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Parameter Optimization of Adaptive Flux-Weakening 
Strategy for Permanent-Magnet Synchronous Motor 

Drives Based on Particle Swarm Algorithm 
 

Wei Xu, Senior Member, IEEE, Moustafa Magdi Ismail, Yi Liu, Member, IEEE, 
and Md Rabiul Islam, Senior Member, IEEE 

 
    Abstract- Operating in the high-speed range is necessary for 
high-performance permanent magnet synchronous motor 
(PMSM) drives. However, due to the back electromotive force 
effect, the PMSM is approaching the voltage limit at field 
decreasing scope. This paper presents a new flux-weakening 
scheme along with an improved vector control strategy to 
alleviate the influence of this problem. Control parameters of the 
anti-windup proportional and integral (AWPI) controller are 
optimized off-line in relying on an adaptive velocity particle 
swarm optimization (AVPSO) algorithm. The AVPSO algorithm 
considers the summation of AWPI measurement error which is 
the objective function of the optimization problem without 
knowing the transfer function of the plant. Hence, the tuned flux-
weakening controller with a filter is used to set the flux level 
without saturating the current controllers. Meanwhile, the other 
controllers of inner and outer loops award a great dynamic and 
steady-state performance for the PMSM. In the proposed scheme, 
the flux weakening control is not dependent on machine 
parameters which adapts the flux level automatically and provide 
a fast transition between the constant torque region and the field 
weakening region. Effectiveness and advantages of the proposed 
scheme are presented in this paper through both simulation and 
experimental results.1 
    Index Terms-- Surface mounted permanent magnet 
synchronous motor (SMPMSM), anti-windup proportional and 
integral (AWPI) controller, tuning method, adaptive velocity 
particle swarm optimization (AVPSO), flux weakening control. 
 

I.  INTRODUCTION 
 

Permanent magnet synchronous motor (PMSM) 
applications tend to have a higher initial cost. Hence, they may 
offer a smaller size for more compact mechanical packages, 
desirable torque to inertia ratio, high reliability, and more 
controllability [1], [2]. Recently, the high-performance PMSM 
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drive system has been developed, which increases their 
reputation in electric vehicle applications [3-7]. In this 
application, instant response to the desired change, stability 
for the load variation, and minimizing the speed and torque 
ripple are necessary. For this reason, it is irresistible to work in 
the high-speed range.  

In recent years, numerous methods have been developed for 
PMSM drive systems to extend the speed range [8-19]. In [9], 
a novel method of PMSM drive has been proposed to 
maximize the speed range. Ref. [9] presents a three-
dimensional finite element to create a gap between a stator and 
a rotor in an axial direction without moving the current vector. 
However, the above methods heavily depend on the no-load 
back-emf, which is necessary through computation of the 
linkage magnetic flux of stator windings and d-axis and q-axis 
inductance. The presented method in [12] uses the single 
linear multiple-input multiple output predictive controller to 
calculate the required flux-weakening d-axis current. 
Meanwhile, a new linearization approach is adopted to get the 
lower peak ripples of electrical current and torque. This 
approach tackles the strong coupled nonlinear mathematical 
model of interior buried PMSM. The control scheme of [17] 
modifies the field-weakening control of surface mounted 
permanent magnet synchronous motor (SMPMSM). The 
influence of the resistive voltage drop in the stator windings 
has not been considered in their studies. Nevertheless, the 
method presented in [17] is strongly dependent on motor 
parameters and operating conditions, but they guarantee good 
stability and transient responses. The proposed method in [11] 
depends on the measurement of inverter characteristics and the 
resistance of the used cable. This control method uses the 
voltage difference between the input and output of the inverter 
to modify the compensated d-axis current. Additionally, a 
proportional-integral (PI) controller uses the reference q-axis 
current to set the maximum torque per voltage. Therefore, the 
maximum torque can be accomplished at a high-speed range. 
The authors, in [16], have developed the flux-weakening 
control method, which determines the d–q axes reference 
currents to drive a magnet-buried PMSM at any value of speed. 
This method minimizes the current magnitude to reach the 
reference torque considering the voltage and current limits and 
battery power. In [19], a single q-axis current regulator has 
been proposed to control the voltage angle. The advantages of 
this method are the stability in reaching the zero-load state and 
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the fast-dynamic response of currents when current references 
are changed.  

Various implementation methods of the nonlinear control 
theory have been used in the PMSM control system to 
improve the dynamic performances of critical issues such as 
torque disturbances and motor parameter variations [20-22]. A 
disturbance observer has been designed in [22] based on a 
nonsingular terminal sliding mode strategy to solve time-
varying parameters and torque disturbances of the PMSM 
drive system. The system chattering can be compensated and 
reduced simultaneously, and it can achieve the smaller ripple 
in the presence of time-varying load. In [20], the authors 
estimate the disturbances and uncertainties of the current and 
speed loop based on a high-order sliding mode observer. Both 
the speed robustness and current tracking accuracy are 
increased by transmitting the estimated disturbances to a 
designed deadbeat-based predictive current controller. 

