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Abstract

We consider the issue of wave-breaking closure for the well known Green-Naghdi model and attempt
at providing some more understanding of the sensitivity of some closure approaches to the numerical
set-up. More precisely and based on [16] we used two closure strategies for modelling wave-breaking of
a solitary wave over a slope. The first one is the hybrid method consisting of suppressing the dispersive
terms in a breaking region and the second one is an eddy viscosity approach based on the solution of
a turbulent kinetic energy model. The two closures use the same conditions for the triggering of the
breaking mechanisms. Both the triggering conditions and the breaking models themselves use case
depended / ad/hoc parameters which are affecting the numerical solution wile changing. The scope of
this work is to make use of sensitivity indices computed by means of Analysis of Variance (ANOVA)
to provide the sensitivity of wave breaking simulation to the variation of parameters such as the mesh
size and the breaking parameters specific to each breaking model. The sensitivity analysis is performed
using the UQlab framework for Uncertainty Quantification [24].
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1 Introduction

The solitary wave run up and run down over a slope is a classical hydrodynamic problem. It is highly
relevant for the investigation of the characteristics of Tsunami waves, since solitary waves model some of
the important aspects of Tsunami waves. We refer the readers to a series of works investigating the physics
of solitary waves’ propagation including shoaling, breaking and run up over a slope, by either an analytical
approach (e.g [35]) or by simulations , see e.g. [12, 13, 20, 21, 35, 41] and references therein. Among the
various available mathematical models for Tsunami waves’ propagation depth-averaged approaches enjoy a
wide popularity thanks to their ability to describe the physics with computational ease. The Boussinesq type
(BT) models, which typically incorporate frequency dispersion, have been also used to study the physics
of solitary waves, see for example [26, 28, 41]. Moreover, the propagation, breaking and run-up of solitary
waves is a classical test case for the validation and calibration of BT models, see [11, 31, 36, 37] among
others.

When using BT models, the treatment of wave-breaking necessitates deploying a wave-breaking closure
model/mechanism in the surf zone in order to account for the dissipative dynamics associated with it. We
can generally say that we can distinguish the wave-breaking treatment in three main categories. The hybrid
models, the roller models and the eddy viscosity models. The philosophy of the wave-breaking closures is
to mimic the energy dissipation either by adding extra terms to the equations (roller models and eddy vis-
cosity models) or by a local coupling of the dispersive propagation model with the shallow water equations.
In the later approach, the non linear shallow water equations (NSWE) are solved in the breaking regions,
with the breaking wave modeled as a shock so that the total energy is dissipated. We have to be aware that
all the wave-breaking closures introduce coefficients/parameters which need to be calibrated with experi-
mental/analytical data. We also have to keep in mind that the calibration methodology may be specific to
a particular set of equations. Extensive reviews on wave-breaking closures for BT models can be found
in [15, 16] and [6].

The work of Zelt [39] is one of the earliest works that included a simple eddy viscosity wave-breaking
mechanism into a Lagrangian finite element Boussinesq wave model to treat the wave-breaking, as well as
study the run-up and breaking of solitary waves. In that work, a simple parameter analysis and calibration of
the breaking model was performed, which in turn used the work of Synolakis [35]. Later, Grilli et al. [12]
examined breaking and non breaking waves on a range of slopes using a fully non-linear potential flow
model, with particular attention paid to the criterion that distinguishes breaking and non-breaking waves,
and breaking indices. Zhou et al. [41] performed a parametric investigation of breaking solitary wave over
fringing reefs using the weakly nonlinear weakly dispersive equations of Nwogu [27], and the hybrid wave-
breaking closure. A more recent work that also performs parametric studies of solitary wave propagation
and run-up over fringing reefs is the one of Ning et al. [26]. They use a fully non linear Boussinesq
wave model with the hybrid wave-breaking closure. However, they don’t account for the parameters of the
breaking model.

Recently in [16] the authors considered the issue of wave-breaking closure when using weakly dis-
persive Boussinesq propagation models. They focused on the enhanced equations of Nwogu [27] and the
enhanced equations of Green-Naghdi (GN) [5, 11], and considered two different wave-breaking closures.
The first one being the hybrid closure proposed in [37] and the second one being an eddy viscosity ap-
proach based an adaptation of the turbulent kinetic energy (TKE) proposed by Nwogu [29]. The results
clearly showed a reduced sensitivity to the mesh size when using the TKE eddy viscosity closure compared
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to the hybrid closure model. The above models also present a dependency on the parameters of the detec-
tion criteria, as well as on the coefficients of the TKE equation. The scope of this work is to quantify the
sensitivity of these parameters when using the Green Naghdi equations. To this end, the use of a set up
allowing full control of the initial/free stream data is of paramount importance to avoid uncertainties in the
incoming wave to interfere with those related to the breaking closure. This further justifies the choice of the
solitary wave as an incoming state, for its inherent simplicity and robustness.

The paper is organized as follows. Section 1 discusses briefly the propagation model, and its numerical
solution. Section 2 presents the two different wave-breaking closures used in this work. Section 3 discusses
briefly the sensitivity analysis model used to perform the parameter sensitivity analysis. The numerical
experiment and the results of the analysis, for both approaches, are presented in Section 4. Section 5
presents a summary of the results and a comparison of the two breaking models. The paper ends with
conclusions and an outlook of the future developments.

