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Abstract: This paper proposes a SVM (Support Vector Machine) parameter 
selection based on CPSO (Chaotic Particle Swarm Optimization), in order to 
determine the optimal parameters of the support vector machine quickly and 
efficiently. SVMs are new methods being developed, based on statistical learning 
theory. Training a SVM can be formulated as a quadratic programming problem. 
The parameter selection of SVMs must be done before solving the QP (Quadratic 
Programming) problem. The PSO (Particle Swarm Optimization) algorithm is 
applied in the course of SVM parameter selection. Due to the sensitivity and 
frequency of the initial value of the chaotic motion, the PSO algorithm is also 
applied to improve the particle swarm optimization, so as to improve the global 
search ability of the particles. The simulation results show that the improved CPSO 
can find more easily the global optimum and reduce the number of iterations, which 
also makes the search for a group of optimal parameters of SVM quicker and more 
efficient. 

Keywords: Support vector machine, parameter selection, particle swarm 
optimization, chaotic optimization. 

1. Introduction 

In the 1990ies, Vapnik and other researchers proposed a new and efficient method 
of machine learning using support vector machines [1-2], and the study of statistical 
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learning theory. Machine learning methods generally have the shortcomings of 
being small-sample, nonlinear, over-learning and of high dimension, as well as 
having local minima. The Support Vector Machine (SVM), with a high actual 
promotional value, has the advantage of minimizing the structure risk to solve the 
problem in insufficient presence of the above-mentioned algorithms [3]. With the 
development of artificial intelligence and machine learning, SVMs play a very 
important role. They have been applied in classification, time prediction function 
estimation and other areas and have attracted the attention of many researchers. 

In general, a SVM algorithm is a constrained convex quadratic optimization 
problem solving tool [4]. Before solving optimization problems, it is necessary to 
select certain parameters, such as the regularization coefficient C, the core width 
parameter a and the insensitive coefficient. SVM parameter selection criteria 
include the two aspects of optimization and parameter adjustment approach [5]. 
Usually, several experiments are used for the determination of SVM parameters, in 
order to collect large amounts of data from a number of experiments and to 
therefore select from optimal parameters. However, this method is not efficient and 
it is not able to select the optimal parameters. While determining the parameters of 
SVM, the gradient descent method can be used to save time. However, this method 
can easily fall into the problems of local optimal algorithms [6], with a high 
sensitivity initial value and linear search process. Compared with the above-
mentioned method, using a genetic algorithm to determine the parameters of a SVM 
not only saves time in parameter selection, but also weakens the negative impact of 
selecting the initial value [7]. Nevertheless, this algorithm has also the obvious 
shortcoming that it is not able to easily achieve its goal, because a crossover or a 
mutation in a corresponding manner should be designed according to some 
optimization problems [8]. 

This paper uses the improved chaotic particle swarm optimization to optimize 
the parameter selection of SVMs. A SVM training algorithm is a quadratic 
programming tool to solve the problem [9]. Firstly, the nuclear width parameter and 
the regularization coefficient of the optimization problem and other parameters 
need to be determined. The appropriate selection of the parameters is of great 
importance to the performance of SVMs. In this paper the chaotic particle swarm 
optimization algorithm is used to select the parameters of SVMs, while improving 
the algorithm by the initial value of the chaotic motion sensitivity and ergodicity. 
The experimental results show that a set of optimal parameters of SVMs can be 
quickly found by using the improved chaos particle swarm optimization algorithm. 
Compared with a genetic algorithm, this algorithm has, among the other properties, 
the following advantages: it requires only a small amount of calculation, it is easy to 
implement and highly efficient. 

2. Support vector machine analysis  

Support vector machines were first proposed in the 1990-ies by V a p n i k, L e v i n 
and L e C u n [10], as a method based on statistical theory. They are new, machine 
learning algorithms, based on structural risk minimization principle. This results in 
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a hyper plane, thereby enabling the spacing between the two sides to maximize 
data. This method has been widely used in practice, such as pattern recognition and 
intelligent modeling and has also good generalization ability; thus it is receiving 
increasingly widespread attention from scholars [11]. 

