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Abstract— A recently proposed public key cryptosystem
based on Chebyshev polynomials suggests a new approach
to data encryption. But the security of the cryptosystem
has not been investigated in depth, for lack of an appro-
priate analysis method. In this paper, a new representation
of Chebyshev polynomial is introduced to study security
issues of the cryptosystem. The properties of Chebyshev
polynomial sequence are presented, and their impact on
the cryptosystem are discussed. Finally some principles for
parameter selection for the cryptosystem are proposed. The
methodology used in this paper is supposed to offer a useful
means for future researches on this topic.

Index Terms— Chebyshev polynomial sequence, period, sym-
metry, cryptanalysis, security

I. INTRODUCTION

Since Diffie and Hellman [1] presented the conception
of public key encryption in 1976, various public key
cryptosystems have been proposed. Those systems depend
on certain difficult problems to protect data from being
recovered by eavesdroppers. For example, the security of
RSA cryptosystem [2] and that of Rabin cryptosystem [3]
depend on the intractability of large integer factorization,
and the security of Elgamal encryption algorithm [4]
depends on the intractability of discrete logarithm prob-
lem. All the three cryptosystems employ the semigroup
property [5]:

(Xp)q = Xpq (mod n)

A necessary condition for these cryptosystems is that the
exponentiation operation Xp must be a one-way function.

Taking advantage of the semigroup property of Cheby-
shev polynomials in real field, a public key cryptosystem
was proposed [6], in the assumption that the computation
of Chebyshev polynomial in real field is a one-way
function. But it was soon found the private key can be
quickly recovered from the public key, using trigono-
metric function substitution [5], [7]. In other words, the
one-way condition is not satisfied in such cryptosystem.
To resist this attack, some references recommended to
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encrypt the public key in transformation process [8],
[9], but the security of such a cryptosystem depends on
another totally different encryption algorithm, and the
problem of Chebyshev polynomials itself had not been
solved.

In another more feasible approach, the definition of
Chebyshev polynomials was expanded from real field
to finite field, while the similar encryption operation
is performed [10]–[12]. To analyze the security of this
cryptosystem, the sequence composed by Chebyshev
polynomials over finite field(called Chebyshev polyno-
mial sequence in the following discussions) needs to
be investigated. Using matrix representation of Cheby-
shev polynomial, the period of Chebyshev polynomial
sequence is proved to be factor of p + 1 or p − 1
[10]. Furthermore, reference [13] gave out the distribution
density of these periods, after studying the generating
polynomial of Chebyshev polynomial sequence. But as
these two methods can not determine the minimal period
of a certain sequence, after initial value x and prime p
are given, they are unable to find a sequence with large
period. Another analysis strategy is to convert the present
problem to another equivalent one, while the latter has
been intensively studied for a long time. For example,
Lima et al. [14] presented a generalized cosine substi-
tution for Chebyshev polynomials over finite field, and
proved that recovering the corresponding plaintext from a
given ciphertext involves discrete logarithm problem. In
[10] the transformation is made by hyperbolic function
substitution, and the same conclusion was drawn. While
some kinds of discrete logarithm problems can be solved
efficiently, it is necessary to construct a cryptosystem
whose corresponding discrete logarithm problem is in-
tractable. The substitution methods become inconvenient
in that question. Besides, as these methods study the secu-
rity of the cryptosystem based on either its corresponding
Chebyshev polynomial sequence, or its corresponding
discrete logarithm problem, none of them can explain the
relationship between these two forms.

In this paper, a new representation of Chebyshev
polynomials is introduced to study security problem in
the cryptosystem. Using that representation some new
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properties of Chebyshev polynomial sequence are found,
which can be used to reduce the time cost on exhaustive
attack. By that representation the cryptanalysis of the
encryption algorithm can also be converted to Generalized
discrete logarithm problem(GDLP) on a cyclic group. The
relationship between Chebyshev polynomial sequence and
the group is also presented, then some efficient algorithms
against the GDLP can be applied. To resist these attacks
some principles for parameter selection are proposed. The
methodology adopted in this paper is supposed to be
useful in the future researches.

