
Parameter to State Stability of Control Lyapunov

Functions for Hybrid System Models of Robots ✩

Shishir Kolathayaa,∗, Aaron D. Amesa,

aGeorgia Institute of Technology, 801 Ferst Drive, Atlanta, USA, 30332-0405

Abstract

Model based controllers, by virtue of their dependence on a specific model,
are highly sensitive to imperfections in model parameter estimation leading to
undesirable behaviors, especially in robots that undergo impacts. With the
goal of quantifying the effect of model imperfection on the resulting output
behavior from a control Lyapunov function (CLF) based controller, we formally
derive a measure for model parameter mismatch and show that a bounded
measure leads to an ultimate bound on the CLF. This is also extended to the
discrete map by introducing an impact measure. The measure is controller and
path dependent, and not just parameter dependent, thereby differentiating it
from existing methods. More specifically, if traditional methods yield ultimate
boundedness for a bounded parameter uncertainty, the proposed “measure”
uses the notion of Input to State Stability (ISS) criterion to establish stability
of model based controllers. The main result of this paper establishes that the
proposed CLF based controller is parameter to state stable (PSS) for a class of
robotic hybrid systems—systems with impulsive effects. These formal results
motivate the construction of a robust controller—combining a computed torque
term with a traditional PD term—that yields stricter convergence rates and
bounds on the errors. This is demonstrated on the bipedal robot AMBER with
a modeling error 30%, wherein the stability of the proposed controller is verified
in simulation.
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1. Introduction

There are two main paths for approaching the problem of model parame-
ter uncertainty in mechanical systems: 1. Obtain (usually through exhaustive
experimentation) an accurate identification of the model and then adopt a sta-
bilizing controller. 2. Develop a robust controller that renders the system5

stable despite the uncertainty. For the first approach, many methods have been
explored in identifying the model parameters involving state estimation, regres-
sion, determination and validation in a systematic manner [2, 3]; this often
involves substantial and time consuming experimental validation [4]. By deter-
mining an accurate model, model dependent controllers can be applied to realize10

accurate tracking and control of such systems. Despite its simplistic nature, the
success of this tedious approach typically relies on the accuracy of the estima-
tion while accounting for variations of parameters over time. While these model
dependent controllers are able to deliver on the performance (exponential con-
vergence, large domains of attraction) promised by the formal controller design15

process, they are extremely sensitive to changes in the parameters sometimes
leading to instability.

There is a significant amount of work in literature that take the second ap-
proach, i.e., relax the need for an accurate model [5, 6, 7, 8]. Some of the
methods even completely eliminate the requirement of the information of the20

entire parameter set via adaptive control [9, 10], and via PD and PID regula-
tion and tracking [11, 12, 13, 14, 15, 16, 17]. [18, 19] achieved adaptive control
in bipedal robots without considering the impact models. L1 adaptive control
was implemented in [20, 21] to yield an ultimate bound on the tracking errors.
There is also a significant amount of work done on developing controllers that25

yield a bounded output error for a bounded parameter uncertainty [5, 6]. While
all these methods lead to the development of a robust controller that renders
the system stable for a bounded uncertainty, the tracking and regulation per-
formance is sacrificed, which is critical in systems that undergo rapid changes
in states—hybrid systems with impulsive effects.30

It is important to note that the concept of a bounded error output for a
bounded parameter uncertainty has proven to be extremely restrictive on the
choice of available controllers. For example, it is a well known fact that the
swinging motion of a simple pendulum with zero input (trivial input) is inde-
pendent of the point mass at its end. This simple example demonstrates that35

✩A preliminary version of this manuscript was published in the IFAC conference on ADHS
2015 [1]. The present version shows the Input to State Stability (ISS) property, i.e., zero stabil-
ity for zero uncertainty, and boundedness for a bounded measure of uncertainty. Rephrasing,
the current version shows parameter to state stability of periodic orbits for hybrid robotic
systems. The paper also elaborates the proofs of Theorem 1 and 2 in [1] including the de-
tailed procedure for computing the ultimate bounds for the CLF based controller: computed
torque+PD.
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we can always realize a space of unbounded model parameter sets that have the
exact same response for the given control input. This motivates the need for a
formal framework to understand the relationship between model parameter un-
certainty and the resulting tracking/regulation performance—especially in the
context of hybrid system models of robotic systems. In order to properly quan-40

tify this uncertainty that can be formally related to the resulting stability of
the system, a measure was defined in [1] and verified in simulation in the robot
AMBER. Therefore, the goal of this paper is to expand on [1] and establish and
prove stability properties by using the notion of Input to State Stability (ISS)
in a formal manner.45

For systems of the form ẋ = f(Θ;x, u), where Θ represents the parameter
set, x represents the state and u the control input, the class of controllers that
achieve a desired control objective, e.g., driving x → 0, can be written via the
Control Lyapunov Function (CLF) V (x) > 0, through the set of control inputs
that satisfy the derivative condition that V decreases along solutions:

K = {u ∈ U : LfV (x, u) ≤ 0}. (1)

Therefore model dependent controllers, like feedback linearization [22] and adap-
tive control [23] can be reformulated via CLFs which satisfy the condition:
V → 0 =⇒ x → 0. Since V̇ (x, u) = ∂V

∂x
f(Θ;x, u) is a function of the vector

field f , determination of u depends consequently on the parameters Θ. But,
if the controller (say CLF) that stabilizes the known model is applied on the50

imperfect model, the resulting dynamics of this imperfect model satisfies the
conditions of an Input to State Stable (ISS)-Lyapunov function [24]. The ISS-
Lyapunov function is constructed w.r.t. the input that is a function of the
uncertainty. Furthermore, for robotic systems, this function can be written as a
linear function of the error in parameters Θ. Therefore, by defining a measure55

that quantifies the parameter uncertainty as a function of the path and the con-
troller, we can construct robust controllers that yield strict ultimate bounds for
the specified uncertainty in the model. Further, as an improvement on the per-
formance, we can construct controllers that use a combination of model based
and non model based controllers (computed torque+PD) to obtain exponential60

ultimate bounds for hybrid systems.
The primary goal of this paper is to show that, by using the notion of Input

to State Stability (ISS), CLFs with a model mismatch can be shown to be
Parameter to State Stable for the nonlinear hybrid system model of a robotic
system undergoing impacts. In other words, despite the differences in the model,65

the model based CLF based controller will still yield a bounded output error for
a bounded function of parameter uncertainty. To establish this fact, a measure
for parameter uncertainty for both the continuous and discrete map will be
defined. This will be illustrated through the consideration of a representative
robotic system: the bipedal robot AMBER (shown in Fig. 1). There are other70

approaches like [25] that use control Lyapunov functions to achieve exponential
convergence to zero under bounded uncertainty. Our objective is the same, i.e.,
utilize control Lypapunov functions to obtain exponential convergence, but, to
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Figure 1: The biped AMBER (left) and the stick figure of AMBER showing the configuration
angles (right).

an ultimate bound (in other words, convergence to small acceptable tracking
errors). This formal construction helps in obtaining controllers that are not75

only highly convergent, but also robust to the model mismatch, getting the best
from the two worlds. It will be shown with a CLF based controller, computed
torque+PD, resulting in a stable walking gait for the robot in simulation.

