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Abstract 

 

This study investigates the optimal topology of a constrained layer damping treatment 

involving viscoelastic materials under a static load for different boundary conditions in 

order to maximize the damping loss factor for the first vibrating mode of the base 

structure. Different parameter studies are carried out for the two boundary conditions and 

conclusions are drawn based on the loss factor results and the novel topologies that 

emerge from these optimization results. The novel topologies are then used to interpret 

shapes that are more reasonable to manufacture. Tremendous improvement in the loss 

factor (up to 1250%) is obtained by topology optimization in many of the cases. Also this 

study develops fundamental understanding of the optimal topologies that are required to 

maximize the loss factor. 
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Nomenclature 

[M] real mass matrix 

{ }x  displacement 

{ }x&&     acceleration 

[K] modulus matrix 

[ ]iK  complex part of the modulus matrix 

[ ]rK  real part of the modulus matrix 

r mode number 

rf  eigenvalues 

{ }rΦ  eigenvectors 

D

rE  dissipated energy 

S

rE  strain energy 

rη  damping loss factor for the rth mode 

G  shear storage modulus of the viscoelastic material 

υ material loss factor 

Er
V strain energy in the viscoelastic material layer in the rth mode 

G’ equivalent storage modulus of the viscoelastic material 

VD

rE  dissipated energy from the viscoelastic layer in the rth mode 

VS

rE  strain energy in the viscoelastic layer in the rth mode 

O

rE  strain energy in the elastic layer in the rth mode 



 x 

2ω  frequency at a half power point 

1ω  frequency at a half power point 

dω  damped natural frequency 

E* elastic modulus of the viscoelastic material 

G* shear modulus of the viscoelastic material 

K* complex bulk modulus modulus of the viscoelastic materia l 

ν*  complex Poisson Ratio 

( )F x
r

 objective function of design variables 

( )ih x
r

 equality constraints 

( )ig x
r

 inequality constraints 

  n  number of design variables 

( )i

v
d     the fraction of viscoelastic material in element “i” 

( )i

e
d     the fraction of elastic material in element “i” 

v
f     the total fraction of viscoelastic material 

ef        the total fraction of elastic material 

v
ρ     density of the viscoelastic material 

eρ     density of the elastic material 

v
E   elastic modulus of viscoelastic material 

eE       elastic modulus of elastic material 
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1.           INTRODUCTION 

Noise and vibrations are generally regarded to be a nuisance in engineering 

applications. The vibrations of panels and structured members cannot be avoided when 

the excitation is due to shock or is random over a wide frequency range. The tendency of 

structures to respond vigorously to all manner of excitation is aggravated by the trends 

towards lightweight and unit construction with welded joints. The problems of noise and 

vibration are chronic in missiles, aircrafts, ships, etc., where excessive vibrations can lead 

to failures by fatigue. The trends towards lightweight and unit construction are giving rise 

to similar problems in buildings, particularly with pre-stressed concrete construction, 

which has very little damping.  

Vibration and noise in a dynamic system can be reduced by a number of means. 

These can be broadly classified into active, passive and semi-active methods. Active 

control involves the use of certain active elements such as speakers, actuators and 

microprocessors to produce an ‘out of phase’ signal to electronically cancel the 

disturbance. The traditional passive control methods for air-borne noise includes the use 

of absorbers, barriers, mufflers, silencers, etc. For reducing structural vibration and noise, 

several methods are available. Sometimes just changing the system’s stiffness or mass to 

alter the resonance frequencies can reduce the unwanted vibration as long as the 

excitation frequencies do not change. But in most cases, the vibrations need to be isolated 

or dissipated by using isolator or damping materials. In semi-active methods, active 

control is used to enhance the damping properties of passive elements. The full-scale 

implementation of active and semi-active methods is costly and complex. Passive 
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damping using viscoelastic materials is simpler to implement and more cost effective 

than semi-active and active techniques. This thesis deals with the application of 

viscoelastic damping materials for passive vibration and noise control, although the 

method used can be readily adapted to incorporate active materials. 

Damping refers to the extraction of mechanical energy from a vibrating system 

usually by conversion into heat. Damping serves to control the steady state resonant 

response and to attenuate traveling waves in a structure. There are two types of damping: 

material damping and system damping. Material damping is the damping inherent in the 

material while system or structural damping includes the damping at the supports, 

boundaries, joints, interfaces, etc., in addition to material damping. Passive damping as a 

technology has been dominant in the non-commercial aerospace industry since the early 

1960s (Rao, 2003). Advances in the material technology along with newer and more 

efficient analytical and experimental tools for modeling the dynamical behavior of 

materials and structures have led to many applications such as inlet guide vanes for jet 

engines, helicopter cabins, exhaust stacks, satellite structures, equipment panels, antenna 

structures, truss systems, and space stations, etc. (Rao, 2003)  

When viscoelastic materials are used in vibration control, they are arranged so 

that they are subjected to shear or direct strains. There are two configurations, which arise 

as a result as shown in Figure 1.1. 

 

• Free Layer or Unconstrained Layer Damping Treatment  

In this case, the damping material is either sprayed on the structure or bonded to it 

using a pressure sensitive adhesive. When the base structure is deflected in bending,  
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the viscoelastic material deforms primarily in extension and compression in planes 

parallel to the base structure. The hysteresis loop of the cyclic stress and strain 

dissipates energy. The degree of damping is limited by the thickness and weight 

restrictions. The vibration analysis of a beam with a viscoelastic layer was first 

conducted by Kerwin (1959). The system loss factor of a free layer system increases 

with the thickness and loss factor of the viscoelastic layer.  

 

• Constrained Layer Damping Treatment 

This consists of a sandwich of two outer elastic layers with a viscoelastic material as 

the core. When the base structure undergoes bending vibration, the viscoelastic 

material is forced to deform in shear because of the upper stiff layer. The constrained 

layer damping is more effective than the free layer design since more energy is 

consumed and dissipated into heat in the work done by the shearing mode in the 

viscoelastic layer. Damping tape consists of a thin metal foil covered with a 

viscoelastic adhesive and is used on an existing structure in a constrained layer 

arrangement.  

 

Although these designs have been around for over 40 years, recent improvements in the 

understanding and application of the damping principles, together with advances in 

materials science and manufacturing, have led to many successful applications. The key 

point in any design is to recognize that the damping material must be applied in such a 

way that it is significantly strained whenever the structure is deformed in the vibration 

mode under investigation. 
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  The aim of this research is to determine the optimal topologies for viscoelastic 

laminae used for vibration damping in order to maximize the damping loss factor of the 

structure. The robustness of the topology optimization method presented will be 

examined by varying certain parameters and determining the effect on the optimal 

topology and the damping levels achieved.   

 

1.1 LITERATURE SURVEY 

 

  One of the first analytical studies of unconstrained layer beams was conducted by 

Oberst and Frankenfeld (1952).  Commonly used methods for analysis of unconstrained 

and constrained damped laminated structures were developed by Ross, Ungar, and 

Kerwin (1959).  This work led to numerous studies, some of which are reviewed by 

Nakra, (1976, 1981, and 1984).  Finite elements have commonly been employed to 

characterize the laminated structure (for example, Hwang, Gibson, and Singh, 1992).  

Recently, constrained damping layers have proven effective for vibration damping in 

microstructures (Hsu and Shen, 2002).  A review of recent industrial applications of these 

materials is given by Rao (2003). 

 The desire to apportion this material in a way that will take the greatest advantage of 

its dissipative characteristics has led to studies in optimization.  Lundén (1979 and 1980) 

examined optimal designs of constrained damping layers for both beam and frame 

structures.  Plunkett and Lee (1970) optimized constraining layer tape lengths on beams 

in order to maximize the system loss factor.  Lekszycki and Olhoff (1981) optimized the 



 6

shape of an unconstrained damping layer for a beam structure using variational 

techniques.  Lall, et al (1983) maximized the system loss factor of damped sandwich 

panels (symmetric constrained layer plates) including the frequency dependence of the 

viscoelastic materials.  They also demonstrated that minimizing the peak displacement 

produces different results than maximizing the system loss factor.  Lifshitz and Leibowitz 

(1987) maximized the system loss factor, modeling a sandwich beam using a sixth order 

constrained layer theory.  Lin and Scott (1987) optimized the shape of a damping layer 

for both constrained and unconstrained beams, using structural finite elements to model 

the structure.  Hajela and Lin (1991) used a global optimization strategy to maximize the 

system loss factor with respect to damping layer lengths for a constrained layer beam.  

Studies have also been performed in the optimal design of unconstrained damped 

laminated plate structures.  Yildiz and Stevens (1985) optimized the shape of an 

unconstrained plate damping layer.  Roy and Ganesan thoroughly examined possible 

partial damping layer treatments for plate (1993) and beam (1996) unconstrained 

damping layers.  Lumsdaine and Scott (1995) optimized the shape of a symmetric 

unconstrained damping layer for both beams and plates using structural finite elements 

for modeling.  They also examined how the optimal shape is affected depending on 

whether the viscoelastic material is assumed to have constant or frequency varying 

viscoelastic properties.  Lumsdaine and Scott determined the optimal shape for 

unconstrained (1998) and constrained (1996) damping layers using continuum finite 

elements for modeling.  Liu and Chattopadhyay (2000) optimized segmented constrained 

damping layers to improve helicopter aeromechanical stability.  All of these studies 

performed shape or size optimization assuming a certain topology for the laminate. 
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Topology optimization is a relatively recent field and has been shown to be a 

good method for finding optimal topologies for structural problems with given boundary 

conditions. Bendsøe and Kikuchi (1988) first introduced the homogenization method for 

finding the optimal topology for a structural problem. A more thorough description of 

topology optimization using homogenization is given in the books by Hassani and Hinton 

(1999), Allaire (2002) and Bendsøe and Sigmund (2003).  

