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ABSTRACT 

Thermal blockage by a water curtain to prevent heat and smoke spread from a fire compartment to an 

adjacent one is studied numerically using a Computational Fluid Dynamics (CFD) code, namely the 

Fire Dynamics Simulator (FDS5). A two-room compartment connected by an open door is simulated. 

A 165kW pool fire is set up in the fire room. A water curtain is placed near the opening. A sensitivity 

analysis is performed on the grid size, diameter of droplets, density of droplets introduced in the 

computational domain and thickness of the curtain. Temperature and average radiative heat flux in the 

protected compartment are studied. The results of numerical calculations show that the water curtain 

can be a useful tool for compartmentation in the sense of thermal blockage. As expected, finer droplets 

are shown to be more efficient. Neither the number of droplets per second introduced in the 

computational domain, nor the thickness of the curtain (modified by changing the bounds of the solid 

angle), have a noticeable influence on the thermal blockage. The numerical results are compared 

against available experimental data. 
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NOMENCLATURE

d droplet diameter (µm) 

dm median volumetric diameter (µm) 

Ao orifice area (m
2
) 

V velocity (m/s) 

w
m  water flow rate (kg/s) 

Greek 

σ empirical constant (-) 

γ empirical constant (-) 

ρ density of water (kg/m
3
) 

 

INTRODUCTION 

A major concern in case of fire in a compartment is the spread of heat and smoke into the 

adjacent compartment through the openings. If this problem cannot be solved by technological 

options such as fire-resistant doors or fire and smoke screens, the use of a water spray curtain 

(drencher system) can be an option. The main question is, to what extent the water curtain can be 

efficient for this purpose, in that flame spread or fire spread is avoided. 

Chow and Ma [1] investigated this issue by an experiment. It was observed that due to not having 

a continuous layer discharged from the nozzles, thermal radiation and smoke could not be totally 

blocked. However, the protected-side was kept cooler. In the research by Fong et al. [2] reduction 

of the air temperature at the protected side as well as the radiative heat flux at the fire side was 

observed. The spread of smoke could not be completely stopped. However, the amount of smoke 

was significantly reduced in the protected side. The same result was obtained by Hirota et al. [3] 

in the case of reduction of the temperature on the other side of the fire.  
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To the authors’ knowledge, there are limited experimental and numerical data available regarding 

the effectiveness of the water curtain as a tool for compartmentation. Therefore, in this paper, this 

matter is studied numerically using a Computational Fluid Dynamics (CFD) code, namely the 

Fire Dynamics Simulator (FDS5) [4]. The geometrical configuration (see Fig. 1) consists of two 

rooms (2.9 m × 4.0 m × 2.6 m each) connected by an open doorway (2.2 m × 1.83 m). A 165 kW 

methanol pool fire of 0.6 m diameter is set up in the fire room. The water curtain is placed near 

the opening (at 20 cm) in the adjacent room. Two thermocouple trees are located on both sides of 

the opening (0.5m away from the center of the opening). The nozzle, with an orifice size of 8mm 

and flow rate of 1.49 l/s, is placed above (and 10 cm away from) the opening in the protected 

room. It is actuated after 120 seconds. More details on the experimental set-up can be found in 

[1]. 

A structured uniform mesh of 10 cm is used. The experiment duration had been around 850 

seconds, although the fire had died out before this time. The simulation time is chosen to be 550 

seconds in order to avoid unnecessary computational cost. 

 

 

Figure 1. Geometrical configuration [1]. 

OVERVIEW OF THE NUMERICAL MODEL IN FDS 

FDS5 uses a Lagrangian technique to represent water droplets. This means that each moving 

droplet is tracked individually. However, since  tracking every drop produced by a sprinkler is 

time and memory consuming, only a limited number of droplets is tracked. Thus, each droplet in 

FDS represents multiple droplets of similar size and trajectories. All the heat transfer and 

movement will be calculated based on the single droplet's diameter and temperature and the 

effect is then multiplied by a weighting factor. 

Some important parameters to be considered in the simulations are the following: 

Size distribution: In FDS, the median volumetric diameter, dm, of the droplets (i.e., half the mass 

is carried by droplets with diameters of dm or less) is used. The distribution is assumed to be a 

combination of Rosin-Rammler and log-normal. The default value is 500 µm. Defaults for 

minimum and maximum diameters are 20 µm and infinitely large (∞), respectively. The Rosin-

Rammler/log-normal distribution is given by [4] 



7th International Seminar on Fire and Explosion Hazards (ISFEH 2013) 

 

 

 

 

3 

2
ln( )

21 1 2 ( )
02

0.693

1 ( )

( )

d
dm

d
e dd d dm

d

d

dme d dm

F d






 
  

 


 
  

  





 





    ,                                                                        (1)                     

where γ and σ are empirical constants equal to about 2.4 and 0.6, respectively [5].  

For the simulations, the default values for γ, minimum and maximum droplet diameter are used. 

The median droplet diameter of 1000 µm is chosen (the median volumetric droplet diameter was 

not mentioned in the experiment).  

