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Parameter Selection Strategies 
in Finite Element Model 
Updating 
In FE model updating, as in any identification procedure, we select some parameters 
in the model, and try to fine-tune them to minimize the discrepancy between the model 
predictions and the measured data. The paper compares the performance of the 
generic element matrices, recently introduced by the authors, with other selection 
strategies for finite element model updating. The updated models obtained from these 
methods are compared with the measured data and rated according to their ability 
to produce the measured data within and beyond the frequency range used in the 
updating, and more importantly, according to their ability to predict the effect of 
design changes. 

1 Introduction 
Updating procedures are concerned with the reconstruction 

of a dynamical model, near to the finite element model of a 
structure, which predicts the measured response of the structure. 
In model updating we have a system, and we have modeled it, 
but our predictions do not agree with experiment. In effect what 
we want to do is to change the model, a little, so that it will 
model the behavior of the system. The updating is thus a system 
(or model) identification problem: the problem is not an identi
fication problem in the widest sense; we have a model which 
predicts results near, in some sense, to experimental values; we 
just need to fine-tune it. Here we are concerned exclusively 
with small undamped vibration of a conservative system; such 
systems form the basis, i.e., the starting point, for most research 
in the field. 

One of the fundamental questions in updating relates to the 
criteria for allowable changes in the initial mass and stiffness 
matrices. In early papers, for example Baruch and Bar Itzhack 
(1978), Berman (1979), Berman and Nagy (1983), Baruch 
(1984), any symmetric changes in the matrices were allowed. 
This may give a model consistent with the test data, but the 
updated matrices are fully populated and the structure of the 
updated model may not mirror the way the elements are con
nected together. This may not matter if the original matrices 
are densely populated, but will matter if they are sparse. To 
keep the resemblance between the structure of the model and 
the structure of the object, other researchers, Kabe (1985), 
Caesar and Peter (1987), Kammer (1988), Smith and Beattie 
(1991), retained the pattern of zeros of the FE model and 
allowed symmetric changes only in the non-zero entries of the 
model matrices. Caesar et al. and Smith et al. have also paid 
attention to the conflicting requirements of definiteness and 
sparsity, particularly for inconsistent data. 

A third approach exemplified by Hall, Calkins and Sholar 
(1970), Tlusty and Ismail (1980), Chen and Graba (1980), 
Hoff and Natke (1989), Lim (1990), O'Callahan (1990) is to 
adjust the physical parameters, e.g., the flexural rigidities, 
masses or stiffnesses, and keep the (numerical) matrices that 
arise from integration of assumed element shape functions un
changed. As long as the physical parameters remain positive, 
the model will have the correct definiteness properties; by the 
way in which it is constructed, it has the same connectivity 
properties as the original model. In practice however, this class 
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of models is too restrictive, and performs badly, especially for 
data which is inconsistent with the assumed model, as is always 
the case in practice. If the initial FE model neglects some effects, 
such as the shear deformation or coupling between bending and 
twisting modes, then the method will be unable to correct the 
FE model. 

The authors have recently proposed a fourth approach, in 
which they introduce generic element mass and stiffness matri
ces. The essence of the idea may be presented by considering 
the various element mass and stiffness matrices which has been 
proposed for the simplest structural entity, the rod element. 

Consider a straight, thin rod of length L in longitudinal vibra
tion, having density p, cross-section A, and Young's modulus 
E. There is for example: 

(a) a lumped mass matrix, and a stiffness matrix based on 
assumed modes A'l = xlL, N^ = \ - xlL 

M ' mo K ' 
1 

- 1 

where /MQ = pAL, ka = EAIL. 
(b) a consistent pair based on Af, = xlL, N2 

1 

1 - x/L 

W = mo 2 r 
1 2 

, K ' = jfco 
1 

-1 

(c) a consistent pair based on Â i = cos^ 0, N2 
where 6 = -KXIIL, 

sin^ 9 

M ' = mo 3 

1 
r 
3 

, K ' = /to 
1 

-1 

1 

We may form other mass and stiffness matrices by choosing 
other assumed modes. But we can go even further and concen
trate our attention on the matrices M ' , K", and not suppose 
that they arise from some assumed modes. What criteria must 
such generic element matrices for the rod satisfy? M'̂  must be 
positive-definite and K ' positive semi-definite; K ' must have 
rigid body mode [1, 1]; M", K ' must reflect the fact that the 
rod element is symmetric about its mid-point, so that physically 
turning it around has no effect. We show in Ahmadian, Glad-
well, and Ismail (1994) that the generic mass and stiffness 
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Fig. 1 Frame structure and measured coordinates 