  Topology optimization using the homogenization method has recently been used 

to maximize the damping characteristics of a viscoelastic material (Yi, et al, 2000), but 

not in the context of a constrained layer-damping problem.  Van der Sluis, et al (1999) 

have performed topology optimization of heterogeneous polymers using homogenization. 

But that study was purely static, and did not examine damping properties.  Three-phase 

composites have been studied recently in the context of optimizing thermal expansion for 

a composite (Sigmund and Torquato, 1997), but not in the context of a passive 

constrained damping layer. 

 In a previous work (Lumsdaine, 2002) a constrained damping layer topology was 

optimized.  The results presented in this thesis are an extension of that work. The volume 

of damping material and constraining layer material are varied, as is the thickness of the 

base beam structure.  Additionally, a more accurate method is used to compute the 

system loss factor. 
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1.2 PROBLEM STATEMENT 

 

The objective of this study is to determine the best two dimensional topology of a 

damping treatment so as to maximize the loss factor for the first resonance frequency. 

The beam used for this study is a three- layered beam consisting of a base elastic 

structure, a soft viscoelastic layer and a stiff elastic layer on top of it. The topology of the 

base structure remains unchanged while that of the other two layers is allowed to change 

according to the optimization objective of maximizing the loss factor at the first bending 

mode. To determine the best topology, a numerical optimization is conducted. Finite 

elements are typically used for topology optimization problems, as analytical 

formulations would be far too complex to use practically. Thus, the beam is modeled 

using finite elements with two-dimensional first-order plane stress continuum elements. 

Analysis is done using the commercial finite element code ABAQUS. The loss factor is 

computed using the modified modal strain energy method (Xu, et al, 2002) in the 

optimization process. For the initial and optimal topologies, the loss factor results are 

validated by using the half-power bandwidth method. A commercial code is used for the 

optimization, which uses an SQP (sequential quadratic programming) algorithm.  For 

details on the algorithm and the code used (NLPQL), see Schittkowski (1986).  

Several different studies were performed for this work. The volume of damping 

material and constraining layer material, i.e. material fraction, is varied, as is the 

thickness of the base beam structure. This parameter study is carried out for two different 

boundary conditions, i.e. simply supported beam and a cantilever beam. 
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Also, a few manufacturable solutions are discussed based on the novel topologies 

that emerge from the resulting configurations.  

Chapter two gives an overview of the finite element modeling, the modal strain 

energy method and related theory on which the problem is based. Chapter three explains 

the basic idea of optimization and gives a detailed description of topology optimization. 

The implementation of the finite element model in the optimization algorithm is 

described. Chapter four shows the results of the parameter study for different 

optimizations. Also included in this chapter are the configurations, which are more 

reasonable to manufacture, that emerge from the resultant topologies. The last chapter 

shows the conclusions of this work and gives an overview of possible future work. 
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2. ANALYTICAL AND NUMERICAL FORMULATIONS 

 

Viscoelastic composites have been widely applied for the purpose of reducing 

noise and vibration. These long chain molecule polymers can be used with advantage 

because their imperfect elasticity gives much larger energy dissipation when deformed 

compared with metals. They therefore possess the desirable damping characteristics and 

provide design flexibility, i.e., tradeoff between damping and stiffness.  

Viscoelasticity may be defined as material response that exhib its characteristics of 

both a viscous fluid and an elastic solid. An elastic material such as a spring retracts to its 

original position when stretched and released, whereas a viscous fluid such as putty 

retains its extended shape when pulled. A viscoelastic material combines these two 

properties, i.e., it returns to its original shape after being stressed and released, but does it 

slowly enough to oppose the next cycle of vibration. The degree to which a material 

behaves either viscously or elastically depends mainly on temperature and the rate of 

loading (frequency in a steady state case).  

Examples of viscoelastic materials are: polymeric materials such as plastics, 

rubbers, acrylics, silicones, vinyls, adhesives, urethanes, epoxies, etc. The degree of 

viscoelasticity is measured by the ratio of the real part of the bulk modulus to the 

complex part. 

This chapter gives an overview of the modal strain energy method with its 

assumptions and modifications involved as well as the modeling of the structure to be 

studied using a commercial finite element software package.  
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            To analyze the dynamic performance of the damping treatments, considerable 

effort has been devoted to the studies of dynamic characteristics of viscoelastically 

damped structures (Nashif, et al, 1985). There are two major approaches in the analysis 

of damping effect: analytical and numerical . 

            The analytical approach is usually applicable to relatively simple structures, such 

as sandwich beams and plates, etc. The earliest analytical work on damping analysis can 

be found mostly related to the viscoelastic material property characterization. To develop 

an understanding of the parameters in the constrained layer damper, Ross, Kerwin and 

Ungar (1959) outlined the dominant design parameters for the case where all layers 

vibrate with the same sinusoidal spatial dependence. The outer layers are assumed to 

deform as Euler-Bernoulli beams and the viscoelastic layer is assumed to deform only in 

shear, which leads to a single fourth order beam equation where the equivalent complex 

bending stiffness depends on the properties of the three layers. Di Taranto (1965) studied 

damped sandwich beams with arbitrary boundary conditions. He derived a sixth-order 

differential equation of motion for the beam and assigned a complex shear modulus to the 

sandwiched core. To extend Ross, Kerwin and Ungar’s analysis to beams with general 

boundary conditions in which sinusoidal spatial dependence cannot be assumed, Mead, et 

al., (1969) obtained a sixth order equation of motion. It is assumed that the beam’s 

deflection is small and uniform across a section, the axial displacements are continuous, 

the base and constraining layers bend according to the Euler hypothesis, the damping 

layer deforms only in shear, and the longitudinal and rotary inertia effects are 

insignificant. The validity of the analysis is therefore limited to some upper range of core 

stiffness. Miles, et al, (1986) obtained a sixth order equation of motion by using 
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Hamilton’s principle. The  assumptions were equivalent to those of Mead except that 

relative transverse deflection is permitted between the outer layers and longitudinal 

inertia is included.  

            Though analytical methods are useful for predicting damping characteristics of 

some simple structures, a numerical approach, mainly the finite element method, remains 

to be the method of choice when complex physical systems are analyzed. In the finite 

element analysis of structures with viscoelastic damping material treatment, there are two 

issues making the analysis a difficult task. One is that although the modulus of a 

viscoelastic material is normally complex in steady state harmonic analysis, most 

commercial finite element packages are not designed to deal with complex modulus 

efficiently and accurately. The other one is that the material properties of viscoelastic 

material are frequency dependent, which creates a non- linear eigenvalue problem for the 

dynamic analysis. To deal with the complex modulus of the viscoelastic material, several 

different techniques have been developed, of which modal strain energy method has 

become a commonly used approach. In the modal strain energy method, the structure is 

first assumed to be undamped and modeled using the real part of the complex modulus as 

modulus of the damping layer. The real eigenvectors of each mode are obtained from 

finite element analysis and strain energies in all layers of the structure are calculated. The 

dissipative energy of the structure is calculated proportional to the strain energy in the 

damping layer and the material loss factor, and the modal loss factor is obtained by 

calculating the ratio of the dissipative energy to the total structural energy. However, 

modal strain energy method becomes quite inaccurate when the damping of the structure 

becomes high. Additionally, it is difficult to include properties that vary with frequency 
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or temperature. To consider the frequency and temperature dependence of elastic 

modulus of viscoelastic material, an iterative method is normally combined with 

commercial finite element software. This requires a significant amount of computational 

effort since for each mode, eigen-solutions need to be repeated until converged results are 

obtained.  

 

2.1         THE MODAL STRAIN ENERGY METHOD 

 

When a structure with viscoelastic damping treatment is to be analyzed, finite element 

modeling procedure can be used to establish its mass matrix [M], and stiffness matrix 

[K]. The structural eigenvalue problem can be written as, 

 

where [M] is a real matrix and 

is a complex matrix due to the complex modulus of the viscoelastic damping material 

used in the structure. 

However, there are two main issues associated with the eigen-problem of (1). One 

is that most commercial finite element software does not have the corresponding solver 

for the complex eigen-solution for a damped structure. Another one is that the modulus 

and loss factor of the viscoelastic material are frequency / temperature dependent, which 

results in the eigen-problem of (1) being non- linear.  

