky2000), are at an advantage for WSD because of their
rule ordering bias. Analogous to decision trees and much like rule in-
duction approaches, decision lists search for a minimal-size ordered set
of high-accuracy rules, that disambiguate efficiently and effectively.
Although the methodological set-up of the comparison in (Mooney1996)

is sound, and the results provide insight into the role of algorithm
bias, we argue that these results are not reliable; cf. (Daelemans and
Hoste2002). Mostly for practical reasons of experimental and computa-
tional complexity, Mooney’s comparative study and many other stud-
ies in ML of NLP tasks are limited to default settings of algorithm
parameters and a constant input representation. However, the effect of
algorithm bias on generalization accuracy is easily overwhelmed by the
effect of algorithm parameter variation, input feature representation
and selection, and the interaction between both. A similar argument
can be found in (Banko and Brill2001) for the effect of training set size:
for the task of disambiguating confusables (words like it’s and its which
are easily confused in writing), increasing training data with a factor
103 has a significantly larger effect on generalization accuracy than the
choice of algorithm on the “smaller” (still 1 million cases) training set,
and the effect of algorithm bias becomes considerably smaller at these
large training set sizes.

In this article, we demonstrate the drastic effects of architecture
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and algorithm parameter optimization and of selection of information
sources on generalization performance in a memory-based learning ap-
proach to all-words WSD for Dutch and English. In the remainder of
this article, we first describe the memory-based learning algorithms
used in our experiments. In Section 3, we outline the system architec-
ture used in the experiments for Dutch and English all-words WSD, and
discuss our word-expert approach. Section 4 reports on the different in-
formation sources extracted from the data for training the classifiers.
In Section 5, the optimization procedure and its results are described in
detail. In Section 6, we report on the generalization accuracy achieved
for the SENSEVAL-2 test data for English and Dutch. We conclude with

a discussion and interpretation of our results in Section 7.

2 Memory-based learning and word sense disambiguation

We interpret WSD as a classification task: given a possibly ambiguous
word and its context as input features, a classifier assigns the contextu-
ally correct class (sense) to it. Information about the local context and
information about keywords in the context is provided as the informa-
tion sources, coded in a feature vector. In the memory-based supervised
learning set-up adopted here, all contexts in which an ambiguous word
occurs in the learning material are kept in memory to extrapolate from
during the classification of new test data. The distinguishing feature of

memory-based learning (MBL) in contrast with minimal-description-
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length-driven or “eager” ML algorithms (e.g. decision trees and deci-
sion lists) is that MBL keeps all training data in memory, and only
abstracts at classification time by extrapolating a class from the most
similar item(s) in memory to the new test item. This strategy is often
referred to as “lazy” learning. In recent work (Daelemans et al.1999) we
have shown that for typical natural language processing tasks, this lazy
learning approach performs well because it allows extrapolation from
low-frequency or exceptional cases, whereas eager methods tend to treat
these as discardable noise. Also, the automatic feature weighting in the
similarity metric of a memory-based learner makes the approach well-
suited for domains with large numbers of features from heterogeneous
sources, as it embodies a smoothing-by-similarity method (Zavrel and
Daelemans1997). For our experiments, we used the MBL algorithms
implemented in TIMBL!. We give a brief overview of the algorithms
and metrics here, and refer to (Daelemans et al.1997; Daelemans et
al.2001) for more information.

1B1: The distance between a test item and each memory item is
defined as the number of features for which they have a different value
(Aha et al.1991). Classification occurs via the k-nearest-distances rule:
all memory items which are equally near at the nearest k£ distances

surrounding the test item are taken into account in classification. The

1 Available from http://ilk.kub.nl
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classification assigned to the test item is simply the majority class
among the memory items at the £ nearest distances.
Feature-weighted 1B1: In most cases, not all features are equally rel-
evant for solving the task; different types of weighting are available
in TIMBL to assign differential cost to a feature value mismatch during
comparison. Some of these are information-theoretic (based on measur-
ing the reduction of uncertainty about the class to be predicted when
knowing the value of a feature): information gain and gain ratio. Others
are statistical (based on comparing expected and observed frequencies
of value-class associations): chi-squared and shared variance.
IGTREE: An oblivious decision tree is created with features as tests,
and ordered according to one of the feature weighting methods dis-
cussed earlier, as a heuristic approximation of the computationally

more expensive pure k-nearest distance classifier.

