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Differential geometry (DG) based solvation models are a new class of variational implicit solvent
approaches that are able to avoid unphysical solvent-solute boundary definitions and associated
geometric singularities, and dynamically couple polar and non-polar interactions in a self-consistent
framework. Our earlier study indicates that DG based non-polar solvation model outperforms
other methods in non-polar solvation energy predictions. However, the DG based full solvation
model has not shown its superiority in solvation analysis, due to its difficulty in parametrization,
which must ensure the stability of the solution of strongly coupled nonlinear Laplace-Beltrami
and Poisson-Boltzmann equations. In this work, we introduce new parameter learning algorithms
based on perturbation and convex optimization theories to stabilize the numerical solution and thus
achieve an optimal parametrization of the DG based solvation models. An interesting feature of
the present DG based solvation model is that it provides accurate solvation free energy predictions
for both polar and non-polar molecules in a unified formulation. Extensive numerical experiment
demonstrates that the present DG based solvation model delivers some of the most accurate
predictions of the solvation free energies for a large number of molecules. © 2015 AIP Publishing
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. INTRODUCTION

Biological processes, such as signaling, gene regulation,
transcription, and translation, govern the cell growth, cellular
differentiation, fermentation, fertilization, germination, etc.,
in living organisms. Chemical processes, such as oxidation,
reduction, hydrolysis, nitrification, polymerization, and so
forth, underpin biological processes. Physical processes,
particularly solvation, are involved in all the aforementioned
chemical and biological processes. Therefore, a prerequisite
for the understanding of chemical and biological processes is
to study the solvation process. As a physical process, solvation
does not involve the formation and/or breaking of any covalent
bond but is associated with solvent and solute electrostatic,
dipolar, induced dipolar, and van der Waals interactions.

Experimentally, solvation can be analyzed by the measure-
ment of solvation free energies. Theoretically, solvation can
be investigated by quantum mechanics, molecular mechanics,
integral equation, implicit solvent models, and simple phenom-
enological modifications of Coulomb law. The implicit solvent
models are known to balance the computational complexity
and the accuracy in the solvation free energy prediction, and
thus, offer an efficient approach.

The general idea of implicit solvent models is to treat the
solvent as a dielectric continuum and describe the solute in
atomistic detail >3#143-5%-62 The total solvation free energy is
decomposed into non-polar and polar parts. There is a wide
variety of ways to carry out this decomposition. For example,
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non-polar energy contributions can be modeled in two stages:
the work of displacing solvent when adding a rigid solute to
the solvent and the dispersive non-polar interactions between
the solute atoms and surrounding solvent. The polar part
is due to the electrostatic interactions and can be approx-
imated by generalized Born (GB),>!5:2431.38.44.51.56.66.68.87
polarizable continuum (PC),%” and Poisson-Boltzmann (PB)
models.!-?3:2946.628486 Among them, GB models are heuristic
approaches to polar solvation energy analysis. PC models
resort to quantum mechanical calculations of induced solute
charges. PB methods can be formally derived from Maxwell
equations and statistical mechanics for electrolyte solu-
tions”4%>2 and therefore offer the promise of handling large
biomolecules with sufficient accuracy and robustness.>?>

Conceptually, the separation between continuum solvent
and the discrete (atomistic) solute introduces an interface
definition. This definition may take the form of analytic
functions**® or nonsmooth boundaries dividing the solute-
solvent domains. The van der Waals surface, solvent accessible
surface,*’ and molecular surface (MS)® are devised for this
purpose and have found their success in biophysical calcula-
tions,320:27:42:45.48:49.63 It has been noticed that the performance
of implicit solvent models is very sensitive to the interface
definition.?>2%*%4 This comes as no surprise because many
of these popular interface definitions are ad hoc divisions of the
solute and solvent domains based on rigid molecular geometry
and neglecting solute-solvent energetic interactions. Addition-
ally, geometric singularities'3%” associated with these surface
definitions incur enormous computational instability’”-7886
and lead to conceptual difficulty in interpreting the sharp
interface.'?

©2015 AIP Publishing LLC
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The differential geometry (DG) theory of surfaces’> and
associated geometric partial differential equations (PDEs)
provide a natural description of the solvent-solute interface.
In 2005, Wei and his collaborators introduced curvature-
controlled PDEs for generating molecular surfaces in solva-
tion analysis.”> The first variational solvent-solute interface,
namely, the minimal molecular surface (MMS), was con-
structed in 2006 by Wei and coworkers based on the DG
theory of surfaces.*®* MMSs are constructed by solving the
mean curvature flow, or the Laplace-Beltrami (LB) flow,
and have been applied to the calculation of electrostatic
potentials and solvation free energies.®!® This approach was
generalized to potential-driven geometric flows, which admit
physical interactions, for the surface generation of biomol-
ecules in solution.®* While our approaches were employed
and/or modified by many others'”7%803! for molecular surface
and solvation analysis, our geometric PDE’? and variational
surface models>*© are, to our knowledge, the first of their kind
for solvent-solute interface and solvation modeling.

Since the surface area minimization is equivalent to the
minimization of surface free energies, due to a constant surface
tension, this approach can be easily incorporated into the
variational formulation of the PB theory**¢! to result in DG-
based full solvation models,'%”° following a similar approach
by Dzubiella et al.?®#3 Our DG-based solvation models have
been implemented in the Eulerian formulation, where the
solvent-solute interface is embedded in the three-dimensional
(3D) Euclidean space and behaves like a smooth characteristic
function.'” The resulting interface and associated dielectric
function vary smoothly from their values in the solute domain
to those in the solvent domain and are computationally robust.
An alternative implementation is the Lagrangian formulation'!
in which the solvent-solute boundary is extracted as a sharp
surface at a given isovalue and subsequently used in the
solvation analysis, including non-polar and polar modeling.