2 Green-Naghdi wave model and its numerical discretization

The GN equations model the propagation of weakly non-linear fully dispersive waves. The range of validity
of the model all the range of values of the nonlinearity parameter ε = A/h0 (amplitude over depth at rest),
but it requires that the shallowness parameter µ = h0/λ (depth at rest over wavelength) to be small, so that
µ4 effects are neglected. The equations have the form:

ht + (hu)x = 0 (1)

(hu)t + (hu2)x + ghηx + αT ((hu)t + (hu2)x + ghηx) = Fbr + Fm

h being the water height, u the velocity, d the still water level, b the topography function, and Fm is the
bottom friction. Fbr accounts for the extra breaking terms, activated only when an eddy viscosity breaking
closure is used. In the above system we have also defined W = gT (dηx) and R = hQ(u) , where T (·)
andR(·) are the linear operators given as:

T (·) = −1

3
h2(·)xx −

1

3
hhx(·)x +

1

3

[
h2x + hhxx

]
(·) +

[
bxhx +

1

2
hbxx + b2x

]
(·) (2)

Q(·) = 2hhx(·)2x +
4

3
h2(·)x(·)xx + bxh(·)2x + bxxh(·)(·)x +

[
bxxhx +

1

2
hbxxx + bxbxx

]
(·)2 (3)

Following our previous work, we discretize the equations in time with a splitting in which we start by
integrating the non-dissipative equations in the form proposed in [11] :

ht + (hu)x = 0

(hu)t + (hu2)x + ghηx = φ (4)

(I + αT )φ = W −R

and then we add an implicit update for the velocity of the form

hn+1un+1 = hnu∗ + ∆tFbr(h
n+1, un+1) + Fm(hn+1, un+1) (5)

which is solved by some iterative technique, and where u∗ and hn+1 obtained from (4). Concerning the
latter, we solve it in two independent steps. First the elliptic equation is solved for the non-hydrostatic
term φ, then the hyperbolic equations for h and hu are evolved. We implement a standard C0 Galerkin
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finite element approximation for the elliptic step and a high order finite volume method for the hyperbolic
one. More precisely we use a third order MUSCL scheme for the reconstruction of the variables. The
approximate Riemann solver of Roe [30] is used to evaluate the numerical fluxes at the interfaces. We
also use an upwind discretization of the topography source. The discretized term φ is the link between
the two steps and is integrated exactly over the cell Ci. A conservative computation of wet/dry fronts is
used resulting in a well-balanced scheme. The time integrator that we use is the Adams-Bashforth/Adams
Moulton predictor corrector scheme. We refer to [11, 16] for more details.

3 Wave breaking closures

A wave breaking closure can be distinguished in two steps. The first one is the detection of the breaking
wave in time and in space, including both an initiation and/or termination trigger. The second important
aspect is an energy dissipation mechanism. The wave breaking trigger models can be classified to phase
averaged and phase resolving models. The phase averaged models use wave characteristics which are
representative of one wave’s phase and its more difficult to compute locally, while phase resolving models
use local information of the wave. The last ones rely on a wave-by-wave analysis and are more efficient to
program in the context of phase resolved simulations, see the recent work [1, 9] and [2] on breaking onset
criteria. For the triggering mechanism, in this work, we use a combination of local and non-local criteria
proposed in [15] and used also in [11, 16]. Each one is computed and checked in each cell of our mesh and
if one of them is satisfied then the cell is flagged as a breaking cell. The criteria are the following:

1. the surface variation criterion, satisfied if |ηt| ≥ γ
√
gh;

2. the local slope angle criterion, satisfied if ||∇η|| ≥ tanθ with θ being a critical angle;

3. the Froude number criterion, requiring that Fr =
√
HmaxH̄/Hmin > 1.3. If this condition is not met,

breaking is deactivated independently on the first two conditions.

The first criterion is activated as breaking starts on the front face of the wave. The second one acts com-
plementary and is based on the critical front slope approach [33, 34]. This allows to flag steady hydraulic
jumps while the first one is more efficient for moving fronts. In the last criterion Hmin /max are the depths
in correspondence a wave’s trough/peak, and H̄ the average of the min and max. The Froude criterion acts
as a termination trigger. In practice, a wave by wave analysis is performed to flag cells containing breaking
waves. Flagged cells are grouped according to the above local criteria, and form a breaking region which is
enlarged to account for the typical roller length. For each breaking front peak and trough depths, Hmax and
Hmin respectively, are computed. The reader can refer to previous works [1, 11, 15, 16, 36] for the details in
the implementation of the wave breaking criteria. The first two criteria involve the dimensionless parameter
γ and the critical angle θ, respectively, which are crucial for the flagging, and for which, to the authors
knowledge, there is no general parametrisation.