[ ] { } [ ]{ } 0...............................(1)M x K x+ =&&

[ ] [ ] [ ]r iK K i K= +
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The modal strain energy method is one of the most economical approaches in 

dealing with the complex modulus of the damping material. It assumes that the damped 

structure has the same natural frequencies and modal shapes as the undamped structure, 

thus the eigen-problem of the undamped structure is written as, 

[ ] { } [ ]{ } 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2 )
r

M x K x+ =&&  

By solving (2), eigenvalues and eigenvectors,  

r = 1,2,3,…can be obtained. 

For the rth mode, the dissipated and strain energies are defined as : 

 

The damping loss factor for the rth mode, η
r , therefore becomes, 

ηr  = energy lost per cycle / energy stored per cycle 

 

Since the complex modulus can be expressed as ( 1 + iυ )G, where G is the shear 

storage modulus of the viscoelastic material, and υ  is the material loss factor, and in 

finite element analysis, the strain energy in the viscoelastic material layer, Er
V, can be 

also calculated, thus the damping loss factor of the rth mode can be estimated (Refer 

ANSYS Theory Manual 5.5) as, 

 

, { }r rf Φ

{ } [ ]{ }

{ } [ ]{ }

D T i

r r r

S T r

r r r

E K

E K

= Φ Φ

= Φ Φ

{ } [ ] { }

{ } [ ] { }

D T i

r r r
r S T r

r r r

E K

E K
η Φ Φ= =

Φ Φ
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where υr is the material loss factor at the natural frequency of the rth mode. Xu, et al, 

(2000) compared the result for a cantilever sandwich beam using the above mentioned 

modal strain energy method with that from direct complex eigen-solution using 

compound beam element, and found that the results from both methods are very close 

when the material loss factor is low, however, significantly different when the material 

loss factor becomes high. 

However, due to viscoelastic materials’ frequency dependent feature of the 

storage shear modulus G and loss factor η, the structural stiffness matrix in (1) is not only 

a complex one, but also in theory a function of frequency. Therefore, the dynamic 

characterization of a damped structure is not completely modeled by a single application 

of the modal strain energy method as outlined above. The storage shear modulus G and 

loss factor η of viscoelastic material are also temperature dependent. However, that is not 

going to be considered here since in most dynamic analysis, constant temperature could 

be assumed. 

Then the [ Kr ] in (2) varies with the frequency of the in question mode. The 

modal analysis of the non- linear eigen-problem can be normally simplified to an iterative 

process. For the modal parameters fr, ηr, and {φ}r of the rth mode, the method can be 

summarized as, 

Initialize: f = f0 , find the corresponding G = G ( f0 ), and calculate [ Kr ] = [ Kr ( f0 ) ] 

V

r r
r S

r

E

E

υη =
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For k = 1,2,3,… 

 

Solve (2) →  fr
(k), ηr

(k), and {φ}r
(k) 

 

If f - fr
(k)/ fr

(k) ≤  ε  → STOP 

 

Update: f = f r
(k), find the corresponding G = G ( fr

(k) ) and calculate [ Kr ] = [ Kr ( fr
(k) ) ] 

 

As the iteration continues, the estimated fr
(k), ηr

(k), and {φ}r
(k) will converge at the 

exact solution fr, ηr, and {φ}r. Similarly, modal parameters of other modes can be 

determined. This iterative process requires a significant amount of computational effort. 

Especially in the process of viscoelastic material selection, the process needs to be 

repeated for each material trial. Hence, we have not used this process in the research. But 

the assumption that the viscoelastic properties are frequency independent holds true in 

our case since we are considering a very small frequency range. The inaccuracies, if any, 

are worth the gain in computational time. 

 

2.2 THE REVISED MODAL STRAIN ENERGY METHOD  

 

The revised modal strain energy method was developed by (Xu, et al, 2002). As 

mentioned above, the traditional modal strain energy method uses the real eigenvector of 

each mode obtained from finite element analysis of the corresponding undamped 
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structure to calculate strain energy in each material layer. The dissipative energy is 

calculated proportional to the strain energy in the viscoelastic damping material layer and 

the material loss factor. The modal loss factor is then obtained by calculating the ratio of 

the dissipative energy to the total structural strain energy. The problem associated with 

this approach is that the errors in natural frequency and modal loss factors estimation 

increase dramatically when the material loss factor increases. The reason is that the 

traditional modal strain energy method uses the real part of the material modulus in the 

finite element analysis such that the natural frequencies do not change with material loss 

factor. Hence a revised modal strain energy method is discussed here. 

In order to consider the effect of material loss factor on the structural natural 

frequencies, it is suggested to use an equivalent modulus, the magnitude of the 

viscoelastic material modulus, i.e. G’ = G*√(1 + υ2) , instead of G, in the undamped 

structural modal analysis, and use the resulting frequencies as the ones of the damped 

structure. When the equivalent modulus is used, the natural frequencies of the structure 

will increase with the loss factor even when the storage modulus of the viscoelastic 

material remains the same, which agrees with results obtained by direct complex eigen-

solution.  

After the modal analysis of the equivalent undamped system is completed, the 

strain energies in different materials can be calculated accordingly. To estimate the modal 

loss factor, the strain energy and the dissipative energy in the viscoelastic material need 

to be obtained as follows: 
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where, Er
V is the total strain energy of the rth mode in the viscoelastic material by 

assuming the modulus to be G’. If the strain energy in all other materials is Er
O, then the 

modal loss factor of the rth mode can be estimated by, 
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It is obvious that the simplified process requires only a limited number of 

structural FEM ana lysis, so it can avoid the significant amount of computational effort 

that would be required. Hence, the modified modal strain energy method has been used to 

calculate the modal loss factor of the composite structure used in this research. 

 

2.3 MODELING 

 

Using the modified modal strain energy method described above, the system loss 

factor at a given mode may be estimated from the undamped mode shapes of the 

laminated structure and the material loss factor of the viscoelastic material. Its 

implementation with a commercial finite element software package was given by 

Johnson and Kienholz (1982). The system loss factor may also be defined by the half-
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power bandwidth method as shown in Figure 2.1, which requires obtaining the forced 

response over a wide frequency range (see Ewins, 2000): 

 

2 2

2 1

2
2

d

ω ωη
ω

−=  

where ω1 and ω2 are the frequencies at the half power points and ωd is the damped natural 

frequency.  In cases where the damping is light, this equation reduces to: 

( )2 1 dη ω ω ω= −  

which is the familiar form of the system loss factor. The system loss factor will be 

calculated and used for monitoring the improvement in damping performance for the 

optimal designs.   

        It is not necessary to include viscoelasticity in the material modeling for the FE 

analysis when using the modal strain energy (MSE) method, as it uses the modes 

computed from the purely elastic equivalents of the material constituents.  Since results 

obtained using the MSE method are obtained by an eigenvalue extraction of the 

undamped modes, it is much less computationally intensive than the half-power 

bandwidth method, which is an exact method and requires finding the forced response of 

the damped system over a wide frequency range.  

        However, the loss factor results obtained using the MSE method are confirmed 

using the half-power bandwidth method, in which case it is necessary to accurately model 

viscoelasticity.  
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Figure 2.1  Half Power Bandwidth Method 
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Lumsdaine and Scott (1998) did a shape optimization of unconstrained viscoelastic layers 

using continuum elements. In it, the viscoelastic properties were modeled as follows. For 

a linear isotropic viscoelastic material, the elastic modulus and shear modulus may be 

written as, 

 

E* = E1+ iE2 

G* = G1 + iG2 

The above equation can also be written as, 

G* = G1[1 + iυm] 

Here E1,  E2,  G1 and G2 denote the storage and loss moduli for extension and shear, 

respectively, and  υm is the material loss factor. In the sequel, the frequency dependence 

of these and other material properties will not be explicitly noted. The complex bulk 

modulus is given by, 

K* = K1 + iK2 = E* / 3(1 - 2ν*) 

where “ν* ” is the complex Poisson ratio defined through 

G* = E* / 2(1 + ν*) 

        Viscoelastic properties can be entered into ABAQUS in several ways.  In the 

frequency domain, tabular values of G1, G2, K1, and K2, suitably normalized, can be 

entered as functions of frequency. The dynamic elastic modulus and Poisson’s ratio may 

be related to the dynamic shear modulus and bulk modulus in the same way that the 
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equivalent static properties are related. Thus a dynamically varying Poisson ratio may be 

taken into account in entering the shear and bulk moduli. 

        Very little Poisson’s ratio data is available for viscoelastic materials in general. 

Often, viscoelastic materials are assumed to be incompressible (ν = 0.5) in regions of 

rubbery behavior (low frequencies / high temperatures), and to have a Poisson’s ratio of 

about 0.33 in regions of glassy behavior (high frequencies / low temperatures).  The fact 

that Poisson’s ratio varies with frequency, temperature, and strain magnitude is well 

documented (see Rigbi, 1967 and Moran and Knauss, 1992).  The measurement of this 

variation is very difficult to obtain experimentally, however, and is not available for most 

damping materials.  The operating frequencies examined are around 100 Hz, which is in 

the damping material’s transition region.  In the absence of any specific data for this 

material, a constant Poisson’s ratio of 0.4 (between 0.33 and 0.5) is assumed.   

          The structure analyzed in this study is modeled with two-dimensional plane 

stress continuum elements.  The commercial finite element code ABAQUS is used for the 

structural modeling.  Eight-noded quadratic elements are used for modeling. These 

elements are used because of their higher aspect ratio modeling capability. These can 

have an aspect ratio as high as 100, which allows us to use fewer elements and thus fewer 

design variables. 