SVM algorithms are achieved by the following formula. Here ( )•φ  represents 
a non-linear transformation. That is, the input space is mapped to a corresponding 
high-dimensional space. At the same time, in this high-dimensional space, a linear 
function of  ( ) ( )Tf x w x bφ= +  is used to fit the sample data. 

Suppose that 
, , 1n

i ix R y R i∈ ∈ = ,..., l. 
Considering the ease of the observed sample, in the above formula Rn     

represents the input space. This allows a linear regression SVM to be simply treated 
as a constrained quadratic programming optimization problem: 
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In the formula, C > 0 is a function of the balance between complexity and loss of 
errors. The partial derivative of the optimization problem (1) *,,, iib ξξω  Lagrange 
function, with respect to the variable of 0: the available optimization problem (1) 
dual problem has as its solution a linear combination of kernel functions. It has the 
following form: 
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The formula is the learning machine (SVM) of a regression function, that is, 
the training samples, where the expression coefficient can never be zero. 

3. Particle swarm optimization and chaos optimization 

The Particle Swarm Optimization (PSO) algorithm is proposed by scientists on the 
basis of the results of bird population studies. It depends on the biological 
population model proposed in 1995 [12], which is currently of widespread concern 
to scholars. The basic idea is that, among a group of flying birds, each bird can be 
regarded as a volume and quality of excluding particles. The particles have a certain 
speed in the search space flight, while they also, based on their experience and 
collective flight, continuously change their speed and position. It is assumed that 
the particle swarm in a dimension D space search will have an iterative formula, 
[13], such as  
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In it, the position of the particle i is denoted by ),...,,( ,2,1, Diiii xxxx = , the 

speed is denoted by ),...,,( ,2,1, Diiii vvvv = , the best position is denoted as 
),...,,( ,2,1, Dgggg pppp = , i = 1, 2, …, m represents the particle label, d = 1, 2, …, D 

represents the vector dimension, k represents the k iteration, and ω  is the inertia 
weight, which is a constant; rand denotes a random number between 0 and 1, and C1 
and C2  are constants between 0 and 2 and represent the acceleration factor. 

[ ], min max,i dx x x∈ ,  min max,x x  depending on the objective function and the search 
space, is set to a different constant value. Simultaneously, to ensure that the 
particles can be carried out within the search space flight, where necessary, 

max max
, ,k

i d d dv v v⎡ ⎤∈ −⎣ ⎦ ,  max
dv   represents the maximum distance between which the 

particles can fly,  max max , 0.1 0.5d dv k x k= ⋅ ≤ ≤ . 
Keeping (3) in the same position iterative formula, then improving the speed 

iterative formula, leads to the compression factor model of PSO algorithm 
convergence: 
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where χ  represents the convergence factor. If 21 ϕϕϕ +=  and 05.221 == ϕϕ , it 
follows that  729.0,1.4 == χϕ . Compared with the speed iteration, the formula 
has not been improved. This model is the same as the parameter value of 

729.0== χω , 49445.1121 =⋅== ϕχcc  before the improvement. 
Since PSO primary particles are randomly selected, it is difficult to ensure that 

the selected particles are evenly distributed throughout the solution space. The 
method is therefore prone to local optimum conditions, greatly reducing the 
efficiency of the algorithm. Some particles may fly to outside the solution space, so 
this part of the particle boundary constraints is set, which defaults to the border in 
the solution space. Furthermore, when there is a part of the particles that may reach 
the boundary position [14], its speed is very small, so it has no capacity 
optimization. Considering the population of PSO algorithm, for a single particle, 
there is a lack of variation mechanism. It is therefore possible to consider the use of 
the characteristics of chaotic motion to improve the PSO.  

Chaos is a nonlinear deterministic system. It may not be repeated through all 
states within the agreed space. In this paper it is applied to reset the initial and 
boundary particle position of PSO algorithm. Here the logistic is chosen to generate 
the chaos variable, which is mapped to 

(5)   ( )1= 1 ,r r r
j j jc c cμ+ −   1, 2, ,r = K  
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where μ  is a control parameter, jc  is chaotic variable and  0 1jc≤ ≤ , 1, 2, , ,j D= K   
D represents the particle position dimension, and r represents the serial number of 
the position of the particle which will be reset.    