3.1 Energy dissipation via bore capturing (hybrid wbc)

A common approach to deal with wave breaking for Boussinesq-type models , here referred to as the
hybrid wave breaking closure (wbc) technique, relies on the deactivation of all the dispersive terms in
the flagged region. This reduced the model to the shallow water equations, which exhibits the formation of
a bore (or of a hydraulic jump) quite rapidly in the breaking region. Across the discontinuity, the classical
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Rankine-Hugoniot theory can be applied, and a net decrease in total energy is observed and can be readily
estimated [4, 7]. In this closure there is no additional diffusion term and no tuning parameter, besides those
already involved in the detection. On the other hand, it is known that at the interface of the closure region
spurious oscillation may appear and grow as numerical dissipation is reduced using e.g. mesh refinement.
This issue has been investigated in [1, 16].

3.2 Energy dissipation using PDE based eddy viscosity (TKE wbc)

One way to parametrize the effect of wave breaking is by the addition of an eddy viscosity term in the
momentum equation [17, 29, 31]. This results in the explicit addition of the right hand side of the second
equation in (5) of a dissipative term, of the form Fbr = ∂x(vth∂xu) where vt is the turbulent eddy viscosity.
In this work we consider an approach similar to the one studied in [16], in which the eddy viscosity is
determined from an additional partial differential equation for the generation and transport of turbulent
kinetic energy in breaking waves. The added viscosity is written as:

vt = Cν
√
kb`t

where `t is a turbulent length scale. Inspired by [40], we use a vertically averaged mixing length defined as
`t = κbA, where kb is the kinetic energy of the propagating bore, A is the bore’s initial amplitude and κb is
a constant controlling the width and intensity of the breaking. For more details see [16]. Following the work
of Nwogu [29], the turbulent kinetic energy for kb is determined from a semi-empirical transport equation,
with a source term for turbulent kinetic energy production by wave-breaking. Dropping the subscript b for
simplicity, we write:

kt + ukx = D + P − E (6)

with D, P, E being diffusion, production and dissipation terms respectively.

D = σνtkxx, E = −C3
ν

k3/2

`t
(7)

The constant σ controls the smoothness of the TKE and hence of the breaking viscosity in the breaking
region.

P = B(t, x)
`t√
C3
ν

(us)3/2 (8)

The parameter B(t, x) is the breaking flag, and is either 0 or 1 depending on the wave breaking criterion,
while us is the velocity at the free surface, for the GN equations defined as

us = u−
[
η2

2
−
(
h2

6
− h(h− d)

2

)]
uxx −

[
η −

(
h

2
− d
)]

(du)xx. (9)

The fully discrete distribution of the nodal values of the TKE is obtained by integrating Eq. (6) with
a semi implicit approach. Before the predictor time step is applied to the Boussinesq model, the nodal
TKEs are evolved by first applying an explicit Euler update involving the same third order MUSCL upwind
discretization of the transport operator (uk)x used for the shallow water equations. To avoid spurious
negative values in this phase, the min-mod limiter is applied [19]. The predicted values k∗i are then corrected
by diagonally semi-implicit relaxation iterations as :(

∆t

∆x
+

2σνnt,i
∆x

)
(km+1
i −kmi ) = ∆x

kmi − k∗i
∆t

+σνnt,i
kmi+1 − 2kmi + kmi−1

∆x
+

(
B`2t,i√
C3
nu

u3s

)n
−C3

ν

(
k
3/2
i

`t,i

)n
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with an initial condition k0 = k∗. The number of relaxation iterations used in practice is 5.

4 Sensitivity Analysis Model

The Analysis of Variance (ANOVA), first proposed by Sobol et. al. [22, 23], is a powerful technique for
global sensitivity analysis. Later, an improved algorithm was proposed by Saltelli et. al. to reduce the
computational cost of ANOVA [32]. A comprehensive review of the global sensitivity analysis methods,
including the ANOVA technique, is given by Iooss and Lemaı́tre in [3]. Here, we briefly describe the
ANOVA method to find out Sobol indices, that characterize the sensitivity of the model output with respect
to contribution of each of the input parameters. Consider X ∈ Ω ⊂ Rd, d ∈ N to be a random variable
and let f(X) ∈ L2(Ω) be a square integrable function on domain Ω = [0, 1]d. ANOVA decomposition of f
quantifies the variance of the function output in terms of the input parameters (or a combination of the input
parameters), and is given as follows (see [3, 22] and the references therein).

f(X) = f0 +
∑

1≤i≤d
fi(Xi) +

∑
1≤i<j≤d

fij (Xi, Xj) + ...+ f12...d (X) (10)

under the condition imposed by the following equation:∫ 1

0
fi1,i2,...,is (xi1 , ..., xis) dxik = 0, 1 ≤ k ≤ s, {i1, ..., is} ⊆ {1, ..., d}. (11)

Here, f0 is the expected value of the function f , which is quantified by E[Y ] for each random variable
Y = f(X). The univariate function fi(Xi) = E[Y |Xi]− E[Y ] quantifies contribution due to each random
variable Y = f(X). The bivariate function fij (Xi, Xj) = E (Y |xi, xj)−F0−Fi−Fj quantifies the joint
contribution of each pair of input parameters covering all possible combinations. Similarly, the rest of the
terms quantify the higher-order effects. It is possible to get a similar decomposition of the variance of the
function f(·) as follows [3],