Aluminum is used as the elastic material for the base layer and the constraining 

layer.  The damping material is a commercially available ISD 112 from 3M.  Material 

properties used in this study are listed in Table 2.1 below.  Properties for the damping 

material are taken at 100 Hz and 20 degrees Celsius.  The material loss factor is 1.0.   
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TABLE 2.1 – Material Properties 

 

 Aluminum 
Damping 

Material 

Density 2710 kg/m3 1100 kg/m3 

Elastic 

Modulus 
68.9 GPa 2.8 MPa 

Poisson’s 

Ratio 
0.35 0.4 
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Properties are assumed to be frequency invariant.  This assumption should not result in 

substantial inaccuracies, as all the simply supported structures studied have natural 

frequencies between 95 and 125 Hz and the cantilever structures studied have natural 

frequencies between 35 Hz to 55 Hz.  Future studies could include frequency dependence 

using the Golla-Hughes-McTavish method (such as Lam, et al., 2000) or augmenting 

thermodynamic fields (see Lesieutre and Mingori, 1990). 

       The base aluminum beam in this study is subjected to the two different boundary 

conditions for which the parameter study is carried out i.e. a simply supported beam and 

a cantilever beam. It is 150 millimeters long and 1 millimeter high.  Only half of the 

beam in modeled in view of symmetry for the simply supported case. But for the 

cantilever case, the full beam needs to be modeled. The design space for the constrained 

damping layer is 0.5 millimeters high, with sixteen elements across the length (9.375 

millimeters per element) and five elements through the thickness (0.1 millimeters per 

element), as shown below in Figure 2.2. Hence, the aspect ratio of each element is 93.75. 

The limit of accuracy for the aspect ratio is 100. Hence we have sufficient accuracy. 

These dimensions are typical of commercially available constrained damping layers.  

        Figure 2.2 shows a sample initial configuration of the 20% material fraction case. 

The elastic base beam is shown without any elements for clarity. The viscoelastic 

material is shown by the green elements and the constraining layer elastic material is 

shown by the black elements. The three layers of 16 elements each on top of these two 

layers, which are also shown, do not contain any material initially and are void, but they 

are part of the design space used for optimization. This configuration is the starting point 

of the optimization process. Some material might be placed in these spaces,  
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Figure 2.2  Sample Initial Configuration For The 20% Case 
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which start as void initially, after the optimization run has been completed. Though the 

base beam and the stiff elastic constraining layer are made up of essentially the same 

material, the figure represents them by two different colors for clarity, since only the 

constraining layer is part of the design space from the view point of optimization. The 

topology of the base beam remains unchanged. Each location has 2 elements and each 

element can take either of the two densities, i.e. elastic or viscoelastic or a combination of 

the two. 
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3. TOPOLOGY OPTIMIZATION 

 

Over the past fifteen years, structural topology optimization research has 

experienced considerable progress. Simply stated, topology optimization consists of 

determining the best arrangement of a limited volume of structural material within a 

given spatial domain so as to obtain the optimal mechanical performance of the concept 

design. The optimization process systematically and iteratively eliminates and re-

distributes material throughout the domain to obtain a concept structure. An attractive 

aspect of continuum structural topology optimization is that it can be applied to the 

design of both materials and structural systems or elements. The development of new 

methods in structural topology optimization and investigating the characteristics and 

applicability of these methods in the design of large-scale civil-structural systems, small-

scale flexible mechanisms, e.g. MEMS, and intermediate-scale mechanical systems, as 

well as in the arrangement of composite materials for specific performance characteristics 

is being pursued currently. 

Initially, the available material is evenly distributed throughout the design space. 

In many cases, there is also a random distribution. The material is then iteratively re-

distributed within the design space in order to minimize compliance. The resulting 

material layout provides the optimal starting point for the design. 
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3.1 OPTIMIZATION 

 

The concept of optimization is a basic idea in engineering. The desire to improve 

design, for example to make products better, lighter, cheaper or more reliable, has been a 

major idea since early engineering years.  Numerical optimization has been proven to be 

a useful tool for improving complex designs. This chapter gives an overview of the 

general idea of optimization routines used and how the optimization problem is stated for 

the given case.  

 

3.2 INTRODUCTION 

 

In general, an optimization problem begins with a set of independent design 

variables and usually includes conditions or restrictions that define acceptable values for 

these variables (constraints). For given values of design variables it must be possible to 

compute an objective function, which gives a measure for the “goodness” of the design. 

In mathematical terms, optimization is the minimization or maximization of an objective 

function within given constraints on the design variables. The general form of an 

optimization problem can be expressed in mathematical terms as: 

m i n ( )
n

x R

F x
∈

r

 

subject to ( ) 0, 1,2,...,
i

h x i m= =r

    

  lixg i ...,,2,1,0)( =≤r  
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where the objective and constraint functions are continuous real-valued scalar functions.  

 

      3.3       HOMOGENIZATION 

 

The traditional way of finding the best shape or topology for a mechanical 

structure is an iterative trial-and-error approach. The design engineer uses his experience 

and intuition to find a solution to a given problem. Mechanical or numerical tests then 

show if the design meets the specified criteria. If the design fails, the design engineer 

enhances the design until a satisfying result is found. This system requires both special 

skill and experience for a truly good design and it does not guarantee that the best 

possible design has been found.  

Structural topology optimization can be thought of as determination of the 

optimal spatial material distribution. In other words, for a given set of loads and boundary 

conditions, the material is redistributed in order to minimize the objective. Therefore, the 

general shape optimization problem can be considered as a point-wise material/no-

material approach. However, implementation of this on-off approach to an optimization 

problem requires the use of discrete optimization algorithms. Such approaches have been 

shown to be time consuming and unstable, unless materials with composite 

microstructure are introduced (Hassani and Hinton 1999). Considering a composite 

consisting of an infinite number of small holes, which are periodically distributed, can 

solve this problem (Figure 3.1). In fact, using a cellular body with a periodic 

microstructure moves the on-off approach of the problem from the macroscopic scale to  
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composite material micro structure 

 

 

FIGURE 3.1 - Homogenization Through Micro Cells With Rectangular Holes 
(Hassani And Hinton 1999) 

 

 

 

 

 

 

 

 

 

 

 

 



 31

the microscopic scale (Bendsoe 1988). One approach to introduce these microstructures 

is homogenization. The theory of homogenization is used to determine the macroscopic 

mechanical properties of these materia ls. In practice, after choosing the design domain 

and the finite element discretization, it is assumed that each element consists of a cellular 

material with a specific microstructure. The geometrical parameters of these 

microstructures are the design variables of the optimization problem. In the simplest case 

the microstructure has rectangular holes or voids (as shown in Figure 3.1) and the 

mechanical properties become proportional to the density of the material. 

Figure 3.2 illustrates this process for the design of a bracket using 

homogenization, where the design domain and the boundary conditions are shown in 

Figure 3.2(a). The optimization process varies the density of each finite element, which is 

shown through a gray scale in the picture. A cell that is completely black corresponds to a 

density of 100%, where as a cell that is completely white corresponds to a density of 0%. 

The optimal material distribution for this problem (a stiff lightweight design) is shown in 

Figure 3.2(b). Since materials with intermediate densities are artificial difficult to 

manufacture, this solution needs to be interpreted. This is done in Figure 3.2(c). 

Furthermore, general manufacturing rules can be applied, which leads to the final 

solution of this problem, shown in figure 3.2(d). 

 

3.4 OPTIMIZATION METHODOLOGY 

 

Several approaches are possible for optimizing the topology of constrained layer 

damping structures.  The problem could be posed as a discrete optimization problem,  
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(a) (b) 

(d) (c) 
 

 

 

FIGURE 3.2 - Optimal Topology Design (Papalambros And Douglas 2000) 
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where each element is either viscoelastic material, elastic material or empty.  This would 

require the use of a global optimization algorithm (such as simulated annealing or a 

genetic algorithm).  This approach has two shortcomings.  First, the computational 

requirements for a mesh of reasonable density would be prohibitive.  Second, it has been 

shown that the problem posed as such lacks a mathematical solution (Bendsoe, 1995).  

The practical drawback that results from this mathematical shortcoming is that the 

optimal result is sensitive to the finite element mesh discretization.  Another approach is 

to allow the material properties of each element to vary, making the design variables 

continuous.  The homogenization method has been commonly used to accomplish this 

(see Bendsoe and Kikuchi, 1998 for the seminal work on the use of homogenization in 

structural optimization).  Many studies in topology optimization have effectively used 

less rigorous approaches to topology optimization (for example, Yang and Chuang, 1994, 

and Rozvany, et al, 1992). 

 Figure 3.3 shows the symmetric finite element model used for topology 

optimization in this research. It consists of a base beam and the constraining layers on top 

of it divided into 5 layers of 8 elements each for the  simply supported case. The exploded 

view of just one column of elements is shown. 