This paper proposes an offline optimum tuning method for 
controllers that are constructing the suggested vector control 
strategy to utilize dc-link voltage as much as possible. The 
error measurement of the anti-windup PI controllers (AWPI) 
can be minimized to about zero depending on the adaptive 
velocity particle swarm optimization (AVPSO) algorithm. The 
optimization of the proposed fitness-function places emphasis 
on obtaining the best possible parameters for improving the 
stability of the system under load torque disturbances over a 
wide speed range. In the proposed control strategy, the field 
weakening compensator regulates the magnitude of the duty 
cycles to set the flux level without preventing the saturation of 
the current regulator. With the proposed control strategy, the 
SMPMSM performance is independent of parameter 
variations. The conventional flux weakening control (CFWC) 
has been presented in [18] , which is a line modulation-based 
flux weakening control method. The performance of the 
proposed flux-weakening control (PFWC) is compared with 
the CFWC in this paper. Consequently, the main features of 
the PFWC can be summarized as follows: 

1. The flux-weakening control loop of PFWC is supported 
by the low-pass filter that passes the signal with a lower 
frequency, thus raising and keeping the average of the d-axis 
reference current from falling suddenly. In contrast, the 
CFWC misses the filter causing the lower average of the d-
axis reference current. The PFWC strategy is applicable to the 
interior PMSM because the proposed algorithm has no 
dependence on the structure difference between the surface 
magnets and embedded magnets. Taking into consideration, 
the parameters of the low-pass filter should be convenient with 
the parameters of the interior-magnet motor. 

2. There is a primary difference between PFWC and CFWC 
in the structure of the PI controller, where the PI controllers of 
PFWC are supported by an anti-windup structure that affects 
positively in the transient period. Table I describes the main 
differences between the CFWC and the PFWC according to 
the analysis above. 

This paper is systematized as follows. Section II represents 
the system description and model. Section III also introduces 
the PFWC and limitations of voltage and current. Moreover, 

this section presents the CFWC method. Additionally, Section 
IV presents the recommended off-line tuning method of a PI 
controller and the implementation of AVPSO algorithm. 
Afterwards, the proposed methods are numerically simulated 
in Section V, and verified by experimental results in Section 
VI. Finally, the conclusions are drawn in Section VII. 
 

II. SYSTEM MODELING 
 

Fig. 1 presents the basic block diagram of the surface 
mounted PMSM drive used in this paper for analysis. In this 
figure, the modified vector control drive commands the 
SMPMSM through a space vector PWM (SVPWM) based 
two-level voltage source inverter (VSI). The counting 
mechanical position and the measured phases currents are 
used as the control inputs. Moreover, the measured dc link 
voltage is used to calculate the output references of the duty 
cycles of the current regulators and to determine the onset 
point of the flux weakening. Considering that all the lower-
case symbols are used to introduce instantaneous values and 
the upper case standing for the steady state. In SMPMSM with 
more than one magnet, the differential equations are defined 
as 

( )qs s qs qs r s ds m

d
R i L i

dt
                   (1) 

ds s ds ds r s qs

d
R i L i

dt
                       (2) 

where λm is the flux linkage due to the rotor magnets linking 
the stator, Ls is the stator inductance, ωr is the electrical 
velocity of the rotor, and Rs is the stator resistance. 
Additionally, νds and νqs are d-q axes voltages, λds and λqs are 
d-q axes fluxes, iqs and ids are d-q axes stator currents, 
respectively.  

Moreover, the mechanical equation of the motor can be 
represented as 

m
e L m

d
J T T B

dt

                          (3) 

where ωm is the mechanical velocity of the rotor, TL is the load 
torque, Te is the electromagnetic torque, B is the viscous 
frictions coefficient, and J is the inertia of the shaft. 
Furthermore, the electromagnetic torque in a steady state can 
be given by 

3
2e p m qsT n i                                   (4) 

where np is the number of pair pole. The average model of VSI 
in d-q axes can be expressed as 

1
3 3

1
3

s

r

dqs sr

dq dc dqs dqs

ss s
r

s

Tdc

dc dq dqs

R

di L
d V i

Rdt L L

L

dV
I C d i

dt







  
  
    
  

  
 


  


      (5) 



IEEE Transactions on Power Electronics 

where dd and dq are d-q axes duty cycles, Vdc is dc-link voltage, 
Idc is dc-link circuit current, and C is the dc-link equivalent 
capacitor. In addition, idqs, ddq, and λdqs can be considered as 

, ,ds d ds

qs q qs

i d

i d




     
     
     

, respectively. 

