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Abstract. Biot’s consolidation model in poroelasticity has a number of appli-

cations in science, medicine, and engineering. The model depends on various
parameters, and in practical applications these parameters ranges over several

orders of magnitude. A current challenge is to design discretization techniques
and solution algorithms that are well behaved with respect to these varia-
tions. The purpose of this paper is to study finite element discretizations of
this model and construct block diagonal preconditioners for the discrete Biot
systems. The approach taken here is to consider the stability of the problem
in non-standard or weighted Hilbert spaces and employ the operator precon-
ditioning approach. We derive preconditioners that are robust with respect to
both the variations of the parameters and the mesh refinement. The param-
eters of interest are small time-step sizes, large bulk and shear moduli, and

small hydraulic conductivity.

1. Introduction

Biot’s consolidation model describes the deformation of an elastic porous medium
and the viscous fluid flow inside when the porous medium is saturated by the fluid.
The unknowns are the displacement of the elastic medium, u, and the fluid pres-
sure, pF . In homogeneous isotropic linear elastic porous media, the equations for
the quasi-static Biot model are:

− div(2µǫ(u) + λ divuI − αpF I) = f ,

s0ṗF + α div u̇− div(κ∇pF ) = g,
(1.1)

where the dots represent time derivatives, µ and λ are the Lamé coefficients of
elastic medium, ǫ(u) is the symmetric gradient of u, I is the n×n identity matrix,
s0 ≥ 0 is the constrained specific storage coefficient, κ > 0 is the hydraulic con-
ductivity determined by the permeability of medium and the fluid viscosity, and
α > 0 is the Biot–Willis constant which is close to 1. The system (1.1) can be posed
on a bounded domain in two and three space dimensions. The given functions f

and g represent body force and source/sink of fluid, respectively. We will assume
throughout the paper that the parameters µ, λ, and s0 are scalar functions on the
domain, while in general κ can be a symmetric positive definite matrix-valued func-
tion. To be a well-posed mathematical problem, the system (1.1) needs appropriate
boundary and initial conditions. A discussion of general boundary conditions for
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the Biot system will be given in Remark 3.3 below. Furthermore, a mathematical
discussion of well-posedness of this model can be found in [1].

Due to importance of Biot’s model in applications, ranging from geoscience
to medicine, finite element methods for the model have been studied by many
researchers. For example, various primal methods are studied in [2, 3, 4], mixed
methods in [5, 6, 7], Galerkin least square methods in [8], discontinuous Galerkin
methods in [9], and combinations of different methods in [10, 11, 12, 13], but this
list is by no means complete.

It is important to construct numerical methods which are robust with respect
to variation of model parameters since this variation in many practical problems
is quite large. For example, relevant parameters in the soft tissue of the central
nervous system are Young’s modulus of 1 − 60 kPa, Poisson ratio from 0.3 to
almost 0.5 (0.499 in [14]), and the permeability is 10−14 − 10−16m2 [15, 16]. In
geophysics, Young’s modulus is typically in the order of GPa, Poisson ratio 0.1−0.3,
while the permeability may vary from approximately 10−9 to 10−21m2 [17, 18].
Relations of Young’s modulus E, Poisson ratio ν and the two elastic moduli µ,
λ are µ = E/2(1 + ν) and λ = Eν/(1 + ν)(1 − 2ν). Consequently, µ and λ are
in the ranges of 300 − 500 MPa and 100 − 500 MPa, respectively, in geoscience
applications, whereas corresponding numbers are µ and λ in the ranges 300− 2000
Pa and 500− 106 Pa in neurological applications.

However, in the present paper we will not limit ourselves to the study of ro-
bustness with respect to model parameters of the finite element discretization of
Biot’s model. In fact, our main concern is to be able to construct preconditioners
for the discrete systems which are well behaved both with respect to variations of
the model parameters and the refinement of the discretization. When large discrete
systems are solved by iterative methods, the convergence rate depends heavily on
the construction of suitable preconditioners. Such preconditioners for finite element
discretizations of Biot’s model have been studied by many authors, cf. for example
[19, 20, 21, 22, 23]. Recently, there is also an emerging interest for preconditioners
which are robust with respect to model parameters [23, 24]. However, robustness
with respect to all model parameters remains challenging. In particular, we will
derive preconditioners that are robust as the medium approaches the incompress-
ibility limit while the permeability is low. In our experience this represents the most
difficult case, and it is also the case that occurs in many biomechanical applications.

The purpose of this paper is to develop a stable finite element method for Biot’s
model, and a corresponding preconditioner for the associated discrete systems, such
that the preconditioned systems have condition numbers which are robust with re-
spect to variations of model parameters. More precisely, we aim to have a precon-
ditioned system which is robust for small κ, small time-steps, large λ, large µ, and
mesh refinements. In order to obtain such a parameter-robust preconditioner we
employ the operator preconditioning framework of [25]. It turns out that typical
formulations of Biot’s model are not appropriate to apply the framework, so we de-
velop a new three-field formulation of Biot’s model and propose a parameter-robust
block diagonal preconditioner for it.

The present paper is organized as follows. In Section 2, we introduce some
notation and conventions that will be used throughout the paper. Furthermore,
we briefly discuss the preconditioning framework of [25] based on parameter-robust
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stability of the continuous problems, and illustrate this with some numerical exam-
ples based on simplified models which can be seen as subsystems of the Biot system.
In Section 3 we explain some difficulties related to more common formulations of
the Biot system, and as a consequence we motivate a new three-field formulation.
The discussion of finite element discretizations based on this three-field formulation
is given in Section 4, and the stability results are used to motivate the construction
of parameter robust preconditioners. The implementation of a special operator re-
lated to one of the blocks a block diagonal preconditioner is discussed in Section 5.
Finally, in Section 6 we present some numerical experiments which illustrate our
theoretical results.

2. Preliminaries

The system (1.1) can in principle be studied on rather general domains Ω in two
or three dimensions. However, our main goal is to study finite element approxima-
tions of this system, and therefore we will assume throughout this paper that Ω is
a bounded polyhedral domain in Rn, with n = 2 or 3. We will use Hk = Hk(Ω)
to denote the Sobolev space of functions on Ω with k derivatives in L2 and the
corresponding norm is denoted by ‖ · ‖k. Further, let Hk

0 be the closure of C∞
0 (Ω)

in Hk with dual space denoted by H−k and (·, ·) denote the L2 inner product of
scalar, vector, and matrix valued functions as well as the duality paring between Hk

0

and H−k. The space L2
0 is the space of L2 functions with mean value zero. Bold-

face symbols are used to denote vector valued functions or spaces, and symbols of
boldface with underline are used to denote matrix valued functions.

Throughout this paper we use A . B to denote the inequality A ≤ CB with a
generic constant C > 0 which is independent of the discretization parameters and
the model parameters, and A ∼ B will stand for A . B and B . A. If needed, we
will use C to denote generic positive constants in inequalities. For a scalar valued
function g, ∇g is a (column) vector valued function. For a matrix valued function
g, div is understood as a row-wise divergence which results in the vector valued
function div g. Adopting these conventions, the equations (1.1) are well-defined.

2.1. Preconditioning of parameter-dependent systems. Let us briefly review
the abstract framework of parameter-robust preconditioning in [25]. Let X be a
separable, real Hilbert space with inner product 〈·, ·〉X and the associated norm
‖ · ‖X . For two Hilbert spaces X and Y , L(X,Y ) is the Hilbert space of bounded
linear maps from X to Y . Let us denote the dual space of X by X∗ and the duality
pairing of X and X∗ by 〈·, ·〉. Suppose that A ∈ L(X,X∗) is invertible and also
symmetric in the sense that

〈Ax, y〉 = 〈x,Ay〉, x, y ∈ X.

For given f ∈ X∗ consider a problem finding x ∈ X such that

Ax = f.(2.1)

Its preconditioned problem with a symmetric isomorphism B ∈ L(X∗, X) is

BAx = Bf.
The convergence rate of a Krylov space method for this problem can be bounded
by the condition number, K(BA), given by

K(BA) := ‖BA‖L(X,X)‖(BA)−1‖L(X,X).
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Parameter-dependent problems are handled in this framework as follows. Let ε
denote a collection of parameters, and Aε the parameter-dependent coefficient op-
erator. A systematic way to construct an ε-robust preconditioner Bε, as proposed in
[25], is to consider the mapping property ofAε in ε-dependent Hilbert spacesXε and
X∗

ε . The key property is to choose the spacesXε andX∗
ε such that Aε is a map from

Xε toX
∗
ε , and with corresponding operator norms ‖Aε‖L(Xε,X∗

ε )
and ‖A−1

ε ‖L(X∗

ε ,Xε)

bounded independently of ε. In this case the preferred preconditioner, Bε, is a
map from X∗

ε to Xε with the property that ‖Bε‖L(X∗

ε ,Xε) and ‖B−1
ε ‖L(Xε,X∗

ε )
are

bounded independently of ε. If such an operator Bε is identified, then the condition
number K(BεAε) is bounded independently of ε, since both BεAε and (BεAε)

−1

are operators on L(Xε, Xε), with corresponding operator norms bounded indepen-
dently of ε.