matrices for the rod may be satisfied by a single parameter S2 
(in the notation of that paper) and that 

where 

M ' = 

mo 
4 

mi 

Si), 

mn 
m\ 

K' = k 
1 - 1 

- 1 1 

4 
Si), k = koySl/4. 

Here y is related to the single non-zero eigenvalue of the equa
tion 

(K ' - XM'=)<^ = 0 

by X. = koy/mo- The values of ^2 corresponding to the case (a) , 
(b), (c) are 1, 1/V3, l/v2 respectively. 

In order to find a model of an extended rod to fit some 
behavioral data we divide it into generic elements and then use 
one of the many existing methods to choose the best values of 
the parameters to fit the data; we may assume that each element 
has its own value of mo, ko, S2, and y or that some or all 
elements have the same values of the parameters. This is the 
essence of the idea of generic elements. To generalize it we 
proceed as follows. 

A generic element is an object, a structural entity, whose 
motion is defined by a certain number, r, of degrees of freedom. 
It will have a mass matrix M", symmetric and positive definite 
and of order r. It will have a certain number, d ( s 6 ) , rigid 
body modes, and will have a stiffness matrix K", symmetric 
and positive semi-definite and of rank r — rf. If the element 
possesses certain symmetry properties, then its matrices will 
exhibit these properties. This appears to be the sum total of 
requirements for the generic element matrices. This means that 
any particular matrices derived by considering certain effects 
(e.g. shear, torsion and bending coupling, etc) in an element 
must fall into the general classes described above. However, in 
the updating procedure, we do not know all the effects which 
must be considered; there may even be some which have not 
been described in the existing literature. Therefore, instead of 
trying to incorporate all the possible effects into the matrices 
by introducing various physical parameters and finding the ap
propriate values of these parameters, we merely assume that 
the matrices for the elements belong to the generic families 
appropriate to these elements, and find the parameters needed 
to specify members in these families. In this way we can take 
account not only of those effects we are aware of, but also all 
the possible effects which can be accommodated by the matrices 
in the generic family. 

In broad terms, model updating has two parts: choosing the 
set of models among which the model is to be sought; choosing 
the parameter values specifying the model. This paper is con
cerned largely with the first part. The set of models based on 
generic elements is wide; in fact it is the widest possible set 
based on the chosen degrees of freedom. On the other hand, 

the set of models provides global mass and stiffness matrices 
which satisfy the required positivity and connectivity condi
tions; these are two of the requirements which have plagued 
updating methods for many years. 

In this paper we carry out a comparison between these four 
different strategies for selecting the updating parameters, by 
updating the FE model of a frame structure. The remainder of 
the paper is organized as follows. Section 2 provides a brief 
discussion of the formulation of generic element models for 
model updating. In Section 3 we compare the predictions of the 
initial FE model with the test results, and discuss the prepro
cessing of the test data. Finally in Section 4 we update the 
frame structure model using different methods and comment on 
the ability of each method to produce the test results, to predict 
the behavior of the system outside the frequency range used in 
the test, and to predict the effects of modifying the structure. 

2 Generic Element Models 

This section summarizes the analysis of Gladwell and Ah-
madian (1996) and generalizes the results given in Section 1 
for the rod element. We suppose that the element has r degrees 
of freedom; its free vibration is governed by 

(K'= - \,M')<^, = 0, / = 1, 2, . . . , r. (1) 

If the element has d •& (s rigid-body modes (^,)f, and r - d 
strain modes, we write the r X r matrix # ' as 

* " = [ < ^ i , <i>2, • •.(t>A4>d .< ,̂] = [ * « , $ . ] . 

where R and S denotes rigid-body and strain respectively. If 
the modes are normalized w.r.t. M", then 

^eTj^^^' = I, ^'^T^K"*' = A (2) 

where A ' = [0, 0, . . . 0, \,+u . ..XA = [0, A^], and 

K'<l}i = 0,i= 1,2, ...d, i.e. K'#R = 0. (3) 

If we knew M ' , K ' then we could find $ ' and A^ Thus for 
the simple lumped mass rod model (a) we have 

$« = 
1 

into 
A" = 

0 0 
0 Ikjma 

But we can reverse this procedure: if we know, or specify $ ' 
and A' then we can find M ' and K ' from Eq. (2) , thus 

M ' = $""'"$'' K"̂  = ^''-'^A'^*' (4) 

Note that we are still at the conceptual stage of model formation; 
* ' has nothing to do with observed models, but is simply a 
matrix of free vibration modes of a proposed generic element. 