One major advantage of our DG based solvation model is
that it enables the synergistic coupling between the solute and
solvent domains via the variation procedure. As a result, our
DG based solvation model is able to significantly reduce the
number of free parameters that users must “fit” or adjust in
applications to real-world systems. It has been demonstrated
that physical parameters, i.e., pressure and surface tension
obtained from experimental data, can be directly employed
in our DG-based solvation models for accurate solvation
energy prediction.”! Another advantage of our DG based
solvation model is that it avoids the use of ad hoc surface
definitions and its interfaces, particularly ones generated from
the Eulerian formulation,'? are free of troublesome geometric
singularities that commonly occur in conventional solvent-
accessible and solvent-excluded surfaces.!”® As a result, our
DG based solvation model bypasses the sophisticated interface
techniques required for solving the PB equation.’>””-’8 In
particular, the smooth solvent-solute interface obtained from
the Eulerian formulation'” can be directly interpreted as
the physical solvent-solute boundary profile. Additionally,
the resulting smooth dielectric boundary can also have a
straightforward physical interpretation. The other advantage
of our DG based solvation model is that it is natural and
easy to incorporate the density functional theory (DFT)
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in its variational formulation. Consequently, it is able to
reevaluate and reassign the solute charge induced by solvent
polarization effect during the solvation process.'® The resulting
total energy optimization process recreates or resembles the
solvent-solute interactions, i.e., polarization, dispersion, and
polar and non-polar coupling in a realistic solvation process.
Recently, DG based solvation model has been extended to
DG based multiscale models for non-equilibrium processes
in biomolecular systems.'?!4707274 These models recover the
DG based solvation model at the equilibrium.”*

Recently, we have demonstrated'® that the DG based
non-polar solvation model is able to outperform many other
methods’*>7% in solvation energy predictions for a large
number non-polar molecules. The root mean square error
(RMSE) of our predictions was below 0.4 kcal/mol, which
clearly indicates the potential power of the DG based solvation
formulation. However, the DG based full solvation model has
not shown a similar superiority in accuracy, although it works
very well.'>!" Having so many aforementioned advantages,
our DG based solvation models ought to outperform other
methods with a similar level of approximations. One obstacle
that hinders the performance of our DG based full solvation
model is the numerical instability in solving two strongly
coupled and highly nonlinear PDEs, namely, the generalized
Laplace-Beltrami (GLB) equation and the generalized PB
(GPB) equation. To avoid such instability, a strong parameter
constraint was applied to the non-polar part in our earlier
work,!%!! which results in the reduction of our model accuracy.

The objective of the present work is to explore a better
parameter optimization of our DG based solvation models. A
pair of conditions is prescribed to ensure the physical solution
of the GLB equation, which leads to the well-posedness of
the GPB equation. Such a well-posedness in turn renders the
stability of solving the GLB equation. The stable solution of
the coupled GLB and GPB equation enables us to optimize the
model parameters and produce the highly accurate prediction
of solvation free energies. Some of the best results are obtained
in the solvation free energy prediction of more than a hundred
molecules of both polar and non-polar types.

The rest of this paper is organized as follows. To establish
the notation and facilitate further development, we present a
brief review of our DG based solvation models in Section II.
By using the variational principle, we derive the coupled
GLB and GPB equations. Necessary boundary conditions and
initial values are prescribed to make this coupled system well-
posed. Section III is devoted to parameter learning algorithms.
We develop a protocol to stabilize the iterative solution
process of coupled nonlinear PDEs. We introduce perturbation
and convex optimization methods to ensure stability of the
numerical solution of the GLB equation in coupling with
the GPB equation. The newly achieved stability in solving
the coupled PDEs leads to an appropriate optimization of
solvation free energies with respect to our model parameters.
In Section IV, we show that for more than a hundred of
compounds of various types, including both polar and non-
polar molecules, the present DG solvation model offers some
of the most accurate solvation free energy prediction with
the overall RMSE of 0.5 kcal/mol. This paper ends with a
conclusion.
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Il. THE DG BASED SOLVATION MODEL

The free energy functional for our DG based full solvation model can be expressed as
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10,11,71

G[S,CD]=/{y|VS|+pS+(1—S)U+S[—%"|VCD|2+Cme]

+(1-29)

where y is the surface tension, p is the relative pressure
difference between solvent and solute, and U denotes the
solvent-solute non-electrostatic interactions represented by the
semi-discrete and semi-continuum Lennard-Jones potentials
in the present work. Here, 0 < § < 1 is a hypersurface or
simply surface function that characterizes the solute domain
and embeds the 2D surface in R?, whereas 1 — S characterizes
the solvent domain.!® One may consider S as the position-
dependent volume fraction of the solute. Additionally, @ is
the electrostatic potential and €, and €,, are the dielectric
constants of the solvent and solute, respectively. Here, kp is
the Boltzmann constant, 7 is the temperature, p,o denotes
the reference bulk concentration of the ath solvent species,
and ¢, denotes the charge valence of the ath solvent
species, which is zero for an uncharged solvent component.
We use p,, to represent the charge density of the solute.
The charge density is often modeled by a point charge
approximation

Nm
pm =D 0;6(r 1))
J

where Q; denoting the partial charge of the jth atom in
the solute. Alternatively, the charge density computed from
the DFT, which changes during the iteration or energy
optimization, can be directly employed as well.!3

Note that although the surface tension y and the relative
pressure p are mostly positive for most solvent-solute systems,
physically, they can be negative for some solvent-solute
systems as well.

In Eq. (1), the first three terms consist of the so called
non-polar solvation free energy functional while the last two
terms form the polar one. After the variation with respect to
S, we obtain an elliptic equation for the surface function S,

Vs
( |VS|)+V 0, 2)

where the potential driven term is given by

Ve—p+U+ 6—m|V(I)|2—(me— %|an|2

qa®
—kBTZp(,O(e kpT — 1).

It is a standard procedure to seek the solution of Eq. (2) by
converting it into a parabolic equation.® As such, we construct
the following GLB equation:'%!!

€s
—7|V(D|2 — kgT Z Pa0 (6

_4a®
kT _ |

}dr, reR3, (N

oS S
ar 'VS'[ (|VS|)+V

As in the non-polar case, solving generalized Laplace-
Beltrami equation (3) generates the solvent-solute interface
through the surface function S.

Additionally, variation with respect to @ gives rise to the
GPB equation,

(€)

qa?®

=V - (e(S)VD) = Spm + (1 = 5) Z daPa0€ kBT, 4

where €(S) = (1 — S)e, + Se,, is the generalized permittivity
function. As shown in our earlier work,'%’! €(S) is a smooth
dielectric function gradually varying from €,, to €. Thus, the
solution procedure of the GPB equation avoids many numer-
ical difficulties of solving elliptic equations with discontinuous
coeflicients’®7%-82:8586 in the standard PB equation.