The paper is structured in the following fashion: Section 2 introduces the
notion of Input to State Stability (ISS) for both continuous and discrete time80

systems. The framework to show parameter uncertainty to state stability will
be built on this notion. Section 3 introduces the robot model and the control
methodology used–Control Lypapunov Functions obtained through the method
of computed torque. Section 4 studies this controller in the context of an un-
certain model of the robot and characterizes the resulting uncertain behavior85

through Lyapunov functions. In Section 5, the resulting uncertain dynamics
exhibited by the robot is measured formally through the construction of a mea-
sure that quantifies parameter uncertainty, which is the main formulation of
this paper on which the formal results will build. It will be shown that there
is a stronger relationship between the error bounds and the parameter measure90

than the bounded input bounded output estimate, which motivates the intro-
duction of a robust auxiliary controller: computed torque+PD. This will be
utilized for establishing bounds for the entire dynamics, under the assumption
of a stable limit cycle in the zero dynamics. This method is extended to hybrid
systems through the introduction of an impact measure in Section 6. Under95

the assumption that the hybrid zero dynamics contains a stable periodic orbit,
the computed torque controller appended with the auxiliary input is applied
on the model, which results in bounded dynamics of the underactuated hybrid
system. The paper concludes with simulation results on a 5-DOF bipedal robot,
AMBER, in Section 7; the end result is stable walking even in the presence of100

parameter uncertainty.
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2. Preliminaries on Input to State Stability

In this section we will introduce basic definitions and results related to Input
to State Stability (ISS) for a general nonlinear system and then focus on robotic
systems in the next section; see [24] for a detailed survey on ISS. A general
nonlinear system with outputs is represented in the following fashion:

ẋ =f(x, u),

y =h(x), (2)

with x taking values in Euclidean space Rn, the input u ∈ Rk, the output
y ∈ Rm for some positive integers n,m, k. The mapping f : Rn × Rk → Rn is
considered Lipschitz continuous and f(0, 0) = 0 and h : Rn → Rm is continuous105

with h(0) = 0.

Class K∞ and KL functions. A class K∞ function is a function α : R≥0 →
R≥0 which is continuous, strictly increasing, unbounded, and satisfies α(0) = 0,
and a class KL function is a function β : R≥0 × R≥0 → R≥0 such that β(r, t) ∈
K∞ for each t and β(r, t) → 0 as t → ∞.110

Input to State Stability. We can now introduce Input to State Stability to
consider the entire dynamics of (2).

Definition 1. The system is Input to State Stable(ISS) if there exists β ∈ KL,
and ι ∈ K∞ such that

|x(t, x0, u)| ≤ β(|x0|, t) + ι(‖u‖∞), ∀x0, ∀t ≥ 0, (3)

and (2) is considered locally ISS, if the inequality (3) is valid for an open ball
of radius r, x0 ∈ Br(0).

Definition 2. The system is exponential Input to State Stable (e-ISS) if there
exists β ∈ KL, ι ∈ K∞ and a positive constant λ > 0 such that

|x(t, x0, u)| ≤ β(|x0|, t)e
−λt + ι(‖u‖∞), ∀x0, ∀t ≥ 0, (4)

and (2) is considered locally e-ISS, if the inequality (4) is valid for an open ball115

of radius r, x0 ∈ Br(0).

Definition 3. The system is said to hold the asymptotic gain (AG) property if
there exists ι ∈ K∞ such that:

limt→∞|x(t, x0, u)| ≤ ι(‖u‖∞), ∀x0, u, (5)

where the limt→∞ denotes the supremum of the limit of x as t → ∞ (the state
x is not required to have a limit).
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Definition 4. The system is said to be zero stable (ZS) for a zero input u = 0,
if there exists β ∈ KL such that:

|x(t, x0, 0)| ≤ β(|x0|, t), ∀x0, ∀t ≥ 0. (6)

By this definition, ZS =⇒ asymptotic stability of the system with a zero
input.120

ISS-Lyapunov functions. We can develop Lyapunov functions that satisfy
the ISS conditions and achieve the stability property.

Definition 5. A continuous function V : Rn → R is a storage function if it is
positive definite and proper, that is, V (x) → ∞ as x → ∞. It is easy to show
that V (x) is a storage function if and only if there exist α, ᾱ ∈ K∞ such that:

α(x) ≤ V (x) ≤ ᾱ(x), ∀x ∈ Rn. (7)

Note that the lower bound amounts to properness and V (x) > 0 for x 6= 0,
while the upper bound ensures V (0) = 0.

Definition 6. An ISS-Lyapunov function for ẋ = f(x, u) is a smooth storage
function V : Rn → R≥0 for which there exist functions ι, α ∈ K∞ such that:

V̇ (x, u) ≤ −α(|x|) + ι(|u|), ∀x, u. (8)

In other words, an ISS-Lyapunov function is a smooth solution of the inequality125

of the form (8).

The following lemma establishes the relationship between the ISS-Lyapunov
function and the ISS of (2).

Lemma 1. A system is ISS if and only if it admits a smooth ISS-Lyapunov
function.130

Proof of Lemma 1 is given in [24] and in [26]. In fact the inequality condition
can be made stricter by using the exponential estimate:

V̇ (x, u) ≤ −V (x) + ι(|u|), ∀x, u. (9)

We can also use the AG property (5) to establish ISS:

Lemma 2. The system is ISS if and only if it is zero stable and AG.

Input to State Stability of Hybrid Systems. We can now introduce ISS
and ISS-Lyapunov functions for hybrid systems i.e., specifically systems with
impulse effects. A more detailed discussion on ISS notion for hybrid systems135

can be found in [27, 28, 29, 30]. A hybrid system with a single vector field
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(continuous map), and a single discrete map that represents a bipedal robot
can be defined as follows (see [31, 32]):

H =

{
ẋ = f(x, u), x ∈ D\S
x+ = ∆(x), x ∈ S,

(10)

Here f : Rn × Rk → Rn and ∆ : Rn → Rn are Lipschitz continuous w.r.t. x.
Formally, a hybrid system is defined as a tuple: (D,U , S,∆, f), where f , ∆ have140

the usual meaning, D, S are the domains of f,∆ respectively, and U the set of
admissible inputs. This is explained in detail in [30]. For bipedal walking robots,
the discrete map shown in (10) is represented by an impact map assuming plastic
collisions. The execution of this hybrid system is a tuple (Ξ, I, C), where Ξ ⊂ N

is the indexing set, I = {I}i∈Ξ is the collection of intervals and C is the set of145

trajectories. More details can be found in [33].
For the hybrid system (10), we can obtain u that satisfies the ISS dissipative

properties for the continuous map f . But, the discrete map does not satisfy this
dissipative assumption due to the absence of u. On the other hand, due to the
periodicity of trajectories in walking, we can realize controllers that render peri-150

odic solutions for the hybrid system and the notion of stability of these periodic
solutions can be established. Consequently, for the solutions that are periodic
with period T ∗, we can define Poincaré maps that motivate the construction of
discrete time Lyapunov functions, from which the notion of input to stability
for such periodic orbits can be established.155

Periodic Orbits and Poincaré maps. The solution x(t, x0) is periodic if
there is a period T ∗ such that x(t+ T ∗, x0) = x(t, x0). For this periodic orbit,
a Poincaré map P : S → S can be defined as: P(x0) = ϕT (∆(x0), u), where ϕ

is the flow of the solution going forward in time, T is the time until the next
discrete transition. Therefore, in the neighborhood of the periodic solution,
the Poincaré map allows for the reformulation of the hybrid event into a single
discrete event. Assume that O is a periodic orbit in D. If this periodic orbit is
locally zero stable, then there is a constant r > 0 such that if x starts in a ball
or radius r defined around O, Br(O), then x(t) → O as t → ∞. If x∗ ∈ O is
a point on S then P(x∗) = x∗, which is called the fixed point on the discrete
map P. We can construct a discrete time ISS-Lyapunov function that has the
following dissipation:

V (P(x)− x∗) ≤ λV (x− x∗) + ι(|u|), ∀x ∈ S ∩ Br(x
∗), u,

=⇒ V (P(x)− x∗)− V (x− x∗) ≤ −(1− λ)V (x− x∗) + ι(|u|), (11)

for some λ < 1, and ι ∈ K∞. This motivates using the ISS criterion for the
hybrid system (10) as shown in the following Lemma:

Lemma 3. If the Poincaré map P admits a smooth discrete ISS-Lyapunov
function, then the periodic orbit O of the hybrid system (10) is ISS.

We can make use of this Lemma to show stability of bipedal robotic walk-160

ing in AMBER (as shown in Fig. 1) under parameter uncertainty. Under the
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assumption that the bipedal robot is zero stable when the model is perfectly
known (parameter measure being identically zero), the notion of ISS motivates
the introduction of a measure that is a function of the uncertainty in the robot
model parameters, and show that the hybrid walking model of the robot is165

parameter to state stable.