The choice of <&̂  and A' for generic elements must conform 
to Eqs. (2) , (3). Thus if we are to form a generic element with 
r degrees of freedom and d rigid body modes, then we must 
choose d rigid-body modes (<^,)f, the positive eigenvalues 
(Xi)J+i and the corresponding eigen-modes (<^,)rf+i. Provided 

Table 1 Computed and measured naturai frequencies 

Mode 

No. 

1 

2 

3 

4 

5 

Natutal frequency (HZ) 

FE model 

255.8 

277.5 

581.3 

911.3 

1049.4 

Measured 

226.8 

275.2 

537.4 

861.5 

974.8 

error 

% 

12.8 

0.9 

8.3 

6.0 

8.0 
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Fig. 2 The measured and predicted FRF (6Z/6Z) 
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that $ ' is non-singular, the M" and K" constructed from (4) 
will have the required form, i.e. M" will be positive definite 
and K" will be positive semi-definite with rigid body modes 
{4>i)i. We will not actually use the matrix inversion shown in 
(4) to construct M ' and K' , as we will soon show. 

We are concerned with updating a given model, not with 
constructing a model ab initio. We will therefore assume that 
we have a model with element matrices Mo, KS and correspond
ing modes and eigenvalues #o and AQ, which we wish to up
date. We will do this by relating the new modes, ^', which we 
will choose, to the existing ones $o, i.e. 

^ ' S , (5) 

where S is some non-singular matrix. We will also have to 
choose the updated strain eigenvalues forming the diagonal ma
trix A^. 

The correspondence (5) is very general -too general for prac
tical updating- and we therefore restrict it. On physical grounds 
we now restrict S so that the number of rigid body modes 
remains the same, d, and the new rigid body modes are linear 
combinations of the original ones. Equation (5) now becomes 

[*0R, *05] = [*R, * s ] 
0 S, 

This means that the new strain modes may be combinations of 
all the original modes. Note that this will not interfere with the 
orthogonality of the new modes with respect to the new mass 
and stiffness matrices, because the new matrices M°, K" will 

Table 2 Natural frequencies of the updated models after convergence 
(Hz) 

Mode 

No. 

Rigid 

body 

modes 

1 

2 

3 

4 

5 

Predicted 

byFEM 

0 

0 

0 

255,8 

277.5 

581.3 

911.3 

1049.4 

Banich's 

Method 

0 

0 

0 

226.8 

275.2 

537.4 

911.3 

1049.4 

Changiiig 

non-zeios 

1197.6 t 

456.8 t 

206.7 

226.8 

275.2 

537.4 

548.3 

652.0 

Changing 

non-zeros 

+ rigid modes 

0 

0 

0 

226.8 

275.2 

537.4 

862.6 

897.6 

Measured 

0 

0 

0 

226.8 

275.2 

537.4 

861.5 

974.8 

be formed from Eq. (4) , which automatically imply the orthog
onality relations (2). 

We may further restrict S on symmetry considerations. If the 
initial model is governed by some symmetry group, then its 
modes $o will reflect the properties of the group. If the new, 
generic model retains this symmetry, then new modes in $ ' 
with a particular symmetry will be linear combinations of the 
old modes with the same symmetry; this will produce diagonal 
blocks in S. In particular, if the new and old models have the 
same center of mass and principal axes at the element level, 
then SR will be diagonal, i.e., rigid body modes will remain the 
same, apart from a constant; if they have the same mass and 
principal moments of inertia, then SR will be the unit matrix I,;. 

Inserting Eq. (5) into (4) we find 

M" = *s-''s^s*s"', K" = *r''s''A'^s*r'. 
Now using the fact that #S~' = *oMo we find 

(6) where 

M ' = M'o^'oM^fMt,, 

K' = M'o^os'K^lsM'o, 

M = S^S, "7( = SlA^Ss. 