As we will illustrate below the discussion outlined above can often most easily
be done in the continuous setting. On the other hand, in a computational setting
we need preconditioners for the corresponding discrete problems. In fact, if we
utilize a finite element discretization which is uniformly stable with respect to the
parameters, then the structure of the preconditioners in the discrete case will be the
natural discrete analogs of the preconditioners in the continuous case. However, the
preconditioners derived by the procedure above will often require exact inverses of
operators which cannot be inverted cheaply. Therefore, in order to obtain effective
robust preconditioners in the discrete case, we also have to replace these exact
inverses by related equivalent operators, often obtained by common procedures
such as multilevel methods or domain decomposition methods. We refer to [25]
and the examples below for more details.

A challenge of the Biot system is the dependency of several different and inde-
pendent parameters like the Lamé elastic parameters as well as parameters related
to porous flow such as permeability and the Biot-Willis constant. The aim is to
achieve robustness with respect to all model parameters, as well as the resolution of
the discretization. To motivate this discussion we start by considering two simpli-
fied examples related to the Biot equations. The first example illustrates the case
where the permeability tends to zero, while the Lamé parameters are of unit scale.
In the second example we consider the case where the elastic material tends towards
the incompressible limit. Both examples are special cases of the Biot system.

Example 2.1. Consider a system of equations

−∆u+∇p = f ,

− divu+ div(κ∇p) = g,
(2.2)

with unknowns u : Ω → Rn and p : Ω → R. As boundary conditions we use
homogeneous Dirichlet condition for u, i.e., u|∂Ω = 0, while we use homogeneous
Neumann condition for p. The parameter κ > 0 is taken to be a constant in this
example. A variational formulation of this problem is to find (u, p) ∈ H1

0×H1∩L2
0

satisfying

(∇u,∇v)− (p, div v) = (f ,v), ∀v ∈ H1
0,

−(divu, q)− (κ∇p,∇q) = (g, q), ∀q ∈ H1 ∩ L2
0.

This system has a form of (2.1) with X = H1
0 ×H1 ∩ L2

0 and

A =

(

−∆ ∇
− div div(κ∇)

)

.
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If we define Xκ as the Hilbert space H1
0 ×H1 ∩ L2

0 with κ-dependent norm given
by

‖(u, p)‖2Xκ
= ‖u‖21 + ‖p‖20 + κ‖∇p‖20,

then one can check that A : Xκ → X∗
κ is an isomorphism with corresponding

operator norms of A and A−1 bounded independently of κ. Here the norm on
X∗

κ ⊃ L2 × L2 is defined from the norm on Xκ by extending the L2 inner product
to a duality pairing. To define a robust preconditioner we need to identify an
isomorphism B : X∗

κ → Xκ with corresponding operator norms of B and B−1

bounded independently of κ. A natural choice is a block-diagonal operator of the
form

B =

( −∆−1 0

0 (I − κ∆)
−1

)

.(2.3)

However, the operator B only indicates the structure of the desired preconditioner of
the discrete system. We will discretize this problem on the unit square in R2 by the
lowest order Taylor-Hood element with respect to a mesh of uniform squares. This
method is uniformly stable with respect to κ in the proper norms. Furthermore,
to obtain an effective preconditioner the exact inverses in the definition of B are
replaced by corresponding algebraic multigrid preconditioners for the operators −∆
and I − κ∆, implemented in the software library Hypre [26] with default settings.
The preconditioned system is implemented using cbc.block [27] and FEniCS [28].
The eigenvalue estimates are obtained by the conjugate gradient method of normal
equation of the system with convergence criterion 10−16, and we refer to [27] for
more details. The same setup is used throughout the paper.

We present numerical results in Table 1. The numbers of iterations and condition
numbers increase as the value of κ decreases but they are asymptotically stable and
are still bounded in the limit case κ = 0, which is the Stokes equation. We remark
that the zero eigenvalue of the system associated with H1 ∩ L2

0 is ignored in the
computation of condition numbers.

Table 1. Number of iterations of MinRes solver of system (2.2) with
algebraic multigrid (AMG) preconditioner of the structure (2.3). Esti-
mates of the condition numbers of the preconditioned system are given
in parenthesis. (Ω = unit square, partitioned as bisections of N × N
rectangles, convergence criterion1 with relative residual of 10−6)

N

16 32 64 128 256

κ

100 13 (1.3) 13 (1.2) 14 (1.2) 14 (1.2) 14 (1.2)

10−1 16 (1.7) 16 (1.8) 16 (1.8) 16 (1.8) 16 (1.8)

10−2 22 (3.1) 24 (3.4) 23 (3.6) 23 (3.8) 24 (3.9)

10−3 30 (4.6) 29 (4.9) 29 (5.4) 30 (5.8) 30 (6.1)

10−4 35 (6.1) 36 (6.2) 36 (6.4) 35 (6.6) 34 (7.0)

10−5 38 (7.0) 39 (7.8) 41 (7.9) 39 (7.7) 39 (7.7)

10−6 38 (7.1) 40 (8.3) 42 (9.2) 44 (9.4) 43 (9.0)

0 38 (7.1) 42 (8.4) 44 (9.5) 47 (10.5) 48 (11.2)
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Example 2.2. Consider a system related to the Lamé problem in linear elasticity:
Find u : Ω → Rn, p : Ω → R for

− div ǫ(u)−∇p = f ,

divu− 1

λ
p = g,

(2.4)

with u|∂Ω = 0, where 1 ≤ λ < +∞ is a positive constant and ǫ(u) is the symmetric
gradient of u. When g = 0, this is the Lamé problem and p = λ div u is called
“solid pressure”. Its variational form is to find u ∈ H1

0 and p ∈ L2 such that

(ǫ(u), ǫ(v)) + (p, div v) = (f ,v), ∀v ∈ H1
0,

(divu, q)− 1

λ
(p, q) = g, ∀q ∈ L2.

This is a saddle point problem with a stabilizing term −(1/λ)(p, q), and the sta-
bilization becomes weaker as λ becomes larger. Let X = H1

0 × L2 be the Hilbert
space with standard norm. In the limit when λ = +∞ the system is not stable
in these norms. This is due to the fact that divH1

0 ( L2 and as a consequence
the Brezzi condition for stability of saddle point problem is not fulfilled [29]. More
precisely, divH1

0 can control only the L2 norm of the mean-value zero part of p,
and the stabilizing term is needed to control the mean-value part of p. Since the
stabilizing term is dependent on λ, we need a λ-dependent norm on H1

0 × L2 to
have λ-independent stability of the system.

Before we define an appropriate λ-dependent norm, we need some preliminaries.
Let Pm be the linear operator in L2 such that

Pmφ :=

(

1

|Ω|

∫

Ω

φ dx

)

χΩ, ∀φ ∈ L2,

where χΩ is the characteristic function on Ω and |Ω| is the Lebesgue measure of Ω.
Notice that Pmφ and φ− Pmφ are the decomposition of φ into its mean-value part
and mean-value zero part. For q ∈ L2 we denote its mean-value and mean-value
zero parts by

qm := Pmq, q0 = q − qm.(2.5)

We now define a Hilbert space Xλ by

‖(v, q)‖2Xλ
= ‖v‖21 +

(

1

λ
‖qm‖20 + ‖q0‖20

)

,

then the system is λ-independent stable in Xλ. We will not give a detailed proof of
stability here since it can be obtained by modifying the proof of Theorem 3.2 below.
But the rough explanation is that the mean value of p cannot be control by the
inf-sup condition, and therefore this part of the norm has to be weighted properly
in balance with the stabilizing term λ−1‖pm‖20, while the rest of p is controlled by
the inf-sup condition.