3. Robot Dynamics and Control

A robotic system, including a walking robot, can be modeled as n-link ma-
nipulator. Given the configuration space Q ⊂ Rn, with the local coordinates
q ∈ Q, and the velocities q̇ ∈ TqQ, the equation of motion of the n-DOF robot
can be defined as:

D(q)q̈ + C(q, q̇)q̇ +G(q) = BT, (12)

where D(q) ∈ Rn×n is the mass inertia matrix of the robot that includes the
motor inertia terms, C(q, q̇) ∈ Rn×n is the matrix of Coriolis and centrifugal
forces, G(q) ∈ Rn is the gravity vector, T ∈ Rk is the torque input and B ∈ Rn×k

170

is the mapping from torque to joints. It will be assumed that the mapping B is
perfectly known, and is a constant consisting of 1′s and 0′s.

The system (12) is a nonlinear system where the dynamics can be represented
as an affine nonlinear system:

ẋ = fR(x) + gR(x)u, (13)

where x = [qT , q̇T ]T and

fR(q, q̇) =

[
1n×n

D−1(q)(−C(q, q̇)q̇ −G(q))

]

,

gR(q, q̇) =

[
0n×k

D−1(q)B

]

,

u = T motivated by (2).

Example 1. As an example, consider the underactuated bipedal robot shown
in Fig. 1. The configuration can be defined as: q = (qsa, qsk, qsh, qnsh, qnsk)175

corresponding to stance ankle, stance and non-stance knee, stance and non-
stance hip angles of the robot. Since the ankle is not actuated, the DOF is n = 5
and the number of actuators is k = 4.

Outputs. We will utilize the method of computed torque since it is highly
effective for robotic systems [10]. It is also convenient in the context of uncertain
models which will be considered in the next section. To realize the controller,
outputs are picked which are functions of joint angles referred to as actual
outputs ya : Q → Rk, which are made to track functions termed desired outputs
yd : Q → Rk. The objective is to drive the error y(q) = ya(q)−yd(q) → 0. These
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outputs are also termed virtual constraints in [34]. The outputs are picked such
that they are relative degree two outputs (see [35]). Given the output y:

ÿ =
∂y

∂q
︸︷︷︸

J

q̈ + q̇T
∂2y

∂q2
︸ ︷︷ ︸

J̇

q̇. (14)

Since, k < n, we add n− k rows to J and J̇ to make the co-efficient matrix of q̈
full rank. These rows correspond to the configuration which are underactuated
resulting in:

[
0
ÿ

]

=

[
D1

J

]

q̈ +

[
H1

J̇ q̇

]

, (15)

where H1 is the first n−k rows of H(q, q̇) = C(q, q̇)q̇+G(q), and D1 is the first
n−k rows of the expression, D(q). These rows correspond to the underactuated
degrees of freedom of the robot (corresponding to zero rows of the torque map
B). It should be observed that since the underactuated degrees of freedom have
zero torque being applied, the resulting EOM of the robot leads to zero on the
left hand side of (15), and hence the choice of rows. Accordingly, we can define
the desired acceleration for the robot to be:

q̈d =

[
D1

J

]−1 ([
0
µ

]

−

[
H1

J̇ q̇

])

, (16)

where µ is a linear control input. The resulting torque controller that realizes
this desired acceleration in the robot can be defined as:

BT = D(q)q̈d + C(q, q̇)q̇ +G(q). (17)

Substituting (17) and (16) in (12) results in linear dynamics: ÿ = µ, where µ

can be chosen to therefore stabilize the y dynamics. We will utilize a CLF based180

controller to achieve this goal.

Zero Dynamics and Control Lyapunov Function. If we define the vector:

η =

[
y

ẏ

]

∈ R2k, the output dynamics can be reformulated as:

η̇ =

[
0k×k 1k×k

0k×k 0k×k

]

︸ ︷︷ ︸

F

η +

[
0k×k

1k×k

]

︸ ︷︷ ︸

G

µ, (18)

which represent the controllable dynamics of the system. Since, k < n there are
states that are not directly controllable which represent the zero dynamics of
the system and can be expressed as:

ż = Ψ(η, z), (19)
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where z ∈ R2(n−k) is the zero dynamic coordinates of the system (see [34]).
Consider the candidate Lyapunov function: V (η) = ηTPη, where P is the

solution to the continuous-time algebraic Riccati equation (CARE):

FTP + PF − PGGTP +Q, Q = QT > 0.

Taking the derivative of V yields:

V̇ (η) = ηT (FTP + PF )η + 2ηTPGµ. (20)

To find a specific value of µ, we can utilize a minimum norm controller (see [36])
which minimizes µTµ subject to the inequality constraint:

V̇ (η, µ) = ηT (FTP + PF )η + 2ηTPGµ ≤ −γV (η), (21)

where γ := eigenmin(Q)
eigenmax(P ) is a constant obtained from CARE. Satisfying (21)185

implies exponential convergence.
We can impose stronger bounds on convergence by constructing a rapidly

exponentially stable control lyapunov function (RES-CLF) that can be used to
stabilize the output dynamics at a rapid rate through a user defined ε > 0 (see
[37] for more details).190

Definition 7. For the family of continuously differentiable functions, Vε :
R2k → R≥0 is a rapidly exponentially stabilizing control Lyapunov func-
tion (RES-CLF) if there exist positive constants c1, c2, e1 > 0 such that for
all 0 < ε < 1 and for all (η, z) ∈ R2k × R2(n−k),

c1‖η‖
2 ≤ Vε(η) ≤

c2

ε2
‖η‖2, (22)

inf
u∈U

[LfVε(η, z) + LgVε(η, z)u+
e1

ε
Vε(η)] < 0.

Choosing P and ε > 0:

Vε(η) = ηT
[
1
ε
I 0
0 I

]

P

[
1
ε
I 0
0 I

]

η := ηTPεη. (23)

It is verified that Vε is a RES-CLF. By (22), c1, c2 > 0 take the minimum and
maximum eigenvalues of P , respectively. Differentiating (23) yields:

V̇ε(η) = LFVε(η) + LGVε(η)µ, (24)

where LFVε(η) = ηT (FTPε + PεF )η, LGVε(η) = 2ηTPεG.
We can define a minimum norm controller which minimizes µTµ subject to

the inequality constraint:

LFVε(η) + LGVε(η)µ ≤ −
γ

ε
Vε(η), (25)

which when satisfied implies exponential convergence. Therefore, we can define
a class of controllers Kε:

Kε(η) = {u ∈ U : LFVε(η) + LGVε(η)u+
γ

ε
Vε(η) ≤ 0}, (26)

which yields the set of control values that satisfies the desired convergence rate.
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4. Unmodeled Dynamics and State Stability

Since the parameters are not perfectly known, the equations of motion, (12),195

computed with the given set of parameters will henceforth haveˆover the sym-
bols. Therefore, Da, Ca, Ga represent the actual model of the robot, and D̂, Ĉ,
Ĝ represent the assumed model of the robot.

It is a well known fact that the inertial parameters of a robot are affine in
the EOM (see [38]). Therefore (12) can be restated as:

Y(q, q̇, q̈)Θ = BT, (27)

where Y(q, q̇, q̈) is the regressor [38], and Θ is the set of base inertial parameters.
Accordingly, Θa is the actual set of parameters, and Θ̂ is the assumed set of200

base inertial parameters. We will consider only the parameters that are difficult
to identify, i.e., we will assume that the kinematic parameters, like link lengths,
are accurately known. This reduces the set of unknown parameters to only the
inertial elements of the robot.