(7) 

(8) 

Equations (7) and (8) show the terms which may be updated 
appear in two symmetric positive definite matrices M and ?{ of 
orders r and r — d respectively. These equations relate the mass 
and stiffness matrices of the generic element to those of the 
original model. 

To set up the generic elements in the approach described 
above, we started with the eigenvalue problem for the element; 
we coupled K ' and M ' . As an alternative, we may consider K ' 
and M ' separately, writing 

. 1 0 ' 

Fig. 3 The difference matrix /Co-/fBarach (modes 1 -3) 
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Table 3 Natural frequencies of the updated models after convergence 
(Hz) 

Mode 

No. 

Rigid 

body 

modes 

1 

2 

3 

4 

5 

Predicted 

byFEM 

0 

0 

0 

255.8 

277.5 

581.3 

911.3 

1049.4 

Physical 

Patametet 

0 

0 

0 

255.6 

277.4 

580.1 

911.6 

1043.2 

Nobari's 

Method 

102.5 t 

0 

67.6 

255.5 

277.0 

580.5 

905.1 

1040.6 

Measured 

0 

0 

0 

226.8 

275.2 

537.4 

861.5 

974.8 
Fig. 4 The relative changes in the norm of the element stiffness matri
ces, Least-Squares solution (modes 1-3) 

K' = UAU^= I \,.u,ur, 
i=d+1 

r 

where U and V are orthogonal matrices and 

U^*R = 0. 

(9) 

(10) 

(11) 

We may thus define a family by starting from some original 
model Ko and MS and defining the new U and V matrices by 

U = UoR, V = VoT, (12) 

where R, T are orthogonal matrices, and, if need be, by speci
fying new values of A = CKiYd+i, S = ((Ji)[. Thus 

K ' = UoRAR^Uj, 

M ' = VoTST'"Vj. 

(13) 

(14) 

Again, when the element belongs to some symmetry group, the 
eigenvectors u,, v,- reflect the symmetry properties of the group, 
and R, T are made up of diagonal blocks. 

To reduce the number of unknowns in the symmetric products 
RAR^ and TET'", we can update only the dominant modes of 
each matrix and keep the remainder unchanged. Ross (1971) 

Table 4 Natural frequencies of the updated models after convergence 
(Hz) 

Mode 

No. 

Rigid 

body 

modes 

1 

2 

3 

4 

5 

Predicted 

byFEM 

0 

0 

0 

255.8 

277.5 

581.3 

911.3 

1049.4 

LS 

Solution 

0 

0 

0 

226.8 

275.2 

537.4 

861.9 

918.8 

Adjusted 

Solution 

0 

0 

0 

226.8 

275.2 

537.4 

862.5 

968.3 

Measured 

0 

0 

0 

226.8 

275.2 

537.4 

861.5 

974.8 

has suggested that in modeling a dynamic system, with K and 
M, it is important to ensure that M and the flexibility matrix 
F are modeled correctly. Using Ross's concept at the element 
level, we therefore must correctly model the higher modes of 
M ' and the lower modes of K'. 

3 Experimental Case Study 
In order to assess the performance of different structural 

model updating strategies, we provide a comparison between 
these strategies when applied to updating the finite element 
model of an actual structure. 

The test structure used for the survey was required to be 
somewhat complicated without being unduly extensive. The 
design chosen was the in-plane welded frame structure illus
trated in Fig. 1. The frame contains four " L " shape joints and 
two " T " shape joints which are difficult to model. The frame 
is made of 25.4 mm (1 inch) square aluminum tubing with 2.38 
mm (ji inch) wall thickness. 

The modal analysis test was performed under free-free 
boundary conditions; the structure was suspended from coordi
nate 7 using a wire. An accelerometer was mounted at coordi
nate 1, and the structure was excited using a hammer at 13 
locations shown in Fig. 1. The first five strain modes of the 
structure were measured. 

The finite element model of the frame consists of 28 in-plane 
frame elements. The inplane frame element is a combination of 
a beam element and a rod element. The beam part is modeled 
using Euler-BernouUi beam theory. The displacement vector of 
the element is: 

Wi-i, L —— , L0i-u Wi,L-—, Ldi 
ax ax 

where w,-, dwi Idx and 0, are, respectively, the transverse dis-

gjcsnent 

Fig. 5 The relative changes in the norm of the element stiffness matri
ces, Adjusted solution (modes 1 -3 ) 
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Fig. 6 FRF (6Z/6Z) of the test and Bamch's models 

placement, the bending slope and the twisting angle at the ("' 
node. L is the length of the element. 