Density of the droplets: The density of the droplets, i.e., the number of droplets introduced in 

the computational domain per second, was chosen to be 20000. It is recalled that for a real 

sprinkler or nozzle, the number of droplets created per second is much greater than the numbers 

that can be simulated. 

Simulation of the water curtain: In FDS5 sprinklers or nozzles discharge water in a conical 

pattern. In this work, to create a more accurate spray pattern for a drencher system, TABL input 

lines were used as [4]  

&TABL ID='table_id',TABLE_DATA=LAT1,LAT2,LON1,LON2,VELO,FRAC 

For the simulation, the spray pattern was defined as 2 jets, each with a flow rate of half of the 

total flow rate (FRAC=0.5). To have a spray angle around 180° LAT1 and LAT2 were chosen to 

be 0° and 90°, respectively. For the curtain “thickness” LON1 and LON2 were chosen to be 88° 

and 91° as shown in Fig. 2a. It should be noted that, in order to have a water curtain close to the 

reality, it was decided not to use a high value for the solid angle (LON). Figure 2b displays a 

spray pattern discharged from a drencher nozzle with a spray angle around 180°. 

 

   

 

   (a)                                                                  (b) 

Figure 2. (a) Top view of the curtain, (b) Spray pattern discharged from a drencher nozzle (spray angle 

around 180°) [1] 

The velocity (VELO) of droplets (m/s) at their point of injection was calculated as  

w

w o

o

m
m A V V

A



   ,                                                                                                               (2)  

where,
w

m is the water flow rate (kg/s), ρ is the density of water (kg/m
3
) and Ao is the orifice area 

(m
2
). 
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Radiation modeling 

In FDS the radiation equation is solved using a finite volume technique. The solver has two 

modes of operation; a gray gas model (default) and a wide band model [4]. In this work the 

default model is used. The gray gas model assumes that the gas behaves as a gray medium.  

Absorption and scattering of thermal radiation by water droplets 

Water droplets attenuate the radiation by absorption and scattering. Absorption is the pathway to 

droplet evaporation while scattering redirects incident energy into non-incident directions [7]. 

The relative importance of these mechanisms depends on the droplet size and the wavelength of 

the radiation. [10]. In FDS, absorption and scattering characteristics of the water droplets is 

computed by Mie theory (valid for spherical and isolated droplets) [5]. More details, including 

the entire radiative transport equation, can be found in [5].   

SENSITIVITY ANALYSIS 

The effects of several spray parameters are investigated numerically. The sensitivity analysis on 

the spray pattern is conducted with respect to 

1) The median droplet diameter, dm, (500 µm instead of 1000 µm); 

2) The number of droplets per second introduced into the computational domain (40000 

instead of 20000); and 

3) The thickness of the curtain (4° instead of 2°). 

A grid sensitivity analysis is also carried out (a structured uniform mesh of 5 cm instead of 10 

cm).  

COMPLEMENTARY SIMULATIONS 

Two additional simulations have also been carried out in order to investigate 1) the effect of 

blockage of direct radiation from the fire source and 2) the effect of the water curtain in the 

stratified case. For the first case, the burner is placed 1 m further away from the curtain. For the 

second case, two additional openings, with the same dimensions as the open doorway between 

the compartments, are added on each side of the chambers (see Fig. 3). 

 

Figure 3. Geometrical configuration for the second complementary simulation  
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RESULTS AND DISCUSSION 

Thermal blockage 

As can be seen from Fig. 4, without the water curtain the temperature in the protected side 

reaches values up to about 120°C. After injection of the water curtain (at t=120 seconds), the 

temperature drops in the protected side. Results from the simulation also show that at about 50 

seconds after discharge of the water curtain, the temperature in the protected room drops from 

around 120°C to below 60°C. This is in line with the experiment, where a temperature reduction 

of over 60°C is recorded [1]. All the temperature measurements are based on the highest 

thermocouple placed at h=2.2 m (to have the highest temperature). 

 
Figure 4. Effect of the water curtain on the temperature in the protected chamber 

Figure 5 display the average radiative heat flux (between t = 140 s and t = 165 s) on the floor at 

the centerline of the protected room, starting 20 cm away from the water curtain. The water 

curtain substantially reduces the heat flux in the protected compartment. 

 

Figure 5. Average radiative heat flux distribution on floor level at the centerline 

Smoke spreading 

The amount of soot (mol/mol) in the protected room is shown in Fig. 6. Whereas the amount of 

soot increases less rapidly after injection of the water curtain, clearly there is no ‘blocking’ 
effect. The spread of smoke through the water curtain has indeed been observed in all cases. 

However, since the number of droplets introduced in the computational domain is far less than in 

reality, more investigations should be carried out before reaching final conclusions. Indeed, a 
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higher porosity in the simulated curtain, compared to the one in reality, may be a reason for 

spread of the smoke through the curtain in the simulations. In the experiment, as well, smoke 

could not be prevented from spreading from the fire room to the protected area [1]. In the 

literature [1 and 2] the increase of the water flow rate and pressure are suggested in order to 

provide a more continuous curtain (less porosity). 