V ar(Y ) =

d∑
i=1

Di(Y ) +

d∑
i<j

Dij(Y ) + ...+D12...d(Y ), (12)

where, Di(Y ) = V ar[E(Y |Xi)], Dij(Y ) = V ar[E(Y |Xi, Xj)] − (Di(Y ) +Dj(Y )) and so on for the
higher order terms. This decomposition is known as ANOVA decomposition. Finally, the Sobol’ indices
are given as (refer [3, 22]),

Si =
Di(Y )

V ar(Y )
, Sij =

Dij(Y )

V ar(Y )
, Higher Order Terms (13)

Further, the Total Order (TO) Sobol’ indices combine the lower-order and higher-order terms and are given
by:

STi = Si +
∑
i<j

Sij +
∑

j 6=i,k 6=i,j<k
Sijk + Higher Order Terms (14)

Note that two-parameters (as well as three-, four- etc.) interactions involving xi are already accounted in
Si, the same way that three-parameters contributions to the variance are also hidden in the two-parameters
contributions, and so on. For this reason, the sum of all the total indices usually larger than 1.
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To perform the sensitivity analysis in this work we used the UQlab-The framework for Uncertainty
Quantification [25]. More precisely, we use the sensitivity analysis module which contains the methods for
global sensitivity analysis that quantitatively measure the importance of each input parameter. We construct
a surrogate model (meta-model) of our computational model prior to the Sobol sensitivity analysis. The
surrogate model is a functional approximation of our computational model and is faster to evaluate. It is
constructed using a relatively small number of input parameters and corresponding output results from our
computational model. This way, we reduce the total computational cost to a great extend. In this work we
use the Kriging (or Gaussian process regression) metamodel. A review on Kriging metamodeling can be
found in [10, 18]. The preliminary results of our analysis have been presented in [14].

5 Case study: propagation, breaking and runup of a solitary wave

We study a well known numerical experiment involving the propagation, breaking, and runup of a solitary
wave over a slope (see sketch on Figure 1). It is based on the work of Synolakis [35], where solitary waves
with various nonlinearities ε = A/h0 were studied experimentally and numerically. For simplicity, we
only investigate the breaking and runup processes and their sensitivity to the different physical and model
parameters. This already will provide a quite large spectrum of results and informations related to the
closure models. The initial solution consists of a solitary wave of amplitude A, defined by

η(x) = A sech2(k(x− x0)), u(x) = c

(
1− h0

η(x)

)
(15)

with k =
√

3A
(h0+A)∗h20

, c =
√
g(h0 +A) and h0 = 1m. The bathymetry has the form

b(x) =

{
−x
s , if x ≤ s
−1, elswere.

(16)
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Figure 1: Initial conditions and position of the wave gauges.

The crest of the wave is placed offshore at x0 = s+ 1
ρ2.17832722 with ρ =

√
3A/4h0. The computa-

tional domain is [−20, 80]m and the numerical parameters are constant and set to ∆x = 0.05, cfl = 0.1.
They are intentionally kept relatively small as to limit the numerical diffusion in the results. Figure 2 con-
firms that the computed solution, presented at time 6.4sec (i.e. already breaking), does not change as ∆x
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is refined and that we are still far from the fine mesh instabilities highlighted for the hybrid closure in [16].
We record time series of the surface elevation in 10 wave gauges every 0.5m from x = 0 to x = 3.5, plus
two additional at x = 4.0, and 5.0m. In this spatial window, we have observed wave-breaking occurs for
all the examined waves.

-10 -5 0 5 10 15 20

-0.1

0

0.1

0.2

0.3

0.4

Exper.
x=0.05

bed
x=0.025

Figure 2: Computed solution, at early breaking for the hybrid(left) and the TKE (right) closures using
∆x = 0.05m and ∆x = 0.025m.

We introduced uncertainties in both the model set up and the model parameters. In particular, wave
amplitude, slope of the beach, and Manning friction coefficient are assumed to vary uniformly in the ranges
A ∈ [0.1, 0.6], slope ∈ [−1/15, −1/25], Nm ∈ [0.009, 0.075] respectively. All of the possible
combinations of these parameters cover most of the practical scenarios. Uncertainty is introduced also in
all the parameters of the breaking models.

For completeness, Figure 3 shows the evolution of the free surface, compared to the experimental data
of [35], computed in the deterministic setting: slope = −1/19.85, A = 0.28, Nm = 0.01. For these
computations, the wave breaking closure models have been parametrized using values proposed in litera-
ture [11, 16, 37]: γ = 0.6, θ = 0.53 and Cv = 10 κb = 2.5 and σb = 20 for the TKE model. As the
wave approximates the shore and shoals it is clear that the two models, as expected, give identical results
since wave-breaking has not started yet. The breaking procedure starts around t = 4.79sec. Both the hybrid
closure and the TKE model represent the solution as a triangular bore, albeit with a different resolution of
the peak which is kept smoother and higher by the TKE approach. At time t ∼ 7.9sec the bore collapses
on the shore and the wave starts to run-up. For this particular case both numerical solutions provide a good
qualitative agreement with the data. We highlight here that the objective of this work is not so much related
to which method best predicts the available data, but to provide some quantitative measures of the variability
of the outputs wrt changes in the input parameters. In the current study, the variations of the flow quantities
with numerical parameters, and more particularly mesh size, is not included. As already said, the interested
reader is referred to the previous work [1, 16] for a detailed analysis of this aspect.

