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Abstract' 
The parameters of the parameterized modal operators [p] 
and <p> usually represent agents (in the epistemic 
interpretation) or actions (in the dynamic logic interpre
tation) or the like. In this paper the application of the 
idea of parametrized modal operators is extended in in 
two ways: First of all a modified neighbourhood 
semantics is defined which permits among others the 
interpretation of the parameters as probability values. A 
formula [.5] F may for example express the fact that in 
at least 50% of all cases (worlds) F holds. These 
probability values can be numbers, qualitative descrip-
tions and even arbitrary terms. Secondly a general theo-
ry of the parameters and in particular of the characteris-
tic operations on the parameters is developed which 
unifies for example the multiplication of numbers in 
the probabilistic interpretation of the parameters and the 
sequencing of actions in the dynamic logic interpreta
tion. 

Key words: Modal Logic, Probability Logic, Epistemic 
Logic, Temporal Logic. 

Introduction 

Modal logics are used with various interpretations, as epis-
temic logic to express the knowledge of an agent, as doxastic 
logic to express belief, as temporal logic to express temporal 
relationships, as action logic to express the effect of actions 
in the world etc. Many of these interpretations require the 
modal operators to be parametrized with agents, actions, etc. 

One interpretation of the parameters however has not yet 
been trieil, namely the interpretation as probability values, 
such that for example [p]F with p [0,1] expresses that F 
holds in at least (exactly, at most) p*100% of all cases 
(worlds). The reason might be that in this application 
numerical (or symbolic) computations with these parameters 
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have to be an essential part of the calculus. For example 
[.5][6]F which expresses that in 50% of all cases it is true 
that in 60% of their subcases F holds, should imply [.3]F. 
That means we have to integrate the operations on the 
parameters very deeply into the logic. 

When we adopt the interpretation that [p]F means at least 
p*100% (the other versions are similar) then there are more 
rules we would like to have: 

Unfortunately it turned out that the standard relational 
Kripke semantics for modal logic is not sufficient to support 
these rules. In classical modal logics there is one (or several) 
binary relations on worlds which is used to determine for the 
"actual world" the set of all accessible worlds [Kripke 
59,63], is true in the actual world iff F is true in all 
accessible worlds. At first glance it should be possible to use 
the standard accessibility relation and interpret [p]F: There is 
a p*l00% subset tl of the worlds accessible from the actual 
world and F holds in all these worlds V. This version, 
however, fails to support the rule [p][q]F [p*q]F. The 
following picture of a typical possible worlds structure 
shows what goes wrong. 

In order to overcome this problem we have to keep not 
only an actual world, but also an actual world set which 
serves as reference set against which to count the worlds. To 
this end we switch from the relational possible worlds struc
ture to a kind of neighbourhood semantics [Rautenberg 79] 
or minimal model semantics [Chellas 80] and replace the 
accessibility relation by an access function which 
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To our surprise it turned out that with this simple idea 
we have discovered a very general principle which permits a 
uniform treatment of many kinds of operations on parame
ters in may applications of modal logic, new and old ones. 

In order to demonstrate that the theory is of general 
nature we use the following five very different applications 
of the logic: 
1. Epistemic logic with a single agent. 

[p]F means, agent p knows F. 
2. Epistemic logic with a set of agents. 

(p]F means, every agent in the set p knows F. 
3. Temporal Logic with duration parameters. 

[p]F means there is an interval 1 of length p and F holds 
at each instant in I. 

4. Action Logic. [p]F means, after performing p, F holds. 
5. Probabilistic Logic. [p]F means, F holds in at least p* 

100 % of all cases. (Note that although we only use the 
interval [0...1] for probability values, there can be arbi-
trary qualifications such as "may be", "very likely", etc.) 

Common aspects which have shown up are for example that 
the multiplication of probability values corresponds (the 
same laws hold) to the sequencing of actions in the action 
logic interpretation. The operation max(0, p+q-1) corre
sponds to parallel execution of independent actions. 

In order to cover as many applications as possible we 
introduce generic operations on the parameters which have to 
be instantiated with concrete operations in each particular 
application. For each generic operation a correspondence bet-
ween a characteristic axiom schema (like [p][q]F  
and a characteristic property of the access function o i s 
shown. This correspondence plays the same r6le as for ex
ample the correspondence between the rule F in 
classical modal logic and the reflexivity of the accessibility 
relation. Correspondences of this kind are essential for incor
porating desired axiom schemas efficiently into semantics 
based deduction calculi [Fitting 83, Ohlbach 88, Herzig 89, 
Auffray & Enjalbert 89]. In this paper however we present 
only the basic logic itself and prove the correspondence 
theorems. The applications - the probabilistic application as 
well - are used to illustrate the ideas. They are not 
investigated themselves. 

