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Abstract

In multilingual neural machine translation, it

has been shown that sharing a single trans-

lation model between multiple languages can

achieve competitive performance, sometimes

even leading to performance gains over bilin-

gually trained models. However, these im-

provements are not uniform; often multilin-

gual parameter sharing results in a decrease

in accuracy due to translation models not be-

ing able to accommodate different languages

in their limited parameter space. In this work,

we examine parameter sharing techniques that

strike a happy medium between full sharing

and individual training, specifically focusing

on the self-attentional Transformer model. We

find that the full parameter sharing approach

leads to increases in BLEU scores mainly

when the target languages are from a similar

language family. However, even in the case

where target languages are from different fam-

ilies where full parameter sharing leads to a

noticeable drop in BLEU scores, our proposed

methods for partial sharing of parameters can

lead to substantial improvements in translation

accuracy.1

1 Introduction

Neural machine translation (NMT; Sutskever et al.

(2014); Cho et al. (2014)) is now the de-facto stan-

dard in MT research due to its relative simplicity

of implementation, ability to perform end-to-end

training, and high translation accuracy. Early ap-

proaches to NMT used recurrent neural networks

(RNNs), usually LSTMs (Hochreiter and Schmid-

huber, 1997), in their encoder and decoder layers,

with the addition of an attention mechanism (Bah-

danau et al., 2014; Luong et al., 2015) to focus

more on specific encoded source words when de-

ciding the next translation target output. Recently,

1Data and code of this paper is available at:
https://github.com/DevSinghSachan/multilingual_nmt
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Figure 1: Examples of MTL frameworks for the

translation of one source language (for example

“En”) to two target languages (for example “De”,

“Nl”). The principle remains the same with more

than two target languages. Best viewed in color.

the NMT research community has been transition-

ing from RNNs to an alternative method for encod-

ing sentences using self-attention (Vaswani et al.,

2017), represented by the so-called “Transformer”

model, which both improves the speed of process-

ing sentences on computational hardware such as

GPUs due to its lack of recurrence, and achieves

impressive results.

In parallel to this transition to self-attentional

models, there has also been an active interest in

the multilingual training of NMT systems (Fi-

rat et al., 2016; Johnson et al., 2017; Ha et al.,
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2016). In contrast to the standard bilingual mod-

els, multilingual models follow the multi-task train-

ing paradigm (Caruana, 1997) where models are

jointly trained on training data from several lan-

guage pairs, with some degree of parameter shar-

ing. The objective of this is two-fold: First, com-

pared to individually training separate models for

each language pair of interest, this maintains com-

petitive translation accuracy while reducing the

total number of models that need to be stored, a

considerable advantage when deploying practical

systems. Second, by utilizing data from multiple

language pairs simultaneously, it becomes possi-

ble to improve the translation accuracy for each

language pair.

In multilingual translation, one-to-many transla-

tion —translation from a common source language

(for example English) to multiple target languages

(for example German and Dutch) — is considered

particularly difficult. Previous multi-task learning

(MTL) models for this task broadly consist of two

approaches as shown in Figure 1: (a) a model with

a shared encoder and one decoder per target lan-

guage (Dong et al. (2015), shown in Figure 1a).

This approach has the advantage of being able to

model each target separately but comes with the

cost of slower training and increased memory re-

quirements. (b) a single unified model consisting

of a shared encoder and a shared decoder for all

the language pairs (Johnson et al. (2017), shown

in Figure 1b). This simple approach is trivially im-

plementable using a standard bilingual translation

model and has the advantage of having a constant

number of trainable parameters regardless of the

number of languages, but has the caveat that the

decoder’s ability to model multiple languages can

be significantly reduced.

In this paper, we propose a third alternative:

(c) a model with a shared encoder and multiple

decoders such that some decoder parameters are

shared (shown in Figure 1c). This hybrid approach

combines the advantages from both the approaches

mentioned above. It carefully moderates the types

of parameters that are shared between the multi-

ple languages to provide the flexibility necessary

to decode two different languages, but still shares

as many parameters as possible to take advantage

of information sharing across multiple languages.