5.1 Model outputs and post-processing

An important point is the definition of the output observables to be used in the analysis. We will start by
considering the sensitivities of the location of the breaking point, the wave height at the breaking point, the
maximum wave height at the wave gauges and the maximum run-up.

To have a more detailed picture of the evolution of the wave as it shoals and breaks, we will also consider
a set of statistical outputs. There exist several works that examine them in the context of BT models, see for
example [8,17,38]. A measure to examine the left-right differences in a wave is the wave asymmetry which
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Figure 3: Time evolution of the free surface (deterministic). Yellow line: Hybrid wbc, blue line: TKE wbc.

is defines as

As =
< H(η3) >

< η2 >3/2
(17)

where H is the Hilbert transformation and < · > denotes the mean operator. A similar information is
provided by wave skewness, which is a measure of crest-trough shape. It is defined as

Sk =
< η3 >

< η2 >3/2
. (18)

Finally, the kurtosis will allow to estimate whether the wave is heavy tailed or light tailed with respect to
the normal distribution. It is defined as

Ks =
1
n

∑
(ηi− < η >)4(

1
n

∑
(ηi− < η >)2

)2 (19)

where n is the length of the time series data in the wave gauge.
Finally, we will look in more detail into the impact of the physical set up parameters on the variability

of maximum runup, allowing to compare with some of the data provided in [35].

5.2 Parameter sensitivity analysis

Besides the variations in the physical parameters already discussed, we consider uncertainties in the parame-
ters of the models, involved in the detection (γ and θ) for both models and the energy dissipation for the TKE
model (κ, Cv, σ). In particular we assume the the uniform distributions γ ∈ [0.3, 0.8], θ ∈ [0.32, 0.6]
and κ ∈ [0.5, 2.5], Cv ∈ [5, 15], and σ ∈ [10, 25]. Note that the last three parameters appear only in the
TKE model.
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Figure 4 presents the First and Total order Sobol indices for the physical outputs, including the results
in wave gauges. The results indicate that the amplitude of the wave is mainly the dominant parameter for
the maximum wave height at the wave gauges and on the location of the breaking point for the hybrid
model while for the TKE, κ plays also a significant role in the formation of the maximum wave height at
the wave gauges offshore. As expected, and for both models, friction affects the maximum wave height at
x = 0m, which is located on the initially dry slope. The parameter γ affects the location of the breaking
point in the hybrid wbc but surprisingly plays no role in the TKE. An interesting outcome is the one of the
runup process. Only the physical parameters are those who affect the maximum runup with the slope of the
topography affecting only the hybrid wbc. We have to highlight here that all the second order Sobol indices
are less that 0.1 (not shown). This indicates a small correlation between input parameters.

So, as a general conclusion we can say that the model parameters have a significantly smaller impact on
the outputs than the problem setup parameters, with the exception of γ that does affect the breaking point
location when using the hybrid wbc and κ that affects the maximum wave hight on the wave gauges. Among
the problem parameters, the amplitude turns out to be the dominating one, followed by the friction. The
slope has a somewhat smaller impact on the runup and that too only for the hybrid closure. To go further
we look at the statistical parameters of the water elevation signals in the gauges. The results are summarized
in figures 5 and 6 for the hybrid and the TKE wave breaking closures respectively. Wave amplitude, slope,
and friction coefficient have the largest impact, while the indices of γ and θ are close to zero and they are
not presented. When using the TKE model the only model parameter that shows sensitivity is κ and this
only for the kurtosis. The asymmetry is largely controlled by the amplitude. This is especially true in the
first gauges, close to the collapse of the wave (impact of amplitude), and to the runup/backwash (slope).
The slope shows bigger sensitivity when the TKE closure is used.
Skewness and kurtosis present a different sensitivity profile for the two models revealing the different way
of simulating propagating bores since the hybrid model represents the solution as a triangular bore with a
sharp front and TKE as a bore with a smother and higher peak. When we use the hybrid wbc the skewness
is highly affected by the amplitude as the wave breaks and collapses on the slope (first gauges). The impact
of the slope and the amplitude are equally dominating the shoaling phase, with friction playing a smaller
but not a negligible role. For the TKE wbc the behavior of the parameters are more clear since only the
wave’s amplitude and friction are dominating the process. The impact of the slope is only visible as the
wave collapses on the slope.
The thickness of the wave tails, measured by the kurtosis, is controlled mainly by slope and friction as
sown in figure 5 on the right. The first has a much higher sensitivity in the intermediate gauges suggesting
that its impact is related to the propagation, while the impact of the friction more to the backwash. The
results show that for the hybrid closure model the wave-breaking parameters have considerably smaller
contributions to the shape of the wave. Finally the kurtosis, when we use the TKE wbc, is dominated by
the wave’s amplitude and the slope but also κ sows some sensitivity. We recall that κ controls both the
magnitude of the eddy viscosity as well as the dissipation of turbulent kinetic energy. The latter may affect
the rate at which the eddy viscosity is reduced in space, thus affecting the wave tail