We present numerical results for two different preconditioners. The Hilbert
space X and Xλ lead to preconditioners of the forms

B1 =

(

−∆−1 0
0 I−1

)

, B2 =

( −∆−1 0

0
(

I0 +
1
λIm

)−1

)

.(2.6)

1Convergence criterion is (Brk, rk)/(Br0, r0) ≤ 10−6 where B is preconditioner and rk is the
residual of k-th iteration.
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Here the appearance of the operator I−1 calls for an explanation. In fact, the
operator I should not be thought of as the identity operator on the Hilbert space
L2, but rather as the Riesz map between this space and its dual. In particular, in
the corresponding discrete setting the operator I−1 is typically represented by the
inverse of a mass matrix. In a similar manner, the operators I0 and Im should be
interpreted as maps of L2 into the duals of L2

0 and its complement. We refer to [25,
Section 6] for more details.

We employ the lowest order Taylor-Hood discretization and test the efficiency of
the preconditioners on different refinements of the unit square. The preconditioner
B1 is implemented by replacing the exact inverse of −∆ by an algebraic multigrid
operator, and we use the Jacobi iteration to approximate I−1. The construction
of B2 is technical due to the second block, and we postpone the details of the
construction to Section 5.

Numerical results for the preconditioners B1 and B2 are given in Tables 2 and
3. The results for the preconditioner with structure B2 is completely satisfactory.
Both the number of iterations and the condition numbers appear to be uniformly
bounded with respect to λ and mesh refinement. However, the results for the
preconditioner B1 are different. In this case the condition numbers appear to grow
linearly with λ, while the number of iterations still seems to be bounded, even if they
appear to be slightly less robust in this case. So in the case of the preconditioner B1

the condition number will not lead to a sharp bound on the number of iterations.
In fact, by comparing the operator B1 with the uniform preconditioner B2 one
can argue that the operator B1A has one isolated eigenvalue that tends to 0 as λ
increases, while the rest of the spectrum lie on an interval bounded independently
of the mesh resolution and λ. In cases where only few eigenvalues are outside a
bounded spectrum, it is well-known that the Conjugate Gradient and the Minimum
Residual methods are very efficient [30, 31] and therefore B1 is about as efficient as
B2, but slightly less robust.

Table 2. Number of iterations of MinRes solver of system (2.4) with
preconditioner of the form B1 in (2.6). Estimates of the condition num-
bers of the preconditioned system are given in parenthesis. (Ω = unit
square, partitioned as bisections of N × N rectangles, convergence cri-
terion with relative residual of 10−6)

N

16 32 64 128 256

λ

100 29 (3.5) 29 (3.6) 29 (3.6) 29 (3.6) 29 (3.6)

101 40 (10.8) 41 (10.8) 38 (10.9) 38 (10.9) 36 (10.9)

102 53 (95.6) 59 (96.2) 54 (96.7) 53 (96.9) 52 (97.0)

103 60 (958) 62 (964) 62 (969) 61 (972) 60 (973)

104 66 (9589) 69 (9649) 44 (9697) 43 (9724) 42 (9734)

105 44 (95892) 44 (96501) 44 (96981) 43 (97248) 42 (97344)

106 44 (958942) 44 (964970) 44 (969940) 43 (972566) 41 (973587)

2.2. Parameter rescaling of the Biot system. The systems in the above two
examples have only one parameter, so it is relatively easy to find function spaces
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Table 3. Number of iterations of MinRes solver of system (2.4) with
preconditioner of the form B2 in (2.6). Estimates of the condition num-
bers of the preconditioned system are given in parenthesis. (Ω = unit
square, partitioned as bisections of N × N rectangles, convergence cri-
terion with relative residual of 10−6)

N

16 32 64 128 256

λ

100 29 (3.5) 29 (3.6) 29 (3.6) 29 (3.6) 29 (3.6)

101 41 (11.6) 41 (11.6) 41 (11.6) 38 (11.6) 38 (11.6)

102 46 (18.4) 45 (18.4) 44 (18.4) 44 (18.4) 44 (18.4)

103 46 (19.6) 46 (19.6) 45 (19.6) 45 (19.6) 44 (19.6)

104 45 (19.7) 46 (19.7) 45 (19.7) 45 (19.7) 44 (19.7)

105 45 (19.7) 46 (19.7) 46 (19.7) 44 (19.7) 44 (19.7)

106 46 (19.7) 46 (19.7) 43 (19.7) 44 (19.7) 44 (19.7)

and parameter-dependent norms such that the aforementioned preconditioner con-
struction is applicable. However, the Biot system has several parameters of different
ranges, so it is not easy to find appropriate function spaces and their parameter-
dependent norms. In the rest of this section, we will rescale parameters of the Biot
system and reduce it to a problem with three parameters. This procedure will not
only simplify the problem but also clarify intrinsic parameters of the system. We
emphasize that µ, λ, s0, and κ are allowed to be functions on the domain, while α
is assumed to be a constant.

Recall that when we solve a time-dependent problem numerically, we discretize
the problem in time and solve a static problem at each time step, so preconditioning
of time-dependent problem is reduced to preconditioning of static problem at each
time step. If we consider an implicit time discretization (e.g., the backward Euler
method) applied to (1.1) with time-step size δ2 (0 < δ ≤ 1), and multiply the
second equation with −δ2, then we obtain a static problem

− div(2µǫ(u) + λ divuI − αpF I) = f ,

−s0pF − α divu+ δ2 div(κ∇pF ) = g̃

with some right hand side g̃.
To reduce this system further, we recall the physical derivation of s0. The storage

coefficient s0 is the increase of the amount of fluid for the unit increase of fluid
pressure, when volumetric strain is kept as constant. More precisely, s0 = φcF +
(1− φ)cS where φ is the porosity of solid, and cF ≥ 0, cS ≥ 0 are compressibilities
of the fluid and solid. For derivation of these equations from physical modeling,
we refer to standard porous media references, for instance, [32]. The parameter cS
and other parameters µ and λ are related so that cS ∼ 1/(2µ/n + λ) holds with
n, the spatial dimension of Ω. In many practical applications, µ . λ and cF ≈ 0
hold, so we have s0 ∼ 1/λ. Furthermore, α is a constant close to 1, so we will
assume that s0 scales like α2/λ. Therefore, to reduce the number of parameters in
our system we will simply let s0 = α2/λ for the rest of the discussion in this paper.
We emphasize that the equality is not essential. Our analysis below can easily be
adopted to the situation where s0 scales like α2/λ. However, this rather artificial
expression of s0 is useful when we normalize the system later. In addition, δ2κ can
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be regarded as one small parameter because the hydraulic conductivity κ is small
in general. As a consequence, introducing κ̃ = δ2κ, we have a simplified system

− div(2µǫ(u) + λ divuI − αpF I) = f ,

−α2

λ
pF − α divu+ div(κ̃∇pF ) = g̃,

with 1 ≤ λ < +∞, small κ̃, and α ∼ 1. However, in practical applications, µ can be
much larger than α, so we rescale the above equations to include this factor. To do
so we assume µ is a spatial function with a uniform scale, i.e., there is a constant
µ̄ such that µ/µ̄ ∼ 1. Let

λ′ =
λ

2µ̄
, µ′ =

µ

µ̄
, α′ =

α

2µ̄
, κ′ =

κ̃

2µ̄
, f ′ =

f

2µ̄
, g′ =

g̃

2µ̄
.

Dividing the above two equations by 2µ̄, the final simplified equations are

− div(µ′ǫ(u)− λ′ divuI − α′pF I) = f ′,

− (α′)2

λ′
pF − α′ divu+ div(κ′∇pF ) = g′,

(2.7)

where α′ is a small positive constant, λ′ and µ′ are positive scalar functions such
that λ′ is bounded from below and µ′ ∼ 1, while κ′ is a positive definite matrix
valued function with eigenvalues bounded from above.

In summary, we have reduced the original Biot system to a system with three
intrinsic parameters λ′, α′, and κ′ which all may be unbounded. More precisely,
the positive constant α′ may be arbitrarily small, the scalar function λ′ may be
arbitrarily large, while the positive eigenvalues of κ′ may be close to zero. Since
µ′ is bounded from above and below this parameter has no essential effect on the
properties of the system. Therefore, to reduce the number of parameters of the
system, we take µ′ = 1 in the discussion below.

For the biomedical applications discussed in the introduction in units of Pascal,
gram, milimeter and second, µ was in the order of 1−60 kPa which makes λ′, α′, κ′

in the ranges of 0.25− 500, 10−3 − 10−5, 10−8 − 10−12, respectively. In geoscience,
a representative µ is 10 GPa and units for pressure, viscosity and permeability are
pounds per square inch (psi), centi Poise (cP), mili Darcy (mD). Using these units,
λ′, α′, κ′ are in the ranges of 0.25− 3.5, 10−10, 10−9 − 10−13, respectively.