           In this research, a simple material model is used, where the normalized density and 

modulus of the material for each element are allowed to vary together from 0% (in 

actuality, not zero but a very small value in order to prevent singularities in the stiffness 

matrix), which would be a “void,” to 100%, which would represent 100% material.  This 

is complicated by the fact that there are two material constituents – an elastic material 

and a viscoelastic material.  This is handled by placing two elements in  
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FIGURE 3.3 - Symmetric Finite Element Model Used For Topology Optimization 
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the same location in the constraining layer design space – one that is viscoelastic and one 

that is elastic.  The density (and thus the modulus) of each element is allowed to vary 

from 0% to 100%, but the total density in each location (the density of the elastic element 

plus the density of the viscoelastic element) is not allowed to be greater than 100%.  

Although this is artificial, in that, it is unrealistic to consider manufacturing a structure 

with these properties, the results of this initial study leads to insight in the optimal 

constrained layer configuration, and are used to develop a structure that is reasonable to 

manufacture. 

 

3.5 OPTIMIZATION STATEMENT 

 

         The objective of this study is to maximize the system loss factor, measured using 

the modified modal strain energy method.  The design variables are the percentage of 

material in each element, where 0% represents a void, and 100% represents complete 

material (elastic or viscoelastic, whichever the case may be).  The result is validated by 

computing the loss factor using the half-power bandwid th method.  One constraint on the 

objective is that the total fraction of each constituent in the constraining layer is fixed.  

(Technically, this is included as an inequality constraint rather than an equality constraint, 

but these constraints are virtually always active).  For example, in one case, the 

viscoelastic material is limited to be 20% of the total constraining layer design space, and 

the elastic material is limited to be another 20%.  Furthermore, as mentioned above, the 
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percentage of viscoelastic material plus the percentage of elastic material must be less 

than or equal to 100% in each element location.  To summarize, the optimization 

statement may be written: 

Minimize :   system loss factor 

such that:  
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where: 

( )i

v
d  = the fraction of viscoelastic material in element “i”; 

( )i

e
d  = the fraction of elastic material in element “i”; 

v
f  = the total fraction of viscoelastic material; 

ef  = the total fraction of elastic material; 
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n = the number of viscoelastic elements (which is equal to the number of elastic 

elements). 

Thus the material properties for a viscoelastic element are: 

 
( ) ( )i i

v vdρ ρ=   

 
( ) ( )i i

v vE d E=   

and the material properties for an elastic element are: 

 
( ) ( )i i

e edρ ρ=  

 
( ) ( )i i

e eE d E=   

The lower bounds on the viscoelastic are different than those for the elastic elements 

because the stiffnesses for these different materials vary by several orders of magnitude. 

 

3.6       OPTIMIZATION PROCESS 

 

 One difficulty in the process of optimization is in finding the first bending mode 

of the structure.  As the densities and stiffnesses of the constraining layer elements 

change, it is possible for new modes to appear locally in the constraining layer.  A 

heuristic method was developed in order to determine which mode of the structure was 

equivalent to the first mode of the base beam.  Initially, it was considered that the mode 

closest to the natural frequency of the initial structure should be considered as the first 

mode.  However, the process of optimization would tend to produce local constraining 

layer modes (which were highly damped) that were close to the initial natural frequency, 
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so another parameter was necessary to use in order to discern which mode was the “first” 

mode of the beam.  The first mode is one where the normalized displacement of the 

midpoint of the simply supported beam is large, while for the local constraining layer 

modes, displacements in the constraining layer are much larger than displacements in the 

base beam.  Thus, a criterion for determining which mode to use for computing the loss 

factor involved adding the inverse of the lowest normalized midpoint displacement for 

the mode eigenvector with the difference between the natural frequency of the mode with 

the natural frequency of the structure in the previous optimization step. 

 A commercial code was used for the optimization, which uses an SQP (sequential 

quadratic programming) algorithm.  For details on the algorithm and the code used 

(NLPQL), see Schittkowski (1986). Optimization requires a technique for finding the 

design sensitivities of the objective function (i.e., the gradient of the objective function 

with respect to the design variables).  Finding analytical gradients is an extremely 

complex task for a problem of this scope, and so numerical gradients are calculated by 

the finite difference method in the algorithm. 

 Figure 3.4 shows the Optimization Process Flow Chart. It gives us an idea on how 

the optimization software in inter-related with the finite element package and the give 

and take of data is highlighted. 
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FIGURE 3.4 - Optimization Process Flow Chart 
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4       RESULTS 

 

In this chapter, the results of all the Parameter Studies are presented. They are divided 

into the following sections: 

 

1. Simply Supported Beam 

 

• Material Fraction Parameter Study 

• Base Beam Thickness Parameter Study 

 

2. Cantilever Beam 

 

• Free Root Cantilever –Material Fraction Parameter Study 

• Fixed Root Cantilever –Material Fraction Parameter Study 

 

Free Root Cantilever Beam is the one in which the design space, i.e. the 

constraining layer and the constrained layer is free at both ends and only the base beam is 

fixed at one end as shown in Figure 4.1. 

Fixed Root Cantilever Beam is the one in which the design space, i.e. the 

constraining layer and the constrained layer is fixed at one end along with the base beam 

as shown in Figure 4.2.  

Prior research (Mantena, et al., 1991) has shown that these two configurations 

produce substantially different results. Hence, we will separately examine both cases. 



 41

 

 

 

 

 

 

Figure 4.1 - Free Root Cantilever Beam 

 

 

 

 

 

 

Figure 4.2 - Fixed Root Cantilever Beam 
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4.1       Material Fraction Parameter Study For Simply Supported Beam 
 

The results of the Parameter Study for a Simply Supported Beam with respect to 

‘Material Fraction’ are shown below. The values for the material fractions used for the 

study are: 10% to 50% with an increase in 10% for each successive value. A ‘10% 

material fraction’ means that we have 10% viscoelastic (damping) material and 10% 

elastic (constraining) material. And since the design space is divided into 5 layers of 8 

continuum elements each (it should be noted that only half the beam is modeled because 

of symmetry), the elements of the first layer are assigned a ‘normalized viscoelastic 

density’ of 0.5 and the elements of the second layer are assigned a ‘normalized elastic 

density’ of 0.5. (Normalized density refers to the density of each element scaled between 

0 and 1, hence a normalized elastic density of 0.5 is hypothetical and it means that the 

element contains 0.5 times the density of elastic material. Same is the case with 

viscoelastic material) Hence 0.5 times 8 elements equals 4 full elements which amounts 

to 10% of the possible material that can occupy the design space. Similarly, 20% material 

fraction contain one full viscoelastic and elastic layer and 40% material fraction contains 

2 full viscoelastic and elastic layers of elements. For the 30% case, the viscoelastic 

fraction is split into 20%+10% and the elastic fraction is split into 10%+20%. Here, the 

10% fractions of both materials combine to form a hypothetical middle layer containing 

half viscoelastic density and half elastic density. Similarly, the 50% material fractions are 

split into 20%+20%+10% for each material and the 10% fractions combine to give a 

middle combination layer. The Initial configurations are shown in Figure 4.3. The heights 

of the constraining layer elements are exaggerated for clarity purposes. 
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Figure 4.3 – Initial Configurations  
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Table 4.1 contains the results obtained from optimization of the loss factor for 

different material fractions using Modified Modal Strain Energy Method (refer page 17). 

These results are validated, as shown in Table 4.1 itself, by the Half-Power Bandwidth 

Method from a steady state forced response. We have to accurately model viscoelasticity 

if we have to use this method.  

    The increase in the system loss factor is substantial (up to 370%). The final 

densities of each element for all cases are shown in Figure 4.4. (Both halves of the 

symmetric model are shown in both Figures).  In Figures 4.3 and 4.4, the heights of the 

constraining layer elements are exaggerated for the sake of clarity; recall that the total 

height of the constraining layer is only 0.5 millimeters, one-half the height of the base 

beam. Also the colors of the base beam and the constraining layer are shown to be 

different even though they are from the same material. This is because the base beam is 

not part of the design domain, whereas the constraining layer is a part of the design 

domain along with the viscoelastic material, which is shown in green color. 

Each case in Figure 4.4 shows two models for every material fraction, the one on 

the left indicating the elastic material densities in the design space, and the one on the 

right indicating the viscoelastic material densities in the design space.  This is also done 

for clarity.  In each case, a dark element represents 100% material, and a white element 

represents a “void.” There are some elements, which have densities between 0% to 100%, 

which can be seen as partly colored or having different shades of the respective colors.  

We can observe from the result table that there is not much change in the natural 

frequency of the structure for every case. Hence, this validates our basic assumption for 

the modal strain energy method that the material properties are frequency invariant. 
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Table 4.1  Results - Material Fraction Parameter Study 

 

 

 

 

 

Percentage of 
material 

Initial 
ωd 

(Hz) 

Initial 
η 

Final 
ωd 

(Hz) 

Final 
η 

% 

Imp. 