II. CRYPTOSYSTEM BASED ON CHEBYSHEV

POLYNOMIALS OVER FINITE FIELD

Let n ∈ Z+ and x ∈ Fp
∗, the Chebyshev polynomials

over finite field are recursively defined as [12]:

Tn(x) = 2xTn−1(x) − Tn−2(x) (mod p) (1)

with n ≥ 2, and T0(x) = 1, T1(x) = x.
The Chebyshev polynomials over finite field have semi-

group property, i.e. for arbitrary r, s ∈ Z+ and x ∈ Fp
∗,

equation

Ts(Tr(x)) = Tsr(x) = Trs(x) = Tr(Ts(x)) (mod p)
(2)

holds.
Taking advantage of the semigroup property, an

Elgamal-like public key cryptosystem is constructed,
whose processes can be described as follows:

(1) Key pair generation:
Randomly select integers s ∈ Z+, and x ∈ Fp

∗,
where s �= 1, x �= 1, and compute

pk = Ts(x) (mod p)

Then s is private key and (x, pk) is public key.
(2) Message encryption

Assume Alice wants to send a message m to Bob.
The encryption process is:
(a) Alice randomly selects an integer r ∈ Zn and

r �= 1.
(b) Alice uses Bob’s public key to compute as

follows:

k1 = Tr(x) (mod p)

k2 = Tr(pk) (mod p)

c = m · k2 (mod p)

(c) Alice sends (c, k1)to Bob as the cipher.
(3) Message decryption

After receiving the cipher, Bob can decrypt it as
follows:
(a) Compute k2

′ = Ts(k1) (mod p)

(b) Compute m′ =
c

k2
′

(mod p)

since m′ = m, Bob gets the right message.
The cryptosystem runs on a prime finite field, as p is

requested to be a prime number. The RSA-like cryptosys-
tem proposed in [10] and [11] does not work on the same
kind of field, so its characteristics are different from the
former. In present paper it is not discussed.

III. PROPERTIES OF CHEBYSHEV POLYNOMIAL

SEQUENCE

In the three processes of this cryptosystem, the most
operations are done on Chebyshev polynomial sequence.
Hence its properties have significant influence on the
security of the cryptosystem, and need to be investigated
in details. For this purpose, a new representation of
Chebyshev polynomial is introduced by the following
proposition.

Proposition 1: The Chebyshev polynomial can be rep-
resented with the following expression:

Tn(x) =
(x +

√
x2 − 1)n + (x−

√
x2 − 1)n

2
(mod p)

(3)

Proof: The Chebyshev polynomial can be rewritten
as

Tn(x) = (λ1 + λ2)Tn−1(x)− λ1λ2Tn−2(x) (mod p)

where λ1 + λ2 = 2x (mod p), and λ1λ2 = 1 (mod p),
i.e.

{
λ1 = x±

√
x2 − 1 (mod p)

λ2 = x∓
√

x2 − 1 (mod p)

Notice T0(x) = λ1λ2 (mod p) and T1(x) =
λ1 + λ2

2
(mod p), then we can get the formula of general term of
Tn(x):

Tn(x) =
λn

1 + λn
2

2
(mod p)

i.e.

Tn(x) =
(x +

√
x2 − 1)n + (x−

√
x2 − 1)n

2
(mod p)

Based on representation (3) the following important
properties of Chebyshev polynomial sequence can be
proved.

Property 1: The p-th element of Chebyshev polyno-
mial sequence is x, i.e. Tp(x) = x (mod p).
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Proof: Using equation (3), the expression of Tp(x)
can be transformed as follows:

Tp(x)

=
(x +

√
x2 − 1)p + (x−

√
x2 − 1)p

2

=

∑p
i=0

(
p
i

)
xi(
√

x2 − 1)p−i +
∑p

i=0

(
p
i

)
xi(−

√
x2 − 1)p−i

2

=

∑(p−1)/2
k=0

(
p
2k

)
x2k(
√

x2 − 1)p−2k

2

+

∑(p−1)/2
k=0

(
p

2k+1

)
x2k+1(

√
x2 − 1)p−(2k+1)

2

+

∑(p−1)/2
k=0

(
p
2k

)
x2k(−

√
x2 − 1)p−2k

2

+

∑(p−1)/2
k=0

(
p

2k+1

)
x2k+1(−

√
x2 − 1)p−(2k+1)

2

=

∑(p−1)/2
k=0

(
p

2k+1

)
x2k+1(

√
x2 − 1)p−(2k+1)

2

+

∑(p−1)/2
k=0

(
p

2k+1

)
x2k+1(−

√
x2 − 1)p−(2k+1)

2

=

(p−1)/2∑
k=0

(
p

2k + 1

)
x2k+1(

√
x2 − 1)p−(2k+1) (mod p)

When 0 ≤ k < p−1
2 ,

(
p

2k+1

)
is exactly divisible by p,

in other words
(

p
2k+1

)
= 0 (mod p). When k = p−1

2 ,(
p

2k+1

)
= 1. Hence the expression of Tp(x) can finally be

simplified as

Tp(x) = xp = x (mod p)

Property 2: If Chebyshev polynomial sequence has no
period of p + 1, it must have period of p− 1.