Computed Torque Redefined. The method of computed torque becomes
very convenient to apply if the regressor and the inertial parameters are being
computed simultaneously. If q̈d is the desired acceleration vector for the robot,
the method of computed torque can be defined as:

BTct = Y(q, q̇, q̈d)Θ̂. (28)

It can be observed that (28) is just a reformulation of (17). For convenience, the205

mapping matrix B on the left hand side of (28) will be omitted, i.e., BTct = Tct.
Note that it is assumed that the mapping matrix B (including its parameter-
ization) is known to the user. Due to the difference in parameters, it can be
observed that the dynamics of the robot becomes different, which is shown be-
low:210

Lemma 4. Define:

Φ = D̂−1Y(q, q̇, q̈), (29)

where the dependency of Φ on q, q̇, q̈ has been suppressed for notational con-
nivance. Similar to (16), if the control law used with the assumed model is:

q̈d =

[

D̂1

J

]−1 ([
0
µ

]

−

[
Ĥ1

J̇ q̇

])

, (30)

combined with the computed torque (28), then the resulting dynamics of the robot
evolve as:

ÿ = µ+ JΦ(Θ̂−Θa). (31)

11



Proof. By substituting for BT in (12), we have:

Da(q)q̈ + Ca(q, q̇)q̇ +Ga(q) = D̂(q)q̈d + Ĉ(q, q̇)q̇ + Ĝ(q), (32)

by adding and subtracting D̂(q)q̈ on the right hand side of (32), we have:

D̂(q)q̈ − D̂(q)q̈d = Y (q, q̇, q̈)(Θ̂−Θa), (33)

where by substituting for q̈d, the following result is obtained:

[

D̂1q̈ + Ĥ1

ÿ

]

=

[
D̂1Φ(Θ̂−Θa)

µ+ JΦ(Θ̂−Θa)

]

. (34)

The bottom row is the desired result. The top row shows the dynamics of one
of the zero coordinates and its relationship with parameter uncertainty.

The dynamics of this uncertain system can be written in the following form:

η̇ = Fη +Gµ+GJΦΘ̃

ż = Ψ(Θa; η, z), (35)

where Θ̃ = Θ̂−Θa. The dependency of the zero dynamics on the true parameter
set Θa is explicitly shown. If Θ̃ = 0, we could apply (26) to drive η → 0. But215

since the parameters are uncertain, i.e., Θ̃ 6= 0, the resulting nonlinear dynamics
will be observed in the derivative of the Lyapunov function:

V̇ε(η, µ) = η̇TPεη + ηTPεη̇, (36)

= ηT (FTPε + PεF )η + 2ηTPεGµ+ 2ηTPεGJΦΘ̃,

where η̇ is obtained via (35). The next section will establish the relationship
between parameter uncertainty and the uncertain dynamics appearing in the
CLF through the parameter uncertainty measure.220

5. Parameter Uncertainty Measure

Due to the unmodeled dynamics, applying the controller, µ(η) ∈ Kε(η),
does not result in exponential convergence of the controller. The controller will
still yield boundedness based on how the unmodeled dynamics affect V̇ε. The
parameter uncertainty measure, ν, that quantifies the ultimate bound on the225

Lyapunov function Vε is defined as:

ν := Y(q, q̇, q̈)Θ̃. (37)

It can be observed that: Y(q, q̇, q̈)Θ̃ = Y(q, q̇, q̈)Θ̂ − Y(q, q̇, q̈)Θa, which is
the difference between the actual and the expected torque being applied on
the robot. Therefore, the parameter measure is effectively the difference in
torques applied on the robot. It can be observed that the sensitivity and the
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uncertainty analysis w.r.t. the parameters take a similar approach (see [39]),
where the partial derivatives of the controller inputs are computed w.r.t. Θ:

Control Sensitivity =
∂T

∂Θ
= Y(q, q̇, q̈).

Control Uncertainty =
∂T

∂Θ
(Θ̂−Θa) = ν, (38)

which justifies the reasoning behind using the nomenclature parameter uncer-
tainty measure. If Θ̃ is identically a vector of 1′s, ν is called parameter sensitivity
measure. It must be noted that ν was called the parameter sensitivity measure
in [1] which was changed to the current nomenclature after the review.230

Measure to State stability through RES-CLF. By (29) and (37), we have:
D̂−1ν = ΦΘ̃. Therefore, (36) can be expressed as:

V̇ε(η, µ) =ηT (FTPε + PεF )η + 2ηTPεGµ+ 2ηTPεGJD̂−1ν, (39)

which is now a function of ν. This provides an important connection with Lya-
punov theory, and the notion of parameter uncertainty is motivated by this
observation. In other words, if the path of least ν is followed, then the conver-
gence of the Lyapunov function to a value very close to zero can be realized.
Therefore, we will define the notion of Parameter to State Stability in the fol-235

lowing manner:

Definition 8. Assume a ball of radius r around the origin. The system given
by (35) is locally parameter to η stable , if there exists β ∈ KL, and ι ∈ K∞

such that:

|η(t)| ≤ β(|η(0)|, t) + ι(‖ν‖), ∀η(0) ∈ Br(0), ∀t ≥ 0, (40)

and it is locally parameter to state stable (PSS), if

|(η(t), z(t))| ≤ β(|(η(0), z(0))|, t) + ι(‖ν‖), ∀(η(0), z(0)) ∈ Br(0, 0), ∀t ≥ 0.
(41)

If a suitable controller is applied to (39): µ(η) ∈ Kε(η) , the stability of the
Lyapunov function can be achieved as long as the following equation is satisfied:

V̇ε ≤ −
γ

ε
Vε + 2ηTPεGJD̂−1ν ≤ 0, (42)

It must be noted that the measure ν is also a function of the control input µ,
resulting in an algebraic loop in (42). But, by a careful selection of the control
input, it is possible to stabilize the dynamics of η by the restriction of ν through
the robot model parameters. Therefore, we first assume the bounds on the robot
model in the following manner:

c3 ≤ ‖D‖ ≤ c4, ‖C‖ ≤ c5‖q̇‖, ‖G‖ ≤ c6,

ĉ3 ≤ ‖D̂‖ ≤ ĉ4, ‖Ĉ‖ ≤ ĉ5‖q̇‖, ‖Ĝ‖ ≤ ĉ6. (43)
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where c3 − c6, ĉ3 − ĉ6 are constants (see [40, 41]). Since the outputs are degree
one functions of q, the Jacobian can also be bounded by the constant: ‖J‖ ≤ κ.
By assuming that ν is bounded over time, we can establish a parameter to state
stable(PSS)-Lyapunov function for the dynamics (39), which is shown in the240

following Lemma.

Lemma 5. Given a controller µ(η) ∈ Kε(η), the system (35) is parameter to η

stable, w.r.t. the parameter input ν.

Proof. Since Vε(η) is bounded by the norms of ‖η‖, we have the following:

γ

ε
ηTPεη ≥

γ

ε
c1‖η‖

2, (44)

Considering (42) and the bounds on Pε,G,J and D̂ we have the following in-
equality:

V̇ε ≤ −
γ

ε
Vε + 2

c2κĉ
−1
3

ε2
‖η‖‖ν‖. (45)

The system is 0 stable for ν ≡ 0, and with γ replaced with γ1 + γ2 = γ:

V̇ε ≤ −
γ1 + γ2

ε
Vε + 2

c2κĉ
−1
3

ε2
‖η‖‖ν‖,

=⇒ V̇ε ≤ −
γ2

ε
Vε, for

γ1

ε
Vε(η) > 2‖η‖‖ν‖

c2κ

ε2ĉ3
, (46)

which implies that V is decreasing exponentially for γ1

ε
c1‖η‖

2 > 2‖η‖ c2κ
ε2ĉ3

‖ν‖.
This satisfies the AG property, and from Lemma 2 it implies parameter to η245

stability w.r.t. ν.

It can be observed that due to AG, the exponential ultimate bound for a
nonzero ‖ν‖∞ is given by limt→∞ ‖η(t)‖ ≤ 2 c2κ

c1εĉ3γ1

‖ν‖∞. A good way to reduce

the ultimate bound is to increase ε, but, this affects the convergence rate, γ2

ε
.