10 % by MSE 108.12 0.027 111.41 0.099 270.8 

10 % by HPB 109.08 0.0232 114.15 0.1087 369.4 

20 % by MSE 112.80 0.046 114.70 0.154 234.4 

20 % by HPB 114.48 0.0389 118.58 0.1657 325.9 

30 % by MSE 118.66 0.086 117.56 0.188 118.4 

30 % by HPB 121.94 0.0756 122.04 0.2018 166.7 

40 % by MSE 117.45 0.164 117.76 0.206 25.46 

40 % by HPB 122.11 0.1669 122.93 0.2198 31.72 

50 % by MSE 121.36 0.211 119.52 0.226 7.0 

50 % by HPB 127.21 0.2167 124.64 0.2412 11.3 
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30% Material Fraction 
 
 
 
 
 
 
 
 
 

40% Material Fraction 

 

 

 

 

 

 

 

 

 

50% Material Fraction 

 

Figure 4.4 – Optimization Results – Material Fraction Parameter Study  
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The Percentage Improvement in Loss Factor is calculated by: 

 

% Improvement = (final value – initial value) / initial value 

 

From Table 4.1, it is seen that topology optimization produces a significant 

improvement in the system loss factor. Although the loss factor results for the MSE 

method are significantly different than those computed from the half-power bandwidth 

method, since the half power bandwidth method is a more accurate method than modal 

strain energy method, it is assumed that optimizing using the MSE method is still valid in 

producing an optimal design that has improved damping characteristics, and this is born 

out in the optimization results. 

Figure 4.5 shows how the initial and optimized loss factors vary with material 

fractions. Figure 4.6 shows the effectiveness of optimization in maximizing the loss 

factor. It is clear from Figure 4.4 that for all the cases, the elastic material tends towards 

being towards the top of the design space and the viscoelastic material tends towards the 

bottom.  What may not be as clear from Figure 4.4 is that the elastic material, in addition 

to coalescing towards the top of the constraining layer, also develops vertical “columns” 

which can be seen three elements from the left (or right) end.  Although these columns 

consist of only 1% to 2% elastic material, the stiffness produced is substantial in inducing 

shearing in the viscoelastic layer, as the stiffness of the elastic material is four orders of 

magnitude greater than the stiffness of the viscoelastic material.  

       It can be seen from Figure 4.5 that the MSE method under-predicts the loss factor 

when compared with the half power bandwidth method, which is the more accurate  
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Figure 4.5 – Loss Factor Variation With Material Fraction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 – Effectiveness of Optimization 
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method of the two. But this under-prediction is consistent for all material fractions under 

consideration and hence gives good confidence in the results obtained. The optimized 

loss factor increases with increase in material fraction, which is the expected result, since 

increase in damping material will increase the capacity of the beam to damp out the 

vibrations and hence result in an increased loss factor. 

 Figure 4.6 shows significant improvement in loss factors (300%) for smaller 

material fractions. It can be seen that MSE method again under-predicts the percentage 

improvement as compared to the half power bandwidth method. Also, this improvement 

is more pronounced for lower material fractions (10% - 30%) than higher material 

fractions (40% - 50%). This behavior can be attributed to a ‘saturation’ reached by the 

loss factor for that particular damping treatment. Since lower material fractions start with 

lower loss factors, there is more scope for improvement in such cases than that for higher 

material fractions. Also, one can observe that as the percentage improvement increases, 

the under-prediction by MSE method also increases, so that the ratios of the two values of 

loss factors (from the two different methods) for each material fraction remain nearly the 

same, thereby showing consistency in the results obtained. 

 

4.2    Base Beam Thickness Parameter Study For Simply Supported Beam 

 

The next set of results is that of the Parametric Study with respect to the ‘Base Beam 

Thickness’. Table 4.2 contains the results obtained from optimization of the loss factor 

for different base beam thicknesses using Modal Strain Energy Method. This study 

was carried out for a material fraction of 20% each of damping material and  
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Table 4.2 – Results - Base Beam Thickness Parameter Study 

 

 

 

 

 

Base Beam 

Thickness 

Initial 

ωd (Hz) 

Initial 

η 

Final 

ωd (Hz) 

Final 

η 
% Imp. 

0.5 mm by MSE 66.32 0.0888 64.2 0.2262 154.7 

0.5 mm by HPB 68.2 0.0719 67.0 0.2392 232.8 

1 mm by MSE 112.8 0.046 114.7 0.1538 234.4 

1 mm by HPB 114.5 0.0389 118.6 0.1657 325.9 

2 mm by MSE 212.3 0.0217 212.7 0.0634 191.9 

2 mm by HPB 213.8 0.0189 216.0 0.0704 272.8 

4 mm by MSE 414.9 0.0103 413.2 0.025 143.6 

4 mm by HPB 416.3 0.009 416.0 0.0281 211.3 

6 mm by MSE 617.9 0.0067 615.1 0.0146 119.4 

6 mm by HPB 619.3 0.0059 617.5 0.0161 175.2 
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constraining material. In this study, different values for the base beam thickness were 

chosen as listed in Table 4.2, and the loss factor of the resulting structure was 

optimized. These results are validated, as shown in Table 4.2 itself, by the Half-Power 

Bandwidth Method from a steady state forced response. Also, the percentage 

improvement of all results is calculated and shown in Table 4.2 itself. Figure 4.7 

shows the variation of the loss factor with base beam thickness. Figure 4.8 shows how 

effective the optimization process is for different base beam thicknesses by plotting the 

percentage improvement in loss factor versus the base beam thickness (parameter 

under study). 

 From Figure 4.7, it can be seen that the results obtained by the MSE method 

match their validations done by the half power bandwidth method. Also, as the base beam 

thickness increases for the same amount of material fraction and beam length, the loss 

factor decreases proportionately. This is as expected since, as the base beam thickness 

increases, the strain energy in the elastic beam increases but the volume of damping 

material remains the same, and hence the loss factor decreases. 

 From Figure 4.8 we can observe that the percentage improvement in the system 

loss factor is significantly under-predicted by the MSE method. But since the nature of 

both the curves is the same, it gives good confidence in the results obtained. Even though 

the MSE method under-predicts the improvement in the loss factor, it shows a very 

significant improvement (above 100%) for all values of the parameter considered for 

study. There is a maximum improvement for a certain base beam thickness (close to 1 

mm) and then it decreases uniformly for the remaining values.  
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Figure 4.7 – Loss Factor Variation With Base Beam Thickness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 – Effectiveness Of Optimization 
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      Figure 4.9 shows the optimal shapes for the base beam parameter study results with 

elastic elements on the left and viscoelastic elements on the right.  It can be seen that 

different topologies emerge for the different base beam heights.  Although some general 

principles for design are clear (viscoelastic material has highest density toward the 

bottom of the design space in every case, elastic material tends toward the top of the 

design space in every case, “column-like” elastic structures emerge in every case), it 

appears that the optimal topologies have some different characteristics for different base 

beam heights as well. This can be noted from the fact that for the 0.5 mm, 4 mm and 6 

mm base beam thickness, the elastic constraining material tends to form a double-layered 

structure, joined by two columns in between them. Further study is required in order to 

determine the significance of these different characteristics in the damping layer design. 

 

4.3    Manufacturable Configurations For Material Fraction Parameter Study  

 

     The common difficulty with topology optimization is that the resulting structures 

are often extremely difficult to manufacture because of partial densities at many 

locations, as well as dual densities at a few element locations, as is the case here. So, the 

topology optimization results were used to interpret a design that would be reasonable to 

manufacture, where every element is either 100% damping material, 100% elastic 

material, or empty.  To arrive at a reasonable manufacturable solution, a two-stage 

process was followed: 

1.   Initially, every element from the optimal result that consisted of more than 1% 

material was made to be 100% elastic or 100% viscoelastic. The problem with this 
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Figure 4.9 – Optimization Results - Base Beam Thickness Parameter Study  
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      stage is that most of the times, we ended up with a configuration that has more 

material volume than the initial configuration and hence a comparison between the 

two configurations could not be made. So, further interpretation was required in order 

to demonstrate the validity of the optimization result, comparing equivalent volumes 

of materials. This step was done only for the 20% case. 

 

2.   In this stage, the material fractions of the interpreted configurations were matched 

with their respective initial configurations for comparison purposes. The damping 

elements to be retained were determined by removing those that had the lowest 

stresses. In all other cases, this was done intuitively. 

 

Based on this two-stage process, the interpreted configurations for the material fraction 

parameter study for a simply supported beam are shown in Figure 4.10. 

      It is clear from the optimal solutions of all cases (Figure 4.6) that the elastic 

constraining material tends towards being towards the top of the design space and the 

viscoelastic material tends towards the bottom.  What may not be as clear from Figure 4.6 

is that the elastic material, in addition to coalescing towards the top of the constraining 

layer, also develops vertical “columns” which can be seen three elements from the left (or 

right) end.  Although these columns consist of only 1% to 2% elastic material, the 

stiffness produced is substantial in inducing shearing in the viscoelastic layer, as the 

stiffness of the elastic material is four orders of magnitude greater than the stiffness of the 

viscoelastic material. These vertical columns play an important role in interpreting the 

shapes of structure, which are reasonable to manufacture (Figure 4.10). Hence, as you 
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Figure 4.10 – Interpreted Configurations - Material Fraction Parameter Study  
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can see in Figure 4.10 that almost all interpreted shapes have these vertical columns to 

induce shearing in the viscoelastic layer, which dissipates more energy, thereby 

increasing the loss factor. 