GLB (3) and GBP (4) equations form a highly nonlinear
system, in which the GLB equation is solved for the interface
profile S of the solute and solvent. The interface profile
determines the dielectric function €(S) in the GPB equation.
The GPB equation is solved for the electrostatics potential ®
that behaves as an external potential in the GLB equation. The
strongly coupled system should be solved in self-consistent
iterations.

For GLB equation (3), the computational domain is
Q/QVY where Q)W is the solute van der Waals domain
given by QW = J; B(rY™V). Here, B(r}V) is the ith ball
in the solute centered at r; with van der Waals radius rVdW
We apply the following Dirichlet boundary condmon to
S(r,1):

0, VreoQ
SED=01 yreaqov ®)

The initial value of S(r,?) is given by

1, Vre Qs
S(r,0) = . (6)

0, otherwise,

where dQS¥ is the boundary of the extended solute domain
constructed by Q= {J; B(r}*V + rP°*). Here, B(r}*V
+rP) has an extended radius of r}*V + rPr¢ with probe
being the probe radius, which is set to 1.4 A in the present
work.

For GPB equation (4), the computational domain is Q.
We set the Dirichlet boundary condition via the Debye-Hiickel
expression,
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N 0;
d(r) = Z — =1 el g e 50, 7)
Es|r - l','|

i=1

where & is the modified Debye-Hiickel screening function,!!

which is zero if there is no salt molecule in the solvent. Note
that no interface condition’” is needed as S and €(S) are smooth
functions in general for 7 > 0. Consequently, resulting GBP (4)
equation is easy to solve.

To compare with experimental solvation data, one needs
to compute the total solvation free energy, which, in our DG
based solvation model, is obtained as

AG = AG” + G™P, (8)
where AGP is the electrostatic solvation free energy,

Nm

AGP = 2 3" 0i[®(r) = Dy(r)]. ©)

i=1

where @, is the solution of the above GPB model in a homo-
geneous system, obtained by setting a constant permittivity
function €(r) = €,, in the whole domain Q. The non-polar
energy GN' is computed by

G = / [y|VS| + pS + (1 - S)U] dr. (10)

The DG based solvation model is formulated as a coupled
GLB and GPB equation system, in which the GLB equation
provides the solvent solute boundary for solving the GPB,
while the GPB equation produces the external potential in the
GLB equation for the evolution of the surface function S. The
solution procedure for this coupled system has been discussed
in our earlier work.!0:!! Essentially, for the GLB equation,
an alternating direction implicit (ADI) scheme was utilized
for the time integration, in conjugation with the second order
finite difference method for the spatial discretization. The GPB
equation was discretized by a standard second order finite
difference scheme and the resulting algebraic equation system
was solved by using a standard Krylov subspace method based
solver.!%!!

lll. PARAMETRIZATION METHODS AND ALGORITHMS

To solve the above coupled equation system, a set of
parameters that appeared in the GLB equation, namely,
surface tension vy, hydrodynamic pressure difference p, and
the product of solvent density and well depth parameter of the
Jjthatom &;, = pu&;, should be predetermined. Unfortunately,
this coupled system is unstable at the certain choices of
parameters. Specifically, for certain V, one may have S > 1
or S <0, which leads to unphysical €(S) and unphysical
solution of GPB equation (4) and thus gives rise to a
divergent S. This instability can seriously reduce the model
accuracy.'%!!

For a concise description of our algorithm, we assume
that there is only one solvent component (water) and denote
the parameter set as

Pz{)’,P,él,éZ»---,éNT}a (1])
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where Np is the number of types of atoms in the solute
molecule.

As mentioned in the previous part, the parameter set
P used in solving the coupled PDEs should meet two
requirements, namely, the stability of solving the coupled
PDEs and the optimal prediction of the solvation free energy
(or fitting the experimental solvation free energy in the best
approach). Based on these two criteria, we introduce a two-
stage numerical procedure to optimize the parameter set and
solve the coupled PDEs:

e Explore the stability conditions of the coupled PDEs
by introducing an auxiliary system via a small pertur-
bation.

e Optimize the parameter set by an iteratively scheme
satisfying the stability constraint.

A. Stability conditions

In this part, we investigate the stability conditions for the
numerical solution to coupled PDEs (3) and (4). The basic
idea is to utilize a small perturbation method. It is known that
omitting the external potential in the GLB equation yields the

LB equation,
oS A
i VS|V (7|VS|)' (12)
This equation is of diffusion type and is well posed with
the Dirichlet type of boundary conditions provided y > 0.
Numerically, it is easy to solve Eq. (12) to yield the profile of
the solvent solute boundary.

After solving LB equation (12), we use the generated
smooth profile of the solvent solute boundary to determine the
permittivity function in the GPB equation. For simplicity, we
consider a pure water solvent,

—V - (e(S)VD) = Sppm. (13)

Without the external potential, the system of Egs. (12) and
(13) can be solved stably by first solving the LB equation and
then the GPB equation.

Motivated by the above observation, if the external
potential is dominated by the mean curvature term, the stability
of coupled GPB and GLB equations can be preserved. Based
on numerical experiments, the Lennard-Jones interaction
between the solvent and solute is usually small since this term
is constrained by the non-polar free energy in our model. In
our method, we enforce the following constraint conditions
to make the coupled system well-posed in the numerical
sense:

Y>>0 (14)
and

lpl < By, 15)

where vy and 8 are some appropriate positive constants.

In summary, the original problem is transformed into
optimizing parameters in the following system to attain
the best solvation free energy fitting with experimental
results:
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oS

ar

V- (e(SVD) = Spom,
y >y >0,

Ipl < By.

Note that the potential p,,® is omitted in GLB equation (16),
because we have already enforced the Dirichlet boundary
condition in the GLB equation, while p,, is inside the van
der Waals surface.

Remark 1. Based on large amount of numerical tests,
it is found that there is no need to enforce the constraint
conditions on the parameters that appear in the Lennard-
Jones term. When this term is used to fit the solvation energy
with experimental results, the parameters can be bounded in
a small neighborhood of 0 automatically during the fitting
procedure. These parameters essentially do not affect the
numerical stability.

B. Self-consistent approach for solving
the coupled PDEs

In this part, we propose a self-consistent approach to
solve the coupled GLB and GPB equations for a given set of
parameters. Basically, the coupled system is solved iteratively
until both the electrostatic solvation free energy AGY given in
Eq. (9) and the surface function § are both converged. Here,
the surface function is said to be converged provided that the
surface area and enclosed volume are both converged.