Proof: First, Chebyshev polynomial sequence has
period n if and only if Tn(x) = 1 (mod p) and
Tn+1(x) = x (mod p). By the means applied in proof of
Property 1, the expression of Tp+1(x) can be simplified
as:

Tp+1(x) = (x2 − 1)
p+1
2 + x2 (mod p) (4)

or another form

Tp+1(x) =
√

(x2 − 1)p+1 + x2 (mod p)

It is easy to find both x2 − 1 and −(x2 − 1) are square
roots of (x2 − 1)p+1. As there are at most 2 different
square roots for any element in a prime finite field,
x2 − 1 and −(x2 − 1) represent all possible square roots
of (x2 − 1)p+1, including the case when x = 1. So all
possible values of Tp+1(x) can be represented as:

Tp+1(x) = ±(x2 − 1) + x2 (mod p)

When Tp+1(x) = 2x2 − 1, from Eq.1 it is known

Tp−1(x) = 1 (mod p)

When Tp−1(x) = 1 (mod p) and Tp(x) = x (mod p),
p−1 is a period of Chebyshev polynomial sequence. For
the same reason, when Tp+1(x) = 1 (mod p), the value

of Tp+2(x) must be x, so p+1 is a period of that sequence.
Therefore, either p− 1 or p + 1 must be a period of the
sequence.

While p + 1 or p − 1 is one period of Chebyshev
polynomial sequence, it is not necessarily the minimal
period. In fact the minimal period may be less than p+1
or p − 1. In order to distinguish them in the following
discussions, we call period that equals to p ± 1 as the
ordinary period(denoted by Tord), for that kind of period
must exist in the sequence. Comparatively, the minimal
period(denoted by Tmin) can take more possible values.
The relationship between these two periods is stated in
Property 3.

Property 3: The minimal period of Chebyshev poly-
nomial sequence is a factor of its ordinary period. i.e.
Tmin|Tord.

Proof: When Tmin is equal to 1 or Tord, the
proposition is true.

When 1 < Tmin < Tord, assume Tmin is not a
factor of Tord, then there must be two integers q and r,
where 0 < r < Tmin, satisfying Tord = q · Tmin + r.
Because Tmin is the minimal period of the sequence,
it is true that Tn·Tmin

(x) = 1 and Tn·Tmin+r(x) �= 1,
where n is an arbitrary nonnegative integer. Let n = q,
we have Tq·Tmin+r(x) �= 1, i.e. TTord

(x) �= 1, which
is contradictory to the fact that Tord is a period of the
sequence. Hence Tmin must be a factor of Tord.

Property 4: The elements of Chebyshev polynomial
sequence distribute evenly symmetrically in a period.
i.e. Tnd+i(x) = T(n+1)d−i, where d is a period of the
sequence, and i is an integer satisfying 0 ≤ i < d.

Proof: According to Eq.1, when Tnd(x) = 1, the
addition of Tnd+1(x) and Tnd−1(x) is

Tnd+1(x)+ Tnd−1(x) = 2xTnd(x) = 2x (mod p) (5)

The multiplication of Tnd+1(x) and Tnd−1(x) can be
calculated as follows:

Tnd+1(x) · Tnd−1(x)

=
(x +

√
x2 − 1)nd+1 + (x −

√
x2 − 1)nd+1

2

·
(x +

√
x2 − 1)nd−1 + (x−

√
x2 − 1)nd−1

2

=
(x +

√
x2 − 1)2nd + (x −

√
x2 − 1)2

4

+
(x +

√
x2 − 1)2 + (x−

√
x2 − 1)2nd

4

=
T2nd(x) + T2(x)

2

=
T2(Tnd(x)) + T2(x)

2
=x2 (mod p) (6)

From (5) and (6) the values of Tnd+1(x) and Tnd−1(x)
can be determined:

Tnd+1(x) = Tnd−1(x) = x (mod p)
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Then according to relation

Tnd+2(x) = 2xTnd+1(x)− Tnd(x) (mod p)

and the reverse form

Tnd−2(x) = 2xTnd−1(x)− Tnd(x) (mod p)

we have

Tnd+2(x) = Tnd−2(x) (mod p)

Thus the conclusion can be proved inductively.
From the proof it can be seen when Tn(x) = 1

(mod p) the values of Tn−1(x) and Tn+1(x) must be
x. So we can say that the sequence has period of n if and
only if Tn(x) = 1 (mod p).

Property 5: If there are two integers a, b satisfying
Ta(x) = Tb(x) (mod p), then a = ±b (mod Tmin).