5.2.1 Discussion on the convergence of the sensitivity indices

One of the main questions that can arise in this study is how the results are changing with respect to the
numerical resolution. The answer to this question is twofold. The first aspect concerns the change of
the physical output as the mesh is refined and is largely covered in [16]. We briefly report that the study
performed in [16] has involved a systematic analysis of the behavior of the two closures for different mesh
sizes, the study of dynamics of breaking through dissipation monitors. Thorough evidence of the equivalent
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Figure 4: First (circles) and Total(squares) Sobol Indices for the output parameters using the hybrid and
TKE (squares) wbcs.

capabilities of the two approaches to provide satisfactory results has been given. The results indicate that
both closure approaches allow to describe correctly wave breaking at large scales and when we use the TKE
the numerical dissipation plays a negligible role. The results also shown a reduced sensitivity to the mesh
of this approach compared to the hybrid one.
The second issue that arises is the convergence of the statistical outputs as the mesh is refined. We investigate
here this aspect by considering the variations of the statistics on four different meshes of sizes ∆x ∈
[0.05, 0.025, 0.025, 0.0125m]. Note that in this analysis we made sure that on each mesh the metamodel
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Figure 5: First order Sobol indices for Asymmetry, Kurtosis and Skewness measured on the wave gauges
using the hybrid closure.
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Figure 6: First order Sobol indices for Asymmetry, Kurtosis and Skewness measured on the wave gauges
using the TKE closure.

built for the sensitivity analysis has converged in terms of number of samples for each output value and for
each mesh.

Figure 7 presents the sensitivity indices for the four output parameters, the wave hight and the location
on the breaking point, and the maximum wave hight at the wave gauges at x = 2.5m and x = 5.0m. The
input parameters of the closures are varied within 50% of their initial value. We plot only the indices that are
more than 0.1. As expected, for the hybrid wbc the indices are almost constant for the coarser meshes while
they start to diverge when the mesh is finer. As explained in [16] for finer meshes, and when we use the
hybrid model, abrupt and spurious oscillations are introduced at the interface between the breaking and the
nonbreaking region. This of course spoils the solution and consequently affects the sensitivity analysis. On
the other hand when using the TKE wbc, the indices are almost the same for all the different discretizations
proving that the solution is not changing when we vary the input parameters of the closure.

5.2.2 Sensitivity analysis with respect to runup

One of the most relevant outputs for risk assessment is the maximum runup. It is well understood that
waves with higher amplitudes have higher impact on the coast, or in other words higher maximum runup.
To investigate this, we look at the variability of the latter with respect to physical parameters. The maximum
run-up as a function of the wave’s amplitudes (for fixed slope=1/19.85, Nm = 0.01) is reported in the
leftmost pictures in Figure 8 for both wave breaking closures. For comparison, the experimental data [35]
are also plotted. We also report in the figure the dependence of the maximum runup on the slope (for fixed
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Figure 7: Sensitivity indices using different meshes for both closures.

A = 0.28 and Nm = 0.01),and on the Manning coefficient (for fixed slope=1/19.85 and A = 0.28). The
metamodel predictions for different values of the wave breaking parameter γ are plotted.

Above the amplitude ∼ 0.15 the maximum run-up increases almost linearly with A. The metamodel
predictions are quite close to the data. For the hybrid wbc, the impact of the wave breaking parameter γ is
not uniform over the range of amplitudes. Relevant variations of runup are only observed for intermediate
values of A, when sensibly reducing γ (early breaking), and for the highest amplitudes when delaying too
much the detection (highest values of γ). The local maximum variations of runup observed are of the order
of ∼5-7%, the predictions remaining relatively close to the experimental data.

In the same spirit we fix the TKE closure by setting κ = 0.5, Cν = 5.0, σ = 10.0, and evaluate
the impact of γ, of the slope and of the friction coefficient. The plots obtained are reported at the bottom
of figure 8. For the amplitude dependence, we see that the match with the data in the plot against the
dependence is very good. We also note a behavior much different than the one of the hybrid closure. In
accordance to the sobol indices presented in the previous section we confirm that, for the present closure
the wave breaking detection has virtually no effect.

The variability of the runup with the slope and the Manning has however a different behavior, for the
hybrid closure. When lowering the value of the detection parameter (early breaking), we see a systematic
impact of the order of ∼ 9-10% over the entire range of slopes. A weaker dependence on the slope is
observed when using the TKE closure.
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Figure 8: Run up as a function of wave’s amplitude were slope=1/19.85, Nm = 0.01 (left), of slope were
A = 0.28, Nm = 0.01 (center) and of the Nm number were slope=1/19.85, A = 0.28 (right). Using the
hybrid (up) and the TKE (down) wave breaking closures.