The voltage vector magnitude (ρ) of VSI is indicating the 
region where the SMPMSM is working and can be determined 
by 

   2 2 / / 3dcv v V                         (6) 

where ρ is the per-unit value of the voltage vector magnitude 
while the base value is the maximum voltage that the inverter 
can supply to the motor  / 3

dc
V , να and νβ are the α and β 

components of the voltage vector obtained by the reverse Park 
transformation with the inputs νqs and νds of the VSI. As the 
main flux weakening problem, an increase in motor rotational 
speed comes with a proportional increase in the electromotive 

force term of (1). Therefore, the voltage is not efficient to 
control the current, and the torque becomes highly distorted. 
As a result, it is necessary to feed negative d-axis current for 
the extension of the motor speed range. 

 
III. FLUX-WEAKENING SCHEMES 

 
A. Operating Limits in Flux-Weakening Scope 

As mentioned before, the space vector PWM technique 
switches the VSI. A voltage vector under the flux weakening 
region was laying on the boundary of the hexagon, which 
limits the voltage identifying the maximum supply voltage 
( ax / 3

sm dc
V V ) [11]. Moreover, both converter’s power 

rating and motor’s thermal rating are used to calculate the 
maximum current Ismax. Accordingly, the voltage and the 
current limits of the motor can be expressed as 

2 2 2
axds qs smV V V                                     (7) 

2 2 2
ds qs smaxI I I  .                                  (8) 

By omitting the resistance term in the high rotating speed 
range, the equations (1), (2), and (7) can be modified as 

 22 2 2
max( / ) /qs ds m s s r sI I L V L    .      (9) 

The equation (9) expresses the circle of a motor voltage 
limit with a radius of  ax /sm r sV L  and centered at 

 / ,0m sL . Fig. 2 shows the circles with a variable radius 
voltage limit; circle intersects with the constant radius current 
limit circle. As speed increases, the operating point moves 
from A to B. Consequently, the q-axis current point of the 
maximum torque is the cross point between the two circles, 
which can be defined as 

      2 2 2 2
max max max( / 2 ) 2 / / / ( )qs s m m s s m s s r s sI L I L L V L I       (10) 

And then, the flux weakening current function of the speed 
can be expressed as 

2 2
maxds s qsI I I   .                   (11) 

 

B. Proposed Flux-Weakening Strategy 
Fig. 3 describes the block diagram of the proposed flux 

weakening control strategy based on the AWPI structure. In 
this structure, the integrator parameter is multiplying with the 
error of the PI controller, which is subtracting with the value 
of Δy* times by Kaw as clarified in Fig. 3(a), where the symbol 
of “Δ” intends the difference between the compensated value 
of the AWPI controller and saturated value. Besides, the 
quantities with “” are the reference values and the symbol of 
“  ” indicates the differential value. Also, Kaw is the anti-
windup variable which can be calculated as the ratio between 
the integral parameter to the proportional parameter (KI/KP), 
and    is the AWPI controller error. A feature of the 
coordinated structure, the anti-windup structure (AWS) 
decreases the error of integral value to reduce the overshoot 
effect of saturation. Further, Fig. 3(c) presents the block 
diagram of the proposed control strategy. For improving the 
current response, the decoupling terms of (1) and (2) are 

Current Limit 
Circle

Voltage Limit 
Circle

A
B

1 2 
1r 

2r 

 / ,0m sL

maxsI

qsi

dsi

 
Fig. 2. Voltage and current limit diagram for the maximum torque per 
current of SMPMSM in ids - iqs plane. 

TABLE I 
DIFFERENCES BETWEEN PFWC AND CFWC 

 

 PFWC CFWC 
Flux-weakening loop supported by a filter   

PI controller supported by the anti-windup structure   
PI controller supported by optimal parameters   

bi
ai

ci

e

dcV

dcV

dsV

qsV

1C

1C

asbscs

dcI

Fig. 1. Basic block diagram of surface mounted PMSM drive. 
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removed from the d-q axes stator voltages references as 
follows: 

decoupling

decoupling

d s r qs

s r ds r mq

L i

L i

 
  

 
 

.                      (12) 

The error equations of the current AWPI controllers can be 
defined as 

2
1 1

qs I q s p m p

aw q q ds m m qs qs

P q P q P q P q

K L n n
K d i i i
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        (13) 

2
2 2

s pds I d

aw d d qs m ds ds

P d P d P d

L nK
K d i i i

K K K


  


 


  

         (14) 

where KP-q, KI-q, KP-d, and KI-d are proportional and integral 
gains of the q-d axes current controllers, Kaw-q and Kaw-d are 
the ratios between the integral gain to the proportional gain of 
the q-d axes current controllers, 1  and 2  are the integrations 
of the error of the q-d axes current controllers, 1

  and 2
  are 

the errors of the q-d axes current controllers, respectively. 