The stiffness and consistent mass matrices used to develop 
the finite element model are: 

Ko = fco 

Mo mo 

420 

"12 6 
.4 

Sym. 

L 
156 22 

4 

Sym. 

0 
0 
r 

0 
0 
r. 

-12 
-6 
0 
12 

54 
13 
0 

156 

6 0 
2 0 
0 -r 

-6 0 
4 0 

r . 

-13 0 
-3 0 
0 r,l2 

-22 0 
4 0 

where mo and ko are the mass {pAL) and the flexural rigidity 
(EIIL') of the element, r = GJ,IEI is the ratio between torsional 
rigidity and flexural rigidity for unit length, and rg = JIAl} is 
the polar moment of inertia of the frame cross section non-
dimensionalized using the area of the cross section and the 
length of the element. 

Table 1 and Fig. 2 show that there is a considerable discrep
ancy between the FE and test results. The measured mode 
shapes exhibited little scatter in the phase angle; they were 
converted to real modes by taking the modulus of each mode 
shape coefficient and multiplying it by the sign of its real part. 
These real modes were used to update the FE model. 

One of the major difficulties in model updating is the incom
patibility between the number of degrees of freedom of the 
finite element and test models. It is impractical to acquire data 
from all the degrees of freedom of the structure which are used 
in the finite element model. There are two ways of overcoming 
this difficulty: 

• reducing the size of the finite element model to fit the 
number of DOF used in the test, or 

• using the finite element model to obtain values for the 
components of the mode shapes which are not known 
from testing. This is called expanding the mode shapes. 

As a first step in the updating we examined the PE mass 
matrix. We expanded the mode shapes, supposing that we knew 
a part, <^5" of the ('* mode, and finding the remainder, (/)P*; by 
requiring 

{Ko ..Mo){^;;;} / = 1, . . . , 5 . (15) 

' 1 -0.0221 
1 

Sym. 
_ 

0.0207 
0.0036 
1 

0.0133 
-0.0001 
-0.0171 

1 

0.0105 
-0.0096 
-0.0022 
0.0064 
1 

where MQ and Ko are the mass and stiffness matrices of the FE 
model. We mass normalized the extended modes so formed and 
computed the generalized mass matrix, $^Mo$, for the first 
five expanded modes. We found 

# ^ M o * = 

We interpreted the near-orthogonality of the modes with respect 
to Mo as evidence that our measurements were accurate, and 
that Mo adequately represented the mass matrix of the structure. 

Having ascertained that Mo was adequate, we revised the 
way in which we extended the measured modes; we extended 
them so that the extended modes would be precisely orthogonal 
with respect to Mo, as follows. 

Denote the truncated measured modes by # = [<l>\^\ ..., 
<t>m^], and the corresponding truncated modes from the FE 
model by #o- Normalize columns of $ so that they have the 
same length as their analytical counterparts. 
Now find the orthogonal matrix R which approximately rotates 
# to #0 by taking 

mm 
R 

| |#R - $oll, Subject to R'^R = I. (16) 

100 200 300 400 500 
Frequency (Hz) 

600 700 

Fig. 7 FRF (6Z/SZ) of the test and Kabe's updated model 
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Fig. 8 FRF (6Z/6Z) of the test and our updated models 

R may be found by SVD: if 

then R = VU'' (Golub and Van Loan, 1991). 
Now we expand the measured modes i to full modes * by 

rotating the full FE modes #o with the matrix R: 

* (17) 

These new extended modes will be orthogonal with respect to 
Mo because 

^iVIo* = R^jMo^oR"^ = RIR'^ = RR"^ = I 

It is these expanded modes and the measured frequencies which 
are used for the model updating. 