3 WSD Architecture

Our approach to memory-based all-words WSD for Dutch and English
follows the memory-based approach of (Ng and Lee1996), who used PE-
BLS (Cost and Salzbergl1993) as memory-based learner; and the work
by (Veenstra et al.2000) on a memory-based approach to the English
lexical sample task of SENSEVAL-1. We borrow the classification-based
approach, and the word-expert concept (Berleant1995) of the latter:

for each wordform (or, for our English experiments, the combination of
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a wordform plus its part-of-speech), a word-expert classifier is trained
using local context and keyword features from the context of occur-
rences of the word in the available training data, and this classifier is
used to classify previously unseen occurrences of the word in the test
data.

To make this approach suited for an all-words WSD task, and to get
insight into the role of optimization in ML of WSD, a systematic matrix
of experiments was designed. In this Section, we show how our WSD
system was built on the basis of the training material. We describe
the general set-up and design of the architecture and development of
both English and Dutch WSD systems. Figure 1 outlines the designed
architecture. First, the training text is linguistically analyzed at the
level of tokenization, part-of-speech (POS) tagging, and lemmatization.
If a wordform has more than one sense, and the number of available
training items (occurrences in the training data) is above a certain
threshold, a word-expert module is trained for it. Otherwise the default,
i.e. the most frequent sense is used.

A word-expert consists of four classifiers: (i) a memory-based learner
trained on the local context of the occurrence of an ambiguous word
(with information about word, POS tag and lemma), (ii) a memory-
based learner trained on keywords, selected according to a statistical
criterion, (iii) a memory-based learner trained on both of the previ-

ous information sources, and (iv) a lexical default; a classifier always
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WORD EXPERT MODULE
TWO-LEVEL CROSS-VALIDATION

CLASSIFIER 1: Local context
YES ‘ (word-lemma-POS)
above \
Linguistic threshold? CLASSIFIER 2: Context Maiorit "
Preprocessing \ keywords above threshold ajority voting
NO i Weighted Voting
V YES CLASSIFIER 3: Local context
- + context keywords
sense lexicon more
lookup ><nses? CLASSIFIER 4: Most frequent
sense in sense lexicon
NO
——= ASSIGN SENSE ;L’

Fig. 1. Disambiguation process.

providing the most frequent sense in the sense lexicon. The algorithm
parameters and feature weights for each component classifier are opti-
mized using cross-validation on the training data. The output of the
optimized classifiers is combined using different types of voting meth-
ods. Among these four single classifiers and four voters, it is decided per
word-expert in the train set which is the optimal classification method
for that particular word in the test set. All experiments were performed
using ten-fold cross-validation (Weiss and Kulikowskil991) as experi-
mental method for error estimation. For each cross-validation, the data
set was first partitioned into ten equal-sized sets and then each set was
in turn used as test set while the classifier was trained on the other
nine sets concatenated into one training set. All reported results on

the training data are averaged over the ten folds.

In subsequent sections we discuss the architectural design in more

detail.
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3.1 Preprocessing the training text

Our experiments are based on an English and a Dutch word-sense la-

beled text corpus. We briefly describe them here.