A similar, to the variability of the runup with the slope, trend is observed, for the hybrid model, when
looking at the dependence with the Manning coefficient. The lowest value of the parameter γ leading con-
sistently to variations of the runup of the order of the maximum observed when changing the amplitude.
This suggests that the runup may be more tolerant to some input error on the wave amplitude, while the
correct parametrization of the breaking detection for the hybrid closure is more crucial when we have un-
certainties in the slope and friction. The runup dependence on the Manning coefficient for the two closures
is very similar.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exper.
Exper

=0.5, C =15, =25

=2.5, C =15, =25

=2.5, C =5, =25

=2.5, C =5, =10

15 20 25

0.3

0.4

0.5

0.6

0.7

0.8

0.9

=0.5, C =15, =25

=2.5, C =15, =25

=2.5, C =5, =25

=2.5, C =5, =10

=4.0, C =15. =25

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

=0.5, C =15, =25

=2.5, C =15, =25

=2.5, C =5, =25

=2.5, C =5, =10

=4.0, C =15, =25
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Finally and for the TKE, we fix γ = 0.6 and vary the other input parameters. The resulting behavior
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is the one reported on Figure 9. Again we see a secondary and almost negligible impact of the model
parameters on the runup. This is quite interesting as it means that the value predicted is quite robust with
respect to the parametrization of the wave breaking, and mostly controlled by the problem setup.

5.2.3 A solitary of ε = 0.28 over a slope

For completeness we now focus on the impact of the model parameters alone, for the fixed nominal values
of the physical parameters: A = 0.28, slope=−1/19.85 and Nm = 0.01. For the hybrid closure, we
are left only with the γ and θ parameters controlling wave breaking detection, and we have seen already
that the first has a dominant contribution to output variations in the general case. As usual for the second
wave breaking closure we have both the initiation and diffusive parameters that control the analysis. Figure
10 shows the first and total Sobol indices for some of the examined outputs. We can see that breaking
detection, and in particular γ, has a major impact on the maximum wave heights. Large contributions to the
variance also come from κ and Cν , which in particular are the only dominating parameters for the run-up.
We see here also a non-negligible difference between some first and Total indices, indicating the presence
of some important interactions on the maximum wave’s height. More precisely at WG 1 (x = 0m) and WG
6 (x = 2.5m) the second order index for γ and κ is 0.17 and 0.109 respectively.

  b  Cv b b

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Location of the breaking point

First order
Total

  b  Cv b b

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Run up

First order
Total

  b  Cv b b

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Maximum wave height at x=0 m

First order
Total

  b  Cv b b

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Maximum wave height at x=2.5m

First order
Total

Figure 10: First (blue) and Total (red) Sobol Indices for the run-up and the maximum wave height at WG1
and WG6 using the TKE wbc.
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5.3 Pointwise spatial distributions and temporal evolutions of sensitivities

For fixed values of the problem parameters, we see a similar behaviour of the Sobol indices in Figure 11
for the wave moments in the wave gauges. The γ parameter is responsible for almost 100% of the variance,
except in the intermediate regions (breaking area), and in the last gauge. For the TKE, in Figure 12, wave’s
asymmetry and kurtosis are affected mainly by the parameters κ and Cν , i.e. from the dissipation and
production term in the transport equation 6. On the other hand, skewness, i.e the crest to trough shape, is
mainly affected by Cν which probably controls the kinetic energy cutoff before and after the breaking front.
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Figure 11: First order Sobol indices for Asymmetry, Kurtosis and Skewness measured on the wave gauges,
when A = 0.28m.
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Figure 12: First order Sobol indices for Asymmetry, Kurtosis and Skewness measured on the wave gauges.

To try to understand how θ still affects the solution, we report on Figure 13 the variance of dimensionless
outputs for fixed values of γ for the hybrid closure. More precisely, the wave height at the breaking point
(whbp) and the maximum height for the wave (mwh) at x = 0, 2.5, and 3m are scaled by the initial
amplitude of the wave, and the location of the breaking point (bp) is scaled by the initial position of the
solitary. Finally, the run-up values are scaled by the experimental values for the specific case. We see that
variations above 1% are only observed for the position of the breaking point, and for the maximum wave
height at breaking point and at x = 2.5, corresponding to the initial shoreline. In particular, for all these
outputs we see a clear increase variance above a certain threshold of γ. This is the sign that above this value
breaking detection is related to the second criterion. This is visualized in the right picture on the figure
showing the variation of the position of the breaking point with γ for different samples of the metamodel.
Above a critical value of γ this position only depends on θ.

To have a better insight we study the evolution of the water depth in the whole domain in space by
freezing the time in specific characteristic time spots. This means that we look at the spatial evolution of the
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Figure 14: Temporal evolution of the First Order SI and deviation of the free surface elevation, at WG10
and WG 6.
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Figure 15: Spatial evolution of the First order SI and the deviation of water depth at t = 6.0sec.

sensitivity indices of the free surface elevation, shown in the left plot in Figure 15. The spatial distribution is
computed at t = 6.0sec, i.e. during the breaking process. Red line denotes the location of the closest wave
gauge, i.e. WG 10. Since γ is the dominant parameter in the whole domain we want to check where exactly
it plays a crucial role, that is why we plot right next to the figure the absolute mean deviation of the water
depth over the water depth, at t = 6sec. We observe that the maximum mean deviation is 25%, compered
to the mean water depth, and occurs between 3m and 4m. After this region the deviation is less than 5%,
so γ is still the dominant parameter but in negligible changes of the water depth. The temporal distribution
14 of the sensitivity indices is computed for the free surface elevation recorded at WG10 (x = 5.0m) and
WG6 (x = 2.5m). Like before, θ is not the dominant parameter while the bore is breaking. To confirm how
much it contributes we plot again the deviation of the free surface elevation. We can see that the maximum
deviation grows as the wave propagates on shore reaching more than 90%, meaning that mainly γ is affect-
ing the bore front.