3. Parameter-robust stability of the continuous problems

For the rest of this paper we will discuss a system of the form (2.7), where the
parameter µ′ = 1. By omitting the primes on the parameters we obtain a system
of the form

− div(ǫ(u)− λ divuI − αpF I) = f ,

−α2

λ
pF − α divu+ div(κ∇pF ) = g.

(3.1)

Throughout the rest of the paper we will assume that the parameters λ, α, and κ
satisfy

(3.2) 1 ≤ λ < +∞, 0 < α ≤ 1, 0 < κ ≤ 1,

where the assumption on the matrix valued function κ has the interpretation that
κ is uniformly positive definite, and with all eigenvalues bounded above by one.
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3.1. Difficulties in typical formulations. In the discussion of the two examples
in Section 2 we saw that simplified versions of the Biot system were efficiently han-
dled with straightforward extensions of standard preconditioners for Stokes prob-
lem. In particular, in Example 2.1, the presence of a small permeability was handled
by extending a standard Stokes preconditioner in the canonical way with an oper-
ator of the form ∇ · (κ∇) applied to the pressure. Furthermore, in Example 2.2,
the use of “solid pressure” gave a stable formulation and an efficient preconditioner
even in the limit of an incompressible material. We will now demonstrate that
extending these two approaches to the Biot system is not straightforward.

For simplicity we will first consider the system with homogeneous Dirichlet
boundary conditions of the form u = 0 and pF = 0 on ∂Ω. A discussion of
other possible boundary conditions is given in Remark 3.3 below. Throughout this
subsection we will make the simplifying assumption that λ is a constant, and we
will illustrate that parameter-robust preconditioning is difficult even in that case.
For a variational formulation of (3.1) with Dirichlet boundary conditions, we will
use the function spaces H1

0 and H1
0 for the unknowns u and pF , respectively, and

obtain

(ǫ(u), ǫ(v)) + λ(divu, div v)− α(pF , div v) = (f ,v), ∀v ∈ H1
0,

−α(divu, qF )−
α2

λ
(pF , qF )− (κ∇pF ,∇qF ) = (g, qF ), ∀qF ∈ H1

0 .

In matrix form, the system is

A
(

u

pF

)

:=

(− div(ǫ+ λ div I) α∇
−α div −α2

λ + div(κ∇)

)(

u

pF

)

=

(

f

g

)

.(3.3)

This system has a perturbed saddle point problem structure. Following the precon-
ditioner construction framework in the previous section, we define Hilbert spaces
V 1 and QF,1 with parameter-dependent norms on H1

0 and H1
0 ,

‖v‖2
V 1

:= ‖ǫ(v)‖20 + λ‖ div v‖20, v ∈ H1
0,

‖qF ‖2QF,1
:=

α2

λ
‖qF ‖20 + (κ∇qF ,∇qF ), qF ∈ H1

0 .

Then we are able to show that A : V 1 × QF,1 → V ∗
1 × Q∗

F,1 in (3.3) is an iso-
morphism with upper and lower bounds uniform in λ, κ, and α. However, this
formulation has a nontrivial difficulty to achieve parameter-robust preconditioner
for its discrete counterpart. For example, if we consider a block-diagonal precon-
ditioner as in examples in the previous section, we need a good preconditioner of
− div ǫ− λ grad div in first block of the preconditioner. However, usually accepted
preconditioners (e.g., algebraic multigrid preconditioner) do not perform well when
λ is large. This is observed in [23] for the simplified McKenzie equations, and
can be explained by the fact that it is hard to construct discretizations which are
uniformly stable with respect to λ.

This difficulty is similar to volumetric locking problem in linear elasticity [33],
which arises when λ is very large. Thus, we expect that resolutions of the lock-
ing problem in elasticity are useful to circumvent this preconditioning problem.
There are two mathematically equivalent ways to avoid the locking problem: one
is reduced integration technique [34] and the other is the mixed method (see, e.g.,
[35, 36, 37, 38]). However, both of them have technical difficulties in parameter-
robust preconditioning. Here we will discuss the difficulty with the mixed approach.
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Motivated by Example 2.2 and the mixed finite element technique to avoid the
locking problem in linear elasticity, it is tempting to employ the “solid pressure”
pS := −λ divu. Recall that our purpose here is to show that this formulation is not
appropriate for parameter-robust preconditioner construction, so we show the lack
of stability and bad numerical results only for one specific case α = 1. Introducing
pS = −λ divu in the first equation of (3.1), with some algebraic manipulation, we
have a three-field formulation

− div ǫ(u) +∇pS +∇pF = f ,

− divu− 1

λ
pS = 0,(3.4)

− divu− 1

λ
pF + div(κ∇pF ) = g.

Since u ∈ H1
0, divu is mean-value zero, and therefore pS = −λ divu is mean-

value zero as well. This means that, L2
0 is an appropriate function space for pS in

variational formulation. Thus, a variational form of (3.4) is to find (u, pS , pF ) ∈
H1

0 × L2
0 ×H1

0 such that

(ǫ(u), ǫ(v))− (pS + pF , div v) = (f ,v), ∀v ∈ H1
0,

−(divu, qS)−
1

λ
(pS , qS) = 0, ∀qS ∈ L2

0,

−(divu, qF )−
1

λ
(pF , qF )− (κ∇pF ,∇qF ) = (g, qF ), ∀qF ∈ H1

0 .

In order to have parameter-robust stability, we need to find parameter-dependent
norms of H1

0 × L2
0 × H1

0 such that the above system gives a linear isomorphism
from the Hilbert space to its dual space, and norms of the linear isomorphism and
its inverse are independent of the parameters. The bilinear forms in the system,

(ǫ(u), ǫ(v)), u,v ∈ H1
0,(3.5)

(div v, pS), v ∈ H1
0, pS ∈ L2

0,(3.6)

(div v, pF ), v ∈ H1
0, pF ∈ H1

0 ,(3.7)

1

λ
(pS , qS), pS , qS ∈ L2

0,

1

λ
(pF , qF )− (κ∇pF ,∇qF ), pF , qF ∈ H1

0 ,(3.8)

have to be bounded for the parameter-dependent norms, so some necessary condi-
tions of the norms will be given. The bilinear form (3.5) suggests H1-norm for H1

0.
To make (3.6) and (3.7) bounded, the chosen norms of L2

0 and H1
0 have to bound

the standard L2-norms of pS and pF , respectively. Finally, (3.8) enforces the norm
of H1

0 to be an upper bound of (κ∇pF ,∇pF )
1/2. Thus the smallest possible norms

for H1
0, L

2
0, H

1
0 from these observations are

‖ǫ(u)‖0, ‖pS‖0,
(

‖pF ‖20 + (κ∇pF ,∇pF )
)

1

2(3.9)

for u ∈ H1
0, pS ∈ L2

0, pF ∈ H1
0 .

We use V 2, QS , QF,2 to denote the Hilbert spaces on H1
0, L

2
0, H

1
0 with the

above norms. It is easy to check that all bilinear forms are bounded with these
norms uniformly in λ and κ. In other word, the linear map from V 2 ×QS ×QF,2

to V ∗
2×Q∗

S ×Q∗
F,2, given by the above three-field formulation has a uniform bound
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independent of the parameters. Unfortunately, it does not seem to be the case for
the inverse of the linear map. Although the system is a stabilized saddle point
problem, the stabilization terms −λ−1(pS , qS) and −λ−1(pF , qF ) are not enough
to control the L2 norms of pS and pF when λ is very large. Therefore, we need to
control the norms by v ∈ V 2 with inf-sup condition. In other words, we need

inf
(qS ,qF )∈QS×QF,2

sup
v∈V 2

(div v, qS + qF )

‖v‖1(‖qS‖0 + ‖qF ‖0)
≥ β > 0,(3.10)

with a constant β which is independent of the parameters. However, both qS and qF
interact with div v in the bilinear form (div v, qS + qF ), and it is difficult to control
two independent terms with one object, div v. When κ is not small the stabilization
term (κ∇pF ,∇pF ) can be used to control the L2-norm of pF . However, as we have
seen in the model reduction in the previous section, the smallness of κ is given not
only by small hydraulic conductivity in the model, but also by a small time-step.
Thus it is inevitable to assume that κ is small when we solve static problems at
each time step.

Example 3.1. We present a computational result which provides numerical evi-
dence for the above discussion. Suppose that Ω is the unit square in R2 and

Γd = {(x, y) ∈ R2 : (x, y) ∈ ∂Ω, x < 1}.