Consequently Lemma 5 yields a low convergence rate for the output error η.
This affects the stability of hybrid periodic orbits as mentioned in Theorem 2
of [37], which requires ε to be sufficiently small for stable walking. In order to
retain the original convergence rate, γ

ε
without sacrificing the ultimate bound,

and to nullify the uncertain dynamics separately, we consider an auxiliary input
µ̄ satisfying:

BTctn = D̂(q)q̈d + Ĉ(q, q̇)q̇ + Ĝ(q) +Bµ̄. (47)

Note that this is not unique and other types of controllers can also be used.
Computed torque with linear inputs appended have also been used in [9] in
order to realize asymptotic convergence. The resulting dynamics of the outputs
then reduces to:

ÿ = µ+ JD̂−1ν + JD̂−1Bµ̄, (48)
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which can be obtained by adding Bµ̄ in (32) in the proof of Lemma 4.
By applying (48), (35) will have an extra input µ̄ that yields:

η̇ = Fη +Gµ+GJD̂−1ν +GJD̂−1Bµ̄

ż = Ψ(Θa; η, z), (49)

Therefore, V̇ε for the new input can be reformulated as:

V̇ε(η, µ, µ̄) = ηT (FTPε + PεF )η + 2ηTPεGµ+ 2ηTPεGJD̂−1(ν +Bµ̄). (50)

Consider the input µ̄ = − 1
ε̄
ΓTGTPεη, where Γ = JD̂−1B, ε̄ > 0. Then µ and µ̄

together form the computed torque+PD control on the robot. The end result is
a positive semidefinite expression: 1

ε̄
ηTPεGΓΓTGTPεη ≥ 0, which motives the

construction of a positive semidefinite function:

V̄ε(η) = ηTPεGΓΓTGTPεη =: ηT P̄εη. (51)

Using the property of positive semidefiniteness, we can establish new bounds on
the outputs. Let N (P̄ε) be the null space of the matrix P̄ε. If η ∈ N (P̄ε), then
V̄ε(η) = 0. Otherwise, for some c7, c8 > 0:

c7‖η‖
2 ≤ V̄ε(η) ≤

c8

ε4
‖η‖2. (52)

Note that (52) can be used to restrict the uncertain dynamics in (50). Utilizing
these constructions, we can define the following class of controllers:

K̄ε,ε̄(η) = {u ∈ Rk : 2ηTPεGJD̂−1Bu+
1

ε̄
V̄ε(η) ≤ 0}. (53)

Lemma 5 can now be redefined to obtain the new exponential ultimate bound
for the new control input (47).250

Lemma 6. Given the controllers µ(η) ∈ Kε(η), µ̄(η) ∈ K̄ε,ε̄(η), the system
(49) is exponential parameter to η stable w.r.t. the parameter input ν.

Proof. If η is in the null space of the semi definite matrix, as given in (51):
η ∈ N (P̄ε), then ηTPεG = 0 and the uncertainty does not affect Vε giving the
desired result. If η does not belong to the null space, then the result can be
proved by considering the following constraint:

1

ε̄
V̄ε(η) > 2

c2κĉ
−1
3

ε2
‖η‖‖ν‖, (54)

which gives the AG property: limt→∞ ‖η‖ ≤ 2 c2κ
c7ε2ĉ3

ε̄‖ν‖∞ =: dη‖ν‖∞ implying
parameter to η stability.

It can be inferred that:

Vε(η(t)) ≤ e−
γ

ε
tVε(η(0)) ∀ ‖η(t)‖ > dη‖ν‖∞, (55)

⇒ ‖η(t)‖ ≤
1

ε

√
c2

c1
e−

γ

2ε
t‖η(0)‖ ∀ ‖η(t)‖ > dη‖ν‖∞.
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It should be noted that both the main and auxiliary gains ε, ε̄ affect the measure255

ν. Therefore, the gain ε̄ and also the measure norm need to be reasonably small
to get sufficient ultimate bounds. This is illustrated very well in Fig. 4 where
an almost constant measure (excluding the impacts), and a decreasing ε̄ results
in lowering of Vε.

Given the locally Lipschitz continuous feedback law µ(η) = Kε(η), µ̄(η) =260

Kε,ε̄(η), we have the following equation:

η̇ = Fη +Gµ(η) +GJD̂−1Bµ̄(η) +GJD̂−1ν

ż = Ψ(Θa; η, z), (56)

We can now consider utilizing the ISS notion in underactuated systems given
that the zero dynamics of the robot has a locally exponentially stable periodic
orbit for the assumed model.

Zero Dynamics. Let X ⊂ R2k,Z ⊂ R2(n−k). Let ϕt(η, z) be the flow of (56)
with the initial condition (η, z) ∈ X × Z. The flow ϕt is periodic with period
T ∗ > 0 and a fixed point (η∗, z∗) if ϕT∗(η∗, z∗) = (η∗, z∗). Associated with the
periodic flow is the periodic orbit

O = {ϕt(η
∗, z∗) ∈ X × Z : 0 ≤ t ≤ T ∗}.

Similarly, we denote the flow of the zero dynamics given by (56) by ϕz
t and for265

a periodic flow we denote the corresponding periodic orbit by OZ ⊂ Z. Due to
the invariance of the zero dynamics, we have the mapping O = ι0(OZ), where
ι0 : Z → X × Z is the canonical embedding.

Without loss of generality, we can use the norm on X ×Z as the sum of the
norms constructed on X and Z separately: ‖(η, z)‖ = ‖η‖+ ‖z‖. The distance
between (η, z) and the periodic orbit O satisfies:

‖(η, z)‖O = inf
(η′,z′)∈O

‖(η, z)− (η′, z′)‖

= inf
z′∈OZ

‖z − z′‖+ ‖η − 0‖

= ‖z‖OZ
+ ‖η‖. (57)

The periodic orbit O is exponentially stable if there are constants r, δ1, δ2 > 0
such that if (η, z) ∈ Br(O) = {(η, z) ∈ X × Z : ‖(η, z)‖O < r} it follows270

that ‖ϕt(η, z)‖O ≤ δ1e
−δ2t‖(η, z)‖O. Exponential stability of OZ can also be

similarly defined.
We can introduce a theorem that establishes the parameter to state stability of
the periodic orbit O with the assumption that OZ is exponentially stable.

Theorem 1. Assume that the periodic orbit Oz ⊂ Z is exponentially stable275

for the assumed model Θ̂. Given the controllers µ(η) ∈ Kε(η), µ̄(η) ∈ K̄ε,ε̄(η)
applied on (56), that render exponential η stability, then the periodic orbit O
obtained from the canonical embedding is exponential parameter to state stable.
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Proof. Due to the inherent stability of η, 0 stability of the entire dynamics is
directly implied. AG property is established by computing the ultimate bound
on the state dynamics (η, z). Since OZ is exponentially stable, there is a Lya-
punov function Vz : Z → R≥0 such that in a neighborhood Br(OZ) of OZ (see
[42]) it is exponentially stable. Specific bounds is given by the following:

c10‖z‖
2
OZ

≤ Vz(z) ≤ c11‖z‖
2
OZ

,

∂Vz

∂z
Ψ(Θ̂; 0, z) ≤ −c12‖z‖

2
OZ

,
∣
∣
∣
∣

∣
∣
∣
∣

∂Vz

∂z

∣
∣
∣
∣

∣
∣
∣
∣
≤ c13‖z‖OZ

, (58)

where c10, c11, c12, c13 are constants. The zero dynamics of the actual model de-
viates from the nominal model; we have the following inequality that is inferred
from the first row of (34):

∂Vz

∂z
Ψ(Θa; 0, z) ≤ −c12‖z‖

2
OZ

+
∂Vz

∂z
(Ψ(Θa; 0, z)−Ψ(Θ̂; 0, z))

≤ −
c12

2
‖z‖2OZ

−
c12

2
‖z‖2OZ

+ c13‖z‖Lz‖ν‖, (59)

for which the exponential upper bound for z can be obtained: dz‖ν‖∞ :=
2c13Lz

c12
‖ν‖∞. Lz is the Lipschitz constant.280

The combined Lyapunov function considering the entire dynamics is given
as:

Vc(η, z) = σVz(z) + Vε(η). (60)

Upper bounds and lower bounds on Vc can be defined as:

Vc(η, z) ≤ max{σc11,
c2

ε2
}(‖z‖2OZ

+ ‖η‖2),

Vc(η, z) ≥ min{σc10, c1}(‖z‖
2
OZ

+ ‖η‖2), (61)

Therefore, taking the derivative:

V̇c(η, z) = σ
∂Vz

∂z
Ψ(Θ̂; 0, z) + σ

∂Vz

∂z
(Ψ(Θa; η, z)−Ψ(Θa; 0, z)