English Data. For English, the Semcor corpus included in Word-
Net1.6 (Fellbaum1998) was used for training. In this corpus, every word
is linked to its appropriate sense in the WordNet lexicon. The texts that
were used to create the semantic concordances were extracted from the
Brown Corpus and then linked to senses in WordNet. The training cor-
pus consists of 409,990 wordforms, of which 190,481 are sense-tagged.
For each wordform, a lemma and a part-of-speech is given. As test data,
we used the corpus which was created for the English all-words task
in the SENSEVAL-2 competition for automatic WSD. The test data
consist of three journalistic articles on different topics, with a total of
2,473 words to be sense-tagged. The words to be sense-tagged were ex-
clusively content words: nouns, verbs, adjectives and adverbs. To build
our experimentation data, we extracted only the wordforms and as-
sociated senses from the training and the test corpus. Tokenization,
lemmatization and POS-tagging were done with our own software. For
the part-of-speech tagging, the memory-based tagger MBT (Daelemans

et al.1996), trained on the Wall Street Journal corpus?, was used. On

2 ACL Data Collection Initiative CD-Rom 1, September 1991
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the basis of word and POS information, lemmatization was performed
(van den Bosch and Daelemans1999).

Dutch Data. The Dutch WSD corpus was originally built as a part
of a sociolinguistic project (Schrooten and Vermeer1994). The corpus
consists of texts of 102 illustrated children books for the age range of
4 to 12. The data was annotated by six persons who all processed a
different part of the data. Each word in the dataset is assigned a non-
hierarchical, symbolic sense tag, realised as a mnemonic description of
the specific meaning the word has in the sentence. The dataset also
contains senses that span over multiple words, covering idiomatic ex-
pressions. The dataset consists of 152,758 sense-tagged tokens (words
and punctuation tokens). For SENSEVAL-2, the dataset was divided
in two parts. The training set consisted of 114,988 words (76 books)
and the test set had 37,770 words (26 books). For the part-of-speech
tagging, the memory-based tagger MBT, trained on the Dutch Eind-
hoven corpus (Daelemans et al.1996) was used. No lemmatization was

performed.

3.2 Building word-experts for the training data

After the preprocessing stage, the sense lexicons for both languages
were used to guide the sense disambiguation process (cf. Figure 1).
For English, WordNet1.7 functioned as sense lexicon. For every com-

bination of a wordform and a part of speech, the sense lexicon was
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consulted to determine whether this combination had one or more pos-
sible senses. For Dutch, the sense lexicon was derived directly from the
learning material. In case of only one possible sense, the appropriate
sense was assigned (English: 37,681 out of 190,481 words; Dutch: 59,646
out of 114,988 words).

In principle, word-experts should be constructed for all words with
more than one sense (English: 152,800 out of 190,481 words; Dutch:
55,342 out of 114,988 words). However, both training corpora are fairly
small, and many ambiguous words will occur only a few times. Since
more than a few examples are generally needed to induce a sensible
ML model, it is likely that there is an optimal threshold in the num-
ber of examples above which word-experts could be built that would
be better than baseline. This was determined, for each corpus sep-
arately, through cross-validation experiments in which the threshold
was varied between a minimum of 10 and 100 training items. 10 was
chosen as minimum threshold, since optimization was performed with
ten-fold cross-validation. In the training sets, 110,296 words (English)
and 54,121 words (Dutch) exceeded the threshold of 10, respectively,
and were considered possible candidates for building a word-expert.
For all words of which the frequency is lower than the threshold, the
most frequent sense was predicted.

Figure 2 shows the results of the best classifiers in contrast with the

baseline classifiers (always predicting the most frequent sense) for both
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Fig. 2. Accuracies on the English (left) and Dutch (right) train set of the
best performing classifier per word-expert in relation to a threshold varying
between 10 and 100. Accuracies are calculated on words with more than
one possible sense which qualify for the construction of a word-expert. The
straight bottom graphs represent the baseline scores.