Proof: By the way used in proof of Property 4,
the following simultaneous equations about Ta−1(x) and
Ta+1(x) can be drawn:⎧⎨
⎩

Ta−1(x) + Ta+1(x) = 2xTa(x) (mod p)

Ta−1(x) · Ta+1(x) =
T2(Ta(x)) + T2(x)

2
(mod p)

Suppose the solutions of that simultaneous equations are
λ1 and λ2, then the values of Ta−1(x) and Ta+1(x) may
be {

Ta−1(x) = λ1 (mod p)

Ta+1(x) = λ2 (mod p)

or {
Ta−1(x) = λ2 (mod p)

Ta+1(x) = λ1 (mod p)

For Tb(x) = Ta(x) (mod p), Tb−1(x) and Tb+1(x) must
take these two values as well. So we have{

Ta−1(x) = Tb−1(x) (mod p)

Ta+1(x) = Tb+1(x) (mod p)

or {
Ta−1(x) = Tb+1(x) (mod p)

Ta+1(x) = Tb−1(x) (mod p)

In the former case, it is easy to know Ta+i(x) = Tb+i

(mod p), where i is an arbitrary integer in Fp. Let i =
−b (mod p), then we have Ta−b(x) = 1 (mod p), so
a−b is a period of the sequence, i.e. a = b (mod Tmin).
Similarly, if the latter case is true, a = −b (mod Tmin).

Property 6: If Tmin is even, the elements of Cheby-
shev polynomial sequence distribute oddly symmetrically
in range of nTmin

2 ∼ (n+1)Tmin

2 , i.e.
T nTmin

2 +i
(x) = −T (n+1)Tmin

2 −i
(x) (mod p), where i is

an integer and 0 ≤ i < Tmin

2 .
Proof: When Tmin is even, we have

Tmin(x) = 1 = 2T Tmin
2

2(x) − 1 (mod p)

As the minimal period of the sequence is Tmin, the value
of T Tmin

2

must be −1. Similar to the proof of Property
4, we have the following equations

T Tmin
2 +1

(x) + T Tmin
2 −1

(x) = −2x (mod p) (7)

T Tmin
2 +1

(x) · T Tmin
2 −1

(x) = x2 (mod p) (8)

From (7) and (8) the values of T Tmin
2 +1

(x) and
T Tmin

2 −1
(x) can be drawn

T Tmin
2 +1

(x) = T Tmin
2 −1

(x) = −x (mod p)

Notice T Tmin
2 −1

(x) = −T1(x) (mod p) and
T Tmin

2

(x) = −T0(x) (mod p). Then according to
recursive relation

T2(x) = 2xT1(x) − T0(x) (mod p)

and the reverse form

T Tmin
2 −2

(x) = 2xT Tmin
2 −1

(x)− T Tmin
2

(x) (mod p)

we have

T2(x) = −T Tmin
2 −2

(x) (mod p)

By induction it is easy to known Ti(x) = −T Tmin
2 −i

(x)

(mod p). According to period property and even symme-
try property of Chebyshev polynomial sequence, it can be
proved T nTmin

2 +i
(x) = −T (n+1)Tmin

2 −i
(x) (mod p).

Property 7: If there are two integers a, b satisfying
Ta(x) = −Tb(x) (mod p), then Tmin must be even, and
a = Tmin

2 ± b (mod Tmin).
Proof: First, we can prove that if there is an integer

n satisfying Tn(x) = −1 (mod p), then Tmin must
be even, and n = Tmin

2 (mod Tmin). Suppose Tmin

is odd. Since Tn(x) = −1 (mod p), from T2n(x) =
T2(Tn(x)) = 2T 2

n(x) − 1 = 1 (mod p) we know 2n
is a period of the sequence, so Tmin|2n. When Tmin

is odd, Tmin|n. It means n is also a period of the se-
quence, which is contradictory with the known condition
that Tn(x) = −1 (mod p). So Tmin must be even.
Since Tn(x) = −1 = T Tmin

2

(x) (mod p), according

to Property 5 n = ±Tmin

2 (mod Tmin), so n = Tmin

2
(mod Tmin).

The remainder part of the proof is similar to that in
Property 5, and is omitted.

Property 8: When n is even, Tn(x) = Tn(−x)
(mod p); otherwise when n is odd, Tn(x) = −Tn(−x)
(mod p).

Proof:

Tn(−x)

=
[(−x) +

√
(−x)2 − 1]n + [(−x)−

√
(−x)2 − 1]n

2

=
[−(x−

√
x2 − 1)]n + [−(x +

√
x2 − 1)]n

2
(mod p)
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When n is even

Tn(−x)

=
(x−

√
x2 − 1)n + (x +

√
x2 − 1)n

2
=Tn(x) (mod p)

Otherwise, when n is odd

Tn(−x)

=
−(x−

√
x2 − 1)n − (x +

√
x2 − 1)n

2
=− Tn(x) (mod p)

An example of Chebyshev polynomial sequences on
F53 is shown in Fig 1. From the Figure it can be seen
that the value of Chebyshev polynomial T53(x) equals
to x, in all sequences. Corresponding to x = 6, 19, and
27, the period of Chebyshev polynomial sequence is 54,
13, and 6 respectively. Each of them is exactly divisible
by the ordinary period of the sequence, either 52 or 54.
The even symmetry distribution exists in every sequence,
while the odd symmetry distribution can only be observed
in sequence whose minimal period is even.