Furthermore, the error equation of speed AWPI controller 
can be described as 

2
3 3

qs I s

aw s qs m m

P s P s

i K
K i

K K
   


 


 

              (15) 

where KP-s and KI-s are proportional and integral gains of the 
speed controller, respectively. Kaw-s is the ratio between KI-s to 
KP-s of the speed controller, 3

 is the error of the speed 
controller, and 3  is the integration of the error of the speed 
controller.  

The q-axis current maximum limit ( maxqsi ) generating the 
torque decreases with the increase of the absolute value of d-
axis reference current which presenting as 

2 2
max maxqs s dsi I i   .                            (16)
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 Fig. 3. Proposed flux weakening scheme, where (a) Structure of anti-windup PI controller, (b) flux weakening vector control loop, and (c) modified vector 
control. 
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Therefore, the d-axis current reference should be dejected 
as much as possible to boost the torque. 

The main idea of the PFWC part as shown in Fig. 3(b) is the 
employment of the magnitude of the compensated duty cycles 
(Ddq) to determine the outbreak of the decreased field. Even if 
the dc link voltage drops suddenly, the duty cycles feedback 
can adjust the flux level freely. Showing appreciation for this 
outer PFWC loop, the mission accomplishes automatically 
despite a motor parameters variation or a load disturbance. In 
other words, as the motor speed is getting higher, the 
performance of the current controllers is getting lower because 
the compensated voltages are reaching the maximum voltage 
limit. 

In the flux-weakening region, if the magnitude of the 
compensated duty cycles exceeds the reference limit, then the 
controller senses the error of the duty cycles reflecting the d-
axis current negatively to prevent the expected saturation for 
the current controller. Moreover, the outer loop is activated 
when Ddq is equal or higher than D*

dqmax =1, otherwise i*
ds = 0. 

Fig. 3 (c) illustrates how to calculate the Ddq that can be 
derived as 

2 2

( ) / , 1 1

( ) / , 1 1

, 0, 2

decoupling

decoupling

q qs q dc q

d ds d dc d

dq d q dq

d V d

d V d

D d d D

 

 

  

  

 

     
     


      

                    (17) 

where 
qs   and

ds   are the output voltages of the q-d axes the 
current regulators, d*

q and d*
d are the compensated duty cycles 

of the q-d axes current regulators, respectively. Finally, the 
error equation of PFWC loop can be represented by 

2
4 4 max

ds I FW

aw FW ds dq dq

P FW P FW

i K
K i D D

K K
 


 


 

            (18) 

where KP-FW and KI-FW are the proportional and integral gains 
of the duty cycle controller, respectively. Kaw-FW is the ratio 
between KI-FW to KP-FW of the duty cycle controller, 4

is the 
error of the duty cycle controller, and 4  is the integration of 
the error of duty cycle controller. 
 

C. Conventional Flux-Weakening Strategy 
Fig. 4 shows the block diagram of the CFWC system of the 

SMPMSM [18]. As indicated in this figure, the negative d-axis 
current is produced using the line-modulation loop enabling 
the SMPMSM to operate in the flux-weakening region. The 
maximum line modulation ratio is defined as 

 
 

max max min
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max , ,

min , ,
a b c

a b c
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                             (19) 

where mmax is the maximum line-modulation-ratio, ⸹max and 
⸹min are the maximum and minimum duty cycles, ⸹a, ⸹b, and ⸹c 
are the inverter duty cycles of leg-1, leg-2 and leg-3, 
respectively.  

Besides, ⸹a and ⸹b can be defined as 
/
/

ac ac dc

bc bc dc

m u V

m u V





 



                                 (20) 

a ac c

b bc c

m

m

 
 

 
  

                                  (21) 

where 
acu   and 

bcu  are the reference line voltage determining 
by inverse Park transformation of 

qs   and 
ds

  , acm and bcm  are 
the line-modulation-ratios, respectively.  

In order to calculate ⸹c, the median value of the duty cycle 
of leg-3 can be defined as 

_ min _ max

2
c c

c

 



                             (22) 

where ⸹c_max and ⸹c_min are maximum and minimum values of 
the phase-c-based duty cycle, respectively. More details about 
the calculation method of ⸹c can be found in [18]. Moreover, 
the line modulation inverter technique of CFWC is used 
instead of SVPWM to generate the gate signals [23]. The 
reference value of d-axis current is zero except if mmax ≥ 1 the 
difference between maxm and mmax produces a negative 
reference current, where maxm is the reference maximum line-
modulation-ratio. Meanwhile, the reference value of q-axis 
current is saturated as (16). 
 

IV.  TUNING METHODOLOGY AND IMPLEMENTATION OF 
PROPOSED PARTICLE SWARM OPTIMIZATION ALGORITHM 

 
 

A. Proposed Tuning Method 
Determination of the optimal control parameters of the 

PFWC strategy is essential to ensure the effectiveness of the 
system stability. This paper introduces a tuning method which 
is independent to the transfer function of the plant. However, 
the parameters determine the minimum value of the 
equilibrium point term ( 0 0( , )f x u

   ) of Taylor series are the 
optimal parameters. Equation (23) defines Taylor series 
expansion as 

0 0 0 0
0 0 0 0

2 2 2
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(23) 
where the subscript “0” indicates the equilibrium point value. 
The performance of the PI controller highly depends on the 
selection of the equilibrium point in the flux weakening region. 
Hence, the equilibrium point term ( 0 0( , )f x u

   ) of PFWC 
strategy can be calculated from (1)-(3), (13)-(15) and (18) as 
(24). 