The logic we present is first order and permits arbitrary 
nesting of modal operators and quantifiers. For example 
Vx:human [.5]male(x) and [.5]Vx:human male(x) are both 
allowed formulae, but with totally different meaning. This is 
one of the differences to standard theories for dealing with 
uncertainty where this is usually not possible, as for 
example in probability theory [Frost 86], certainty theory 
[Shortcliff & Buchanan 75], Dempster Schafer theory of 
evidence [Schafer 76], possibility theory [Zadeh 78] or 

incidence calculus [Bundy 84]. In [Halpem 89] there has been 
given a possible worlds model for a probability logic where 
this problem is solved by introducing two different notions: 
probabilities on the world and probabilities on the domain. 

The reader is assumed to be familiar with modal logic 
([Hughes & Cresswell 86], [Chellas 80], [Fitting 83]). 

In the sequel we use the following noLational conven
tions for writing formulae: Syntactic objects are written in 
standard letters, whereas semantic objects are written in 
italics. For example if x is a variable symbol, then xdenotes 
its interpretation with respect to a given variable assign
ment, F, G, H are used as meta symbols for formulae, 

Syntax and Semantics 

Algebras and homomorphisms [Graizcr 79] are the basic 
building blocks for the definition of the semantics of well 
sorted terms and well formed formulae. A A for a 
signature containing the available syntactic objects con
sists of a carrier set DA and a set of functions which corre
spond to in the right way. The carrier set is divided into 
subsets according to sort structure. A special is 
the algebra of free terms where the carrier set consists of the 
well sorted terms themselves and the functions are construc
tor functions for terms. This fact can be exploited to define 
the semantics of terms just by an homomorphism from the 
free term algebra into a corresponding ~ «*6^.«. A 
does not contain objects that correspond to predicate 
symbols. Therefore are _ together 
with relations as denotations for the predicate symbols. We 
write QA for the interpretation of the symbol Q in the 
structure or A 

Definition 1 Semantics 
A frame over a parameter signature I p , i.e. 
a signature containing the syntactic components of the 
parameter sort P, consists of 
• a set W of worlds, 
• a lp-structure IP of parameter values, 



Like in standard modal logics, the differentiation between 
frames and interpretations allows us to fix certain properties 
of the semantic structure for all interpretations based on a 
frame. Traditionally these are properties of the accessibility 
relation like reflexivity etc. Classes of frames with the same 
property then make up a logic (e.g. K, T, S4 etc.). We 
included in the definition of a frame not only the access func
tion as a substitute for the accessibility relation, but also 
the parameter structure. This permits the distinction of 
logics according to certain properties of the access function 
and the parameter structure. 

Our semantics differs in a key point from standard neigh-
bourhood semantics. We need the neighbourhood not of the 
actual world, but of the actual world set. Therefore the 
function accepts a set of worlds as input and returns the 
neighbourhood of this set. In the case of unparametrized 
modal operators this makes no difference to standard 
neighbourhood semantics. For the parameterized case, 
however it is essential for interpreting the parameters as 
probability values which count worlds. 

In the concrete definition of the access function the 
intuition about the actual application can be manifested. For 
example in the epistemic interpretation with a single agent, 

returns the basic set of worlds the agent considers in his 

mind together with its supersets. If different frames of mind 
ate to be modeled in which the agent may believe controver-
sial things then several different basic sets are returned 
[Fagin & Halpern 88]. In the epistemic interpretation with a 
set of agents, returns a single basic set with the union of 
all worlds the agents consider (again together with their 
supersets). In the temporal interpretation with duration 
parameter, (p,..) returns the set of intervals with length p. 
In the action logic interpretation, returns the sets of worlds 
which are caused by each action. Finally in the probabilistic 
interpretation, returns the set of subsets of u with at 
least ^ 100% of its elements. 

Some theorems which carry over from modal logic with 
standard neighbourhood semantics are collected in the follow-
ing lemma [Chellas 80, Rautenberg 79]. 
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Possible meanings of the E -predicate in the different 
applications of the logic are as follows. In the epistemic 
interpretation with a single agent, p E q means that p knows 
everything q knows. In the epistemic interpretation with a 

From now on we choose "F holds in at least p*l00% of 
all cases" as the probabilistic reading of [p]F, and require 
thus to be upwardly closed in this case. 