Specifically, we focus on the aforementioned self-

attentional Transformer models, with the set of

shareable parameters consisting of the various at-

tention weights, linear layer weights, or embedding

weights contained therein. The full sharing and

no sharing of decoder parameters used in previous

work are special cases (refer to Section 2.2 for a

detailed description).

To empirically examine the utility of this ap-

proach, we examine the case of translation from

a common source language to multiple target lan-

guages, where the target languages can be either

related or unrelated. Our work reveals that while

full parameter sharing works reasonably well when

using target languages from the same family, par-

tial parameter sharing is essential to achieve the

best accuracy when translating into multiple dis-

tant languages.

2 Method

In this section, we will first briefly describe the key

elements of the Transformer model followed by

our proposed approach of parameter sharing.

2.1 Transformer Architecture

As is common in sequence-to-sequence (seq2seq)

models for NMT, the self-attentional Transformer

model (Figure 2; Vaswani et al. (2017)) consists

of an embedding layer, multiple encoder-decoder

layers, and an output generation layer. Each en-

coder layer consists of two sublayers in sequence:

self-attentional and feed-forward networks. Each

decoder layer consists of three sublayers: masked

self-attention, encoder-decoder attention, and feed-

forward networks. The core building blocks in

all these layers consist of different sets of weight

matrices that compute affine transforms.

First, an embedding layer obtains the source

and target word vectors from the input words:

WE ∈ R
dm×V, where dm is model size, and V is

vocabulary size. After the embedding lookup step,

word vectors are multiplied by a scaling factor of√
dm. To capture the relative position of a word

in the input sequence, position encodings defined

in terms of sinusoids of different frequencies are

added to the scaled word vectors of the source and

target.

The encoder layer maps the input word vectors to

continuous hidden state representations. As men-

tioned earlier, it consists of two sublayers. The

first sublayer performs multi-head dot-product self-

attention. In the single-head case, defining the

input to the sublayer as x = (x1, . . . , xT) and the

output as z = (z1, . . . , zT), where xi, zi ∈ R
dm ,
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Figure 2: Block diagram illustrating the Trans-

former decoder’s shareable parameters (in color)

that includes embedding layer weights (WE), tied

linear layer weights (WT

E
), transformation weights

as a part of self-attention (W 1

K ,W
1

V ,W
1

Q ,W
1

F ),

encoder-decoder attention (W 2

K ,W
2

V ,W
2

Q ,W
2

F ),

and feed-forward network (WL1
, WL2

) sublayers.

Best viewed in color.

the input is linearly transformed to obtain key (ki),

value (vi), and query (qi) vectors

ki = xiWK, vi = xiWV, qi = xiWQ.

Next, similarity scores (eij) between query and

key vectors are computed by performing a scaled

dot-product

eij =
1√
dm

qik
T
j .

Next, attention coefficients (αij) are computed by

applying softmax function over these similarity

values.

αij =
exp eij

∑T
l=1

exp eil

Self-attention output (zi) is computed by the con-

vex combination of attention weights with value

vectors followed by a linear transformation

zi = (

T
∑

j=1

αijvj)WF.

In the above equations, WK,WV,WQ,WF are

learnable transformation matrices of shape Rdm×dm .

To extend to multi-head attention (ℓ), one can split

the key, value, and query vectors into ℓ vectors, per-

form the attention computation in parallel for each

of the ℓ vectors followed by concatenating before

the final linear transformation by WF. The second

sublayer consists of a two-layer deep position-wise

feed-forward network (FFN) with ReLU activa-

tion (Glorot et al., 2011).

FFN(zi) = max(0, ziWL1
+ b1)WL2

+ b2

where WL1
∈ R

dm×dh , WL2
∈ R

dh×dm , b1 and b2
are biases, and dh is hidden size. The FFN sublayer

outputs are subsequently given as input to the next

encoder layer.