We present an algorithm for solving the following coupled
systems:

—V - (e(HVD) = Spm (17)
and
S Vs
— =|VS| |V - ly== |+ Ve
o =1V [ (7|VS|)

where V, is the external potential which is defined as

, (18)

e Auxiliary system: V, = 1(e,, — €,)|VD[*.
e Full system: V, = —p + U + (€, — €,)| VO~

J. Chem. Phys. 143, 134119 (2015)

Vs 1 1
— = |VS||V-[y== | -p+ U+ =€,|VO* — —€,|VD|?|,
VS| 2 2

(16)

Dirichlet boundary conditions are employed for both GPB
(17) and GLB (18) equations with auxiliary and full external
potentials, giving rise to a well-posed coupled system. The
smooth profile of the solvent-solute boundary enables the
direct use of the second order central finite difference scheme
to achieve the second order convergence in discretizing the
GPB equation. The biconjugate gradient scheme is used
to solve the resulting algebraic equation system. The GLB
equation of both the auxiliary and full systems can be solved
by the central finite difference discretization of the spatial
domain and the forward Euler time integrator for the time
domain discretization.

Remark 2. For the sake of simplicity, in the current work,
we employed the central finite difference scheme for spatial
domain discretization in both GPB and GLB equations, and
forward Euler integrator for the time domain discretization of
GLB equation. For stability consideration, in the discretization
of the GLB equation, the discretization step size of temporal
and spatial domain satisfies the Courant-Friedrichs-Lewy
condition. To accelerate the numerical integration, a multigrid
solver can be employed for GBP equation, and an alternating
direction implicit scheme,'® which is unconditionally stable,
can be utilized for the temporal integration. However, detailed
discussion of these accelerated schemes is beyond the scope
of the present work.

A pseudocode is given in Algorithm 1 to offer a general
framework for solving the coupled GLB and GPB equations
in a self-consistent manner. The outer iteration controls the
convergence of the GPB equation through measuring the
change of electrostatic solvation free energy in two adjacent
iterations, while the inner iteration controls the convergence
of the GLB equation based on the variation of surface areas
and enclosed volumes through the surface function S. The

ALGORITHM 1. Self-consistent algorithm for the coupled GPB and GLB system.

1: procedure GPB-GLB-SoLvER

2: Initialize: AG‘; =0, AGZP =100, Area; =0, Areay = 100, Vol; =0, Vol, = 100

3: do while (JAGY - AGE| > €)

4: AGP — AGY

5: do while (|Area; — Areay| > € .and. |Vol; — Voly| > €3)

6: Area| « Areay, Vol « Vol,.

7: Update the surface function S by solving the GLB equation (18).

8: Areay = [o|VS|dr, Vol = [,Sdr.

9: enddo

10: Solve the GPB equation (17) in both vacuum and solvent with the previous updated surface profile.
11: Update the polar solvation free energy AGE according to Eq. (9).

12: enddo
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variables AGY, AGS, Area;, Area,, Vol;, and Vol, denote
the electrostatic solvation free energy, surface area, and
volume enclosed by the surface of two immediate iterations,
respectively. The parameters €}, €,, and €3 are the threshold
constants and all set to 0.01 in the current implementation.

C. Convex optimization for parameter learning

In this part, we present the parameter optimization
scheme. In our approach, parameters start from an initial
guess and then are updated sequentially until reaching the
convergence. Here, the convergence is measured by the root
mean square (RMS) error between the fitted and experimental
solvation free energies for a given set of molecules.

Consider the parameter optimization for a given group
of molecules, denoted as {T3,7>,...,T,}. As discussed above,
the parameter set is P. To optimize the parameter set P, we
start from GPB equation (17) and the auxiliary system of
(19) GLB equation (18) with ¥ = 0.05. After solving the initial
coupled system by using Algorithm 1, we obtain the following
quantities for each molecule in the training set:

Remark 3. In solving the GLB equation, during each
updating, to ensure the stability, instead of the fully update, we
update it partially, i.e., the updated solution is the weighted
sum of the new solution of the current GLB solution S,ew and
the old solution of the GLB equation in the previous step Solq,

S = a1Spew + (] - a1)Sold;

where a; is a constant and set to 0.5 in the present work.

N 12 6
st 0O og+ 0
AGF, Area;, Vol | > ! / (U ) ‘2( ) dr) (20)
: J J(m o, [\lIr —ril e — ,-

%M’T/
= o

(a's + U'NT)IZ _ 2(0'3 + O'NT)6
lIr — x| [lr — x|

where j = 1,2,...,n. Here, N,,, and Ny denote the number of atoms and types of atoms in a specific molecule. The last few
terms involve semi-discrete and semi-continuum Lennard-Jones potentials.'® Additionally,

(1
& =1
13 {0,

wherei = 1,2,...,Ny; j=1,2,...Nr; 04,0 = 1,2,..., Ny is the atomic radius of the ith type of atoms. Therefore, atoms of the
same type have a common atomic radius and fitting parameter £.

dr) , (22)
j

if atom i belongs to type j,
otherwise,

The predicted solvation free energy for molecule j can be represented as

Nm
AGj = AGJP + yArea; + pVol; + &; <Z 5} /Q
i=1 s

Nm
+ ~~-+§NT(26;VT/
i=1 Qs

We denote the predicted solvation free energy for the
given set of molecules as AG(P) = {AG,AG,,...,AG,},
which is a function of the parameter set P, and denote the
corresponding experimental solvation free energy as AGF*P
= {AGE®L AGE?, ., AGF*P}.

Then, the parameter optimization problem in the coupled
PDE:s given by Eq. (16) can be transformed into the following
regularized and constrained optimization problem:

min (IAG(P) = AGE®[, + MIPL>) , (25)
subject to

Y = %0 (26)

and

Ipl < By, 27)

(O'S+0'NT)12 (0'S+0'NT)6

e =il

12 6
(0'S+0'1) _2(0'S+0'1) v (23)
llr — x| llr — x| ;

dr) . 24)
J

llr —r]

(

where || * ||, is the L, norm of the quantity * and A is the
regularization parameter chosen to be 10 in the present work to
ensure the dominance of the first term and avoid over-fitting.
Here, vy and B are set, respectively, to 0.05 and 0.1 in the
present implementation, which guarantees the stability of the
coupled system according to a large amount of numerical tests.