4 Per formance of Updat ing Procedures 

In this section we update the stiffness matrix of the frame 
structure using the various methods: matrix updating; matrix 
updating maintaining the pattern of zeros in the model; physical 
parameter updating; using generic stiffness matrices. In all of 
these procedures the model parameters are adjusted by forming 
an equation error function using the first three quasi-measured 
modes; a set of linear equations is formed by rearranging the 
equation of motion and orthogonality requirements of the modes 
in terms of the updating parameters. When the number of pa
rameters is more than the number of equations, we adjust the 
model by making the minimum changes in the parameters, oth
erwise a Least-Squares solution is performed. We judge the 
performance of each method by its ability to reproduce the first 
three measured modes; to predict the fourth and fifth measured 
modes; and more importantly, by its ability to predict the modes 
of the structure when there is a design change. The latter crite
rion is to ensure that the model corresponds to a physical system. 

We identify the model of the test structure by an iterative 
procedure in which each iteration has two sub-steps: 

(a) use the current estimate of K, along with Mo to obtain 
the (pi using the analysis in Section 3. 

(b) use the obtained </>, to compute a new Estimate of K, 
using the analysis described before. 

In the first application of sub-step (a) we use the finite element 
model Ko. We found that all the procedures converged (in the 
sense that there was no further change) after 2 -4 iterations; we 
report results obtained after 5 iterations. 

4.1 Matrix Updating Metliod. Baruch and Bar Itzhack 
(1978) updated Ko by making the minimum symmetric changes 
in entries of the stiffness matrix so that the model was consistent 
with the test results, i.e., 

min | |Mo'" (K - Ko)Mo"'| |, 

subject to K # = Mo*A, S'^K* = A, and K = K^. 

The final equation in the procedure is a closed form solution 
for the updated stiffness matrix: 

K = Ko + A -h A ^ (18) 

where 

A = (I - Mo** ' ' /2) (Mo*A - Ko*)*' 'Mo. 

Table 2 shows the natural frequencies of the updated model 
after 5 iterations. The first three measured modes were used in 
updating; the fourth and fifth were predicted. Figure 3 shows 
the difference between the final updated stiffness matrix con
structed via Baruch's method, and the original finite element 
stiffness matrix. The differences are spread all over the stiffness 
matrix, and it is not possible to identify meaningful element 
stiffness matrices in the updated global stiffness matrix. 

We notice that except for the modes used in updating, Bar
uch's model has the same eigendata as the original finite element 
model. To see why in this example the updating procedure 
corresponds to a mixed eigenvalue problem, let us rewrite the 
objective function of the Baruch's method as 

10' 

fio' 

iio' 

a 
H. 

10' 

10-' 

10 

I • 1 •" 1 1 1 1 1 

r A 

• \.,̂ _^ A ;•. 1 
^"""^^"---.^ / \ i IK' 

' ^ ~ ' ' ~ " ' ' " * ^ - / ' ^ / ' 

1 1 1 1 1 •• 

100 200 300 400 500 
Frequency (Hz) 

600 700 

Fig. 9 FRF (6Z/6Z) of the modified structure and Baruch's modified model 
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Fig. 10 FRF (6Z/6Z) of the modified structure and the Kabe's modified model 

700 

IIMo'" (K - Ko)M„ 

= | |VAVT'-VoAoVJll 

where 

Vi = M i ' > ( , A = (\,)f=,, 

v„,. = M i ' ^ o , , A„ = (Xo,)fli, 

and Â  is order of the model. The extended measured mode 
shapes have the same range as their analytical counterparts, it 
follows that 

V = Vo 
R„. 0 
0 Q«-

where R„, and Qw-,„ are orthogonal rotation matrices. Now the 
objective function can be rewritten as 

mm Vn 
RmA„,R,„ 

L 0 

0 

Qw-mA/̂ I_„,Q -̂„, — A() 

Matrices A„, and R„, are known, thus the minimum of the above 
function is achieved by setting Q -̂m = I^-m and A,̂ ,̂,, = 
Ao^ _. This simply means that the updated model is consistent 
with the test results, and beyond that its eigendata is the same 
as that of the finite element model. 

We now update the stiffness matrix using the other matrix 
updating method. This method keeps the pattern of zeros in the 
updated stiffness matrix the same as finite element model. This 
was suggested by Kabe (1985) and others, see for example 
Caesar and Peter (1987), Kammer (1988), and O'Callahan 
and Wu (1991). There are 231 non-zero entries in the upper 
triangular of Ko while the number of equations formed using 
the equations of motion and orthogonality of the modes, for the 
three chosen modes, is 249; the procedure is over-determined. 
Table 2 shows the first 8 modes (3 rigid body modes, 5 others) 
of the updated model. The model reproduces the input data 
exactly, but produces results for the last two modes which show 
no correlation with the measurements, and in fact are worse than 
those obtained from original FE model. The stiffness matrix is 
indefinite and there are non-zeros and even imaginary frequen
cies instead of the required zeros corresponding to rigid body 
modes. 