The proposed fitness function can be redefined as 
4

1
j

j

Minimize 


 
 
 
  .                             (25) 

For this purpose, the proposed AVPSO algorithm [24] is 
applied to minimize the fitness function to zero by finding the 
optimal gains of the proportional and integral. 
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B. Implementation of the Proposed Adaptive Velocity Particle 

Swarm Algorithm 

The particle swarm optimization (PSO) algorithm starts by 
generating the initial particle position vectors (

np
 ) where nth 

indicates the particle number and then assigning them initial 
velocities (

nv
 ) and initial best local location ( n nb p

  ). In this 

optimization, the vector length of nth particle equals 8 which is 
the number of controller parameters and can be defined as 

 
 
1 8 , , , , , , ,

1:
n I q P q I d P d I s P s I FW P FWp K K K K K K K K

n N

       
     






  (26) 

where N denotes the swarm size. The PSO evaluates the 
proposed fitness function for each particle position and then 
determines the evaluation vector of nth particle location (

ng
 ) 

that involving the global minimum solution (
bestg ) and its 

corresponding to the optimal particle position (
globalp ). After 

this initialization step, the PSO would implement a finite loop 
to optimize the particles locations. The optimization of 
particles locations depends on the proposed adaptive velocity 
as 
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          (27) 

where 
A  is the weight factor, 

pL  is the length of one particle, 
c1 and c2 are the acceleration coefficients and can have a value 
of 2, r1 and r2 are the positive random numbers less than or 
equal to one, respectively. Based on (27), the AVPSO updates 
the particle position as follow: 

n n nP V p 
                                    (28) 

where 
nV


 is the nth updated particle velocity, and 
n

P
  the nth 

updated particle location, respectively. The stopping criterion 
of this loop is the continuity of the global best solution without 
change for more than 12 iterations, or the counter reaches one 
hundred iterations. 

Focusing on the AVPSO algorithm against the proposed 
objective function, the evaluation procedure works in sight of 
knowing all fitness function variables. Consequently, the 
evaluation step faces a problem namely coefficients absent 
regarding 1  , 2  , 3  , 4  ,

qsi  , and dsi


 . Therefore, it is 
necessary to call a separate AVPSO algorithm for each time 
during the evaluation of (25). In this interior optimization 
problem, the vector length of the particle equals 6 that can be 
defined as 
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           (29) 

where kp  is the kth particle location of the internal AVPSO 
algorithm. In addition, the internal PSO algorithm has the 
same equations for updating the velocity and position as the 
outer AVPSO algorithm. Besides, 

kv  indicates the kth particle 
velocity, 

kb  the best kth local particle location, bestp  the global 
best location that corresponding to kth particle of the minimum 
evaluation, 

kg

  the evaluation vector of the kth particle position, 

bestg  the minimum value for
kg


 , 

kV  the kth updated particle 
velocity, and 

k
P  the kth updated particle location, respectively. 

Finally, the internal PSO algorithm evaluates the proposed 
fitness function under the sight of the updated particle position 
(

n
P


) of the outer PSO algorithm. Meanwhile, the outer PSO 
algorithm explores a lower value than that obtained in 
previous iterations. Figs. 5 and 6 present the flowcharts of the 
outer AVPSO algorithm that is used to optimize the controller 
parameters, and the interior AVPSO algorithm that is 
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Fig. 4. Conventional flux weakening control method. 
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employed to define the missing variables for evaluating the 
proposed fitness function, respectively. 
 

V.  SIMULATION RESULTS 
 

To evaluate the performance of the proposed SMPMSM 
drive system a model is developed in the MATLAB/Simulink 
software environment. The main parameters of the motor are 
listed in Table II. A simulation block is designed to find the 
optimal gains of AWPI controllers in the proposed control 
strategy by using the proposed tuning method. The 
optimization problem of (25) is designed based on the 
proposed optimization algorithm with the population size of 
50 and the generation number of 100. In Fig. 7, the 
optimization algorithm achieves the minimum error of about 
1.10134e-13 standing for the optimal tuning at 39 iterations. 
For this purpose, it decided to stop near 51 generation. 
Moreover, Table III presents the optimal parameters obtained 
by using the proposed off-line optimization method. Fig. 8 
shows the frequency domain analysis of the control system. 
As presented in Fig. 8(a), the open loop bode diagram of the 

speed controller indicates the minimum stability of phase 
margin of about 112 degrees at a crossover frequency of 
0.0387 kHz. The peak gain is 484 dB at the frequency of 
1.59e-24 kHz. In the similar process, Fig.8(b) exhibits the 
open loop bode diagram of the current controller indicating the 
minimum stability of gain margin of about -324 dB and a 
phase margin of about 95.7 degrees at the crossover frequency 
of 0.647 kHz. Moreover, the peak gain also is 436 dB at the 
frequency of 1.59e-24 kHz. 