It is obvious that objective function (25) in the optimi-
zation is a convex function, meanwhile the solution domain
restricted by constraints (26) and (27) forms a convex domain.
Therefore, the optimization problem given by Egs. (25)-(27)
is a convex optimization problem, which was studied by Grant
and Boyd.3*3

After solving the above convex optimization problem,
parameter set P is updated and used again in solving the
coupled GLB and GPB system, i.e., Eqs. (18) and (17).
Repeating the above procedure, a new group of predicted
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ALGORITHM 2. Parameters learning for a given group of molecules.

1: procedure PARAMETERS-LEARNING

2: Initialize: Err; =0, Err, = 100

3: Solve the coupled GPB and GLB system, where GLB utilizes the auxiliary equation (18).

4: Solve the constrained optimization problem Egs. (25)-(27) to obtain the initial parameter set Py.

5: Update Err; to be the RMS error between experimental and predicted results in the above step.

6: do while (|Err| — Errp| > €4)

7 Erry « Erry.

8: Solve the coupled GPB and GLB system, where GLB system with parameters set Py.

9: Solve the constrained optimization problem Eqgs. (25)-(27) to get the updated parameters set P.

10: Update Err; to be RMS error between experimental and predicted results in the previous optimization step.
11: Update Py < P.

12: enddo

solvation free energies together with a new group of parame- combining outer and inner self-consistent iterations. The outer

ters is obtained. This procedure is repeated until the RMS error iteration controls the convergence of the optimized parameters
between the predicted and experimental solvation free energies via two controlling parameters, Err; and Err,, denoting the
in two sequential iterations is within a given threshold. RMS error between predicted and experimental solvation
free energies in two sequential iterations. The inner iteration
. L. . implements the solution to the GLB and GPB equations by

D. Algorithm for parameter optimization and solution Algorithm 1.
of the coupled PDEs The threshold parameter €4 is set to 0.01 in the present

Based on the preparation made in Subsections III B work.
and III C, namely, the self-consistent approach for solving
the. cpup}ed GLB anFi GPB system and th.e parameter IV. NUMERICAL RESULTS
optimization, we provide the combined algorithm for the
parameter optimization and solving the coupled system for In this section, we present the numerical study of the
a given set of molecules. DG based solvation model using the proposed parameter
Algorithm 2 offers a parameter learning pseudocode for ~ optimization algorithms. We first explore the optimal solvent
a given group of molecules. This algorithm is formulated by radius used in the van der Waals interactions. Due to the
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FIG. 1. The relations between the solvent radii and the RMS errors. (a) SAMPLO test set; (b) alkane set; (c) alkene set; (d) ether set; (e) alcohol; (f) phenol set.
Notably, there is a common local minimum at the solvent radii 3.0 A for all test sets except for the alkene set.
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FIG. 2. The predicted and experimental solvation free energy for the 17
molecules in the SAMPLO test set.

high nonlinearity, the solvent radius cannot be automatically
optimized and its optimal value is obtained via searching the
parameter domain. We show that for a group of molecules,
there is a local minimum in the RMS error when the solvent
radius is varied. The corresponding optimal solvent radius
is adopted for other molecules. Additionally, we consider a
large number of molecules with known experimental solvation
free energies to test the proposed parameter optimization
algorithms. These molecules are of both polar and non-
polar types and are divided into six groups: the SAMPLO
test set,”> the alkane, alkene, ether, alcohol, and phenol
types. It is found that our DG based solvation model works
really well for these molecules. Finally, to demonstrate the
predictive power of the present DG based solvation model,
we perform a fivefold cross validation®® for alkane, alkene,
ether, alcohol, and phenol types of molecules. It is found that
training and validation errors are of the same level, which
confirms the ability of our model for the solvation free energy
prediction.

The SAMPLO molecule structural conformations are
adopted from the literature with ZAP 9 radii and the OpenEye-
AMI1-BCC vl charges.”® For other molecules, structural
conformations are obtained from FreeSolv.’ General AMBER
force field (GAFF) is utilized for the charge assignment.’
The van der Waals radii as well as the atomic radii of
hydrogen, carbon, and oxygen atoms are set to 1.2, 1.7, and
1.5 A, respectively. The grid spacing is set to 0.25 A in
all of our calculations (discretization and integration). The
computational domain is set to the bounding box of the solute
molecule with an extra buffer length of 6.0 A

A. Solvent radius

In the present semi-discrete and semi-continuum Lennard-
L 12 \6 .
Jones potential, &, fQY [(m) - 2(‘”*‘7’ ) J dr, the posi-

e ]
tionsr;, (i = 1,2,...,N,,) are the coordinates of solute atoms,
while r is not the position of a regular solvent atom or
molecule. Since the solvent is treated as a continuum, r varies,
in principle, continuously over the whole solvent domain. The
distance ||r — r;|| is scaled by the sum of solvent radius o~ and
solute radii o-;. Because of the explicit representation of solute
atoms, solute atomic radii o-; are set to their van der Waals
radii, the radii that define the van der Waals surface, which
is used for setting up the boundary condition for the GLB

J. Chem. Phys. 143, 134119 (2015)

TABLE I. The solvation free energy prediction for the SAMPLO set. Energy
is in the unit of kcal/mol.

Name AG® G AG  AGE*3 Error
Glycerol triacetate -10.60 253 -8.07 -8.84 -0.77
Benzyl bromide -431 193 -238 -238 0.00
Benzyl chloride -445 118 -327 -1.93 1.34
m-bis (trifluoromethyl) benzene  -2.62  3.70 1.08 1.07 -0.01
N,N-dimethyl-p- -835 -2.22 -10.57 -11.01 -045
methoxybenzamide

N,N-4-trimethylbenzamide -6.93 -3.09 -10.03 -9.76 0.27
bis-2-chloroethyl ether -3.73 -0.14 -359 -423 -0.64
1,1-diacetoxyethane -7.07 200 -5.07 -4.97 0.10
1,1-diethoxyethane -3.58 043 -3.15 -328 -0.13
1,4-dioxane -536 -0.38 -574 -5.05 0.69
Diethyl propanedioate -7.07 140 =567 -6.00 -0.33
Dimethoxymethane -4.09 119 -290 -293 -0.03
Ethylene glycol diacetate -766 190 -576 -6.34 -0.58
1,2-diethoxyethane -3.64 045 -409 -354 055
Diethyl sulfide -221 076 -147 -143 0.04
Phenyl formate -7.10 2.08 =502 -4.08 0.94
Imidazole -11.54 271 -883 -9.81 -0.98
RMS 0.60

equation. However, the continuum treatment of the solvent
prevents us to simply associate o with the radius of the solvent
molecule. Unlike the fully discrete Lennard-Jones potential in
explicit solvent models, the semi-discrete and semi-continuum
Lennard-Jones potential in our DG based solvation model
describes the “interaction” of a solute atom with an arbitrary
position in the solvent domain. In numerical approximation,
the arbitrary position is represented by a grid mesh. Therefore,
one cannot simply take the solvent radius in the present
model as the radius of individual (discrete) solvent molecules.
Additionally, it is noted that the solvent radius in the present
work and solvent probe radius in the Poisson-Boltzmann
theory are two different concepts. In the present work, solvent
radius o5 is considered as an optimization parameter. Note
that due to the nonlinear nature, this optimization cannot be
carried out together or mixed with the parameter optimization
discussed in Sec. III.