We perform the same exercise but for the TKE closure. In 16 we report the spatial evolution of the
water depth, sensitivity indices and absolute mean deviation of the water depth, at times representative of
incipient t = 6sec., and after collapsing on the shore (t = 8.2sec). Its clear that in the early breaking time
γ and κ are the predominant parameters affecting the water depth until 6m in the domain. More precisely
the deviation of the water depth compared to the mean water depth is maximum 2.5%. This shows the
robustness of the TKE model in contrast to the hybrid where the maximum deviation at the same time is
25%. After the collapse of the bore on the shore κ and Cv are taking the lead and strongly affect the free
surface elevation especially, the front of the wave. This is confirmed by the absolute mean deviation of the
water depth shown in the low right figure of 16.

Next we study their temporal evolution in the wave gauges. For WG 10 the absolute mean deviation is
almost zero, meaning that the parameters are not affecting the evolution of the free surface elevation. We
report in Figure 17 , and for the sake of completeness the results for WG6. The absolute mean deviation
reaches almost 40% within the time interval 6 to 7seconds where the most important parameters are κ
and Cν . A consistent behavior is observed in all the WG’s verifying that the wave-breaking mechanism is
“following” the wave as it breaks until its collapse on the shore.
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Figure 16: Spatial evolution of the Sobol indices and the absolute mean deviation for t = 6, 8.2sec.
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Figure 17: Temporal evolution of the Sobol indices and the absolute mean deviation of the free surface at
WG6.
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6 Summary of the results and comparison of the two breaking closures

We conclude that, for the hybrid model, the initial amplitude of the wave is the most dominant parameter
corresponding to almost every output metric before the run-up. The shape of the wave depends on the initial
amplitude, and also on the slope of the beach during the run-up. The kurtosis of the wave is affected by
mostly the slope of the beach and the friction coefficient. For the hybrid model, the statistical metrics are
most affected by the wave-dependent input parameters. Among the model-specific parameters such as γ
and θ, the former one has the most effect on the statistical metrics, more so after the value of γ > 0.3. θ,
although not a dominant parameter for wave breaking, does contribute to the tail of the wave post breaking.

For the TKE model, the Sobol indices indicate that the wave amplitude is the most dominant parameter
for the deterministic metrics, similar to the hybrid model. However, when the amplitude and the slope
values are fixed, it emerges that κ and Cv are the parameters which most affect the output metrics.

It is also seen that, among the two candidate models, the hybrid model shows a significant effect of γ
on the run-up of the wave, in contrast to the TKE model, which shows almost no effect of changes in γ.
Further, in the case of the hybrid model, the effect of γ is less sensitive to changes in the initial amplitude
when the slope and the friction parameters are fixed. This implies that, when using the hybrid model, small
errors in the slope or the friction parameters may manifest into considerable errors in the prediction of the
maximum run-up. On the other hand, the TKE model doesn’t show a similar effect of γ on the run-up
process over a range of values for the initial amplitude, friction and the slope parameters. However, once
we fix the value of γ, the predicted run-up of the waves reflects a larger influence of the friction and the
slope parameters compared to the initial amplitude of the wave when the TKE model parameters are varied.
Thus, it can be concluded that the run-up predicted by either of the models may be more sensitive to the
errors in the measurement of the friction or the slope parameters, in comparison to the initial amplitude of
the waves, and will depend on the choice of γ for the hybrid model and the model parameters for the TKE
model.

Finally, the absolute mean deviation of the free surface elevation measured at the wave gauges reveals
that the hybrid model can lead to large differences between the observed values of the free surface elevation
and the mean free surface elevation, up to 90%. On the other hand TKE model is more robust mainly on the
off-shore region.

We have to note the differences of the Sobol indices for the statistical parameters between the two wave-
breaking closures, see Figure 5 and 6. This is due to the fact that the wave-breaking closures simulate the
breaking wave in a different way. The hybrid closure simulates the breaking wave as a traveling bore while
the one obtained using the tke closure has a smoother propagating front.

7 Conclusion and perspectives

In this work, we systematically analyse the effect of various parameters on the performance of two models
for wave breaking. In particular, we perform the Analysis of Variance (ANOVA) which gives First and
Total-order Sobol’s indices, which in turn quantify the sensitivities of specified output metric on the input
parameters. We first obtain a Gaussian Process Regression metamodel of the high-fidelity CFD model
prior to performing the ANOVA analysis. We quantify the sensitivities using several deterministic metrics
such as the maximum height of the wave, the location of the breaking of the wave, the maximum run up,
the time-series values at several gauges, as well as stochastic metrics such as the skewness, asymmetry
and kurtosis of the time-series of the wave at several gauge locations. We study different configurations
of the classical problem of the solitary wave run-up on a slope. We also study the time-evolution of the
Sobol indices at specific gauge locations. The importance of this analysis is twofold. First, it helps us gain
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insights into physics of nonlinear and dispersive waves, specifically during the breaking and the run-up
phases. Secondly, it quantitatively distinguishes between the two prominent approaches for modeling the
breaking of the waves, viz. the hybrid method and the TKE model for wave breaking.
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