+Ψ(Θa; 0, z)−Ψ(Θ̂; 0, z)) + V̇ε(η),

≤ −σc12‖z‖
2
OZ

+ σc13‖z‖OZ
(Lq‖η‖+ Lz‖ν‖) + V̇ε(η), (62)

where Lq, Lz are the Lipschitz constants for Ψ in (35) w.r.t. η and ν respectively.
Using (36), (62) can be modified such that sufficient conditions for boundedness
can be realized. Using (54) we have the following expression for the Lyapunov
function:

V̇c ≤− σ
c12

2
‖z‖2OZ

+ σc13Lq‖z‖OZ
‖η‖ −

γ

ε
Vε, ∀‖(η, z)‖ > (dη + dz)‖ν‖∞. (63)

To ensure negative definiteness of the V̇c in (63), σ is picked such that: c12
2 c1

γ
ε
−

σ
c2
13

L2

q

4 > 0, giving the desired result.
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6. Hybrid Dynamics285

We now extend Theorem 1 to hybrid robotic systems which involve alternat-
ing phases of continuous and discrete dynamics. A hybrid system with a single
continuous and a discrete event is defined as follows:

H =







η̇ = Fη +Gµ(η) +GJD̂−1Bµ̄(η) +GJD̂−1ν,

ż = Ψ(Θ; η, z), if (η, z) ∈ D\S
η+ = ∆η(Θ, η−, z−),
z+ = ∆z(Θ, η−, z−), if (η−, z−) ∈ S

(64)

It must be noted that the parameter vector Θ can be either Θa or Θ̂. Since
the parameters Θa are not known, the output trajectory design is made for the
assumed model Θ̂.

It is assumed that Ψ is Lipschitz in both ν, η. D, S are the domain and
switching surfaces and are given by:

D = {(η, z) ∈ X × Z : h(η, z) ≥ 0}, (65)

S = {(η, z) ∈ X × Z : h(η, z) = 0 and ḣ(η, z) < 0},

for some continuously differentiable function h : X × Z → R. ∆(Θ, η−, z−) =
(∆η(Θ, η−, z−),∆z(Θ, η−, z−)) is the reset map representing the discrete dy-
namics of the system. For the bipedal robot, AMBER, h represents the non-
stance foot height and ∆ represents the impact dynamics of the system. Plastic
impacts are assumed. For (q−, q̇−) ∈ S, being the pre-impact angles and veloc-
ities of the robot, the post impact velocity for the assumed model ˙̂q+, and for
the actual model q̇+ will be obtained from:

[

D̂ −J T

J 0

] [
˙̂q+

δF̂imp

]

=

[

D̂q̇−

0

]

,

[
Da −J T

J 0

] [
q̇+

δFimp

]

=

[
Daq̇

−

0

]

(66)

where δF̂imp, δFimp are the impulsive forces acting from the ground, J is the
Jacobian of the foot where the impulse forces are acting on the robot. By using
the Schur complement to get the block matrix inversion we can obtain the post
impact velocities as (see [43]):

˙̂q+ = (I − D̂−1J T (J D̂−1J T )−1J )q̇−,

q̇+ = (I −D−1
a J T (JD−1

a J T )−1J )q̇−,

q̇+ − ˙̂q+ = D̃(q)q̇−, (67)

where D̃(q) ∈ Rn×n is a long expression obtained after computing the difference
between the two post impact velocities. If Da = D̂, D̃(q) = 0, which can be290

used as a candidate for measuring uncertainty during impacts.

Impact Measure. Using the impact model, measuring uncertainty of post-
impact dynamics can be achieved by introducing an impact measure, νs, for
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hybrid systems. It is defined as:

νs := D̃(q)q̇−. (68)

It should be noted that the impact equations are Lipschitz continuous w.r.t.
the impact measure νs. Accordingly, we have the following bounds on the impact
map:

‖∆η(Θa, η
−, z−)−∆η(Θ̂, 0, z−)‖

≤ ‖∆η(Θa, η
−, z−)−∆η(Θ̂, η−, z−) + ∆η(Θ̂, η−, z−)−∆η(Θ̂, 0, z−)‖

≤ L1‖νs‖+ L2‖η
−‖, (69)

where L1, L2 are Lipschitz constants for ∆η. Similarly:

‖∆z(Θa, η
−, z−)−∆z(Θ̂, 0, z−)‖ ≤ L3‖νs‖+ L4‖η

−‖, (70)

where L3, L4 are Lipschitz constants for ∆z. In order to obtain bounds on the
output dynamics for hybrid periodic orbits, it is assumed that H has a hybrid
zero dynamics for the assumed model, Θ̂, of the robot. More specifically, we
assume that ∆η(Θ̂, 0, z−) = 0, so that the surface Z is invariant under the
discrete dynamics. The hybrid zero dynamics can be described as:

H |Z =

{
ż = Ψ(Θ̂; 0, z) if z ∈ Z\(S ∩ Z)

z+ = ∆z(Θ̂, 0, z−) if z− ∈ (S ∩ Z)
(71)

Realizing hybrid zero dynamics (desired trajectories in particular) is in itself
a difficult problem and requires large scale nonlinear programming toolboxes
which are explained in detail in [44].

Given the hybrid system (64), denote the hybrid flow as ϕt(Θ;∆(Θ, η−, z−))
with the initial condition (η−, z−) ∈ S∩Z. By considering the model estimate Θ̂,
we can define the hybrid flow of (71) as ϕz

t (Θ̂;∆z(Θ̂, 0, z−)) with the initial state
(0, z−) ∈ S∩Z. If a periodic orbit OZ exists in (71), then there exists a periodic
flow ϕz

t (Θ̂;∆z(Θ̂, 0, z∗)) of period T ∗ for the fixed point (0, z∗). Through the
canonical embedding, the corresponding periodic flow of the periodic orbit O
in (64) will be ϕt(Θ̂;∆(Θ̂, 0, z∗)). Note that existence of periodic orbits for
the assumed model Θ̂ does not guarantee existence for the actual model Θa.
Associated with the hybrid periodic orbit is the Poincaré map P : S → S given
by:

P(Θ; η, z) = ϕT (Θ;η,z)(Θ;∆(Θ, η, z)), (72)

where Θ can be either Θa or Θ̂, and T is the time to impact function defined
by:

T (Θ; η, z) = inf{t ≥ 0 : ϕt(Θ;∆(Θ, η, z)) ∈ S}. (73)

The Poincaré map can be divided into η component Pη, and z component Pz295

respectively. If the Poincaré map is applied n times, then we denote with the
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superscript n as Pn(Θ; η, z). Similar to the assumptions made in [37], the
implicit function theorem implies that T is well defined in a neighborhood of
(Θ̂, η∗, z∗). Therefore, T (Θ̂; η∗, z∗) = T ∗ and so P(Θ̂; η∗, z∗) = (η∗, z∗). Also,
since ϕt(Θ;∆(Θ, η, z)) is Lipschitz continuous, T is also Lipschitz.300

A hybrid periodic orbit OZ , of HZ can be similarly defined, in which case
the corresponding Poincaré map ρ : S ∩ Z → S ∩ Z is termed the restricted
Poincaré map:

ρ(z) = ϕz
Tρ(z)

(Θ̂;∆z(Θ̂, 0, z)), (74)

where ϕz is the flow of ż = Ψ(Θ̂; 0, z) and Tρ is the restricted time to impact

function which is given by Tρ(z) = T (Θ̂; 0, z). Without loss of generality, we can

assume that Θ̂ = 0, η∗ = 0, z∗ = 0. For ease of notations let Θ = Θa − Θ̂ = Θa
1. The following Lemma will introduce the relationship between time to impact,
Poincaré functions with the state η and the impact measure νs.305

Lemma 7. Let OZ be the periodic orbit of the hybrid zero dynamics H |Z
transverse to S ∩ Z for the nominal model Θ̂ (Θ = 0). Given Θa (Θ 6= 0), and
given the controllers µ(η) ∈ Kε(η), µ̄(η) ∈ K̄ε,ε̄(η) applied on the hybrid system
(64), then for r > 0 such that (η, z) ∈ Br(0, 0) and ‖η‖ > dη‖ν‖∞, there exist
finite constants A1, A2, A3, A4 > 0 such that:310

‖T (Θ; η, z)− Tρ(z)‖ ≤ A1‖η‖+A2‖ν‖max, (75)

‖Pz(Θ; η, z)− ρ(z)‖ ≤ A3‖η‖+A4‖ν‖max, ‖ν‖max = max{‖ν‖∞, ‖νs‖}.