 
Figure 6. Soot in the protected compartment 

Sensitivity analysis 

Figure 7 shows the effect of reducing the droplet diameter on the temperature. As expected, finer 

droplets are shown to be more efficient. Reducing the droplet diameter from dm = 1000 µm to dm 

= 500 µm, additionally, lowers the temperature by about 20°C. 

It should be emphasized that in reality, for a given flow rate, the number of droplets increases as 

the diameter decreases. This will lead to a more continuous curtain. In the simulation, in order to 

investigate the effect of droplet size, only the median volumetric droplet diameter was changed. 

 

Figure 7. Effect of the droplet size on the temperature of the protected chamber 

Figure 8 displays the comparison between the water curtain in the experiment, and the simulated 

water curtain with median volumetric droplet diameter of 1000 µm and 500 µm (left to right).  
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Figure 8. Comparison between the water curtains from the experiment and the simulations, 1000µm and 

500µm, (left to right). 

Figures 9 and 10 depict the effect of finer grid, density of droplets introduced in the 

computational domain and the thickness of the curtain on the temperature of the protected room 

at the 2.2 m height. As can be seen in Fig. 9, no significant difference in the results is observed 

with the finer mesh. Increasing the density of droplets from 20000 per second to 40000 per 

second, does not have a noticeable influence on the thermal blockage, either (see Fig. 10a). The 

same result is observed with increasing the thickness of the curtain from 2° to 4° (see Fig. 10b). 

 
Figure 9. Effect of two different grid sizes on the temperature of the protected chamber 

  

                                     (a)                                                                           (b) 
 

Figure 10. Temperature profile of the protected chamber for (a) two different droplet densities and (b) two 

different water curtain thicknesses.  
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Complementary simulations 

1. Replacement of the burner 

In order to examine the effect of the blockage of direct radiation from the fire source, an 

additional simulation is performed with the burner placed 1 m further away from the curtain. 

Several heat flux devices are put on the floor in the centerline of the protected room, at 0.2 m, 0.7 

m, 1.2 m, 2.2 m and 3.2 m after the curtain. Table 1 displays the results for the average net heat 

flux (between t = 140 s and t = 165 s) for both cases. The results show that placing the burner 

further away from the curtain does not decrease the heat flux received on the floor in distances of 

1.2 m or further. The effect of direct radiation from the fire is only significant in its vicinity 

(decrease of around 40% in the heat flux at 0.2 m). 

Table 1. Average net heat flux (kW/m2) received on the floor at the centerline of the protected compartment 

Distance from the curtain d=0.2 m   d=0.7 m   d=1.2 m d=2.2 m d=3.2 m 

Original place 1.52   0.92   0.69       0.53 0.48 

1 m Further 0.92 0.81   0.69 0.53 0.47 

 

As discussed before, the reduction of over 60°C in the temperature of the protected compartment 

at the 2.2 m height was observed. Figure 11 displays the comparison between the temperature 

profiles for both cases. As can be seen, no siginificant change in the results after injection of the 

water curtain is observed. Although the burner is one meter further away from the water curtain, 

the temperature profile for both cases is almost the same. It can be concluded that the observed 

decreased in the temperature of the protected compartment is mainly due to the convective heat 

exchange between the spray and the hot gases leaving the fire compartment and not shielding of 

the radiative flux from the pool fire. Considering the small size of the fire (short flame height) 

these results are not surprising. 

 

Figure 11. Temperature profile of the protected chamber for two different places of the fire source  
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As expected, for the case with two extra openings, a clear two-layer pattern was formed before 
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curtain. The protected room was filled up with the smoke (see Fig. 13). Figure 14 shows the 

results for the temperature profile. An almost uniform temperature of around 40°C was observed. 

 

 

Figure 12. Smoke pattern before injection of the water curtain 

 

 

Figure 13. Smoke pattern after injection of the water curtain 

 

 

                                     (a)                                                                           (b) 
Figure 14. Temperature profile in the protected compartment: (a) lower layer, (b) upper layer 
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CONCLUSIONS 

The use of a water curtain as a tool for compartmentation has been studied numerically. The 

effect of several spray pattern parameters has been investigated. In terms of thermal blockage the 

following can be concluded:   

 The water curtain can be a useful tool for compartmentation to provide thermal blockage.  

 Finer droplets are shown to be more efficient.  

 Neither the density of droplets introduced in the computational domain, nor the thickness of 

the curtain, has a noticeable influence on the thermal blockage.  

 For the case considered (with a relatively small fire), the reduction in temperature in the 

protected compartment after activation of the water spray, is due to convective heat exchange, 

not due to shielding of direct radiation from the fire.  

 In the stratified case, injection of the water sprays leads to mixing of the two zones and 

eventually smoke fills up the compartment (resulting in an almost uniform temperature). 

Having a continuous water layer is the key point in the blocking of smoke [1 and 2]. In FDS, 

creating such a pattern does not seem feasible due to limitations in defining the density of 

droplets in the computational domain. Therefore, regarding the spread of smoke, no specific 

conclusion can be provided from the study as performed.  
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