For simplicity of implementation, we assume that u is vanishing on Γd, not on
∂Ω, and therefore the appropriate function space for pS is L2, since λ divu 6∈ L2

0.
This is a reasonable assumption since robust preconditioners should cover problems
with general boundary conditions. For discretization we use elements inspired by

Table 4. Number of iterations for different λ and κ with the precondi-
tioner of the form in (3.11). (Ω = unit square, partitioned as bisections
of N×N rectangles, convergence criterion with relative residual of 10−6)

k (κ = 10k)

N λ 0 −1 −2 −3 −4 −5 −6

32

100 21 20 21 22 24 25 25

102 45 46 49 88 115 111 84

104 46 46 50 102 247 359 198

106 46 46 53 102 251 451 238

64

100 20 20 20 21 23 23 24

102 44 44 49 85 107 107 92

104 44 44 48 98 242 315 207

106 44 44 50 98 244 370 231

128

100 19 19 19 21 22 23 23

102 40 40 44 82 97 99 93

104 42 42 47 94 220 241 181

106 40 41 46 94 228 262 189

the lowest order Taylor–Hood element, i.e., (P2,P1,P1) Lagrange finite elements
for (u, pS , pF ). In the experiment, block-diagonal preconditioner B based on the
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norms in (3.9), i.e.,

B =





−∆−1 0 0
0 I−1 0

0 0 (I − κ∆)
−1



(3.11)

is implemented using FEniCS with Hypre. As above, the exact inverses are replaced
by suitable algebraic multigrid operators. A heuristic way to validate this choice
of preconditioner is to consider a special case of (3.4) with λ = 1. Noting that
this special case has the systems in Example 2.1 with λ = 1 and in Example 2.2 as
subsystems, the operator B in (3.11) can be viewed as a combination of the robust
preconditioners in those examples.

Numbers of iterations for different constant parameter values are given in Ta-
ble 4. When λ is not too large the numbers of iterations are more or less robust
with respect to variation of κ. However, the number of iterations clearly increases
with increasing λ, and the increment is quite large when κ is small. The growth
in iterations as λ increases is milder when κ is larger, which supports our heuristic
analysis of “partial remedy”, that (κ∇pF ,∇pF ) may play a role of a stabilization
term for the L2 norm of pF .

3.2. A new three-field formulation. The discussion in the previous subsection
suggests that we need a different formulation to obtain parameter-robust precon-
ditioners. We will present such a new formulation of the system (3.1) here, where
parameters λ, α, κ are assumed to be as specified in the beginning of this section.
In particular, λ and κ are allowed to be functions of the spatial domain.

The main obstacle in the discussion above was that the inf-sup condition (3.10)
is not fulfilled. To circumvent this, we use a different system with unknowns
(u, pT , pF ), where pT := −λ divu + αpF . With this new unknown pT , which will
be called total pressure, we can rewrite the equations (3.1) as

− div ǫ(u) +∇pT = f ,

− divu− λ−1(pT − αpF ) = 0,

λ−1(αpT − 2α2pF ) + div(κ∇pF ) = g.

The matrix form of this system is

A





u

pT
pF



 :=





− div ǫ ∇ 0
− div −λ−1 αλ−1

0 αλ−1 −2α2λ−1 + div(κ∇)









u

pT
pF



 =





f

0
−g



 .(3.12)

With function spaces H1
0, L2, H1

0 for u, pT , pF , respectively, corresponding to
Dirichlet boundary conditions for u and pF , we obtain a variational form

(ǫ(u), ǫ(v))− (div v, pT ) = (f ,v), v ∈ H1
0,

−(divu, qT )− (λ−1pT , qT ) + (αλ−1pF , qT ) = 0, qT ∈ L2,(3.13)

(αλ−1pT , qF )− 2(α2λ−1pF , qF )− (κ∇pF ,∇qF ) = (g, qF ), qF ∈ H1
0 .

Recall that we used the decomposition p = pm + p0 and the stabilization term
in order to obtain the stability of the system in Example 2.2. We need a similar
argument to show the stability of (3.13) due to the same reason, divH1

0 ( L2.
Denoting the mean-value zero part of qT by qT,0 as in (2.5), we define norms by

‖ǫ(u)‖0,
(

(λ−1pT , pT ) + ‖pT,0‖20
)

1

2 ,
(

(α2λ−1pF , pF ) + (κ∇pF ,∇pF )
)

1

2(3.14)
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for u ∈ H1
0, pT ∈ L2, pF ∈ H1

0 . Let us denote these spaces with the norms in
(3.14) by V , QT , QF , and let X = V ×QT ×QF . Then it can be shown that all
the bilinear forms in (3.13) are uniformly bounded in λ, α, κ. In other words, the
operator A appearing in (3.12) is a bounded linear map from X to X ∗ and its norm
is independent of the three parameters. Here the norm on the space X ∗ is derived
from the norm on X exactly as we explained in Example 2.1.

The following theorem implies that A is invertible and that the inverse is a map
from X ∗ to X with operator norm independent of the three parameters.

Theorem 3.2. For the system (3.13) there exists a constant β > 0, independent
of λ, α, κ satisfying (3.2), such that the following inf-sup condition holds:

inf
(u,pT ,pF )∈X

sup
(v,qT ,qF )∈X

(A(u, pT , pF ), (v, qT , qF ))(X∗,X )

‖(u, pT , pF )‖X ‖(v, qT , qF )‖X
≥ β.

Proof. To prove the inf-sup condition, we will use a standard technique: For given
(0, 0, 0) 6= (u, pT , pF ) ∈ X , we will find (v, qT , qF ) ∈ X such that

‖(v, qT , qF )‖X ≤ C1‖(u, pT , pF )‖X ,(3.15)

(A(u, pT , pF ), (v, qT , qF ))(X∗,X ) ≥ C2‖(u, pT , pF )‖2X ,(3.16)

with positive constants C1, C2 which are independent of λ, κ, and α. From these
two inequalities we obtain that the desired inf-sup condition holds with β = C2/C1.

Suppose that (0, 0, 0) 6= (u, pT , pF ) ∈ X is given. Recall that pT,0 is the mean-
value zero part of pT . It is well-known from the theory of Stokes equation, cf. [39,
Theorem 5.1] that there exists a constant β0 > 0, depending only on the domain
Ω, and w ∈ V , such that

(divw, pT ) = ‖pT,0‖20, (ǫ(w), ǫ(w)) ≤ β2
0‖pT,0‖20.(3.17)

We set v = u− δ0w, qT = −pT , qF = −pF with a constant δ0 which will be
determined later. One can check that

‖(v, qT , qF )‖X ≤
√

2(1 + δ20β
2
0)‖(u, pT , pF )‖X ,

and (3.15) follows, if δ0 is independent of the parameters of our interest.
To establish (3.16) and determine δ0, we use the chosen v, qT , qF , and (3.17)

to obtain

(A(u, pT , pF ), (v, qT , qF ))(X∗,X )

= ‖u‖2
V
−δ0(ǫ(u), ǫ(w)) + δ0(divw, pT )

+ ((λ−1pT , pT ) + 2(α2λ−1pF , pF )− 2(αλ−1pT , pF )) + (κ∇pF ,∇pF )(3.18)

= ‖u‖2
V
−δ0(ǫ(u), ǫ(w)) + δ0‖pT,0‖20

+ ((λ−1pT , pT ) + 2(α2λ−1pF , pF )− 2(αλ−1pT , pF )) + (κ∇pF ,∇pF ).

By Young’s inequality and (3.17), we also have

(ǫ(u), ǫ(w)) ≤ 1

2θ0
‖u‖2

V
+

θ0
2
‖w‖2

V
≤ 1

2θ0
‖u‖2

V
+

θ0β
2
0

2
‖pT,0‖20, ∀θ0 > 0.

Using the above inequality with the choice θ0 = δ0 = β−2
0 , we derive

‖u‖2
V
−δ0(ǫ(u), ǫ(w)) + δ0‖pT,0‖20 ≥ 1

2
‖u‖2

V
+

δ0
2
‖pT,0‖20.(3.19)
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Again by Young’s inequality, for any θ1 > 0,

2(αλ−1pT , pF ) = 2(λ−1/2pT , αλ
−1/2pF ) ≤ 2θ1(λ

−1pT , pT ) +
1

2θ1
(α2λ−1pF , pF ).

If we take θ1 = 3/8, then we get

(3.20) ((λ−1pT , pT ) + 2(α2λ−1pF , pF )− 2(αλ−1pT , pF ))

≥ 1

4
(λ−1pT , pT ) +

2

3
(α2λ−1pF , pF ).