0 20 40 53 60 80 100 120
0

10

20

30

40

50

60

n

T
n(x

)

x=6 x=19 x=27

Figure 1. Chebyshev polynomial sequences

IV. CRYPTANALYSIS OF THE CRYPTOSYSTEM

In this section, some attack methods against this cryp-
tosystem are analyzed. The properties of Chebyshev
polynomial sequence presented in Section III can be
used to reduce the time cost on these attacks. To make
the cryptosystem secure some principles for parameter
selection must be adopted.

A. Exhaustive search attack

To recover the private key from the public key, eaves-
droppers can exhaustively search an integer s′ in range
of 0 ∼ p until it satisfy Ts′(x) = pk. Taking advan-
tage of period property and even symmetry property of
Chebyshev polynomial sequence, such a value will be
found before Tmin

2 is enumerated, so the factual search
range is 0 ∼ Tmin

2 . Whether it is the right private key
or not, it can be used to decrypt the cipher. When odd
symmetry exists in that sequence, the expected time of

such attack can be further reduced, by searching a key
s′ satisfying Ts′(x) = ±pk in range of 0 ∼ Tmin

4 . If s′

satisfies Ts′(x) = pk is found, it can be used to decrypt
the cipher directly:

m′ =
c

k2
′

=
m · Tr(Ts(x))

Ts′(Tr(x))
=

m · Tr(Ts(x))

Tr(Ts′(x))

=
m · Tr(Ts(x))

Tr(Ts(x))
= m (mod p)

then m′ is the right message. When s′ satisfies Ts′(x) =
−pk, according to Property 6 the decryption result will
be:

m′ =
c

k2
′

=
m · Tr(Ts(x))

Ts′(Tr(x))
=

m · Tr(Ts(x))

Tr(Ts′(x))

=
m · Tr(Ts(x))

Tr(−Ts(x))
=

m · Tr(Ts(x))

±Tr(Ts(x))
= ±m (mod p)

m′ may be the right message, or the inverse element of
m. The exact value of m is relevant with the value of
r selected by the sender, but it can be easily decided by
other means.

If the exact value of the minimal period is known, and
s′ satisfies Ts′(x) = −pk, according to Property 7 an
equivalent private key can be calculated as follows:

s =
Tmin

2
− s′ (mod Tmin) (9)

Therefore, a specific exhaustive attack method against
the cryptosystem can be described as follows:

(1) Get the public key (x, pk);
(2) Through exhaustive search, find an equivalent pri-

vate key s′, satisfying

Ts′(x) = ±pk (mod p)

(3) Get the cipher (c, k1) from the sender;
(4) If Ts′(x) = pk (mod p), let s = s′; Else if

Ts′(x) = −pk (mod p), and Tmin is known, let
s = Tmin

2 − s′ (mod Tmin). Then use s to decrypt
the cipher:

k2
′ = Ts(k1) (mod p)

m′ =
c

k2
′

(mod p)

m′ is the right message.
(5) In other cases, use s′ to decrypt the cipher:

k2
′ = Ts′(k1) (mod p)

m′ =
c

k2
′

(mod p)

and then pick up the right message from the set of
{m′,−m′}, by other means.

This method can also be used to find the equivalent
value of parameter r that selected by sender in encryption
process. If it was found, the message can also be got from
the cipher. The necessary information for such attack is
the public key pk and the cipher (c, k1). The complexity
of this kind of attack is O(Tmin). In order to make this
attack impracticable, the minimal period of the Chebyshev
polynomial sequence must be large enough.
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B. Convert to GDLP

In [14] the trigonometry functions in finite fields are
used to convert the computation of private key from
public key to discrete logarithm problem. G. J. Fee and
M. B. Monagan [10] give a more simple process for
such a conversion, using hyperbolic function substitution.
The corresponding discrete logarithm problem is treated
in group Fp

∗ or Fp2
∗, which means one must search

private key among p or p2 candidates. However, in some
circumstances, one could search the private key in smaller
space.

Proposition 2: The problem of finding private key
from public key in the cryptosystem can be converted
to a GDLP on a group G, whose order is Tmin.