The global stiffness matrix may be made positive semi-defi
nite by introducing the three rigid body modes as data, in addi
tion to the three measured modes. The results corresponding to 
this are shown in column 5 of Table 2. Still the predicted fifth 
frequency has no relation to the experimental value. A close 
inspection of the updated stiffness matrix shows that the model 
could be obtained by adjusting the parameters of a generic beam 

stiffness matrix and a generic rod stiffness matrix, with no 
couphng, at the element level. 

4.2 Physical Parameter Updating, In physical parame
ter updating methods it is assumed that the modeling is correct 
and the problem is just to find the correct numerical values that 
should be used in the finite element model. This corresponds 
to accepting the matrices arising from (numerical) integration 
of finite element shape functions and modifying only the physi
cal parameters EI/L^, GJ,IL in each element. Table 3 shows 
the results of updating using such a strategy. The updated model 
has the correct definiteness properties, but is little better than 
the original FE model in predicting the measured frequencies. 
The basic defect in the procedure is its inability to model the 
joints in the structure. 

The next method which we used to identify the stiffness 
matrix of the frame structure was the one proposed by Nobari, 
Robb and Ewins (1993); for convenience we shall call it No
bari's method. To increase the flexibility of the updating proce
dure, especially for the joints, they considered a separate modi
fication factor for each consistent degree of freedom involved 
in the element mass and stiffness matrices. 

As an example, for the stiffness matrix of a frame element, 
with an initial model 

EI 

L' 

12 6L 
4L'' 

Sym. 

0 
0 
r 

- 1 2 
-6L 

0 
12 

6L 
2L' 

0 
- 6 L 
4L' 

0 
0 

—t 

0 
0 

Kfi 

they selected four parameters /:,, k2, fe, kn and wrote, 

K« 

(19) 

+ ko 

+ k. 

0 0 
0 0 

0 

ym. 

1 
0 

Sym. 

0 
2 

Sym. 

0 
0 
0 

0 
0 
0 

-1 0 
0 0 
0 0 
1 0 

0 

0 
- 1 

0 
0 

0 0 
0 1 
0 0 
0 0 

1 

0 
0 
0 
0 
0 
0. 

1 
0 
0 

- 1 
0 

o" 
0 
0 
0 
0 
0. 

0 
0 
0 
0 
0 
0 
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Fig. 11 FRF (6Z/6Z) of the modified structure and our modified model 
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1. 

. (20) 

For the in-plane frame element (19) the parameters have the 
values 

k, = 
XlEI 

fe = 
(,EI 

h = 
2EI 

ki = 
EIr GJ, 

L 

For the present finite element model with 28 elements there are 
thus 4 X 28 = 112 unknowns to be identified. Table 3 illustrates 
the natural frequencies of the updated model via this method. 

The results show improvements in predicting the higher 
modes. But the updated model does not represent any physical 
system; it has an imaginary frequency and only one zero fre
quency, instead of the required three zero frequencies. This 
discrepancy arises at the element level; the beam part of the 
element does not have the correct two rigid body modes. For 
it to do so we must have 

2k, -h 
Sym. ki 

2h 

-LI2 
1 

LI2 
1 

= 0. 

This holds only if 

h = /t,L/2, h = kiL^G. 

This means that if we write ki = 12EIIL^ then we have 

(21) 

6 £ / 
h = 

2EI 

Thus the Nobari's model is a physically meaningful model only 
if it is the ordinary FEM model (19). 

To verify this statement we entered the three overall rigid 
body modes as data in Nobari's model and found that it pre
dicted the same results as those obtained by physical parameter 
updating, shown in the third column of Table 3. 