We utilize a brute force approach for the solvent radius
selection or optimization. Six sets of test examples are utilized
to explore appropriate solvent radius. The SAMPLO test
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FIG. 3. The predicted and experimental solvation free energies for 38 alkane
molecules.
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FIG. 4. The predicted and experimental solvation free energies for 22 alkene

molecules.

TABLE II. The solvation free energy prediction for the alkane set. All
energies are in the unit of kcal/mol.

Name AG®  GN?' AG  AGE®Y Error
Octane -0.13 289 2.76 2.88 0.12
Ethane -0.04 170 1.66 1.83 0.17
Propane -0.05 183 1.78 2.00 0.22
Cyclopropane -0.08 243 235 0.75 -1.60
Isobutane -0.07 2.09 202 2.30 0.28
2,2-dimethylbutane -0.07 234 227 2.51 0.24
Isopentane -0.07 219 212 2.38 0.26
2,3-dimethylbutane -0.07 241 234 2.34 0.00
3-methylpentane -0.08 243 235 2.51 0.16
Methylcyclopentane -0.10 1.76 1.66 1.59 -0.07
n-butane -0.07 2.03 196 2.10 0.14
Isohexane -0.09 249 240 2.51 0.11
2,4-dimethylpentane -0.09 257 248 2.83 0.35
Methylcyclohexane -0.10 1.68 1.58 1.70 0.12
n-pentane -0.08 225 217 2.30 0.13
Hexane -0.09 251 242 2.48 0.06
Cyclohexane -0.10 140 1.30 1.23 -0.07
Nonane -0.14 311 297 3.13 0.16
Heptane -0.11 273 2.62 2.67 0.05
Cyclopentane -0.10 154 144 1.20 -0.24
Cycloheptane -0.11 1.56 145 0.80 -0.65
Cyclooctane -0.12 1.69 1.57 0.86 -0.71
Neopentane -0.06 2.13 2.07 2.51 0.44
2,2 4-trimethylpentane -0.08 274 2.66 2.89 0.23
3,3-dimethylpentane -0.07 258 2.51 2.56 0.05
2,3-dimethylpentane -0.08 272 2.64 2.52 -0.12
2,3,4-trimethylpentane -0.08 296 2.88 2.56 -0.32
1,2-dimethylcyclohexane -0.10 202 1.92 1.58 -0.34
3-methylhexane -0.09 274 2.65 2.71 0.06
3-methylheptane -0.11 294 283 297 0.14
1,4-dimethylcyclohexane -0.11 202 191 2.11 0.20
2,2-dimethylpentane -0.08 2.64 256 2.88 0.32
2-methylhexane -0.10 273 2.63 2.93 0.30
Decane -0.16 337 321 3.16 —-0.06
Propylcyclopentane -0.12 221 2.09 2.13 0.03
cis-1,2- -0.09 195 1.86 1.58 -0.28
dimethylcyclohexane

2,2,5-trimethylhexane -0.09 3.15 3.06 2.93 -0.13
Pentylcyclopentane -0.15 273 258 2.55 -0.04
RMS 0.36
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TABLE III. The solvation free energy prediction for the alkene set. All
energies are in the unit of kcal/mol.

Name AG®  GN?' AG  AGE®Y Error
Ethylene -027 096 0.69 1.28 0.59
Isoprene -0.62 197 135 0.68 -0.67
but-1-ene -0.29 1.17 0.88 1.38 0.50
Butadiene -0.56 175 1.19 0.56 —-0.63
pent-1-ene -030 1.57 1.27 1.68 0.41
prop-1-ene -032 1.03 0.71 1.32 0.61
2-methylprop-1-ene -037 126 0.89 1.16 0.27
Cyclopentene -0.37 117  0.79 0.56 -0.23
2-methylbut-2-ene -040 128 0.87 1.31 0.44
2,3-dimethylbuta-1,3-diene ~ -0.65 2.01 1.36 0.40 -0.95
3-methylbut-1-ene -027 145 1.18 1.83 0.65
1-methylcyclohexene -038 150 1.11 0.67 -0.45
penta-1,4-diene -053 191 138 0.93 -0.45
hex-1-ene -030 1.81 1.50 1.58 0.08
hexa-1,5-diene -0.51 1.88 1.37 1.01 -0.36
hept-1-ene -033 217 1.84 1.66 -0.18
hept-2-ene -034 196 1.62 1.68 0.06
4-methyl-1-pentene -0.26 1.71 145 1.91 0.46
2-methylpent-1-ene =033 1.75 142 1.47 0.05
non-1-ene -0.36 281 245 2.06 -0.39
trans-2-heptene -0.34 190 156 1.66 0.10
trans-2-pentene -030 126 0.96 1.34 0.38
RMS 0.46

set>? is a benchmark having 17 molecules. Additionally, we
consider 38 alkane, 22 alkene, 17 ether, 25 alcohol, and 18
phenol molecules. The solvent radius is varied from 0.5 Ato
55A away from van der Waals surface. Due to the fast decay
property of the Lennard-Jones interactions, the above setting
enables the full inclusion of the Lennard-Jones interactions
in our model. Figure 1 depicts the RMS errors of six test
sets at different solvent radii calculated from the present
DG based solvation model. In Figure 1(a), the result clearly
demonstrates that with the increase of the solvent radius, the
RMS error decreases dramatically initially. The minimum
appears at 3.0 A. The further increase of the solvent radius
leads to a rapid jump in the RMS error before it stabilizes
around 1.54 kcal/mol. It is noted that 3.0 A is much larger
than the commonly used solvent probe radius of 1.4 A in
Poisson-Boltzmann theory based implicit solvent models. For
other five test sets, although the behavior of the RMS errors
differs in each case, essentially all the RMS errors have a
local minimum at the solvent radius of 3 A. Therefore, in
all ttle following computations, the solvent radius is set to
3.0 A.