In the above formula, if  μ  = 4, then in a completely chaotic state, at the same 
time, jc  between 0 and 1, to traverse. According to the initial value of the 
sensitivity of the chaotic motion, D has been randomly selected from different 
initial values between 0 and 1 (0, 0.25, 0.5, 0.75 and 1 cannot be selected) and then 
substituted into the formula. This gives the first variation of the particle position 

11
1 ,..., DCC , the position of the second variation of the particles 22

1 ,..., DCC , and so 
on. The chaotic variable r

jC  is mapped into the corresponding optimization space 

variable r
jx , as shown in the following formula:  

(6)   .)( minmaxmin r
jjjj

r
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Here ( maxmin , jj xx ) is the range of variation of the boundary values of r
jx . 

4. Improved CPSO algorithm and SVM parameter selection 

The basic idea of the improved Chaotic Particle Swarm Optimization (CPSO) 
algorithm is that, in order to combine with the characteristics of the chaotic motion 
characteristic, the chaotic motion is used to select the initial particle position. Then, 
for particles in the search space to reach the border, the same chaos method is used 
to initialize. The algorithm can have the characteristics of randomness of a PSO 
algorithm, and can improve the population diversity and search characteristics [15]. 

These improvements of the CPSO algorithm are used to determine the 
parameters of the SVM. Among them, parameter ε  supports the amount of vector 
sparsity control. Selecting the parameter will affect the accuracy of the estimated 
regression model. Depending on the reality of the situation, this can be set, so that 
all that is needed is the kernel width parameter a  . The regularization coefficient  
c  is then set to the optimization target amount. This leaves the particle as ix , its 
dimensionality as D = 2, and the particle swarm location as [ ]iii cax ,= . 

From the above description, information can be obtained for each particle, 
which corresponds to a coordinate position of SVM parameters. Due to the use of 
real-value coding, the only solution region can be random initialization. The k-fold 
cross-validation error is then regarded as a fitness function of the PSO [16], wherein 
j times give the generalization error by the following formula: 
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In the formula, )( ixf
∧

is the output of the SVM prediction, )( ixf is the target 
output value, and jl  is  the number of the j sample set, 1, ,j k= … . 

The above process is repeated k times. Then after k times iterations, the 
generalization error obtained is subjected to averaging, resulting in a k-fold cross-
validation error. The number of iterations, k, is selected as 5, then after the end of 
the iteration, a set of optimal parameters of the SVM can be obtained. 

A CPSO algorithm flowchart using SVM parameter selection is shown in  
Fig. 1. 

The specific steps are as follows: 
Step 1. m is the number of the particles in a particle group; 

maxminmaxmin ,,, vvxx  are particle position and velocity boundary values, M are the 

iterations; and 0
iv  is the random initialization particle velocity. Formula (6) is 

initialized with the initial position of the particle swarm chaos variable: 
{ }0 0 0, , 1, , .i i ix a C i m= = K  

Step 2. The training samples are divided into five subsets that do not intersect 
1 5, ,S SK   and  k = 0. 

Step 3. The current optimal parameter k k k
i i ix a C⎡ ⎤= ⎣ ⎦  is taken for training 

on SVM, while the 5-fold cross-validation error is an ke−  calculation. 
Step 3.1. j = 1. 
Step 3.2. jS  is taken as a test set; the other sub-sets as a training set. 

Step 3.3. Formula (7): The generalization error k
je  of jS  can be calculated, 

then j = j+1. The steps are followed up to Step 3.2 until j = 5. 
Step 3.4. The five generalization errors obtained in the previous steps are 

averaged, by which the 5-fold cross-validation error ke−  can be drawn. 
Step 4.  ke−  represents the fitness value, when individuals and groups are 

under the best conditions: ke− , ip  and gp  respectively of the position. k = k+1 is 

taken, according to Formula (4), the position  k k k
i i ix a C⎡ ⎤= ⎣ ⎦  is arrived at, and the 

particle velocity k
iv  is updated. 