data sets, when varying the lower bound threshold for building word-
experts. These lower bound thresholds represent the minimal number
of training items for the construction of a wordexpert. E.g., setting
this threshold to 40 means that word-experts are built for words for
which 40 and more training instances are available. For all words below
this threshold, the most frequent sense is predicted. The flat line in
both plots represents the average accuracy of the baseline classifier
over all words in the train set which qualify for the construction of a
word-expert. The application of the WordNet baseline classifier yields
a 61.7% classification accuracy for the English train set. For the Dutch
training corpus, the training-set-based lexical default classifier produces
77.0% accuracy. The “best” graph displays the accuracy when applying
the optimal classifier for each single word-expert. The results illustrate
that accuracy drops when the contribution of the baseline classifier
increases. With a threshold of 10, the highest accuracy level is obtained

for both English (73.8%) and Dutch (86.9%). When this threshold is
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raised to 100, generalization accuracy drops to 66.7% (English) and
80.3% (Dutch).

These results show that the MBL approach outperforms the strong
statistical baseline already at small training set sizes. On the basis of
this cross-validation step, the threshold for the construction of a word-
expert was set to 10, leading to 2,401 experts for the English training

data, and 502 experts for Dutch.

4 Different information sources

The word-experts consist of different trained subcomponents (cf. Fig-
ure 1) which make use of different information sources (see also (Steven-
son and Wilks2001) for recent research on combination of knowledge
sources). The first classifier disambiguates senses on the basis of lo-
cal information. To represent local information, a snapshot is made of
the immediate local neighborhood surrounding the ambiguous word in
question, the focus word. As a heuristic approximation of directly sur-
rounding neighborhood, three wordforms to the left and three to the
right are included in the local window. For the English focus words,
the focus word itself, its lemma and part-of-speech are included in the
representation as well, whereas for the Dutch focus word, only the
parts-of-speech are included. For the local context wordforms in both
data sets, the wordforms and their parts-of-speech are given. E.g., the

following instances are the training instances for the English sentence
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fragment “(...) no_matter whether he has short or long (...)” and the
Dutch fragment “(...) de weg niet meer terug kunnen vinden (...) [not

more able to find the road back]|”:

no_matter RB whether IN he PRP has have VBZ short JJ or CC long JJ have%2:42:00::

Art de N weg Adv niet Adv Adv terug V kunnen V vinden meer_adv

These training instances for the focus words ’has’ (lemma: "have’ and
part-of-speech: "VBZ’) and 'meer’ (part-of-speech: ’Adv’) shows at the
first six positions the three words to the left of the focus together with
their parts-of-speech. The local context words and parts-of-speech to
the right of the focus word are represented in the last six features. At
the end of the instance, the classification of the focus word is given.
In the English data set, this is a so-called ’sense-key’ (Fellbaum1998),
which uniquely identifies each word /sense pair in the WordNet lexicon.
Each sense-key consists of a wordform, followed by a syntactic category
(e.g. 2’ stands for 'verb’), a semantic field and an identification number.
In the Dutch instances, the classifications are mnemonic sense tags.

The second subcomponent of each word-expert is trained on infor-
mation about possible disambiguating keywords in a context of three
sentences: the sentence in which the ambiguous word occurs, the previ-
ous sentence, and the following sentence. The method used to extract
these keywords for each sense is based on the work of (Ng and Lee1996).

They determine the probability of a sense s of a focus word f given
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keyword £ by dividing N; xioc (the number of occurrences of a possible
local context keyword k with a particular focus word-POS combination
w with a particular sense s) by Ngj. (the number of occurrences of a
possible local context keyword kloc with a particular focus word-POS
combination w regardless of its sense). In addition, we also took into
account the frequency of a possible keyword in the complete training

corpus Nycorp:

Ns,kloc 1
X
Nkloc Nkcorp

(1) p(slk) = )

A word is a keyword for a given sense if (i) the word occurs more than
M times in that sense s, where M; is a predefined minimum number
of times and if (ii) p(s|k) > M, for that sense s, where M, is some
predefined minimum probability. For our experiments, M; was set to 3
and M5 to 0.001 after evaluating different values in a preliminary ex-
periment. For English, we also used the extra information encapsulated
in the WordNet information associated with ambiguous wordforms: all
content words present in the example sentences that accompany the
different sense definitions for a given focus word in the lexicon were

encoded as keywords.