Characterizing the Parameter Structure 

In a sequence of theorems we investigate the correlations 
between the operations on the parameter 
structure and characteristic formula schemas. We start with 
the c-relation. 



set of agents, p q is just the subset relation. In the tempo-
ral interpretation with duration parameters, p q enforces 
that q denotes a shorter period than p. In the action logic 
interpretation, p q is a specialization relation. For example 
move walk expresses that everything that can be achieved 
with the action 'move' can also be achieved with the action 
walk'. In the probability interpretation is just the less 

equal relation on numbers. 
If the chelation has top and bottom element - assume 

they are denoted by 1 and 0 - according to theorem 3 the 
axioms [1]F [p]F and [p] [0]F hold. This allows for 
some interesting interpretations of these top and bottom 
elements. In the epistemic interpretation with a single agent, 
a top element is a gossip. What he knows everybody knows. 
A bottom element is "big brother". He knows everything the 
other agents know. In the epistemic interpretation with a set 
of agents, 0 denotes the empty set and 1 denotes the set of 
all agents. In the temporal interpretation with duration 
parameters, 0 denotes the empty period and 1 a longest 
period (day, month or whatsoever). In the action logic inter
pretation, there is no meaningful bottom element. A top 
element might be "do-something". In the probability inter
pretation the top and bottom elements are simply the num
bers 1 and 0 expressing "certainly" and "no information". 

Next we consider the operation which corresponds to 
the intersection of sets of accessible worlds. 

There are meanings of in all applications we consid
ered. In the epistemic interpretation with a single agent, 
computes a common close confidant (maybe a father confes
sor) who knows everything the two agents know. In the 
epistemic interpretation with sets of agents, computes the 
intersection of two sets of agents. In the action logic 
interpretation, p q means parallel execution of independent 
actions. In the temporal interpretation, computes minimal 
overlaps with respect to a maximal interval length. For 
example from [12h]shining(sun) and [13h]-ishining(sun) 
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The most obvious meaning the inverse function can have 
is in the probability interpretation. In this case ~p is defined 
as 1-p. This means e.g. [.6]F [.4]+ F, i.e. if it is not 
the case that in at least 60% of all cases F holds then its 
negation must hold in at least 40% of all cases. There is an 
analogous meaning in the temporal case where the interval 
lengths are determined relative to the actual interval. 

Conclusion 

We have presented an extended possible worlds semantics for 
modal logics. It is based on the idea of neighbourhood 
semantics and it supports the incorporation of correlations 
between different parameters into the logic in applications 
requiring parameterized modal operators. This permits new 
applications of the idea of possible worlds semantics. For 
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each application, the theory we have presented gives a con
crete guidance for the development of the parameter structure 
and the corresponding operations on these parameters. 

In particular there is an interpretation as a probabilistic 
logic where the modal operator [p]F expresses that F holds 
in at least p*100% of all cases. Since the logic is full first 
order, probability values and quantifiers can be arbitrarily 
mixed. Non-numerical parameters are also allowed. 

The way to develop applications of our general frame-
work is as follows: As usual in modal logic, truth is defined 
relative to a class of frames. For each application there is a 
class of frames which best approximates the intuition behind 
the application. The buttons we can turn in order to specify 
the class of frames are the properties of the access functions 
and the properties of the parameter structure. The weak 
homomorphism conditions in the statements 2 of the theo-
rems 3-9, however, set the limits on these manipulations. 
The stronger we restrict the class of parameter structures we 
allow in an application, the stronger we restrict the class of 
access functions. Therefore it has always to be proved that 
there is still at least one access function that satisfies these 
weak homomorphism conditions. Typically, however, we 
proceed the other way round. We define a class of access 
functions first. Then we have to look how far we can restrict 
the class of parameter structures without further restricting 
the class of access functions. 

There are of course still a lot of things to do. An 
additional implication can be introduced which is more 
natural e.g. in the probabilistic application. It permits the 
interpretation of P [.2]Q as "Q holds in 20 % of the cases 
where P holds". 

A logic without a calculus is as useless as a pro-
gramming language without an interpreter or compiler. 
Therefore the most important step is to develop a calculus 
for this logic. Experience with classical (first order) modal 
logics has shown that it is no good idea to develop a calcu
lus operating on the original logic directly. Therefore we aim 
at a translation method which permits the translation of mo
dal formulae into predicate logic such that standard predicate 
logic deduction methods can be applied lOhlbach 88, Herzig 
89, Farinas & Herzig 90]. Applied to our case the method 
translates for example a formula [p]Q into  

Q'(x). The interpretation of this translated formula is: X 
is a function which, applied to p yields a particular set of 
functions x mapping the actual world to some world where 
the predicate Q' holds. 

Since our logic has no built in assumptions at all it 
contains none of the paradoxes, other theories of certainty 
suffer from. Moreover, it should be possible to axiomatize 
the other theories within our framework. For example the 
statistic probability of independent events multiplies whereas 
we have the logically sound, but sometimes too weak 
minimal solution max(0, p+q-l). We can however easily add 
an axiom p,q [p]P A [q]Q [p*q](P A Q) such that for 
particular P and Q where [p*q](P A Q) can be derived, this 
subsumes the built in inference [max(0, p+q-1)] (P A Q). We 
have to investigate how far we can go in this direction. 
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