The decoder layer consists of three sublayers.

The first sublayer, similar to the encoder, performs

masked self-attention where masks are used to pre-

vent positions from attending to subsequent po-

sitions. The second sublayer performs encoder-

decoder inter-attention where the input to the query

vector comes from the decoder layer while the in-

put to the key and value vectors comes from the

encoder’s last layer. To denote parameters in these

two sublayers, the transformation weights of the

masked self-attention sublayer are referenced as

W
1

K ,W
1

V ,W
1

Q ,W
1

F and encoder-decoder atten-

tion sublayer as W 2

K ,W
2

V ,W
2

Q ,W
2

F , which is also

indicated in Figure 2. The third sublayer consists of

an FFN. To generate predictions for the next word,

there is a linear layer on top of the decoder layer.

The weight of this linear layer is shared with the

weight of the embedding layer (Inan et al., 2016).

263



Embedding Layer

Masked Self-Attention

Enc-Dec Attention

Feed-Forward Network

  

Embedding Layer

Masked Self-Attention

Enc-Dec Attention

Feed-Forward Network

Decoder 1
Shareable 

Parameters
Decoder 2

Embedding Layer

Self-Attention

Feed-Forward Network

Encoder

Source Language: ''En" Target Language 1: "De" Target Language 2: "Nl"

Tied Linear Layer Tied Linear Layer

Figure 3: Block diagram illustrating our MTL approach for one-to-many multilingual translation task that

is based on the partial sharing of parameters between the multiple decoders. Best viewed in color.

Residual connections (He et al., 2016) and layer

normalization (Ba et al., 2016) are applied on each

sublayer and to the output vector from the final

encoder and decoder layers.

2.2 Parameter Sharing Strategies

In this paper, our objective is to investigate effective

parameter sharing strategies for the Transformer

model using MTL, mainly for one-to-many multi-

lingual translation. Here, we will use the symbol Θ

to denote the set of shared parameters in our model.

These parameter sharing strategies are described

below:

• The base case consists of separate bilingual

translation models for each language pair
(

Θ = ∅
)

.

• Use of a common embedding layer for all

the bilingual models
(

Θ = {WE}
)

. This will

result in a significant reduction of the total

parameters by sharing parameters across com-

mon words present in the source and target

sentences (Wu et al., 2016).

• Use of a common encoder for the source lan-

guage and a separate decoder for each target

language
(

Θ = {WE, θENC}
)

. This has the

advantage that the encoder will now see more

source language training data (Dong et al.,

2015).

Next, we also include the decoder parameters

among the set of shared parameters. While do-

ing so, we will assume that the embedding and the

encoder parameters are always shared between the

bilingual models. Because there can be exponen-

tially many combinations considering all the dif-

ferent feasible sets of shared parameters between

the multiple decoders, we only select a subset of

these combinations based on our preliminary re-

sults. These selected weights are shared in all the

layers of the decoder unless stated otherwise. A

schematic diagram illustrating the various possi-

ble parameter matrices that can be shared in each

sublayer of our MTL model is shown in Figure 3.

• We share only the FFN sublayer parameters
(

Θ =
{

WE, θENC, WL1
, WL2

})

.

• Sharing the weights of the self-attention sub-

layer
(

Θ =
{

WE, θENC, W
1

K , W
1

Q , W
1

V ,

W
1

F

})

.

• Sharing the weights of the encoder-decoder

attention sublayer
(

Θ =
{

WE, θENC, W
2

K ,

W
2

Q , W 2

V , W 2

F

})

.

• We limit the attention parameters that are

shared to only include either the key and

query weights
(

Θ =
{

WE, θENC, W 1

K , W 1

Q ,

W
2

K , W
2

Q

})

or the key and value weights
(

Θ =
{

WE, θENC, W 1

K , W 1

V , W 2

K , W 2

V

})

.