The PWM inverter has a constant switching frequency of 5 
kHz with a dc-bus voltage of 400 V. Fig. 9 illustrates the 
performance of PFWC and CFWC when the motor is 
controlled to run at the flux-weakening region under the 
desired speed of 2300 rpm with an initial load reducing from 
8.5 Nm to half at 2 s. Further, the simulation result of the 
PFWC algorithm with the standard PI controller structure 
(SPIS) also is presented in Fig. 9 to verify the effectiveness of 
the AWPI structure. As shown in Fig. 9(a), the PFWC 
algorithm is better than the CFWC algorithm in terms of the 
speed overshoot and the steady-state error. The PFWC 
algorithm with both controller structures has no steady-state 

error, while the average value of the steady-state error of the 
CFWC algorithm is 2.1% and decreasing to about 1% after 
load drop. Additionally, the speed overshoots at the motor 
starting and the load drop periods of the PFWC algorithm with 
an AWS are 3.5% and 6%, and the counterparts of these 
periods for the CFWC algorithm are 6.5% and 10.5%, 
respectively. 
 

TABLE II 
IDENTIFICATION PARAMETERS OF SMPMSM MOTOR 

Name Symbol Value Unit 
Rated line voltage νN 270 V 

Rated phase current IN 6.8 A 
Stator resistance Rs 0.8 Ω 
Stator inductance Ls 5 mH 

Permanent magnet flux linkage λm 0.35 Wb 
Rated speed Nr 2000 rpm 
Rated power PN 3.0 kW 

Number pole pairs  np 3 - 
TABLE III 

CONTROLLER PARAMETERS OF PROPOSED STRATEGY 
Speed controller KP-s 0.1 KI-s 13.6 

q-axis current controller KP-q 22.5 KI-q 319.3 
d-axis current controller KP-d 19.6 KI-d 528.6 

Flux weakening controller KP-FW 14.9 KI-FW 614.7 
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Fig. 5. Flowchart of the proposed algorithm for optimizing the 
controller parameters. 
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Also, Fig. 9(a) presents the difference in dynamic 
performance between PFWC-SPIS and PFWC-AWS that is 
summarized in reduction the settling time from 1.3 to 0.56 s, 
and in reducing the speed overshoot at the load drop period 
from 7% to 6%, respectively. The average q-axis currents of 
both PFWC and CFWC are decreased from about 5.64 to 2.9 
A at 2 s under the reduction of the motor torque as presented 
in Fig. 9(b). Fig. 9(c) presents the different of d-axis average 
currents that are -8.55 A for the PFWC with different PI 
structures and -6.5 A for the CFWC. Fig. 9(d) presents the 
unfiltered waveform of the voltage vector magnitude, which 
certainly proves that all control strategies involved in the flux-
weakening region. The instantaneous magnitude of the voltage 
vector produces the maximum value. Further, Fig 9(d) defines 
the difference of the dc-bus voltage utilization under PFWC 
and CFWC strategies that are achieving average values of 
about 1 and 0.98, respectively. Meanwhile, the average value 
of the line-modulation ratio under PFWC and CFWC are 
about 0.98 and 0.97, respectively, as illustrated in Fig. 9(e). 
Additionally, the magnitudes of duty cycles shown in Fig. 9(f) 
have the average values of about 1 and 0.98, respectively, 
where the Ddq is calculated for CFWC by 

 2 2 /dq ds qs dcD v v V   . Lastly, the overall system 

efficiencies of the PFWC and the CFWC strategies from the 
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Fig. 7. Objective function evaluation. 
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dc-bus to mechanical output are 76.5% and 74.7% and then 
decreasing to about 45.3% and 44.85% after load drop, 
respectively.  

Fig. 10 presents the dynamic simulation results of both flux 
weakening algorithms under the similar conditions used for 
Fig. 9, except for the motor parameters that are varying. These 
simulation results show what extent the algorithms depend on 

those parameters. The stator resistance is detuned from the 
nominal value to the value at the temperature of 122 °C. Thus, 
the stator resistance is changed from 0.8 to 1.12 Ω, which can 
be determined by [25]  