Step 5. If some particles reach the border position maxmin , xx  it must be re-

initialized, with a predetermined speed in [ ]min max,v v  by Equation (6). 
Step 6. Returning to Step 3, iterations k = M have been made, up to the end. 
Step 7. From gp  the global optimal value ],[ Cax =  is obtained; 

corresponding to the fitness value of the best fitness. 
 



 146

 
 
Fig. 1. The flow chart of the parameters selection of SVM with CPSO algorithm 
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5. Simulations and analysis  

To verify the performance of the proposed algorithm, the following function is 
sampled to generate one-dimensional sample data [17]: 

(8)   ( )
( )( )0.05 0.5

2.186 12.864, 10 2,
4.246 , 2 0,

10 sin 0.03 0.7 , 0 10,x

x x
f x x x
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⎧ − − − ≤ ≤ −
⎪

= − ≤ ≤⎨
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where x is as a starting point to −10, 0.005 gradually increases until the value is 
obtained as 10. So far, 400 pairs of samples will be obtained (with the one boundary 
point removed). The odds are training samples, the even numbered ones are test 
samples. 

The computer simulation platform was configured for Intel Core i7 quad-core 
processor, with 4 GB of memory, 3.2 GHz frequency, on Windows7 operating 
system and development environment for Matlab12.0. 

The SVM expression (2) in the kernel function is taken as a Gaussian kernel, 
and it uses a SMO algorithm [18] to question (1) dual problem solving and 
accuracy; calculated by the following formula: 
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If the insensitive loss coefficient is set toε =0.05, the population size is taken 
as m = 20, the width of nucleus a in [0.001, 1], the regularization coefficient C in  

[1, 15], the maximum speed limit type maxmax
dd xkv

−

= , 
−

k =0.2,  and the maximum 

number of iterations is taken as M = 30, according to the above parameters of PSO 
set by the CPSO algorithm section, this gives SVM parameters of iterative 
optimization. 

As shown in Fig. 2, PSO is optimization of the individual particles’ 
convergence process. Here it was used to improve the chaotic PSO. PSO 
optimization is repeated 10 times (10 times in average), as the iterations 
convergence is shown in Fig. 3. As it can be seen, the convergence of iterations will 
determine both the offline optimization method and the convergence time. When 
there are just a few iterations, the convergence time will be reduced accordingly. 

For particles reaching the boundary, the CPSO algorithm uses the chaotic 
variable part to re-initialize the particle positions, in order to obtain good results. As 
shown in Fig. 3, compared with the PSO algorithm, this method reduces the number 
of iterations and makes it easy to select the global optimum. The diversity of the 
population and particle search properties have also been improved. The CPSO 
algorithm, using the SVM parameters selection experiment was repeated 3 times to 
obtain the best set of parameters and has the following adaption: 
[ ] [ ], = 0.075, 9.75Cσ . This group, used as an optimization problem (1), shows the 
dual problem of the parameters; in defining the selection of parameters other than 
worth, the generalization error is smaller. It can be seen that the improved chaotic 
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particle swarm optimization algorithm can search for a group of optimal parameters 
of a SVM.    

 

   
          Fig. 2. The convergence process of the single              Fig. 3. Convergence of two PSO  
                             particle optimization                                                      algorithms 

6. Conclusion   

SVMs are new and developing methods, based on statistical learning theory. An 
SVM training algorithm is a quadratic programming technique to solve a problem. 
In SVM solving process, firstly, the nuclear width parameter and the regularization 
coefficient of the optimization problem and other parameters need to be determined. 
The selection of the appropriate parameters will directly affect the performance of 
the SVM. In the course of SVM parameters selection, a CPSO algorithm is 
proposed to improve the traditional PSO algorithm with the sensitivity and 
characteristics of the initial value of the chaotic motion. The experimental 
verification shows that a set of optimal parameters of SVM can be quickly found 
with the improved CPSO optimization algorithm. 

This SVM parameter selection method is a method of offline optimizing. 
Online SVM parameter optimization methods are chosen for further study of our 
work. 
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