The motivation for doing so is so that the

shared attention sublayer weights can model

the common aspects of the target languages

while the individual FFN sublayer weights

can model the distinctive or unique aspects of

each language.

• We share all the parameters of the decoder to

have a single unified model
(

Θ =
{

WE, θENC,
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Language Pair Training Dev Test

EN−RO 180,484 3,904 4,631

EN−FR 192,304 4,320 4,866

EN−NL 183,767 4,459 5,006

EN−DE 167,888 4,148 4,491

EN−JA 204,090 4,429 5,565

EN−TR 182,470 4,045 5,029

Table 1: Number of sentences in the training, dev,

and test splits for each language pair used in our ex-

periments. The languages are represented by their

ISO 639-1 codes En:English, Fr:French, Nl:Dutch,

De:German, Ja:Japanese, Tr:Turkish.

θDEC

})

. Fewer parameters in the decoder in-

dicates limited modeling ability, and we ex-

pect this method to obtain good translation

accuracy mainly when the target languages

are related (Johnson et al., 2017).

3 Experimental Setup

In this section, first, we describe the datasets used

in this work and the evaluation criteria. Then, we

describe the training regimen followed in all our

experiments. All of our models were implemented

in PyTorch framework (Paszke et al., 2017) and

were trained on a single GPU.

3.1 Datasets and Evaluation Metric

To perform multilingual translation experiments,

we select six language pairs from the openly avail-

able TED talks dataset (Qi et al., 2018) whose

statistics are mentioned in Table 1. This dataset

already contains predefined splits for training, de-

velopment, and test sets. Among these languages,

Romanian (RO) and French (FR) are Romance lan-

guages, German (DE) and Dutch (NL) are Ger-

manic languages while Turkish (TR) and Japanese

(JA) are unrelated languages that come from distant

language families. For all language pairs, tokeniza-

tion was carried out using the Moses tokenizer,2

except for Japanese, where word segmentation was

performed using the KyTea tokenizer (Neubig

et al., 2011). To select training examples, we fil-

ter sentences with a maximum length of 70 tokens.

For evaluation, we report the model’s performance

using the standard BLEU score metric (Papineni

et al., 2002). We use the mtevalv14.pl script

2https://github.com/moses-
smt/mosesdecoder/tree/master/scripts/tokenizer

from the Moses toolkit to compute the tokenized

BLEU scores.

3.2 Training Protocols

In this work, we follow the same training process

for all the experiments. We jointly encode the

source and target language words with subword

units by applying byte pair encoding (Gage, 1994)

with 32,000 merge operations (Sennrich et al.,

2016). These subword units restrict the vocabu-

lary size and prevent the need for explicitly han-

dling out-of-vocabulary symbols as the vocabulary

can be used to represent any word. We use LeCun

uniform initialization (LeCun et al., 1998) for all

the trainable model parameters. Embedding layer

weights are randomly initialized according to trun-

cated Gaussian distribution WE ∼ N (0, dm
−1/2).

In all the experiments, we use Transformer base

model configuration (Vaswani et al., 2017) that

consists of six encoder-decoder layers, dm = 512,

dh = 2, 048, and ℓ = 8. For optimization, we

use SGD with Adam optimizer (Kingma and Ba,

2014) with β1 = 0.9, β2 = 0.997, and ǫ = 1e−9.3

The learning rate (lr) schedule is varied at every

optimization step (step) according to:

lr = 2d−0.5
m min

(

step−0.5, step · 16000−1.5
)

Each mini-batch consists of approximately 3, 000
source and 3, 000 target tokens such that similar

length sentences are bucketed together. We train

the models until convergence and save the best

checkpoint using development set performance.

For model regularization, we use label smoothing

(ǫ = 0.1) (Pereyra et al., 2017) and apply dropout

(with pdrop = 0.1) (Srivastava et al., 2014) to the

word embeddings, attention coefficients, ReLU ac-

tivation, and to the output of each sublayer before

the residual connection. During decoding, we use

beam search with beam width 5 and length normal-

ization with α = 1 (Wu et al., 2016).