      Table 4.3 gives the loss factors for the interpreted shapes in Figure 4.10 calculated 

by half-power bandwidth method. From Table 4.3, it is clear that the improvements in 

loss factor are lower than those obtained for the optimal shapes. But even then, these 

improvements are substantial enough when compared to the initial configurations. From 

the Table 4.3, we can observe that the nature of the improvement curve for the interpreted 

shapes is the same as that for the optimal configurations except for the case of 10% 

material fraction., where the interpreted shape has too low an improvement than the 

optimal solution for the same case. The % improvement is higher for lower values of 

material fraction, since the material has more space to move in the design domain 

(eg.10%, 20%, 30%) whereas it is much lower for the 40% and 50% case. 

 

4.4   Manufacturable Configurations For Base Beam Thickness Parameter Study   

 

Since the 20% material fraction case gives consistently higher loss factor values 

for the optimal configuration as well as the interpreted configuration, we choose this to 

be the material fraction for all the cases of the Base Beam Thickness Parameter Study. 

Figure 4.11 shows the manufacturable solutions for the five cases under study.  

        Table 4.4 gives the loss factors for the interpreted shapes in Figure 4.11 calculated 

by half-power bandwidth method. From Table 4.4, it is clear that the improvements in 

loss factor are lower than those obtained for the optimal shapes. But even then, these 
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Table 4.3 – Results - Interpreted Shapes For Material Fraction Parameter Study 

 

 

 

 

Material 

Fraction 

Initial 

η 

Final 

η 

Interpreted 

ωd (Hz) 

Interpreted 

η 

% Imp. Of 

Interpreted 

Shape 

% Imp. Of 

Optimal  

Shape 

10% HPB 0.023 0.109 102.516 0.0560 141.4 369.4 

20% HPB 0.039 0.166 114.8 0.1123 189 325.9 

30% HPB 0.076 0.202 121.83 0.1520 101 166.7 

40% HPB 0.167 0.22 123.68 0.1909 14.4 31.72 

50% HPB 0.217 0.241 123.68 0.2205 2 11.3 
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Table 4.4 – Results - Interpreted Shapes for Base Beam Thickness Parameter Study 

 

 

Material 

Fraction 

Initial 

η 

Final 

η 

Interpreted 

ωd (Hz) 
Interpreted η 

% Imp. 

Interprete

d Shape 

% Imp. 

Optimal  

Shape 

0.5 mm HPB 0.0719 0.2392 62.96 0.2079 189.15 232.8 

1 mm HPB 0.0389 0.1657 114.8 0.1123 189 325.9 

2 mm HPB 0.0189 0.0704 199.8 0.0406 114.8 272.8 

4 mm HPB 0.009 0.0281 407.85 0.025 177.8 211.3 

6 mm HPB 0.0059 0.0161 613.3 0.0122 106.8 175.2 
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Figure 4.11 – Interpreted Configurations - Base Beam Thickness Parameter Study 
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improvements are substantial enough when compared to the initial configurations. From 

the loss factor calculations, it is observed that the loss factor value decreases as the base 

beam thickness increases, which is consistent with the optimal solutions obtained.  

In most of the optimal solutions for the cases above, the elastic material tends to 

form a double layer structure joined by columns. This characteristic of the optimal shape 

has been retained in the interpreted shape. 

 

4.5     Material Fraction Parameter Study For Fixed Root Cantilever Beam 

 

           The results of the Parameter Study for a Fixed Root Cantilever Beam with respect 

to ‘Material Fraction’ are shown below. The values for the material fractions used for the 

study are: 10% to 50% with an increase in 10% for each successive value. A ‘10% 

material fraction’ means that we have 10% viscoelastic (damping) material and 10% 

elastic (constraining) material. In this study, the complete beam is modeled as opposed to 

the simply supported beam where only half the beam was modeled due to symmetry.  

           And since the design space is divided into 5 layers of 16 continuum elements each, 

the elements of the first layer are assigned a ‘normalized viscoelastic density’ of 0.5 and 

the elements of the second layer are assigned a ‘normalized elastic density’ of 0.5. 

(Normalized density refers to the density of each element scaled between 0 and 1, hence a 

normalized elastic density of 0.5 is hypothetical and it means that the element contains 

0.5 times the density of elastic material. Same is the case with viscoelastic material) 

Hence 0.5 times 16 elements equals 8 full elements which amounts to 10% of the 

possible material that can occupy the design space. Similarly, 20% and 40% have one and 
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two full layers of elements respectively, while the 30% and 50% have a middle layer, 

which is half elastic and half viscoelastic. 

Table 4.5 contains the results obtained from optimization of the loss factor for 

different material fractions using Modal Strain Energy Method. These results are 

validated, as shown in Table 4.5 itself, by the Half-Power Bandwidth Method from a 

steady state forced response.  

    The increase in the system loss factor is substantial. The final densities of each 

element for all cases are shown in Figure 4.12. In Figure 4.12, the heights of the 

constraining layer elements are exaggerated for the sake of clarity; recall that the total 

height of the constraining layer is only 0.5 millimeters, one-half the height of the base 

beam. Each case in Figure 4.12 shows two models, one indicating the elastic material 

densities in the design space, and one indicating the viscoelastic material densities.  This 

is also done for clarity.  In each case, a dark element represents 100% material, and a 

white element represents a “void.” 

From Table 4.5, it is seen that topology optimization produces a significant 

improvement in the system loss factor. Although the loss factor results for the MSE 

method are significantly different than those computed from the half-power bandwidth 

method, and since the half power bandwidth method is a more accurate method than 

modal strain energy method, it is assumed that optimizing using the MSE method is still 

valid in producing an optimal design that has somewhat improved damping 

characteristics, and this is born out in the optimization results. 

       Figure 4.13 shows how the initial and optimized loss factors vary with material 

fractions. Figure 4.14 shows the effectiveness of optimization in maximizing the loss 
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Table 4.5 – Results - Material Fraction Parameter Study For A Fixed Root 

Cantilever Beam 

 

 

 

 

 

 

Percentage of 
material 

Initial 
ωd 

(Hz) 

Initial 
η 

Final 
ωd 

(Hz) 

Final 
η 

% 

Imp. 

10 % by MSE 38.39 0.0111 42.1 0.1107 897 

10 % by HPB 39.04 0.0091 43.24 0.1214 1234 

20 % by MSE 40.64 0.0181 44.28 0.1488 722 

20 % by HPB 40.89 0.0146 45.66 0.1618 1008 

30 % by MSE 43.26 0.0344 46.55 0.1913 456 

30 % by HPB 43.74 0.0283 48.46 0.2045 622 

40 % by MSE 45.0 0.0819 45.25 0.1937 136.5 

40 % by HPB 46.16 0.0713 46.96 0.2069 190 

50 % by MSE 47.48 0.1086 45.67 0.2818 159.5 

50 % by HPB 49.0 0.0953 48.76 0.2174 128 
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10% material fraction - fixed root cantilever 

          

20% material fraction - fixed root cantilever 

        

30% material fraction - fixed root cantilever 

   

40% material fraction - fixed root cantilever 

   

50% material fraction - fixed root cantilever 

 

Figure 4.12 – Optimization Results – Material Fraction Parameter Study For A 

Fixed Root Cantilever Beam 



 65

factor. It can be seen from Figure 4.13 that the MSE method under-predicts the loss 

factor when compared with the half power bandwidth method, which is the more accurate 

method of the two. But this under-prediction is consistent for all material fractions under 

consideration except for the 50% case and hence gives good confidence in the results 

obtained. The over-prediction of MSE in this case may be attributed to the basic 

assumption of the MSE method that it is an accurate method for low damping values and 

starts to break down at higher values of damping since the mode shapes of the undamped 

system no longer remain similar to those of the damped system. The optimized loss factor 

increases with increase in material fraction, which is the expected result, since increase in 

damping material will increase the capacity of the beam to damp out the vibrations and 

hence result in an increased loss factor. Another significant observation is that the MSE 

method over-predicts the initial loss factors for all cases but under-predicts the optimal 

loss factors. Hence, the % Improvement for MSE is lower than that of HPB, which is the 

more accurate method of the two. 

Figure 4.14 shows significant improvement in loss factors (1000%) for smaller 

material fractions. It can be seen that MSE method again under-predicts the percentage 

improvement as compared to the half power bandwidth method. Also, this improvement 

is more pronounced for lower material fractions (10% - 30%) than higher material 

fractions (40% - 50%). This behavior can be attributed to a ‘saturation’ reached by the 

loss factor for that particular damping treatment. Since lower material fractions start with 

lower loss factors, there is more scope for improvement in such cases than that for higher 

material fractions. Also, one can observe that as the percentage improvement increases, 

the under-prediction by MSE method also increases, so that the ratios of the two values of 
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Figure 4.13 – Loss Factor Variation With Material Fraction 

 

Figure 4.14 – Effectiveness Of Optimization 
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loss factors (from the two different methods) for each material fraction remain nearly the 

same, thereby showing consistency in the results obtained. 