    1 1/b a b aR R t k t k                         (30) 
where Ra is the Rs measured at the temperature ta= 20 °C, tb is 
the temperature in °C to which the resistance is to be corrected, 
k1 is about 234.5 for 100% conductivity copper, and Rb is the 
winding resistance in Ω corrected to the temperature tb For the 
winding inductances, when the magnetic saturation occurs, the 
winding inductances would drop about 40% [26]. It can be 
concluded from Figs.10(a) and (b) that the speed and the q-
axis current traces of the PFWC algorithm have fewer 
oscillations at steady-state than that of the CFWC algorithm. 
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Fig. 10. Simulation results of PFWC and CFWC in case of parameters 
variation with load reduction under the speed of 2300 rpm, where (a) 
motor speed, (b) d-q axes currents, (c) magnitude of the voltage vector, 
(d) line modulation ratio, and (e) magnitude of the duty cycles. 
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currents, (c) d-axis current, (d) magnitude of the voltage vector, (e) line 
modulation ratio, and (f) magnitude of the duty cycles. 
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Comparing with the correctly tuned case in Fig. 9, the steady-
state error value of the CFWC algorithm increases to about 
3% and the counterpart of the PFWC algorithm is still less 
than 1%. Both strategies seek to minimize the speed error 
under the parameter variation. As a result, the d-axis average 
currents of the PFWC and CFWC algorithms lightly decrease 
to about -8.7 and -7.5 A leading to an increase in the average 
value of the magnitudes of the duty cycles to about 1.01 and 
0.986, respectively, as shown in Figs. 10(b) and (e). Fig. 10(c) 
presents that the per-unit magnitude of the unfiltered voltage 
vector under the CFWC algorithm is increased slightly to the 
average value of about 0.986, and the counterpart under the 
PFWC algorithm is increased slightly to the average value of 
about 1.01. Furthermore, the averages of the line-modulation 
ratio value of the PFWC and CFWC algorithms are increased 
to about 0.99 and 0.98, respectively, as depicted in Fig. 10(d). 
Moreover, the overall system efficiencies of the PFWC and 
CFWC algorithms are 76.4% and 74.2% and then decreased to 
about 44.8% and 44.2% after load drop, respectively. 
 

VI. EXPERIMENTAL RESULTS 
 

This section proves the effectiveness of the proposed 
control algorithm considering the optimized parameters of 
AWPI controllers listed in Table III. Fig. 11 shows a 
photograph of the experimental test platform. This figure 
shows the test motor coupled with a 3-kW interior magnet 
PMSM with an encoder of 4096 pulses per cycle. For this 
reason, the closed-loop torque mode control realizes the 
interior magnet PMSM as a load using field-oriented control. 
Moreover, the algorithms are implemented in the 
TMS320F28335 DSP board with C programing codes. The 
inputs for the control board are the dc-bus voltage regulated as 
150 V, the feedback signal of the encoder, and the measured 
phase currents. The sampling time of control loops is 100 μs. 
Tektronix oscilloscope with 1× passive voltage probe is used 
to measure signals. Measured signals have additional ripple 
due to the hardware noises. To verify the effectiveness of 
AWPI structure, Fig. 12 provides the dynamic performance 
under modified vector control, as shown in Fig. 3(c), for both 
structures based on the AWS and the SPIS. The reference 
speed is 500 rpm that is increased to the maximum limit of the 

rotational speed at 10 s without using the flux weakening 
control loop ( 0

ds
i  ), and the initial load torque is 7.5 Nm. 

Fig. 12(a) shows the speed overshoot of SPIS with value 
12%, while the speed overshoot of AWS is 4%. Meanwhile, 
the settling times are 0.76 and 0.15 s, respectively. Besides, 
the averages of maximum rotational speed achieving in 
constant torque region are 780.7 rpm. The averages currents of 
d-q axes are 0 and 4.5 A, respectively, as shown in Fig. 12(b). 
Fig. 12(c) explains the utilizing of the dc-bus voltage, where 
the average line modulation ratio increases from 0.64 to 0.94. 
Meanwhile, Fig. 12(d) presents the voltage vectors under the 
constant torque region. Both structure cases increase average 
voltage vectors from 0.68 to 0.95 at 10 s. Fig. 12(e) presents 
the magnitude of the duty cycles. The error between Ddq and 

maxdqD  will be the input of the proposed duty cycles regulating 
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Fig. 11. The photograph of the experimental test platform. 

N
r (r

pm
)

 
     (a) 

i s (A
)

 
  (b) 

m
m

ax

 
(c) 

 (p
u)

 
(d) 

 
(e) 

Fig. 12. Experimental results of the constant torque region case, where (a) 
speed, (b) d-q axes currents, (c) line modulation ratio, (d) magnitude of 
the voltage vector, and (e) magnitude of the duty cycles. 
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loop. Consequently, the AWPI regulator increases the negative 
of d-axis current to prevent the current controllers from the 
saturation. 