3.3 Multilingual Training

During the multilingual model’s training and in-

ference, we include an additional token represent-

ing the desired target language at the start of each

source sentence (Johnson et al., 2017). The pres-

ence of this additional token will help the model

learn the target language to translate to during de-

coding. For preprocessing, we apply byte pair en-

3These hyperparameter values are based on the single GPU
transformer model from the open-source tensor2tensor toolkit.
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coding over the combined dataset of all the lan-

guage pairs. We perform model training using

balanced mini-batches i.e. it contains roughly an

equal number of sentences for every target lan-

guage. While training, we compute weighted av-

erage cross-entropy loss where the weighting term

is proportional to the total word count observed in

each of the target language sentences.

4 Results

In this section, we will describe the results of

our proposed parameter sharing techniques and

later present the broader context by comparing

them with bilingual translation models and pre-

vious benchmark methods.

4.1 Parameter Sharing

Here, we first analyze the results of one-to-many

multilingual translation experiments when there are

two target languages and both of them belong to

the same language family. The first set of experi-

ments are on Romance languages (EN→RO+FR)

and the second set of experiments are on Germanic

languages (EN→DE+NL). We report the BLEU

scores in Table 2a when different sets of parameters

are shared in these experiments. We observe that

sharing only the embedding layer weight between

the multiple models leads to the lowest scores.

Sharing the encoder weights results in significant

improvement for EN→RO+FR but leads to a small

decrease in EN→DE+NL scores.

We then gradually include both the decoder’s

weights to the set of shareable parameters. Specif-

ically, we include the parameters of FFN, self-

attention, encoder-decoder attention, both the at-

tention sublayers, key, query, value weights from

both the attention sublayers, and finally all the pa-

rameters of the decoder layer. From the results,

we note that the sharing of the encoder-decoder

attention weights leads to substantial gains. Finally,

sharing the entirety of the parameters (i.e. hav-

ing one model) leads to the best BLEU scores for

EN→RO+FR and sharing only the key and query

matrices from both the attention layers leads to the

best BLEU scores for EN→DE+NL. One of the

reasons for such large increase in BLEU is that en-

coder has access to more English language training

data and for the decoder, as the target languages be-

long to the same family, they may contain common

vocabulary, thus improving the generalization error

for both the target languages.

Next, we analyze the results of one-to-many

translation experiments when both the target lan-

guages belong to distant language families and

are unrelated. The first set of experiments are on

Germanic, Turkic languages (EN→DE+TR) and

the second set of experiments are on Germanic,

Japonic languages (EN→DE+JA). We present the

results in Table 2b when different sets of parame-

ters are shared. Here, we observe that the approach

of sharing all the parameters leads to a noticeable

drop in the BLEU scores for both the considered

language pairs. Similar to the above discussion,

sharing the key and query matrices results in a large

increase in the BLEU scores. We hypothesize that

in this partial parameter sharing strategy, the shar-

ing of key and query attention weights effectively

models the common linguistic properties while the

separate FFN sublayer weights model the unique

characteristics of each target language, thus over-

all leading to a large improvement in the BLEU

scores. The results of other decoder parameter

sharing approaches lie close to the key and query

parameter sharing method. As the target languages

are from different families, their vocabularies may

have some overlap but will be significantly differ-

ent from each other. In this scenario, a useful al-

ternative is to consider a separate embedding layer

for every source-target language pair while sharing

all the encoder and decoder parameters. However,

we did not experiment with this approach, as the

inclusion of separate embedding layers will lead

to a large increase in the model parameters and as

a result model training will become more mem-

ory intensive. We leave the investigation of such

parameter sharing strategy to future work.