For each combination of a wordform (or wordform-POS combination
in the English case) and sense, i.e. per word-expert, all keywords were

selected and added to the input vector of the memory-based learner.
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Keywords are represented as binary features, with a value of 1 when
the keyword is present in the example and 0 if not?

A third subcomponent of each word-expert is trained with both local-
context and keyword information. An important aspect of memory-
based learning is that it can take into account and integrate (by means
of its automatic feature weighting and implicitly parallel similarity met-
ric) diverse information sources.

Together with the fourth component, the straightforward lexical de-
fault (the most frequent sense in the sense lexicon), these classifiers are

optimally combined as described in the next Section.

5 Optimization and voting

In order to improve the predictions of the different single learning algo-
rithms, algorithm parameter optimization was performed where possi-
ble by cross-validating on the training data. Furthermore, the possible
gain in accuracy of different voting strategies was explored. The fol-

lowing algorithm parameters were optimized.

o Optimization of different feature weighting metrics: gain ratio
weighting, information gain weighting, chi-squared weighting, shared
variance weighting and log-likelihood weighting (see (Daelemans

et al.2001)).

3 Since no length limitations were taken into account when building these vectors,
they could grow very large. Therefore, a version of TIMBL was used, written by
Jakub Zavrel, that indexes binary vectors only on the active bits.
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Fig. 3. Influence of the choice of information source on the generalization
accuracy for different feature weighting methods (no weighting, gain ra-
tio, information gain and chi-squared weighting) and for different k& values
(1,3,5,7,9,11,25,35,45). The two plots show the accuracy graphs for the En-
glish words ‘be” and “basis”.

e Optimization of the k wvalue, representing the number of nearest
distances in which memory items are searched. In the experi-
ments, £ was varied between 1, 3, 5, 7, 9, 11, 15, 25, 35 and 45.
Odd numbers are chosen to avoid ties. £ was optimized both for
the local-context learner and the keyword-based learner.

e Optimization of distance metrics: number of mismatches, number

of matches and number of matches minus number of mismatches.

Figure 3 exemplifies the dramatic effect algorithm parameter opti-

mization can have on accuracy for different word experts. The Figure
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shows accuracy levels for different settings of weighting method and
value of k£ for the English verb be and the English noun basis. E.g. for
the verb be, accuracy differs as much as 20.9% for the classifier which
takes keyword information as input. Yet, optimal parameter settings
for one word-expert cannot be generalized to other word experts. Fur-
thermore, optimal parameter settings are dependent on the information
source used as well.

Figure 4 displays the average between the best and worst accuracies
on training material obtained with optimizing algorithmic parameters
for all word-experts, varying among three information source settings:
local context words only, keywords only, and the combination of the
two. The classifiers trained only on keywords are especially sensitive
to the algorithmic parameter setting: over all word-experts, accuracies
vary between 39.9% and 70.0% for English and between 67.3% and
79.2% for Dutch. The results indicate that no general conclusion could
be drawn concerning the importance of each individual information
source when only the default settings of the algorithms would be used;
considerable improvements may lie in parametric optimalization.

Subsequently, on the output of these three classifiers (optimized per
word-expert) and the default most frequent sense according to the sense
lexicon, both majority voting and weighted voting was performed. In
case of majority voting, each sense-tagger is given one vote; the tag

with most votes is selected. In weighted voting, more weight is given
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Fig. 4. Results of the three single classifiers over all parameter settings of
all word-experts (weighted by frequency of the expert) for English (left) and
Dutch (right). Graphs show the average difference between the accuracies
obtained with the best and worst parameter setting per word-expert. The
boxes in the graphs represent averages and standard deviations.

to the taggers with a higher overall accuracy. In case of ties when
voting over the output of 4 classifiers, the first decision (memory-based
classifier based on local context information) was taken as output class.
As an alternative, voting was also performed on the output of the three
learning classifiers without taking into account the most frequent class.