Proof: Assume Tn(x) = y. From Eq.3 it can be
expressed as follows:

λn
1 + λ−n

1

2
= y (mod p)

where λ1 = x +
√

x2 − 1. Solving the equation we can
get

n = logλ1
y ±

√
y2 − 1

= logx+
√

x2
−1 y ±

√
y2 − 1 (mod Tmin) (10)

If x +
√

x2 − 1 ∈ Fp, y +
√

y2 − 1 must be in the same
field, or else Eq.10 has no integer solution. In such case
the problem can be converted to a GDLP on group G,
where G is a subgroup of Fp

∗. By the same reason, if
x +
√

x2 − 1 is not in Fp, the problem is a GDLP on G,
where G is a subgroup of Fp2

∗.
As for the order of G, since Tmin is a period of

Chebyshev polynomial sequence, it is easy to know
(x +

√
x2 − 1)Tmin = 1. Assume there is an positive

integer r less than Tmin satisfying (x +
√

x2 − 1)r = 1,
then according to Eq.3 Tr(x) = 1, which is opposite to
the definition of Tmin. So Tmin is the minimal positive
integer n satisfying (x +

√
x2 − 1)n = 1, i.e. it is the

order of group G.
According to that proposition, when the minimal period

Tmin is known, the private key can be searched in a group
G with order of Tmin, instead of Fp

∗ or Fp2
∗. Various

techniques have been presented to solve the GDLP, such
as Baby-step giant-step algorithm [15], Pohlig-Hellman
algorithm [16], Index-calculus algorithm [17], and so on.
A brief survey about these techniques can be seen in
[18]. When Tmin is odd, from expression Tn(x) = y two
equivalent problems are acquired: n = logx+

√

x2
−1(y +√

y2 − 1), n = logx+
√

x2
−1(y −

√
y2 − 1). If Tmin is

even, the equivalent private key can also be get by solving
equation Tn(x) = −y, then another two equations n =
logx+

√

x2
−1(−y +

√
y2 − 1) and n = logx+

√

x2
−1(−y−√

y2 − 1) are added.
In some attack processes, when G is a subgroup of

Fp2
∗, it may be required that all relevant values are

represented with the same form. Suppose y +
√

y2 − 1 is
rewritten as the form of a + b

√
x2 − 1. To determined a

and b the following equation should be solved:

y +
√

y2 − 1 = a + b
√

x2 − 1 (mod p)

Since
√

x2 − 1 is not in Fp, we have a = y and
b =

√
(y2 − 1)(x2 − 1)−1. Hence the solution of that

problem is equivalent to solve

n = logx+
√

x2
−1(a + b

√
x2 − 1)

C. Example

In this subsection, an example of Baby-step giant-step
algorithm is given to illustrate the usage of period and
symmetry properties of Chebyshev polynomial sequence
in a cryptanalysis process. The Baby-step giant-step al-
gorithm is describe as follows [15]:

Algorithm IV.1 Baby-step giant-step algorithm
Require: A generator α of a cyclic group G of order n,

and an element β ∈ G
Ensure: The discrete logarithm logα β

1. Set m = �n	.
2. Construct a table with entries (j; αj) for 0 ≤ j < m.
Sort this table by second component.
3. Compute α−m and set γ ← β.
4. For i from 0 to m− 1 do the following:

4.1 Check if γ is the second component of some
entry in the table.

4.2 If γ = α then return n = im + j.
4.3 Set γ ← γ · α−m.

If the algorithm is used directly, parameter m in step 1
should be set to �Tmin	. Let α = x +

√
x2 − 1, and γ is

either y +
√

y2 − 1 or y −
√

y2 − 1. The actual average
running time of this algorithm is relevant with the choice
of γ. If in fact logα γ < Tmin

2 , it needs 5
√

Tmin

4 group
multiplications on average. Otherwise if logα γ > Tmin

2 ,
the average number of required group multiplications is
7
√

Tmin

4 .
In our implementation, to even the running time both

y +
√

y2 − 1 and y −
√

y2 − 1 will participate in the
comparison process. In such case the smaller private key
will be found firstly. Because it is just required to search
the private key in range of 0 ∼ Tmin

2 , the parameter m

can be set to
√

Tmin

2 , so the memory cost on the table
constructed in Step 2 is saved. The average number of
required group multiplications is

√
2Tmin.

As an example, let x = 5, p = 103, and the value of
Chebyshev polynomial y = 91. We want to get an integer
n satisfying Tn(x) = y. First the question is converted
to a GDLP in a group. The generator of the group is
x+
√

x2 − 1 = 5+
√

24, and its powers are y±
√

y2 − 1 =
91 ±

√
(912 − 1)(52 − 1)−1

√
52 − 1 = 91 ± 97

√
24.