4,3 Generic Stiffness Matrices. We updated the stiffness 
matrix of the frame by modifying the eigendata of its element 
stiffness matrices as discussed in Section 2. Each element stiff
ness matrix has order six and rank three. In general, it may be 
defined using six parameters: 

K ' = UoRAR^Uj = Uo 
'^u k\2 ki} 

^22 ^23 

fes. 
VI 

where 

UĴ  
0 a 0 0 - a 0 

213 P 0 -20 0 0 
. 0 0 a 0 0 - a . 

a = \/2/2 

P = VlO/10 

The diagonal terms ^n, k22 and k,, represent, respectively, the 
effects of bending, shear and twisting modes in the element, 
while the off diagonal terms, ku, fcis, A:23, account for the cou
pling effects between these modes. The first strain mode of the 
element is symmetric, while the second and third modes are 
antisymmetric. Thus for any symmetrical frame element, i.e. 
not a joint element, k^ and k2j must be zero. Of the 28 elements, 
14 are joints, with 6 parameters ky each; 14 are symmetric, with 
4 parameters each; there are thus 140 parameters to be updated. 

We introduced only the first three quasi-measured modes 
into the identification procedure, and obtained a Least-Squares 
solution; the natural frequencies of the resultant model are 
shown in Table 4. The LS solution reproduces the correct rigid 
body modes. Also the other modes are much closer to the test 
results than those of previous models. This shows the impor
tance of proper selection of the updating parameters. 

To understand the results of the Least-Squares solution, we 
put the relative norm of the change (from the FE model to the 
final model) in stiffness of each element, ||AK'||/||Ko||, on top 
of the element in the frame structure as shown in Fig. 4. The 
Least-Squares solution indicates that the errors in the original 
model are located in the connecting beams as well as in the 
joints. 

There is an infinite number of stiffness matrices that repro
duce the specified modal data, and our unbiased LS solution is 
just one of them. To increase the confidence in the updating 
procedure outcome, we may use the available a priori knowl
edge about the structure in the updating and try to filter out the 
noise effects. One way of achieving this is to adjust the solution 
by requiring that similar elements have similar models, The 
elements can be grouped into three sets: T joint elements, L 
joint elements, and connecting elements. These requirements 
were inserted into the updating procedure and an adjusted solu
tion was obtained; the results are listed in Table 4. As expected, 
there is no change within the first three modes of the model 
after adjustment, but by looking at where mis-modeling in the 
original model occurred in Fig. 5, we notice that the adjusted 
solution and the Least-Squares solutions are different; the ad
justed solution locates the errors mainly in the joints. 

To assess the updated models further, we examined the recep-
tance (FRF at 6Z/6Z) synthesized from the updated models 
and compared it with the test data. The measured damping ratios 
are used in the computations of the receptances. Figures 6-8 
shows the computed FRF's (dotted lines), superimposed on 
the measured data (solid lines). 

Figure 6 shows that Baruch's model follows the three reso
nances very well, while the antiresonances are shifted to the 
right. The Kabe's updated model. Fig. 7, also follows the three 
resonance frequencies exactly, but the second antiresonance is 
shifted. Figure 8 shows that our updated model is the closest 
to the test data throughout the displayed frequency range. 

We introduced a design change into the test model, and evalu
ated these updated models in terms of the inaccuracy in pre
dicting the effects of the design change. The design change 
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involved adding a lumped mass at coordinate 6 and grounding 
the structure from this coordinate using a spring. This modifica
tion shifts the fourth mode of the structure below 700 Hz. 
Figures 9-11 show the predictions of different models superim
posed on the modified structure response. Both models resulted 
from matrix updating methods yield an inaccurate third mode. 
The fourth mode is in error in the modified Kabe's model and 
it does not appear in Baruch's model within the range of interest. 
Our model on the other hand gives much better prediction of 
the fourth mode, a slightly inaccurate third mode, and the exact 
first two modes. 

In summary, our model produces the original as well as the 
modified structure response more closely than the other methods 
investigated in this paper. 

5 Conclusion 

An experimental survey was performed to assess the abilities 
of different updating procedures. It was shown that the success 
of updating procedures in reconstructing a physical model con
sistent with the modal testing data depended on the way the 
model parameters were selected. Updating the model by ad
justing all the (non-zero) entries of the finite element model in 
an optimization procedure (matrix updating), yields a model 
consistent with the test data, but the model may not correspond 
to a physical structure. On the other hand, adjusting only the 
physical parameters does not produce a model consistent with 
the test data. The answer appears to lie in defining a generic 
model for each element and minimizing the error function by 
adjusting the acceptable model parameters. 
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