The inequality (3.16) is obtained by combining (3.18), (3.19), and (3.20). Finally,
we remark that the constants C1 and C2 in (3.15)–(3.16) depend only on δ0, which
is β−2

0 in the argument, so they are independent of λ, α, κ. �

Remark 3.3. The set up in Theorem 3.2 is suitable for homogeneous Dirichlet
boundary conditions for the displacement u and the fluid pressure pF . However,
similar result can be obtained for more general boundary conditions. For this, we
first review possible boundary conditions for Biot’s model. Suppose that there are
two partitions of ∂Ω,

∂Ω = Γp ∪ Γf , ∂Ω = Γd ∪ Γt,(3.21)

with |Γp|, |Γd| > 0, i.e., the Lebesgue measures of Γp and Γd are positive. General
homogeneous boundary conditions of (1.1) are given by

pF (t) = 0 on Γp, −κ∇pF (t) · n = 0 on Γf ,

u(t) = 0 on Γd, σ(t)n = 0 on Γt,

for time variable t ∈ [0, T ], T > 0, in which n is the outward unit normal vector
field on ∂Ω and σ(t) := 2µǫ(u(t)) + (λ divu(t) − αpF (t))I. The conditions for
pF is a combination of pressure-flux boundary condition as in Darcy flow and the
conditions for u is a combination of displacement-traction boundary conditions as
in elasticity problems. The proper function spaces for this variational formulation
are

V := {v ∈ H1 : v|Γd
= 0}, QT = L2, QF := {qF ∈ H1 : qF |Γp

= 0},(3.22)

for u, pT , and pF . When Γd 6= ∂Ω, we choose parameter-dependent norms by

‖ǫ(u)‖0, ‖pT ‖0,
(

(α2λ−1pF , pF ) + (κ∇pF ,∇pF )
)

1

2 .(3.23)

We can prove a stability result similar to Theorem 3.2 with these norms. In fact,
the proof is easier in this case since the inf-sup condition

inf
pT∈L2

sup
v∈H1

Γd

(div v, pT )

‖v‖1‖pT ‖0
≥ β0(3.24)

holds, and therefore a decomposition of pT , into its mean-value and mean-value
zero components, is not necessary. We omit the details since the proof is completely
analogous to the proof of Theorem 3.2.
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4. Discretization and construction of preconditioners

In this section we propose finite element discretizations of the three field formu-
lation introduced above, and show that parameter-robust preconditioners for the
discrete problems can be found. In contrast to the discussion above, we will first
consider problems with general boundary conditions, i.e., boundary conditions with
Γd 6= ∂Ω, cf. (3.21). The reason for this reversed order is that the construction
of preconditioners in the case when Γd = ∂Ω, resulting in the choice V = H1

0,
requires a nontrivial technical discussion.

We have shown above that (3.13) is a linear system with parameter-robust
stability for the function spaces V , QT , QF with parameter-dependent norms
given by (3.14). If we discretize the system (3.13) with the finite element spaces
V h ⊂ V , QT,h ⊂ QT , QF,h ⊂ QF , then the discrete counterpart of (3.13) is to find
(uh, pT,h, pF,h) ∈ V h ×QT,h ×QF,h such that

(ǫ(uh), ǫ(v))− (div v, pT,h) = (f ,v), ∀v ∈ V h,

−(divuh, qT )− (λ−1pT,h, qT ) + (αλ−1pF,h, qT ) = 0, ∀qT ∈ QT,h,(4.1)

(αλ−1pT,h, qF )− 2(α2λ−1pF,h, qF )− (κ∇pF,h,∇qF ) = (g, qF ), ∀qF ∈ QF,h.

A basic stability assumption for this discretization is that the pair V h × QT,h

satisfies a discrete version of (3.24), i.e.,

inf
pT∈QT,h

sup
v∈V h

(div v, pT )

‖v‖1‖pT ‖0
≥ β0 > 0,(4.2)

where β0 is independent of h. In other words, V h ×QT,h is a stable Stokes pair.

Theorem 4.1. Suppose that V , QT , QF are as in (3.22) with Γd 6= ∂Ω and Γp

as in (3.21), and that V h ⊂ V , QT,h ⊂ QT , QF,h ⊂ QF are corresponding finite

element spaces. Furthermore, assume that the pair V h ×QT,h satisfies the inf-sup

condition (4.2). Let Xh = V h×QT,h×QF,h be the Hilbert space with norm given in

(3.23), and Ah : Xh → X ∗
h the operator given by (4.1). Then there exists a constant

β > 0, such that

inf
(u,pT ,pF )∈Xh

sup
(v,qT ,qF )∈Xh

(Ah(u, pT , pF ), (v, qT , qF ))(X∗

h
,Xh)

‖(u, pT , pF )‖Xh
‖(v, qT , qF )‖Xh

≥ β,(4.3)

for all parameters λ, α, and κ satisfying (3.2).

We do not prove this result here since the proof is completely analogous to the
proof of Theorem 3.2. We observe that the norms given in (3.14) shows that a
preconditioner of the form

B =





−∆−1 0 0
0 I−1 0

0 0
(

α2λ−1I − div(κ∇)
)−1



(4.4)

will be a parameter-robust preconditioner.
We now turn to the case with Γd = ∂Ω such that V = H1

0. We recall that
L2
0 is the space of L2 functions with mean value zero. The proper discrete inf-sup

condition in this case takes the form

inf
pT∈QT,h∩L2

0

sup
v∈V h

(div v, pT )

‖v‖1‖pT ‖0
≥ β0 > 0,(4.5)
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where again β0 is independent of h.
The following is a discrete analogue of Theorem 3.2, and its proof is completely

analogous to the proof of that theorem.

Theorem 4.2. Suppose that V , QT , QF are as in (3.22) with Γd = ∂Ω and Γp

as in (3.21), and that V h ⊂ V , QT,h ⊂ QT , QF,h ⊂ QF are corresponding finite

element spaces. Furthermore, assume that the pair V h × QT,h satisfy the inf-sup

condition (4.5). Let Xh = V h ×QT,h ×QF,h be the Hilbert space with norm given

in (3.14), and Ah : Xh → X ∗
h the operator given by (4.1). Then there is a constant

β > 0 such that (4.3) holds for all parameters λ, α, and κ satisfying (3.2).

There exist a number of choices of stable Stokes pairs V h×QT,h, and in Section
6 below we will present numerical results for two examples, the lowest order Taylor-
Hood element and the MINI element. For more examples of stable Stokes pairs we
refer to [29, 39]. The parameter-dependent norms in (3.14) suggest a block diagonal
preconditioner of the form

B =







−∆−1 0 0

0
(

λ−1I + I0
)−1

0

0 0
(

α2λ−1I − div(κ∇)
)−1






,(4.6)

for the continuous system. We recall that I is the Riesz map of QT into its dual
Q∗

T , and I0 is the corresponding map into the dual of QT ∩L2
0. The first and third

blocks of this block diagonal operator are inverses of standard second-order elliptic
operators, and corresponding preconditioners to replace the exact inverses in the
discrete case are well-studied. In contrast, the operator in the second block is less
standard, and, as far as we know, a construction of an effective preconditioner to
replace it has not been proposed. We will discuss such a construction below.

5. A preconditioner for the operator λ−1I + I0

Throughout this section the parameter λ is assumed to be a constant. We recall
from the discussion above that in order to construct an effective block diagonal
preconditioner of the form (4.6) we need to replace the inverse of the operator
λ−1I + I0 by a spectrally equivalent operator which can be cheaply evaluated. In
fact, when λ ≥ 1 the operators λ−1I + I0 and λ−1Im+ I0 are spectrally equivalent,
so it is enough to approximate the inverse of the latter.