Proof. (75) is proved by constructing an auxiliary time to impact function TB

that is Lipschitz continuous and then relate it to T . Let µ1 ∈ R2(n−k), µ2 ∈ R2k

be constant vectors and let ϕz
t (∆z(0, 0, z0)) be the solution of ż = Ψ(0; 0, z)

with z(0) = ∆z(0, 0, z0). Define:

TB(µ1, µ2, z) = inf{t ≥ 0 : h(µ1, ϕ
z
t (∆z(0, 0, z)) + µ2) = 0},

which is nothing but equation (55) of [37] with the inclusion of model param-
eters. It follows that TB(0, 0, z) = Tρ(z). By construction, TB is Lipschitz
continuous. We have,

‖TB(µ1, µ2, z)− Tρ(z)‖ ≤ LB(‖µ1‖+ ‖µ2‖), (76)

where LB is the local Lipschitz constant. We note that T (Θ; η, z) is contin-
uous and therefore there exists r > 0 such that for all Br(0, 0) ∩ S: c15T

∗ ≤
T (Θ; η, z) ≤ c16T

∗, where 0 < c15 < 1 and c16 > 1. Let (η1(t), z1(t)) satisfy
ż1 = Ψ(Θ; η1(t), z1(t)) with η1(0) = ∆η(Θ, η, z) and z1(0) = ∆z(Θ, η, z). Simi-
larly let z2(t) satisfy ż2(t) = Ψ(0; 0, z2(t)) such that z2(0) = ∆z(0, 0, z). We can315

now determine µ1, µ2.

1It is safe to assume Θ̂ = 0 here because we are interested in capturing the uncertainty in
the dynamics (difference) and not the actual dynamics by itself.
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The bounds on the Lyapunov function can be given as ‖η1(0)‖ = ‖∆η(Θ, η, z)−
∆η(0, 0, z)‖ ≤ L1‖νs‖+L2‖η‖, which is obtained through (69). Since ‖η1‖ > d,
by using (55) we have:

‖η1(t)‖t=T (Θ;η,z) ≤

√
c2

c1

1

ε
e−

γ

2ε
c15T

∗

(L1‖νs‖+ L2‖η‖),

which yields the value of ‖µ1‖. To obtain ‖µ2‖, we use the Gronwall-Bellman320

argument (similar to page 8 in [37]). We know that:

z1(t)− z2(t) = z1(0)− z2(0) +

∫ t

0

Ψ(Θ; η1(τ), z1(τ))−Ψ(0; 0, z2(τ))dτ,

and therefore by using (70) and using the property of Lipschitz continuity of Ψ:

‖z1(t)− z2(t)‖ ≤ L3‖νs‖+ L4‖η‖+

∫ t

0

Lq(‖η1(τ)‖+ ‖z1(τ)− z2(τ)‖) + Lz‖ν‖dτ

≤ L3‖νs‖+ L4‖η‖+
2

γ

√

c2

c1
Lq(L1‖νs‖+ L2‖η‖) + c16T

∗
Lz‖ν‖∞

+

∫ t

0

Lq(‖z1(τ)− z2(τ)‖)dτ, (77)

where (77) is integrated and substituted in the above equation. By Gronwall-
Bellman inequality,

‖z1(t)− z2(t)‖ ≤ (C2‖η‖+ C3‖ν‖max) e
Lqt (78)

C2 = 2
γ

√
c2
c1
LqL2 + L4, C3 = 2max{ 2

γ

√
c2
c1
LqL1 + L3, c16T

∗Lz}.

Therefore, ‖µ2‖ ≤ ‖z1(c16T
∗)− z2(c16T

∗)‖ by substituting for the upper bound325

on T . Proof of (75) can now be obtained by substituting for ‖µ1‖, ‖µ2‖.
To prove (76), define:

C4 = max
c15T∗≤t≤c16T∗

‖Ψ(0; 0, z2(t))‖, (79)

it then follows that:

‖Pz(Θ; η, z)− ρ(z)‖ ≤ ‖z1(0)− z2(0)‖

+

∫ T (Θ;η,z)

0

‖Ψ(Θ; η1(τ), z1(τ))−Ψ(0; 0, z2(τ))‖dτ

+

∫ Tρ(z)

T (Θ;η,z)

‖Ψ(0; 0, z2(τ))‖dτ,

which results in the following inequality:

‖Pz(Θ; η, z)− ρ(z)‖ ≤ ‖z1(c16T
∗)− z2(c16T

∗)‖+ C4‖T (Θ; η, z)− Tρ(z)‖. (80)

Collecting the terms together yields the desired result.330
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Main Theorem. We can now introduce the main theorem of the paper. Sim-
ilar to the continuous dynamics, it is assumed that the periodic orbit OZ is
exponentially stable in the hybrid zero dynamics.

Theorem 2. Let OZ be an exponentially stable periodic orbit of the hybrid zero
dynamics H |Z transverse to S∩Z for the nominal model Θ̂ (Θ = 0). Given the335

actual model Θa (Θ 6= 0) and the controllers µ(η) ∈ Kε(η), µ̄(η) ∈ K̄ε,ε̄(η) for
the hybrid system H given by (64), then for the ball of radius r > 0 such that
(η, z) ∈ Br(0, 0), there exists δ > 0 such that for ‖ν‖ < δ, ‖νs‖ < δ the periodic
orbit O is exponential parameter to state stable.

Proof. Results of Lemma 7 and the exponential stability of OZ imply that there340

exists r > 0 such that ρ : Br(0) ∩ (S ∩ Z) → Br(0) ∩ (S ∩ Z) is well defined for
all z ∈ Br(0) ∩ (S ∩ Z) and zj+1 = ρ(zj) is locally exponentially stable, i.e.,
‖zj‖ ≤ Nξj‖z0‖ for some N > 0, 0 < ξ < 1 and all j ≥ 0. Therefore, by
the converse Lyapunov theorem for discrete systems, there exists a Lyapunov
function Vρ, defined on Br(0) ∩ (S ∩ Z) for some r > 0 (possibly smaller than345

the previously defined r), and positive constants c17, c18, c19, c20 such that:

c17‖z‖
2 ≤ Vρ(z) ≤ c18‖z‖

2,

Vρ(ρ(z))− Vρ(z) ≤ −c19‖z‖
2,

|Vρ(z)− Vρ(z
′)| ≤ c20‖z − z′‖.(‖z‖+ ‖z′‖). (81)

Zero stability (perfect model) is valid by default due to the construction (hybrid
zero dynamics and RES-CLF with sufficiently small ε provide exponential con-
vergence to O, see [37]). To prove AG property it should be first ensured that
the region defined by limt→∞‖(η(t), z(t))‖ must be within the bounds defined
by r. Therefore it is required that the ultimate bound is less than r:

(dη + dz)‖ν‖∞ < r, δr :=
r

(dη + dz)
, (82)

which gives the allowable upper bound δr on ‖ν‖∞. It is also required that the
post impact states are also in Br(0, 0). Therefore, a second upper bound δI is
given as follows:

‖∆(Θ; η, z)‖ ≤ L∆1
‖νs‖+ L∆2

‖(η, z)‖ ≤ r,

=⇒ δI :=
r

L∆1
+ L∆2

(dη + dz)
, (83)

L∆1
, L∆2

are Lipschitz constants.
For the RES-CLF Vε, denote its restriction to the switching surface by

Vε,η(η) = Vε|S(η) = Vε(η), η ∈ S. (84)

With these two Lyapunov functions we define the following candidate Lyapunov
function:

VP (η, z) = Vρ(z) + σVε,η(η), (85)
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defined on Br(0, 0) ∩ S. The lower and upper bounds on VP are:

min{c17, σc1}‖(η, z)‖
2 ≤ VP (η, z) ≤ max{c18, σ

c2

ε2
}‖(η, z)‖2. (86)

The idea is to show that there exists a bounded region into which the dynamics
of the robot exponentially converge. If the outputs enter this region then it350

stays for all time even through impacts. We know that η1(0) = ∆η(Θ, η, z). if
‖η1(0)‖ < dη‖ν‖∞, then the boundedness is verified. Considering the case when
the impact map takes the outputs outside the bounded region, utilizing (55),
and picking the lower bound on the time to impact function:

Vε,η(Pη(Θ; η, z)) ≤
c2

ε2
e−

γ

ε
T (Θ;η,z)‖∆η(Θ, η, z)‖2, (87)

≤
c2

ε2
e−

γ

ε
T (Θ;η,z)(L1‖νs‖+ L2‖η‖)

2.