Fig. 13 presents the limit of the maximum speed of PFWC 
and CFWC at the flux-weakening region with initial load 
torque of 7.5 Nm. In this case, the speed programmed in a 
ramp function reverses the direction at the time of 50 s to 
ensure the four-quadrant operation of the driving algorithm, 
which includes the transition between the constant torque and 
the flux weakening regions. As shown in Fig. 13(a), the speed 
change of PFWC within the constant torque and a flux-
weakening fields is faster than that of CFWC in the reverse 
direction. Furthermore, the PFWC involves in a higher speed 

than the CFWC with the values of about 1175 and 1016 rpm, 
respectively. Fig. 13(e) presents that the voltage vectors under 
the flux-weakening region are laying on the boundary of the 
maximum voltage that the inverter can supply to the motor 
preventing the speed from breaking these limits under the 
operating conditions. The average voltage vector magnitude 
under PFWC and CFWC are 1 and 0.986, respectively. Both 
PFWC and CFWC increase average q-axis currents from -4.76 
to 5 A at 50 s, as shown in Fig. 13(b). However, they produce 
different d-axis currents. As shown in this figure, the d-axis 
average current of PFWC is about -8.45 A. Similarly, the d-
axis average current of CFWC is about -5.87 A. The reason is 
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Fig. 13. Experimentally measured results of the reversing direction case, 
where (a) motor speed, (b) d-q axes currents, (c) line modulation ratio, (d) 
magnitude of the duty cycles, and (e) magnitude of the voltage vector. 
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Fig. 14. Experimentally measured results of the load torque reduction 
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that both PFWC and CFWC have different average line-
modulation ratios of 0.98 and 0.97, respectively, as presented 
in Fig. 13(c). Meanwhile, the average duty cycle magnitude 
given in Fig. 13(d) under PFWC and CFWC are 1 and 0.95, 
respectively. The control in the flux-weakening region under 
the unrated torque decreases the overall efficiencies of PFWC 
and CFWC to about 72.9% and 72.2%, respectively. 

Fig. 14 shows the dynamic performance of PFWC and 
CFWC running the SMPMSM at the flux-weakening region 
with a reference speed of 2300 rpm and a load torque variation 
from 3.5 to 0.5 Nm at 50 s. The dc-bus voltage is increased to 
400 V to break the speed limit of the previous case shown in 
Fig. 13. While suddenly reducing the load torque, the PFWC 
has a small transient period to keep the reference rotational 
speed at the flux-weakening region better than that of CFWC 
as presented in Fig. 14(a). Moreover, the steady-state error of 
PFWC is better than that of CFWC with the value of about 1% 
and 3.2% for PFWC and CFWC, respectively. High oscillation 
wave attaches the average of q-axis current wave under 
CFWC as shown in Fig. 14(b). Both PFWC and CFWC 
decrease the average q-axis currents from 2.22 to 0.32 A at the 
load torque reduction time. Additionally, the average value of 
d-axis current under PFWC is about -7.6 A, and that value 
under CFWC reaches -5.9 A. Besides, the average values of 
the line-modulation ratio under both PFWC and CFWC are 
about 0.98 and 0.97, respectively, as provided in Fig. 14(c). 
Meanwhile, those of the magnitude of duty cycles, as shown 
in Fig. 14(d), are about 1 and 0.98, respectively. The overall 
efficiencies of the PFWC and the CFWC algorithms are 
71.8% and 71.5%, respectively. The appearance of the voltage 
vector at the boundary of the maximum voltage limit confirms 
that the motor speed has been involved in the flux-weakening 
region as presented in Fig. 14(e). The average voltage vector 
magnitude under PFWC and CFWC are 1 and 0.98, 
respectively. 
 

VII. CONCLUSION 
 

This paper presents parameter optimization of the improved 
vector control scheme to control an SMPMSM in the flux 
weakening region. The anti-windup structure which improves 
the dynamic performance of the vector control strategy 
employs the full saturated output of the PI controllers to defeat 
the overshoot effect of saturation. The novelty of the 
parameter tuning method relies on adopting the equilibrium 
point term of Taylor series as the proposed objective function. 
Thus, the proposed adaptive velocity PSO algorithm optimizes 
the objective function looking for the optimal parameter to 
achieve the minimum error for the controllers. Meanwhile, the 
control strategy utilizes the compensated duty cycles to 
determine the outbreak of the field weakening point. 

The theoretical study with the simulation and the 
experiment results of the PFWC demonstrate parameters 
robustness that proves the success of the proposed tuning 
method. Further, the results confirm the success of the AWPI 
structure in the reduction of the overshoot impact during the 
transient process. Besides, this control strategy decides the 
flux weakening point, and then the negative d-axis current is 

injected which results in an additional voltage to control the 
motor in field decreasing region. Simulation results verify that 
the proposed flux weakening method has little dependence on 
the machine parameters. From the experimental results, the 
proposed algorithm significantly increases the maximum 
speed limit of constant torque region, which demonstrates that 
the dc-link voltage utilization for the proposed controller is 
better than that for CFWC. Meanwhile, the proposed flux 
weakening control loop introduces a fast and stable transfer 
within a field decreasing region. 
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