4.2 Overall Comparison

In Table 3, we show an overall performance com-

parison of no parameter sharing, full parameter

sharing for both GNMT (Wu et al., 2016) and

Transformer models, and the best approaches ac-

cording to maximum BLEU score from our par-

tial parameter sharing strategies. For training the

GNMT models, we use its open-source implemen-

tation4 (Luong et al., 2017) with four layers5 and

default parameter settings. First, we note that the

BLEU scores of the Transformer model are always

better than the GNMT model by a significant mar-

gin for both bilingual (no sharing) and multilingual

4https://github.com/tensorflow/nmt
5We found that the four layer model for GNMT didn’t

overfit and obtained the best BLEU scores.
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Set of shared parameters (Θ)
EN→RO+FR EN→DE+NL params

→RO →FR →DE →NL ×106

WE 27.21 43.36 30.32 33.51 105

WE, θENC 27.82 43.83 29.97 33.33 86

WE, θENC, W1, W2 27.78 43.87 29.95 33.12 74

WE, θENC, W 1

K , W 1

Q, W 1

V , W 1

F 27.80 43.76 30.68 33.99 80

WE, θENC, W 2

K , W 2

Q, W 2

V , W 2

F 28.36 44.19 30.50 33.75 80

WE, θENC, W 1

K , W 1

V , W 2

K , W 2

V 27.77 43.83 30.54 34.00 80

WE, θENC, W 1

K , W 1

Q, W 2

K , W 2

Q 27.58 43.84 30.70 34.05 80

WE, θENC, W 1

K , W 1

Q, W 1

V , W 1

F , W 2

K , W 2

Q, W 2

V , W 2

F 28.14 44.12 30.64 33.92 74

WE, θENC, θDEC 28.52 44.28 30.45 33.69 61

(a) The target languages in this one-to-many translation task belong to the same language family. RO and FR are Romance
languages while DE and NL are Germanic languages.

Set of shared parameters (Θ)
EN→DE+TR EN→DE+JA params

→DE →TR →DE →JA ×106

WE 30.35 19.66 30.10 18.62 105

WE, θENC 30.55 19.29 30.21 18.70 86

WE, θENC, WL1
, WL2

30.21 19.17 30.36 18.92 74

WE, θENC, W 1

K , W 1

Q, W 1

V , W 1

F 30.35 19.24 30.05 18.78 80

WE, θENC, W 2

K , W 2

Q, W 2

V , W 2

F 30.49 19.40 30.16 18.73 80

WE, θENC, W 1

K , W 1

V , W 2

K , W 2

V 30.66 19.34 30.36 18.92 80

WE, θENC, W 1

K , W 1

Q, W 2

K , W 2

Q 30.71 19.67 30.48 19.00 80

WE, θENC, W 1

K , W 1

Q, W 1

V , W 1

F , W 2

K , W 2

Q, W 2

V , W 2

F 30.40 19.35 30.35 18.80 74

WE, θENC, θDEC 28.74 18.69 29.68 18.50 61

(b) The target languages in this one-to-many translation task belong to distant language families. DE, TR, and JA are unrelated
as they belong to Germanic, Turkic, and Japonic language families respectively.

Table 2: BLEU scores for various parameter sharing strategies when the target languages either belong

to the same family ({RO, FR}, {DE, NL}) or to distant families (DE, TR, JA). θENC denotes that all the

encoder parameters are shared between the models; θDEC denotes that all the decoder parameters are

shared between the models.

Method EN→DE+TR EN→DE+JA EN→RO+FR EN→DE+NL params

→DE →TR →DE →JA →RO →FR →DE →NL ×106

GNMT NS 27.01 16.07 27.01 16.62 24.38 40.50 27.01 30.64 –

GNMT FS 29.07 18.09 28.24 17.33 26.41 42.46 28.52 31.72 –

Transformer NS 29.31 18.62 29.31 17.92 26.81 42.95 29.31 32.43 122

Transformer FS 28.74 18.69 29.68 18.50 28.52 44.28 30.45 33.69 61

Transformer PS 30.71 19.67 30.48 19.00 27.58 43.84 30.70 34.05 80

Table 3: BLEU scores for different models for one-to-many translation task. NS: No Sharing corresponds

to the bilingual models when the two language pairs are trained independently; FS: Full Sharing means

one model is used for the translation of all the language pairs; PS: Partial Sharing means that the

embedding, encoder, decoder’s key, and value weights are shared between the two models.
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(full sharing) translation tasks. This reflects that

the Transformer model is well-suited for both mul-

tilingual and bilingual translation tasks compared

with the GNMT model. We also surprisingly note

that the GNMT fully shared model is able to consis-

tently obtain higher BLEU scores compared with

its bilingual version irrespective of which families

the target languages belong to.