Taking A5 = c2
ε2
e−

γ

ε
c15T

∗

, we have the following:

Vε,η(Pη(η, z))− Vε,η(η) ≤ A5(L1‖νs‖+ L2‖η‖)
2 − c1‖η‖

2.

≤ A5(L1‖ν‖max + L2‖η‖)
2 − c1‖η‖

2. (88)

Since the origin is an exponentially stable equilibrium for zj+1 = ρ(zj), we have355

the following inequalities:

‖Pz(Θ; η, z)‖ = ‖Pz(Θ; η, z)− ρ(z) + ρ(z)− ρ(0)‖

≤ A3‖η‖+A4‖ν‖max + Lρ‖z‖

‖ρ(z)‖ ≤ Nξ‖z‖, (89)

where Lρ is the Lipschitz constant for ρ. Therefore:

Vρ(Pz(Θ; η, z))− Vρ(ρ(z)) ≤ c20(A3‖η‖+A4‖ν‖max) (90)

(A3‖η‖+A4‖ν‖max + (Lρ +Nξ)‖z‖).

It follows that:

Vρ(Pz(Θ; η, z))− Vρ(z) = Vρ(Pz(Θ; η, z))− Vρ(ρ(z)) + Vρ(ρ(z))− Vρ(z), (91)

and the expressions in (90) and in (81) can be substituted. Combining the entire
Lyapunov function we have:360

VP (P(Θ; η, z))− VP (η, z) ≤ −





‖η‖
‖z‖

‖ν‖max





T

ΛH





‖η‖
‖z‖

‖ν‖max



 , (92)

where the symmetric matrix ΛH ∈ R3×3, with the upper triangular entries
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being:

a1 = ΛH (1, 1) = σ(c1 −A5L
2
2)− c20A

2
3

−a2 = ΛH (1, 2) = −
c20A3

2
(Lρ +Nξ)

−a3 = ΛH (1, 3) = −c20A3A4 − σA5L1L2

a4 = ΛH (2, 2) = c19

−a5 = ΛH (2, 3) = −
c20A4

2
(Lρ +Nξ)

−a6 = ΛH (3, 3) = −σA5L
2
1 − c20A

2
4. (93)

(92) is in the form of discrete time ISS-Lyapunov function as specified by (11)
(input being the parameter uncertainty ‖ν‖max). Similar to the proof of Theo-

rem 2 in [37], we pick a large enough σ to ensure the matrix Λ =

[
a1 −a2
−a2 a4

]

is positive definite. A specific value for σ is given in page 9 of [37] that yields
exponential convergence of hybrid periodic orbits. This is extended to include
parameter uncertainty by utilizing (11) in (92) in the following manner:

VP (P(Θ; η, z))− VP (η, z) ≤− λmin(Λ)‖(η, z)‖
2 (94)

+ (2a3‖η‖+ 2a5‖z‖+ a6‖ν‖max)‖ν‖max.

Therefore, to compute the limit on ‖ν‖max, we can divide the minimum eigen
value λmin(Λ) by 2 and obtain the following:

VP (P(Θ; η, z))− VP (η, z) ≤ −
λmin(Λ)

2
‖(η, z)‖2

for−
λmin(Λ)

2
‖(η, z)‖2 + 2(a3 + a5)‖(η, z)‖‖ν‖max + a6‖ν‖

2
max > 0. (95)

Therefore exponential upper bound is obtained from the positive root of the
quadratic equation in (95):

limn→∞‖Pn(Θ; η, z)‖ ≤
2(a3 + a5) +

√

4(a3 + a5)2 + 2λmina6

λmin
‖ν‖max, (96)

and we expect this limit to be less than r which yields the upper bound, δmax,
on ‖ν‖max:

δmax :=
rλmin

2(a3 + a5) +
√

4(a3 + a5)2 + 2λmina6
‖ν‖max. (97)

Therefore, we take the minimum value for the upper bound from (82),(83),(97)
to obtain δ = min{δr, δI , δmax}, resulting in exponential parameter to state sta-
bility of O.365
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7. Simulation Results

In this section, we will investigate how the uncertainty in parameters affects
the stability of the controller applied to the 5-DOF bipedal robot AMBER
shown in Fig. 1. The model, Θa, which has 61 parameters is picked such that
the error is 30% compared to the assumed model Θ̂.370

To realize walking on the robot, the actual and desired outputs are chosen as
in [45] (specifically, see (6) for determining the actual and the desired outputs).
The end result is outputs of the form y(q) = ya(q)−yd(q) which must be driven
to zero. Therefore, the objective of the controller (47) with µ(η) ∈ Kε(η) and
µ̄(η) ∈ K̄ε,ε̄(η) is to drive y → 0. For the nominal model, Θ̂, a stable walking375

gait is observed. In other words, a stable hybrid periodic orbit is observed for
the assumed given model. Since, the actual model of the robot has an error
of 30%, applying the controller yields the dynamics that evolves as shown in
(49). The value of ε chosen was 0.1, and ε̄ was 10. Fig. 2 shows the comparison
between actual and desired outputs, and Fig. 3 shows the Lyapunov function380

Vε. It can be observed that Vε is always within the bound ≈ 0.06, while ‖ν‖
takes large values at the beginning and end of every step (implying that the
control effort applied is large during those points).
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Figure 2: Actual (blue) and desired (red) outputs as a function of time are shown here. Each
figure corresponds to an output described to the left of the figures.

Fig. 4 shows the progression of the CLF over two steps with different values
of the auxiliary gain ε̄. Value of ε chosen was 0.05. Plots are shown for the first385

two steps as opposed to the steady state behavior shown in Fig. 3. The measure
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(a) (b)

(c)

Figure 3: The RES-CLF (a), the measure (b) and the torque (c) as a function of time. V̇ε

(slope of Vε) crosses 0 in every step, but the CLF is still seen to be ultimately bounded. It
can also be observed that ‖ν‖ increases when the torque inputs are high.

norm ‖ν‖∞ remains consistent (except during impacts) for different values of ε̄,
resulting in lower ultimate bounds.
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0
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Figure 4: Progression of the measure, RES-CLF from the same initial point for different values
of the auxiliary gain ε̄ is shown in the figure. It appears that the ultimate bound decreases
with the auxiliary gain ε̄, thereby nullifying the effect of uncertain dynamics.

8. Conclusions

The concept of a path dependent measure for evaluating the parameter un-390

certainty of hybrid systems models of robots was introduced. The main formu-
lation of the paper was parameter to state stability which quantifies the affect
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of parameter uncertainty on the performance of the system. Utilizing this no-
tion, coupled with rapidly exponentially stabilizing control Lyapunov functions
(RES-CLFs), we are able to establish the main results of the paper: conditions395

on parameter to state stability of both continuous and hybrid systems. Con-
cretely, these results were applied to the case when the there is a stable periodic
orbit in the zero dynamics, therein implying a stable periodic orbit in the full
order dynamics even in the case of parameter uncertainty. This was then ver-
ified by realizing a stable walking gait on AMBER having a parameter error400

of 30%. It is important to observe that while the parameter uncertainty mea-
sure yields the difference between the actual and the predicted torque applied
on the robot, the impact measure yields the difference between the actual and
predicted impulsive ground reaction forces acting upon the robot. Therefore,
this can be used as an effective tool to not only design the robot model more405

effectively, but also to design the nominal trajectories for the robots that takes
the least path of the measure.
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