On the basis of the results on the train set of all component classifiers
and voting strategies, it was decided per word-expert which was the
best performing algorithm. This classifier was then applied to the test
data. Table 1 shows the number of times a specific classifier is selected
as 'best’ classifier. For both data sets, the 'local context’ classifier is
the preferred choice, followed by the ’keywords’ classifier. In case of
ties, the WordNet baseline classifier was used for the classification of
the English test items. When ties occured in the Dutch train set, the

"local context’ classifier was applied on the test data.



Parameter Optimization for Machine-Learned WSD 21

Table 1. Number of word-experts in the test data for which a MBL
classifier/voter is selected as best performing classifier.

English Dutch

Local context 186 134
Keywords 176 93
Local context + keywords 13 62
Majority voting 48 23
Majority voting (no default) 43 12
Weighted voting 66 44
Weighted voting (no default) 20 6
Default 29 13
Tie 14 96
Total 596 483

6 Results on the hold-out test set

On the basis of the training material 2,401 word-experts were built for
English and 502 experts for Dutch. The optimal parameter settings
of the different TIMBL classifiers within those word-experts were de-
termined using ten-fold cross-validation. Once determined the optimal
parameter settings for all word-experts, they were trained all over again
with these settings, this time on the complete train set. They were then
applied to the hold-out test corpus. For Dutch, the SENSEVAL-2 test
set was part of the corpus from which also the train set was extracted.
For English, a test set was provided which was completely independent
from the Semcor train set.

Table 2 shows the accuracy of our disambiguation system on the
English and Dutch word forms in the SENSEVAL-2 all-words test sets
for which a word-expert exists. For English, 596 out of the 2,401 train

set word-experts can be applied to the test set. For the other train
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Table 2. Accuracy on the English and Dutch test words for which a
word expert is built. The table includes the scores of all (optimized)
component classifiers of the word-experts.

English Dutch

Best 54.6 84.0
Local context 53.9 84.2
Keywords 50.0 76.2
Local context+keywords 51.5 83.2
Majority voting 50.4 77.2
Majority voting (no default) 52.4 84.0
Weighted voting 51.9 84.0
Weighted voting (no default) 52.2 84.0
Default 48.9 76.8

set word-experts, no testing material was provided. 1,404 out of 2,473
English test words are classified by a word-expert. In the Dutch test
data, 483 of the 502 train set word-experts handle 17,456 of the 37,770
test items. The table shows that a word-expert approach to this WSD
task task leads to a considerable increase in performance compared to
the baseline classifier. Furthermore, the accuracy levels for the "best’
and the ’local context’ classifiers are very close for both data sets.
Table 1 already showed that the optimized "local context’ classifier was
most frequently selected as best classifier. For English, the application
of the "best’ classifier leads to a 54.6% top accuracy. The classifier which
takes local context information as input performs best for the Dutch
data: 84.2%.

A separate issue is the difference between the accuracies of the best
English and Dutch systems on the words for which a word-expert is

built. The senses discerned in the English task are explicitly intended to
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be semantic and not syntactic, while the Dutch senses include syntactic
differences - this coincides with the fact that English word-experts are
based on word-POS tag combinations, while Dutch word-experts focus
on wordforms. This makes the Dutch task partly a part-of-speech tag-
ging task, which is generally held to be an easier task than word sense
disambiguation. E.g., the sense tags in the following instances for the

focus word ’'meer’ are based on part-of-speech information.

N rand Prep van Art het Num V woont Adj woeste N Willem meer_N [border of
the lake lives fierce Willem)]
Art de N weg Adv niet Adv Adv terug V kunnen V vinden meer_adv [not more

able to find the road back]

A similar approach of sense tag encoding - with equally high scores -
to the one used in the Dutch task has also been reported in (Stevenson
and Wilks2001). On a corpus of 5 articles in the Wall Street Journal,
their system already correctly classifies 87.4% of the words when only
using POS information (baseline: 78%).