The minimal period is Tmin = 104, which is the order
of the group. Using Baby-step giant-step algorithm the
logarithm log5+

√

24(91±97
√

24) is computed as follows:

1. Set m← �
√

104
2 	 = 8.
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2. Construct a table whose entries are (j, αj) for 0 ≤
j < 8. For convenience denote the power αj by the form
of aj+bj

√
24. These entries are shown in Table I. Table II

is resulted from Table I with the entries sorted by aj .

TABLE I.
αj

j 0 1 2 3 4 5 6 7
aj 1 5 49 73 63 42 48 26
bj 0 1 10 99 53 19 34 12

TABLE II.
αj (SORTED)

j 0 1 7 5 6 2 4 3
aj 1 5 26 42 48 49 63 73
bj 0 1 12 19 34 10 53 99

3. Compute α−m = (5 +
√

24)8 = 6 + 17
√

24.
4. Compute γ1 = β1 · α

−mi and γ2 = β2 · α
−mi, until

one of them equals to anyone in Table II. This yields
Table III and Table IV.

TABLE III.
γ1 = β1α−mi

i 0 1 2 3 4
ai 91 55 54 78 58
bi 97 69 10 51 87

TABLE IV.
γ2 = β2α−mi

i 0 1 2 3 4
ai 91 7 96 12 48
bi 6 38 38 6 34

In Table IV, βα−4m = 48+34
√

24 equals to the value
with α6 in Table II, so the private key n = im + j =
4× 8 + 6 = 38 (mod 104).

In fact, as Tmin is even, odd symmetry can be used to
find private key more quickly. In Step 4 −γ1 and −γ2

can be added to compare with elements in Table II. If
−γ1 = αmi or −γ2 = αmi, then the right private key
can be calculated by relation (9). In this example it can
be found 55+69

√
24 of Table III is the opposite number

of 48+34
√

24 in Table II. So the value of n′ is mi+ j =
8 × 1 + 6 = 14 (mod 104), then n = Tmin

2 − n′ =
104
2 − 14 = 38 (mod 104).

V. PRINCIPLES OF PARAMETER SELECTION

As mentioned before, the security of the cryptosystem
is relevant with its corresponding Chebyshev polynomial
sequence, whose characteristic is in turn decided by
parameters x and p. This section will further discuss
the impact of these parameters on the security of the
cryptosystem, and propose some principles for parameter
selection.

A. Security in different fields

The cryptanalysis of the cryptosystem can be converted
to solving GDLP in a group G, where G is either a
subgroup of Fp

∗, or a subgroup of Fp2
∗. In different

circumstances, the complexity of these attack algorithms
is shown in Table V.

The results come from reference [15], where Tmin

or p − 1 can be factorized as p1
e1p2

e2 ...pr
er .The Index

calculus method is implemented in form of number field
sieve method. With Pohlig-Hellman algorithm the val-
ues of Tmin and pis are not the same under different
circumstances, but the complexity is in the same level.
The complexity of attack algorithms against Elgamal
cryptosystem is also given as a reference.

Before further comparison, two states should be made.
First, it is not a necessary condition that Tmin equals to
p ± 1, but is the best case from view of security. For
convenience of following discussion, suppose Tmin take
the maximum value, i.e. Tmin = p± 1. Second, when G
is subgroup of Fp2

∗, the basic multiplication arithmetic of
the group is composed of 5 integer multiplications, which
has direct influence on the time cost of cryptanalysis
methods.

Therefore, when G is subgroup of Fp
∗, both the

complexity of and the time cost of cryptanalysis against
that cryptosystem are no more than that of Elgamal
cryptosystem, so it is of little value in practice. On the
other hand, when G is subgroup of Fp2

∗, and exhaustive
search attack, Baby-step Giant-step algorithm or Pohlig-
Hellman algorithm is applied, even the complexity of
cryptanalysis is in the same level, its time cost is greater
than that against Elgamal cryptosystem. As for the Index
calculus algorithm, the cryptanalysis algorithm must be
performed in Fp

∗ or Fp2
∗. Hence its complexity is more

than that against Elgamal cryptosystem, which means the
cryptosystem can resist against Index calculus algorithm
more effectively. So the cryptosystem should work on
Fp2

∗ to achieve the best security.

B. Prime

The complexity of exhaustive attack is O(Tmin) and
that of Baby-step giant-step attack is O(

√
Tmin). To resist

these attacks the minimal period Tmin of the Chebyshev
polynomial sequence must be large enough, which means
prime p must be large enough.

The GDLP problem is on subgroup of Fp2
∗ if and

only if The ordinary period of the Chebyshev polynomial
sequence is p + 1, which can be deduced from the
following proposition.

Proposition 3: The Chebyshev polynomial sequence
has ordinary period p−1 if and only if

√
x2 − 1 is in Fp;

when Tmin > 2, the Chebyshev polynomial sequence has
ordinary period p+1 if and only if

√
x2 − 1 is not in Fp.