Let N be the dimension of QT,h and {φi}Ni=1 be the standard nodal basis of

QT,h. Let 1Ω be the constant function on Ω with value 1/
√

|Ω| where |Ω| is the
volume of Ω. Denoting the mean-value zero and mean-value parts of φi by φi

0 and
φi
m as before, we can observe that

φi
m = mi1Ω, mi := (φi, 1Ω), φi = φi

0 + φi
m, ∀1 ≤ i ≤ N.(5.1)

If we let M, M0, Mm be mass matrices corresponding to the operators I, I0, and
Im, then their (i, j)-entries are

M(i, j) := (φi, φj), M0(i, j) := (φi
0, φ

j
0), Mm(i, j) := (φi

m, φj
m), ∀1 ≤ i, j ≤ N,

and the matrix corresponding to λ−1Im + I0 is λ−1Mm + M0. Since (φi, φj) =

(φi
0+φi

m, φj
0+φj

m) = (φi
0, φ

j
0)+(φi

m, φj
m), one can see M = M0+Mm, and therefore
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λ−1Mm +M0 = M+ (λ−1 − 1)Mm. In addition, observe that Mm(i, j) = mimj by
(5.1), so

λ−1Mm +M0 = M+ (λ−1 − 1)mmT ,(5.2)

with

m =











m1

m2

...
mN











.(5.3)

To construct a preconditioner we need to find an approximate inverse of λ−1Mm +
M0. Since M is positive definite, we can rewrite the right-hand side of (5.2) as

Mλ := M+ (λ−1 − 1)mmT = (I+ (λ−1 − 1)mmTM−1)M,(5.4)

where I is the N × N identity matrix. Recall the Sherman–Morrison–Woodbury
formula,

(I+ uvT )−1 = I− uvT

1 + uTv
, u,v ∈ RN with uTv 6= −1.(5.5)

We will use it to find the inverse of I+ (c−1 − 1)mmTM−1 for a constant c 6= 0.

Lemma 5.1. Let w = (1 · · · 1)T ∈ RN . For the mass matrix M and m in (5.3),
the following two identities holds:

Mw =
√

|Ω|m, mTw =
√

|Ω|.(5.6)

Proof. Note that

1
√

|Ω|

N
∑

j=1

φj = 1Ω,(5.7)

because {φj}1≤j≤N is the standard nodal basis and no boundary condition is im-
posed on QT,h.

If we consider the i-th row of the left-hand side of the first identity in (5.6), then
the definition of M, (5.7), and (5.1) give

N
∑

j=1

M(i, j) =

N
∑

j=1

(φi, φj) =



φi,

N
∑

j=1

φj



 =
√

|Ω|mi.

This proves the first identity in (5.6). The second identity follows by

N
∑

i=1

mi =

N
∑

i=1

(φi, 1Ω) =
√

|Ω|(1Ω, 1Ω) =
√

|Ω|.

�

Corollary 5.2. For the mass matrix M, m in (5.3), w in Lemma 5.1 and any

constant c 6= 0, the following holds:

(I+ (c−1 − 1)mmTM−1)−1 = I+ (c− 1)(
√

|Ω|)−1mwT .(5.8)

Proof. SinceM is symmetric, the first identity in (5.6) givesmTM−1 = (
√

|Ω|)−1wT .
If we set u = (c−1−1)m and vT = mTM−1, then the second identity in (5.6) gives
uTv = c−1 − 1 6= −1. The assertion follows from (5.5). �
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Theorem 5.3. Let Vλ = (I + amwT )−1 with a = (−1 +
√
λ)/

√

|Ω|. Then, for

Mλ in (5.4), Mλ = VλMVT
λ . Thus, if D is a preconditioner of M with condition

number K, then V−T
λ DV−1

λ is a preconditioner of Mλ with same condition number.

Proof. From the definition of Vλ and the second identity in (5.6), we can see

V−2
λ = (I+ amwT )2 = I+ (2a+ a2

√

|Ω|)mwT = I+ (λ− 1)(
√

|Ω|)−1mwT .

By the identity (5.8) with c = λ and (5.4), we have Mλ = V2
λM. If we use (5.8) for

V−1
λ , then one can verify that Vλ = I + āmmTM−1 with ā = 1 − (

√
λ)−1. From

this expression of Vλ, it is easy to check that VλM = MVT
λ , so Mλ = V2

λM =

VλMVT
λ . The assertion for preconditioner V−T

λ DV−1
λ follows from the identity

MλV
−T
λ DV−1

λ Mλ = VλMDMVT
λ . �

For the preconditioner D for M, it is known that the Jacobi preconditioner, i.e.,
the inverse of diagonal of mass matrix as a preconditioner has explicit condition
number bounds [40]. If QT,h is the piecewise linear continuous finite element, then
the Jacobi preconditioner D for M is a constant multiple of the diagonal matrix
diag(m−1

1 ,m−1
2 , ...,m−1

N ). As a consequence, wmTD = DmwT , so V−T
λ DV−1

λ can

be reduced to DV−2
λ = D(I+ (λ− 1)(

√

|Ω|)−1mwT ).

There is one caution in the implementation of the preconditioner V−T
λ DV−1

λ

because mwT and mmT in V−1
λ and Mλ are dense matrices in general. We re-

mark that the minimum residual method requires only matrix-vector multiplica-
tion operations. Therefore, to avoid computation with these dense matrices, we
use the structure of the matrix mwT . More precisely, mwTv for an RN -vector
v can be computed with two operations, the inner product wTv and constant-
vector multiplication (wTv)m. Similarly, we can avoid generating mmT in Mλ =

M+(λ−1−1)mmT . Finally, we remark that the preconditioner V−T
λ DV−1

λ is useful
when a piecewise discontinuous finite element is used for QT,h because mwT and
Mλ are not sparse.

Table 5. Boundary conditions (BC), preconditioners (PC), and
finite elements of test cases. The first three cases use the lowest or-
der Taylor–Hood element and the last case uses the MINI element
(B = vector-valued bubble function).

BC PC finite elements
system size for N

32 64 128

Case 1 Γd 6= ∂Ω, Γp = ∂Ω (4.4) P2-P1-P1 10628 41732 165380

Case 2 Γd = ∂Ω, Γp = ∂Ω (4.6) P2-P1-P1 10628 41732 165380

Case 3 Γd = ∂Ω, Γp = ∂Ω (4.4) P2-P1-P1 10628 41732 165380

Case 4 Γd 6= ∂Ω, Γp = ∂Ω (4.4) (P1 +B)-P1-P1 8452 33284 132100

6. Numerical results

In this section we present some numerical results which illustrate our theoretical
results for the proposed preconditioners (4.4) and (4.6). As before, all numerical
experiments are carried out using FEniCS with Hypre algebraic multigrid operators
as replacements for the exact inverses appearing in the first and third block of (4.4)
and (4.6). Furthermore, in the preconditioner of the form (4.6), the second block is
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Table 6. Numbers of iteration and condition numbers of Case 1 (cf.
Table 5). (Ω = unit square, partitioned as bisections ofN×N rectangles,
convergence criterion with relative residual of 10−6)

κ

N α λ 100 10−4 10−8 10−12

32

100
100 33 (3.8) 43 (6.3) 47 (7.6) 47 (7.6)

104 52 (21.7) 52 (21.7) 65 (21.7) 63 (21.7)

108 52 (21.7) 54 (21.7) 52 (21.7) 62 (21.7)

10−2

100 33 (3.8) 33 (3.9) 43 (6.3) 47 (7.6)

104 52 (21.7) 52 (21.7) 52 (21.7) 63 (21.7)

108 52 (21.7) 52 (21.7) 52 (21.7) 52 (21.7)

10−4

100 33 (3.8) 33 (3.8) 33 (3.8) 43 (6.3)

104 50 (21.7) 52 (21.7) 50 (21.7) 52 (21.7)

108 54 (21.7) 52 (21.7) 52 (21.7) 52 (21.7)

64

100
100 33 (3.9) 40 (5.6) 47 (7.6) 47 (7.6)

104 52 (21.7) 52 (21.7) 63 (21.7) 63 (21.7)

108 46 (21.7) 52 (21.7) 52 (21.7) 62 (21.7)

10−2

100 33 (3.8) 33 (3.8) 40 (5.6) 47 (7.6)

104 52 (21.7) 52 (21.7) 52 (21.7) 58 (21.7)

108 52 (21.7) 46 (21.7) 52 (21.7) 48 (21.7)

10−4

100 33 (3.9) 33 (3.8) 33 (3.8) 40 (5.6)

104 50 (21.7) 46 (21.7) 50 (21.7) 52 (21.7)

108 52 (21.7) 52 (21.7) 50 (21.7) 52 (21.7)

128

100
100 32 (3.8) 39 (5.4) 46 (7.7) 45 (7.7)

104 51 (21.7) 52 (21.7) 61 (21.7) 59 (21.7)

108 51 (21.7) 50 (21.7) 50 (21.7) 54 (21.7)

10−2

100 33 (3.8) 33 (3.8) 39 (5.2) 46 (7.7)

104 48 (21.7) 45 (21.7) 52 (21.7) 58 (21.7)

108 50 (21.7) 52 (21.7) 50 (21.7) 52 (21.7)

10−4

100 33 (3.8) 32 (3.8) 33 (3.8) 39 (5.2)

104 44 (21.7) 52 (21.7) 52 (21.7) 52 (21.7)

108 50 (21.7) 48 (21.7) 48 (21.7) 50 (21.7)

constructed by using the technique outlined in Section 5, while the standard Jacobi
preconditioner is used in the second block of (4.4).