 

4.6       Material Fraction Parameter Study For Free Root Cantilever Beam 

 

 The results of the Parameter Study for a Fixed Root Cantilever Beam with respect 

to ‘Material Fraction’ are shown below. The values for the material fractions used for the 

study are: 10% to 30% with an increase in 10% for each successive value. A ‘10% 

material fraction’ means that we have 10% viscoelastic (damping) material and 10% 

elastic (constraining) material. In this study, the complete beam is modeled as opposed to 

the simply supported beam where only half the beam was modeled due to symmetry. 

Only 3 different material fraction cases are documented here, since the optimization 

process was not able to converge on to a certain optimum for the 40% and 50% cases. 

This reveals another facet of the optimization process that even though it might seem 

obvious to find a certain optimum for a given problem (since just a boundary condition 

has been changed here), it may not necessarily be the case.  

The remaining characteristics of this study are similar to those of the Free Root 

Cantilever Beam Study. Hence, one may refer to that study for any clarifications. Table 

4.6 contains the results obtained from optimization of the loss factor for different material 

fractions using Modal Strain Energy Method. These results are validated, as shown in 

Table 4.6 itself, by the Half-Power Bandwidth Method from a steady state forced 

response. The increase in the system loss factor is substantial. The final densities of each 

element for all cases are shown in Figure 4.15. 



 68

   

Table 4.6 – Results - Material Fraction Parameter Study For A Free Root 

Cantilever Beam 

 

 

 

 

 

 

Percentage of 
material 

Initial 
ωd 

(Hz) 

Initial 
η 

Final 
ωd 

(Hz) 

Final 
η 

% 

Imp. 

10 % by MSE 37.23 0.0257 40.63 0.0913 255 

10 % by HPB 37.48 0.0274 41.48 0.1039 279 

20 % by MSE 37.69 0.0445 41.73 0.1333 200 

20 % by HPB 38.11 0.0467 42.78 0.1530 227 

30 % by MSE 38.13 0.0703 42.29 0.140 99 

30 % by HPB 38.75 0.0751 43.41 0.1595 112 
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10% material fraction - free root cantilever 

 

  

20% material fraction - free root cantilever 

 

  

30% material fraction - free root cantilever 

 

Figure 4.15 – Optimization Results – Material Fraction Parameter Study For A 

Free Root Cantilever Beam 
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  Figure 4.16 shows how the initial and optimized loss factors vary with material 

fractions. Figure 4.17 shows the effectiveness of optimization in maximizing the loss 

factor. It can be seen from Figure 4.16 that the MSE method under-predicts the loss 

factor when compared with the half power bandwidth method, which is the more accurate 

method of the two. The optimized loss factor increases with increase in material fraction, 

which is the expected result, since increase in damping material will increase the capacity 

of the beam to damp out the vibrations and hence result in an increased loss factor.  

Figure 4.17 shows significant improvement in loss factors (250%) for smaller 

material fractions. It can be seen that MSE method again under-predicts the percentage 

improvement as compared to the half power bandwidth method. Also, this improvement 

is more pronounced for lower material fractions than higher material fractions. This 

behavior can be attributed to a ‘saturation’ reached by the loss factor for that particular 

damping treatment. Since lower material fractions start with lower loss factors, there is 

more scope for improvement in such cases than that for higher material fractions. Also, 

one can observe that as the percentage improvement increases, the under-prediction by 

MSE method also increases, so that the ratios of the two values of loss factors (from the 

two different methods) for each material fraction remain nearly the same, thereby 

showing consistency in the results obtained. 

Another very significant observation is that though the initial loss factor values 

for fixed root cantilever beam are lower than their respective loss factor values for free 

root cantilever beam, they end up having higher values after the optimization process 

than their free root counterparts. Hence they have huge % improvements (of the order of 

1000%) as compared to the free root values (of the order of 250%). 
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Figure 4.16 – Loss Factor Variation With Material Fraction 

 

Figure 4.17 – Effectiveness Of Optimization 
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“Hence, for higher damping, using optimal configurations, a fixed root cantilever is a 

better option than a free root cantilever, but using initial configurations, a free root 

cantilever is the better option than a fixed root cantilever beam.” 

 

4.7   Manufacturable Configurations For Material Fraction – Fixed Root Cantilever 

Beam Parameter Study  

 

Figure 4.18 shows the manufacturable solutions for the different cases under 

study. Table 4.7 gives the loss factors for the interpreted shapes in Figure 4.18 calculated 

by half-power bandwidth method. From Table 4.7, it is clear that the improvements in 

loss factor are lower than those obtained for the optimal shapes. But even then, these 

improvements are substantial enough when compared to the initial configurations. From 

the loss factor calculations, it is observed that the loss factor value increases as the 

material fraction increases, which is as expected since with more damping material, the 

structure is able to damp out more vibrations and hence has a higher loss factor. 

In all of the optimal solutions for the cases above, the elastic material tends to 

accumulate at the fixed end of the structure. This characteristic of the optimal shape has 

been retained in the interpreted shape. Also, it was observed that more layers of elastic 

material at the fixed end produce a higher loss factor. The viscoelastic material, for some 

reason, tends to accumulate at the free end of the structure in the optimal configurations. 

One needs to dig deeper into the damping mechanism followed to find out why it does so. 

The percentage improvement in loss factors of the interpreted shapes shows a 

similar trend to those of the respective optimal shapes, thereby giving confidence in the  
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Figure 4.18 – Interpreted Configurations - Material Fraction Parameter Study  

 

 

 



 74

Table 4.7 – Results - Interpreted Shapes For Fixed Root Cantilever Beam Material 

Fraction Parameter Study 

 

 

Material 

Fraction 

Initial 

η 

Final 

η 

Interpreted 

ωd (Hz) 

Interpreted 

η 

% Imp. 

Interpreted 

Shape 

% Imp. 

Optimal  

Shape 

10% HPB 0.0091 0.1214 39.58 0.0802 781 1234 

20% HPB 0.0146 0.1618 41.58 0.1401 860 1008 

30% HPB 0.0283 0.2045 50.65 0.1701 501 622 

40% HPB 0.0713 0.2069 50.35 0.1726 142 190 
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results obtained. As the material fraction increases, the percentage improvement reduces 

as expected because the material gets lesser and lesser space to move in the design 

domain.  
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5 CONCLUSION AND FUTURE WORK 

 

 The topology of a constrained damping layer was optimized for maximizing the 

damping loss factor for different boundary conditions viz. simply supported beam and 

cantilever beam, and substantial improvements (up to 1200%) were found by the 

redistribution of the material constituents compared to a standard constraining layer.  The 

finite element calculation has been linked with the commercial optimization code 

NLPQL and a number of parameter studies have been conducted. More insight on how 

the system responds to change in certain parameters was obtained by carrying out these 

parameter studies. The parameters that were varied were the material fraction and the 

base beam thickness. The percentage improvement graphs give us a better understanding 

on where to trade off between amount of material to be used and the loss factor required. 

Additionally, it was determined that there is an optimal base beam thickness in order to 

obtain maximum improvement in the system loss factor from topology optimization. 

 The loss factor was calculated successfully in most of the cases by the Modal Strain 

Energy Method, which is an approximate method. This was done to reduce the 

computational time drastically. Novel designs for the constrained damping layer emerged 

from the optimization process that show promise for improved damping performance.  

Previous research showed that a design could be interpreted from these optimization 

results that still shows a substantial increase in damping without substantial additional 

manufacturing or material cost. Hence, a few interpreted shapes based on the tendency of 

the material to move in a particular region in the design space were shown corresponding 



 77

to their optimal solutions already obtained from the optimization process, for example, in 

case of the cantilever beams, the material tends to get collected in the areas of high 

bending moment i.e. near the fixed end of the beam or in case of the base beam thickness 

study, the elastic constraining layer tends to form a double layered structure joined by 

columns in between. These tendencies of the material are retained while interpreting the 

shapes that are reasonable to manufacture. A constraint put on these interpreted shapes 

was that the material fraction to be used in these shapes should be the same as the initial 

configuration on which these shaped are based.  

  There is a lot of future scope for this research. Firstly, experimental verification of the 

results obtained computationally can be done. To this effect, a few initial steps have been 

taken. The Experimental Setup along with the necessary hardware and software has been 

put up. A few preliminary experiments have been performed which give good confidence 

in the approach followed. Once the required custom fabricated samples are obtained, the 

experimental process would get going. Another very significant and important feature to 

be looked at is the Homogenization process. Homogenized material elements can be used 

instead of the two material elements. This would improve the results dramatically.  

It is furthermore possible to implement a penalty function in the optimization 

setup, which forces all elements to be either 100% material or to be void. This would 

enable the optimization software itself to determine a more manufacturable solution. A 

parameter study, as done in this study, can be conducted to get a deeper understanding of 

this area. Future studies could easily be extended by studying other geometries, boundary 

conditions or initial optimization points. It is possible to give a non-uniform density 

distribution as initial point of the optimization, and to examine the results of these 
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optimizations. We can use any other start point too. This will ensure that the result 

obtained is the optimum over a wider range. 

After completion of this study, an optimization including piezoelectric and 

viscoelastic material could be conducted, to get topologies such as an active constrained 

layer damping (ACLD) structure (Lumsdaine 2001). The goal of this optimization would 

be to determine the best topology of these two materials, which leads to the best topology 

for active constrained layer damping.  
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