B. Optimization results

In this section, we illustrate the performance of our
parameter optimization algorithms. First, we provide the
regression results of the SAMPLO test set.” Figure 2 shows the
predicted and experimental solvation free energies based on
the present model and optimization method. It is obvious that
predicted solvation free energies are highly consistent with the
experimental ones. The RMS error is 0.60 kcal/mol.
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FIG. 5. The predicted and experimental solvation free energy for the 17 ether
molecules.

Table I shows the breakup of polar, non-polar, and total
predicted solvation free energies. The experimental values and
errors are also provided.>

Compared to our earlier prediction'” in which the same
model is employed but the parameters were not optimized
in the present manner, the RMS error decreases dramatically
from previous 1.76 kcal/mol to 0.60 kcal/mol for the same test
set. Note that the present RMS error (0.60 kcal/mol) is also
significantly smaller than that of the explicit solvent approach
(1.71 £ 0.05 kcal/mol) and that obtained by the PB based
prediction (1.87 kcal/mol) under the same structure, charge,
and radius setting.’® The present results confirm the efficiency
of the proposed new parameter optimization algorithms and
demonstrate the accuracy and power of our DG based solvation
models.

Additionally, we investigate the solvation free energies
prediction of two families of non-polar molecules, alkane and
alkene, which were studied previously by using our DG based
non-polar solvation model.'® In the following, we demonstrate
that the present DG based full solvation model can provide the
same level of accuracy in the solvation free energy prediction
for alkane and alkene molecules.

Figures 3 and 4 depict the predicted and experimental
solvation free energies for 38 alkane and 22 alkene molecules,
respectively. Tables IT and I1I list the polar, non-polar, total, and
experimental solvation free energies for both families of solute
molecules, respectively. Except for one alkane molecule,
namely, cycloprotane, whose predicted error is 1.60 kcal/mol,
the errors for all other molecules are within 1 kcal/mol. The
RMS errors of these two families are 0.36 and 0.46 kcal/mol,
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FIG. 6. The predicted and experimental solvation free energy for the 25
alcohol molecules.
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FIG. 7. The predicted and experimental solvation free energy for the 18
phenol molecules.

respectively. This level of accuracy is similar to our earlier
results obtained by using our DG based non-polar solvation
model,'® which does not involve the electrostatic (polar) model
and is computationally easier to optimize.

It is interesting to note that for both alkane and alkene
molecules, the polar solvation free energy contribution is very
small and the non-polar part dominates the solvation free
energy contribution, which explains why the DG based non-
polar solvation model works extremely well for the solvation
free energy prediction of alkane and alkene molecules.'®
Further, note that for almost all the alkane molecules, the polar
solvation free energies AG® are of magnitude 0.01 kcal/mol,
while alkene molecules have slightly larger magnitude polar
free energies, which further verifies that alkene molecules have
a stronger polarity than alkane molecules in general.

Finally, we analyze three classes of polar solute mole-
cules, namely, ether, alcohol, and phenol molecules. Fig-
ures 5-7 illustrate the predicted and experimental solvation
free energies for 17 ether, 25 alcohol, and 18 phenol molecules,
respectively. Tables [IV-VI list the polar, non-polar, total, and
experimental solvation free energies for the corresponding

TABLE IV. The solvation free energy prediction for the ether set. All ener-
gies are in the unit of kcal/mol.

Name AG® G AG  AGE¥  Error
Ethoxyethane -4.08 233 -1.75 -1.59 0.16
2-methyltetrahydrofuran -4.10 143 -2.67 -3.30 —-0.63
Tetrahydrofuran -436 136 -3.00 -3.47 -0.47
1-propoxypropane =375 229 -146 -1.16 0.30
Methoxymethane -455 226 -2.29 -1.91 0.36
Tetrahydropyran -4.17 1.09 -=-3.07 -3.12 —-0.05
1-butoxybutane -3.88 233 -1.55 -0.83 0.72
Trimethoxymethane =757 351 -4.06 -4.42 -0.36
Methoxyethane -435 229 -2.06 -2.10 -0.04
1-methoxypropane -4.08 224 -1.84 -1.66 0.18
2-methoxypropane -4.12 220 -1.92 -2.01 —-0.09
1-ethoxypropane -426 232 -194 -1.81 0.13
1,3-dioxolane -6.09 1.81 -428 —4.10 0.18
2,5-dimethyltetrahydrofuran ~ -3.86 142 -2.44 -2.92 —-0.48
1,1,1-trimethoxyethane -758 346 -4.12 —-4.42 -0.30
2-methoxy-2-methyl-propane -3.88 1.97 -1.91 -2.21 -0.30
1,4-dioxane -7.09 1.66 -544 -5.06 0.38
RMS 0.36
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TABLE V. The solvation free energy prediction for the alcohol set. All
energies are in the unit of kcal/mol.

Name AGY  GN?' AG AGE®S0  Error
Ethylene glycol -698 -1.76 -8.73 -9.30 -0.57
butan-1-ol -333 151 -4.84 —4.72 0.12
Ethanol -349 -147 496 -5.00 -0.04
Methanol -3.69 -141 -5.10 -5.10 0.00
propan-1-ol -334 148 -482 -4.85 —-0.03
propan-2-ol -326 -136 -4.62 -4.74 -0.12
pentan-1-ol -336 -1.61 497 —4.57 0.40
2-methylpropan-2-ol -3.10 -127 -437 —4.47 -0.10
2-methylbutan-2-ol -295 -117 -4.12 —4.43 -0.31
2-methylpropan-1-ol -320 -1.50 -4.70 -4.50 0.20
butan-2-ol -3.09 -132 -440 -4.62 -0.22
Cyclopentanol -320 -1.68 -4.88 -5.49 —-0.61
4-methylpentan-2-ol -2.65 -1.05 -3.69 -3.73 —-0.04
Cyclohexanol -321 -192 =513 -5.46 -0.33
hexan-1-ol -343 -153 -4.96 -4.40 0.56
heptan-1-ol -348 -1.62 -5.09 -4.21 0.88
2-methylbutan-1-ol -327 -129 -4.56 —4.42 0.14
cycloheptanol -3.07 -1.89 -4.96 -5.48 -0.52
2-methylpentan-3-ol -2.86 -093 -3.78 -3.88 -0.10
pentan-3-ol -3.01 -1.08 -4.10 -4.35 -0.25
4-heptanol -290 -1.10 -3.99 -4.01 -0.02
2-methylpentan-2-ol -293 -1.08 -4.00 -3.92 0.08
2,3-dimethyl-2-butanol ~ -2.89  -0.93  -3.82 -391 -0.09
hexan-3-ol -3.04 -127 431 —4.06 0.25
pentan-2-ol -3.10 -123 -433 -4.39 —-0.06
RMS 0.33

families of solute molecules. The RMS errors of these three
families are 0.36, 0.33, and 0.76 kcal/mol, respectively.