In all the experiments the domain Ω is unit square. We show numerical results
for four different combinations of boundary conditions, finite element spaces, and
preconditioners. The different combinations are presented as Case 1-4 in Table 5.
In Case 1 and 4 the statement Γd 6= ∂Ω means that Γd is taken as in Example
3.1, while problems with Γd = ∂Ω are consider in Case 2 and Case 3. We compare
numerical results obtained by the two preconditioners with structure of the form
(4.6) and (4.4). The result of Theorem 4.2 suggests that preconditioners of the
form (4.6) are more robust than the ones of the form (4.4) in the case of Dirichlet
boundary conditions. In other words, we expect that the results of Case 2 are
more robust than the ones of Case 3. However, the system preconditioned with
a preconditioner of the form (4.4) has only one bad eigenvalue. Therefore, as in
Example 2.2, we can expect small differences in the number of iterations. Finally,



21

Table 7. Numbers of iteration of test cases in Table 5. (Ω = unit
square, partitioned into bisections ofN×N rectangles, convergence
criterion with relative residual of 10−6)

Case 1 Case 2 Case 3 Case 4

N N N N

κ α λ 32 64 128 32 64 128 32 64 128 32 64 128

100

100
100 33 33 32 29 29 29 29 29 29 34 34 34

104 52 52 51 46 46 46 66 45 44 60 61 60

108 52 46 51 46 46 45 44 44 43 60 61 60

10−4

100 33 33 33 29 29 29 29 29 29 34 34 34

104 50 50 44 46 46 44 66 44 44 60 60 60

108 54 52 50 46 46 45 45 44 43 60 60 60

10−4

100
100 43 40 39 39 38 36 39 38 36 46 43 40

104 52 52 52 46 46 45 68 44 44 60 61 60

108 54 52 50 46 46 45 66 44 43 60 60 60

10−4

100 33 33 32 29 29 29 29 29 29 34 34 34

104 52 46 52 46 46 45 66 44 42 60 60 60

108 52 52 48 46 46 45 44 44 43 60 61 60

10−8

100
100 47 47 46 42 42 42 42 42 42 52 52 52

104 65 63 61 61 59 58 60 58 57 73 73 72

108 52 52 50 46 46 45 44 44 43 60 60 60

10−4

100 47 33 33 29 29 29 29 29 29 34 34 34

104 65 50 52 46 45 45 66 44 43 60 60 60

108 52 50 48 46 46 44 44 44 40 60 60 60

10−12

100
100 47 47 45 42 42 42 42 42 42 52 52 52

104 63 63 59 58 58 57 57 56 56 72 72 72

108 62 62 54 58 58 50 57 56 54 72 72 71

10−4

100 43 40 39 39 38 36 37 38 36 47 43 40

104 52 52 52 46 46 44 66 44 44 60 61 60

108 52 52 50 46 45 44 44 43 43 60 61 60

in Case 4 we use the MINI element instead of the Taylor–Hood element in order to
show that our results are robust with respect to the choice of finite element spaces,
as long as they fulfill the assumptions of the theory. In most of the examples the
parameters λ, α and κ are taken to be constants. However, in the last experiment,
presented in Table 8, κ varies with the spatial variable.

In Table 6, we present numbers of iteration of Case 1. The results are fairly
robust with respect to parameter changes and mesh refinements. To compare ro-
bustness of preconditioners of all the cases, we present numbers of iteration for all
the different four cases in Table 7. As expected, the results of Case 2 are slightly
better than the ones of Case 3, in particular for N = 32. Although there are no
remarkable differences in the presented results, in the full numerical results which
are not included here, the results for Case 3 shows that this method sometimes need
about 30 − 45% more iterations than those of Case 2. In Case 4 we use the MINI
element instead of the Taylor-Hood element. Although the numbers of iteration
are larger than those for the Taylor–Hood element, the results are still quite robust
with respect to changes of parameters. As the final experiment, a model problem
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Table 8. Numbers of iteration and condition numbers of Case 1 (cf.
Table 5) with nonconstant κ. (Ω = unit square, partitioned as bisections
of N × N rectangles, Ω1 = {(x, y) : 0 ≤ x ≤ 1, 1/4 ≤ y ≤ 3/4}, κ = 1
on Ω \ Ω1, convergence criterion with relative residual of 10−6)

κ on Ω1

N α λ 10−2 10−4 10−6 10−8 10−10

32

100
100 34 (4.5) 42 (6.1) 46 (7.4) 46 (7.5) 46 (7.4)

104 54 (21.7) 52 (21.7) 56 (21.7) 65 (21.7) 61 (21.7)

108 54 (21.7) 54 (21.7) 46 (21.7) 52 (21.7) 55 (21.7)

10−2

100 33 (3.8) 33 (3.8) 34 (4.4) 42 (6.1) 46 (7.4)

104 52 (21.7) 48 (21.7) 50 (21.7) 53 (21.7) 56 (21.7)

108 52 (21.7) 52 (21.7) 50 (21.7) 52 (21.7) 46 (21.7)

10−4

100 33 (3.8) 33 (3.8) 33 (3.8) 33 (3.8) 34 (4.5)

104 52 (21.7) 52 (21.7) 52 (21.7) 52 (21.7) 52 (21.7)

108 52 (21.7) 52 (21.7) 50 (21.7) 53 (21.7) 50 (21.7)

64

100
100 34 (4.5) 39 (5.4) 44 (7.4) 46 (7.5) 46 (7.5)

104 52 (21.7) 52 (21.7) 55 (21.7) 63 (21.7) 60 (21.7)

108 52 (21.7) 46 (21.7) 46 (21.7) 50 (21.7) 51 (21.7)

10−2

100 33 (3.8) 33 (3.8) 34 (4.4) 39 (5.4) 45 (7.4)

104 46 (21.7) 52 (21.7) 52 (21.7) 52 (21.7) 51 (21.7)

108 48 (21.7) 52 (21.7) 52 (21.7) 52 (21.7) 52 (21.7)

10−4

100 33 (3.8) 33 (3.8) 33 (3.8) 33 (3.8) 34 (4.4)

104 52 (21.7) 52 (21.7) 52 (21.7) 52 (21.7) 52 (21.7)

108 52 (21.7) 52 (21.7) 52 (21.7) 52 (21.7) 46 (21.7)

128

100
100 34 (4.4) 37 (5.0) 44 (7.2) 46 (7.5) 44 (7.5)

104 50 (21.7) 48 (21.7) 49 (21.7) 56 (21.7) 61 (21.7)

108 50 (21.7) 50 (21.7) 52 (21.7) 50 (21.7) 47 (21.7)

10−2

100 33 (3.8) 32 (3.9) 34 (4.4) 37 (5.0) 44 (7.1)

104 50 (21.7) 46 (21.7) 50 (21.7) 52 (21.7) 49 (21.7)

108 52 (21.7) 52 (21.7) 50 (21.7) 52 (21.7) 50 (21.7)

10−4

100 32 (3.8) 33 (3.9) 33 (3.8) 33 (3.9) 34 (4.4)

104 52 (21.7) 50 (21.7) 52 (21.7) 49 (21.7) 46 (21.7)

108 52 (21.7) 50 (21.7) 48 (21.7) 52 (21.7) 50 (21.7)

with nonconstant κ is considered. We assume that κ is small on

Ω1 = {(x, y) : 0 ≤ x ≤ 1, 1/4 ≤ y ≤ 3/4} ⊂ Ω,

and κ = 1 on Ω \ Ω1. The numerical results in Table 8 are fairly robust for mesh
refinements and changes of parameters, including high contrasts of κ.

7. Conclusion

We have studied parameter-robust discretizations and construction of precon-
ditioners for Biot’s consolidation model. To apply the framework of [25] we have
proposed a new three-field formulation of the Biot system. We have showed that
preconditioners based on mapping properties and parameter-dependent norms are
robust with respect to variations of the model parameters, choice of finite element
spaces satisfying the proper stability condition, and the discretization parameters.
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In particular, the variations of parameters in our consideration cover large shear
and bulk elastic moduli, small hydraulic conductivity, small time-step, including
the ranges of interest in geophysics and computational biomechanics applications.
Furthermore, our theoretical results are confirmed by a number of numerical ex-
periments.
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