We also calculated the accuracy of our disambiguation system on the
complete English all words test set, which contains 2,473 wordforms.
For the English data, an accuracy of 63.6% and 64.5% were obtained
according to the fine-grained and coarse-grained SENSEVAL-2 scoring,
respectively. With these accuracies, our disambiguation system per-

formed second best in the SENSEVAL-2 English all words competition.
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For further information, see (Hoste et al.2001). In the Dutch test set,

91.9% of the words were correctly classified.

An important usability aspect of any WSD system applied in prac-
tice, apart from accuracy as analysed above, is its efficiency in terms of
speed and memory. Arguably, efficiency in speed and memory during
actual word-sense disambiguation is the most critical. We measured
the total time (in seconds) it took in both systems to classify all word
expert test material (i.e., all ambiguous words in the test sets). Both
systems were installed separately on a stand-alone desktop computer?,
involving the deployment of all individual word experts (502 for the
Dutch system, and 2401 for the English) as classification servlets. All
word experts took the form of the optimized 1B1 module trained on
local context features only. The English system classified its 1404 test
words in 24.5 s (elapsed wall clock time), or 57 words per second. The
Dutch system classified its 17,469 test words in 47.0 s, or 372 words per
second. Both speeds appear to be reasonable for real-time processing
in possibly larger NLP systems. The relative slowness of the English
system can be explained from the fact that the 1404 test words come
from 596 different files, causing considerable file opening overhead in

the total time.

4 The test computer was running Linux on a 1386 platform with 512 Mb of memory
and one 900 Mhz processor.
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7 Conclusions

We have shown that memory-based word-sense disambiguation systems
for English and Dutch can benefit from optimizing architecture, infor-
mation sources and algorithmic parameters on the basis of the learn-
ing material. For each different word-expert, different combinations of
classifiers with different parameter settings are needed for optimal per-

formance.

Our architecture for WSD allows more optimization of this type: in
preliminary research on varying the values of the M1 and M2 param-
eters used for keyword selection in a cross-validation on the training
data, accuracies vary between 63.8% and 67.7% for English, with se-
lected keywords varying between 7.3 and 0.9. For Dutch, the variance
is smaller: accuracies on the training material vary between 78.0% (1.8
keywords) and 79.6% (4.2 keywords selected). Again, this shows that

parameter optimization can have a large effect on accuracy.

In general, we argue that changing any of the architectural variables
(algorithm parameters, information sources, architectural parameters)
can have great effects on the accuracy, making doubtful many conclu-
sions in the literature based on default settings of algorithms only. It is
our impression that these effects are at least intuitively known by most
researchers working on ML of natural language, but little grounded ev-

idence nor explanations are available in the literature. Moreover, there
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appears to be especially little understanding of the interaction between
these variables. Many empirical findings, though illustrative, are obser-
vations on experiments in which one or two variables are alternated,
but in which no overall optimization of parameters, architecture and

feature representation is undertaken (Mooney1996).

As long as no fundamental data-independent explanation is found for
such phenomena, data-dependent cross-validation is likely to provide
the right clues for improving word-sense disambiguation systems by
considerable margins. We argue that cross-validating parametric set-
tings of architecture and information sources should be included as a
first step in constructing WSD systems — and NLP systems in general.
Memory-based learning, because of its efficiency, proved to be a good

machine learning candidate to investigate this effect.

We believe that the dependence of system accuracy on the selection of
information sources and algorithm parameters, which we demonstrated
in this article for the case of memory-based learning, will be observable
and testable with any machine learning method, including decision lists
and decision trees and other methods often used for WSD. Although
some explorative optimization is sometimes used in experiments with
these methods, an exhaustive optimization of the type attempted here
is not common. Only after such an optimization is achieved, different

machine learning methods can be compared reliably.
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