From the results listed in Tables IV-VI, we note that for
ether molecules, all the non-polar energies are positive which

TABLE VI. The solvation free energy prediction for the phenol set. All
energies are in the unit of kcal/mol.

Name AG® G AG  AGE® Eror
3-hydroxybenzaldehyde  —9.17 039 -8.78 -9.52 -0.74
4-hydroxybenzaldehyde  —9.60 0.19 -9.41 -8.83 0.58
o-cresol -532 -1.04 -636 -5.90 0.46
m-cresol -571 -086 —-6.57 -5.49 1.08
Phenol -581 -0.14 -6.95 -6.61 0.34
p-cresol -580 -1.05 -6.85 -6.13 0.72
naphthalen-1-ol -550 -0.75 -6.25 -7.67 -1.42
3,4-dimethylphenol =572 -049 -6.21 -6.50 -0.29
2,5-dimethylphenol -534 -048 582 =591 -0.09
4-tert-butylphenol -5.55 0.86 —4.69 -5.91 -1.22
2,4-dimethylphenol -555 -1.03 -6.58 -6.01 0.57
3,5-dimethylphenol -5.69 -041 -6.10 -6.27 -0.17
naphthalen-2-ol -585 -072 -6.57 -8.11 -1.54
2,3-dimethylphenol -547 -1.13 —6.60 —6.16 0.44
2,6-dimethylphenol -5.07 -1.07 -6.14 -5.26 0.88
3-ethylphenol -5.67 -037 -6.04 -6.25 -0.21
4-propylphenol -579 -0.05 -5.84 -5.21 0.63
4-ethylphenol =576 -048 -6.24 -6.13 0.11
RMS 0.76
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TABLE VII. The partition of the molecules into sub-groups.

Molecule Group 1 Group 2 Group 3 Group 4 Group 5
Alkane 8 8 8 7 7
Alkene 5 5 5 4 4
Ether 4 4 3 3 3
Alcohol 5 5 5 5 5
Phenol 4 4 4 3 3

neutralizes some polar contributions to the total solvation free
energies. For the alcohol molecules, the non-polar energies
are all negative, which enhance the contributions of the polar
contributions to the total solvation free energies. The attractive
van der Waals interactions between alcohol molecules and
water solvent must be very strong. Physically, there are strong
solvent-solute hydrogen bonds that make alcohol molecules
easily solvated. These solvent-solute interactions are described
by the strong attractive van der Waals interactions in the
present model. As for the phenol molecules, there is a mixed
pattern for the non-polar contributions.

The above study of a large variety of molecules indicates
that our DG based solvation model together with the proposed
parameter optimization algorithms can provide very accurate
predictions of solvation free energies for both polar and non-
polar solute molecules.

C. Fivefold cross validation

Having verified that our DG based solvation model
with the optimized parameters provides very good regression
results, we perform a fivefold cross validation to further
illustrate the predictive power of the present method for
independent data sets. Specifically, the parameters learned
from a group of molecules can be employed for the blind
prediction of other molecules.

To perform the fivefold cross validation, each type of
molecules is subdivided into five sub-groups as uniformly
as possible, and Table VII lists the number of molecules in
each sub-group for each type of molecules. In our parameters
optimization, we leave out one sub-group of molecules and
use the rest of molecules to establish our DG based solvation
model. The optimized parameters are then employed for the
blind prediction of solvation free energies of the left out sub-
group of molecules.
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FIG. 8. The bar plot of the training and validation errors of alkanes.
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FIG. 12. The bar plot of the training and validation errors of phenols.

Figures 8-12 demonstrate the cross validation results
of the alkane, alkene, ether, alcohol, and phenol molecules,
respectively. It is seen that training and validation errors are
similar to each other, which verifies the ability of our model
in the blind prediction of solvation free energies.

In the real prediction of the solvation free energy for a
given molecule of unknown category, we can first assign it to
a given group, and then employ the DG based solvation model

J. Chem. Phys. 143, 134119 (2015)

with the optimal parameters learned for this specific group for
a blind prediction.

V. CONCLUSION

DG based solvation models have had a considerable suc-
cess in solvation analysis.!*!1370 Particularly, our DG based
non-polar solvation model was shown to offer some of the most
accurate solvation energy predictions of various non-polar
molecules.!® However, our DG based full solvation model
is subject to numerical instability in solving the GLB equa-
tion, due to its coupling with the GPB equation. To stabilize
the coupled GLB and GPB equations, a strong constraint
on the van der Waals interaction was applied in our earlier
work, 113 which hinders the parameter optimization of our
DG based solvation model. In the present work, we resolve
this problem by introducing new parameter optimization algo-
rithms, namely, perturbation method and convex optimization,
for the DG based solvation model. New stability conditions are
explicitly imposed to the parameter selection, which guaran-
tees the stability and robustness of solving the GLB equation
and leads to constrained optimization of our DG based solva-
tion model. The new optimization algorithms are intensively
validated by using a large number of test molecules, including
the SAMPLO test set,>® alkane, alkene, ether, alcohol, and
phenol types of solutes. Regression results based on our new
algorithms are consistent extremely well with experimental
data. Additionally, a fivefold cross validation technique is
employed to explore the ability of our DG based solvation
models for the blind prediction of the solvation free energies
for a variety of solute molecules. It is found that the same
level of errors is found in the training and validation sets,
which confirms our model’s predictive power in solvation
free energy analysis. The present DG based full solvation
model provides a unified framework for analyzing both polar
and nonpolar molecules. In our future work, we will develop
machine learning approaches for the robust clustering of solute
molecules of interest into appropriate categories so as to better
predict their solvation free energies.
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