However, for the one-to-many translation task

when the target languages are from distant fam-

ilies, we observe that fully shared Transformer

model leads to a substantial drop or small gains

in the BLEU score compared with the bilingual

models. Specifically, for the EN→DE+TR setting,

BLEU drops by 0.6 for EN→DE, while staying

even for EN→TR. In contrast, our method of shar-

ing embedding, encoder, decoder’s key, and query

parameters leads to substantial increases in BLEU

scores (1.4↑ for EN→DE and 1.1↑ for EN→TR).

Similarly, for EN→DE+JA, using the fully shared

Transformer model, we observe small gains of 0.3

and 0.5 BLEU points for EN→DE and EN→JA

respectively while our partial parameter sharing

method again leads to significant improvements

(1.5↑ for EN→DE and 1.1↑ for EN→JA). This

demonstrates the utility of our proposed partial pa-

rameter sharing method.

We also note that fully shared Transformer mod-

els can be an effective strategy only when both the

target languages are from the same family. For the

task of EN→RO+FR, the fully shared model per-

forms surprisingly well and yields significant im-

provements of 1.7 and 1.3 BLEU points compared

with bilingual models for EN→RO and EN→FR

respectively. A similar increase in performance

can also be observed for the EN→DE+NL task,

although for this task, our partial parameter sharing

method (encoder, embedding, decoder’s key, and

query weights) obtains even higher BLEU scores.

(1.4↑ for EN→DE and 1.6↑ EN→NL).

4.3 Analysis

Here, we analyze the generated translations of

the partial sharing and full sharing approaches for

EN→DE when one-to-many multilingual model

was trained on unrelated target language pairs

EN→DE+TR. These translations were obtained

using the test set of EN→DE task. Here partial

sharing refers to the specific approach of sharing

the embedding, encoder, and decoder’s key and

query parameters in the model.

We show example translations in Table 4 where

partial sharing method gets a high BLEU score

(shown in parentheses) but the full sharing method

does not. We see that sentences generated by partial

sharing method are both semantically and grammat-

ically correct while the full sharing method gen-

erates shorter sentences compared with reference

translations. As highlighted in table cells, the par-

tial sharing method is able to correctly translate

a mention of relative time “half a year” and a co-

reference expression “mich”. In contrast, the fully

shared model generates incorrect expressions of

time mentions “eineinhalb Jahren” (one and half

years) and different verb forms (“schlägt” is gener-

ated vs “schlagen” in the reference).

We also perform a comparison of the F-measure

of the target words for EN→DE, bucketed by fre-

quency in the training set. As displayed in Figure 4,

this shows that the partial parameter sharing ap-

proach improves the translation accuracy for the

entire vocabulary, but in particular for words that

have low-frequency in the dataset.
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Figure 4: The F-measure for the target language

(DE) words in one-to-many multilingual translation

task (EN→DE+TR). Best viewed in color.

5 Related Work

In this section, we will review the prior work re-

lated to MTL and multilingual translation.