Proof: If
√

x2 − 1 = 0, Tmin = 1, p − 1 is an
ordinary period of the sequence.
If
√

x2 − 1 ∈ Fp and
√

x2 − 1 �= 0, then x2 − 1 is a
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TABLE V.
COMPLEXITY OF DIFFERENT CRYPTANALYSIS METHODS

Elgamal cryptosystem This cryptosystem(G ∈ Fp
∗) This cryptosystem(G ∈ Fp2

∗)
exhaustive search O(p − 1) O(Tmin) O(Tmin)
Baby-step Giant-step algorithm O(

√
p − 1) O(

√
Tmin) O(

√
Tmin)

Pohlig-Hellman algorithm O(
Pr

i=1
ei(lg(p − 1) +

√
pi)) O(

Pr
i=1

ei(lgTmin +
√

pi)) O(
Pr

i=1
ei(lgTmin +

√
pi))

Index calculus algorithm Lp( 1

3
, c) Lp( 1

3
, c) Lp2 ( 1

3
, c)

quadratic residue modulo p, so the Legendre symbol [15](
x2 − 1

p

)
= (x2 − 1)

p−1
2 = 1 (mod p)

which means

Tp+1(x) = (x2 − 1)
p+1
2 + x2

= (x2 − 1)
p−1
2 · (x2 − 1) + x2

= 2x2 − 1 (mod p)

so Tp−1(x) = 1, and p− 1 is the ordinary period of the
sequence. By the reverse deduction it can be proved that,
if p− 1 is the ordinary period of the sequence,

√
x2 − 1

must be in Fp. The first half of this proposition is proved.
In the case of Tord = p + 1, when Tmin = 1 or

Tmin = 2, p − 1 is also the ordinary period of the
sequence,

√
x2 − 1 is in Fp; otherwise Tord = p + 1 is

equivalent to
√

x2 − 1 �∈ Fp, and the proof is similar.
According to the proposition, the ordinary period of

Chebyshev polynomial sequence should be factor of p+1.
That state results in the succeeding discussion about the
selection of p.

If all the factors of Tmin are small, then the Pohlig-
Hellman algorithm can be used to break the cryptosystem
with complexity of O(log2(Tmin)) [16]. So Tmin should
have at least one large prime factor. In present circum-
stance, p + 1 should satisfy the same condition.

The odd symmetry can reduce the key space of the
cryptosystem by half. When Tmin = p + 1 and p+1

2 is
odd, then the odd symmetry can be avoided. Therefore,
to achieve the greatest key space p + 1 should have only
one factor of 2.

Therefore, the recommended prime p should satisfy:
(1) it is large enough; (2) p + 1 has at least one large
prime factor; (3) p + 1 has only one factor of 2.

C. Initial value

After prime p is selected, a proper x should be chosen
to guarantee: (1) the Chebyshev polynomial sequence is
on Fp2

∗; (2) the minimal period of the sequence equals
to p + 1.

For the first condition, one only need to find a x that
x2−1 is a quadratic nonresidue, i.e. the Legendre symbol(

x2 − 1

p

)
= −1 (mod p)

For the second condition, in order to generate a se-
quence with the minimal period of p + 1, parameter
x must be a “prime generator”. The method to find a

prime generator for Chebyshev polynomial sequence is
analogous to that for a cyclic group. The process can be
described as Algorithm V.1:

Algorithm V.1 Find a prime generator for Chebyshev
polynomial sequence
Require: Prime number p
Ensure: A generator x

1. Choose a random element x in Fp
∗, where x �= 1.

2. Suppose p+1 = pe1
1 pe2

2 ...pek

k where pi is prime. For
i from 1 to k do the following:

2.1 Let n =
p + 1

pi
, Compute y = Tn(x).

2.2 If y = 1 then go to step 1.
return x.

When p and x is chosen properly, the cryptosystem can
resist various attacks against the GDLP. Notice the even
symmetry still exists in such a sequence, so the factual
private key space of the cryptosystem is p+1

2 .

VI. CONCLUSION

In this paper a new representation of Chebyshev poly-
nomial is introduced to study the security of a public key
cryptosystem. First the properties of Chebyshev polyno-
mial sequence are investigated. Based on these properties
two kinds of attacks are analyzed. It is found if parame-
ters are not selected properly the cryptosystem could be
broken easily. To make the cryptosystem secure, some
principles for parameter selection have been proposed.
Some other problems stated in previous references are not
mentioned in this paper, but they can also be studied by
the representation. For example, as a Chebyshev polyno-
mial sequence is corresponding to a group whose order is
known, the period distribution density of the sequence can
be proved. Therefore the method adopted in this paper is
supposed to be useful to future researches on this topic.
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