5.1 Multi-task learning

Ando and Zhang (2005) obtained excellent results

by adopting an MTL framework to jointly train lin-

ear models for NER, POS tagging, and language

modeling tasks involving some degree of parame-

ter sharing. Later, Collobert et al. (2011) applied

MTL strategies to neural networks for tasks such

as POS tagging, NER, and chunking by sharing the
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source So half a year ago , I decided to go to Pakistan myself .
reference Vor einem halben Jahr entschied ich mich , selbst nach Pakistan zu gehen .
partial sharing Vor einem halben Jahr entschied ich mich , selbst nach Pakistan zu gehen . (1.0)
full sharing Vor eineinhalb Jahren beschloss ich , nach Pakistan zu gehen . (0.35)

source Your heart starts beating faster .
reference Ihr Herz beginnt schneller zu schlagen .
partial sharing Ihr Herz beginnt schneller zu schlagen . (1.0)
full sharing Ihr Herz schlägt schneller . (0.27)

Table 4: Sample translations from EN→DE when one-to-many multilingual model was trained on

unrelated target language pairs EN→DE+TR. In these examples, the method of partial sharing of decoder

parameters obtains a very high BLEU score (mentioned in parentheses).

sequence encoder and reported moderate improve-

ments in results. Recently, Luong et al. (2016)

investigated MTL for a tasks such as parsing, im-

age captioning, and translation and observed large

gains in the translation task. Similarly, for MT

tasks, Niehues and Cho (2017) also leverage MTL

by using additional linguistic information to im-

prove the translation accuracy of NMT models.

They share the encoder representations to perform

joint training on translation, POS, and NER tasks.

MTL has also been widely applied to multilingual

translation that will be discussed next.

5.2 Multilingual Translation

On the multilingual translation task, Dong et al.

(2015) obtained significant performance gains by

sharing the encoder parameters of the source lan-

guage while having a separate decoder for each

target language. Later, Firat et al. (2016) attempted

the more challenging task of many-to-many trans-

lation by training a model that consisted of one

shared encoder and decoder per language and a

shared attention layer that was common to all

languages. This approach obtained competitive

BLEU scores on ten European language pairs while

substantially reducing the total parameters. Re-

cently, Johnson et al. (2017) proposed a unified

model with full parameter sharing and obtained

comparable or better performance compared with

bilingual translation scores. During model train-

ing and decoding, target language was specified by

an additional token at the beginning of the source

sentence. Coming to low-resource language trans-

lation, Zoph et al. (2016) used a transfer learn-

ing approach of fine-tuning the model parame-

ters learned on a high-resource language pair of

French→English and were able to significantly in-

crease the translation performance on Turkish and

Urdu languages. Recently, Gu et al. (2018) ad-

dresses the many-to-one translation problem for

extremely low-resource languages by using a trans-

fer learning approach such that all language pairs

share the lexical and sentence-level representations.

By performing joint training of the model with

high-resource languages, large gains in the BLEU

scores were reported for low-resource languages.

In this paper, we first experiment with the Trans-

former model for one-to-many multilingual trans-

lation on a variety of language pairs and demon-

strate that the approach of Johnson et al. (2017)

and Dong et al. (2015) is not optimal for all kinds

of target-side languages. Motivated by this, we

introduce various parameter sharing strategies that

strike a happy medium between full sharing and

partial sharing and show that it achieves the best

translation accuracy.

6 Conclusion

In this work, we explore parameter sharing strate-

gies for the task of multilingual machine translation

using self-attentional MT models. Specifically, we

examine the case when the target languages come

from the same or distant language families. We

show that the popular approach of full parameter

sharing may perform well only when the target lan-

guages belong to the same family while a partial pa-

rameter sharing approach consisting of shared em-

bedding, encoder, decoder’s key and query weights

is generally applicable to all kinds of language

pairs and achieves the best BLEU scores when the

languages are from distant families.

For future work, we plan to extend our param-

eter sharing approach in two directions. First, we

aim to increase the number of target languages

to more than two such that they contain a mix of

both similar and distant languages and analyze the

performance of our proposed parameter sharing

strategies on them. Second, we aim to experiment
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with additional parameter sharing strategies such as

sharing the weights of some specific layers (e.g. the

first or last layer) as different layers can encode dif-

ferent morphological information (Belinkov et al.,

2017) which can be helpful in better multilingual

translation.
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