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Abstract

For several practical control engineering applications it is desirable that multiple systems

can operate independently as well as in cooperation with each other. Especially when the

transition between individual and cooperative behavior and vice versa can be carried out

easily, this results in flexible and scalable systems. A subclass is formed by systems that are

physically separated during individual operation, and very tightly coupled during cooperative

operation.

One particular application of multiple systems that can operate independently as well

as in concert with each other is the cooperative transportation of a large object by multiple

Automated Guided Vehicles (AGVs). AGVs are used in industry to transport all kinds of

goods, ranging from small trays of compact and video discs to pallets and 40-tonne coils of

steel. Current applications typically comprise a fleet of AGVs, and the vehicles transport

products on an individual basis. Recently there has been an increasing demand to transport

very large objects such as sewer pipes, rotor blades of wind turbines and pieces of scenery

for theaters, which may reach lengths of over thirty meters. A realistic option is to let several

AGVs operate together to handle these types of loads.

This Ph.D. thesis describes the development, implementation, and testing of distributed

control algorithms for transporting a load by two or more Automated Guided Vehicles in in-

dustrial environments. We focused on the situations where the load is connected to the AGVs

by means of (semi-)rigid interconnections. Attention was restricted to control on the velocity

level, which we regard as an intermediate step for achieving fully automatic operation. In our

setup the motion setpoint is provided by an external host. The load is assumed to be already

present on the vehicles. Docking and grasping procedures are not considered. The project is

a collaboration between the company FROG Navigation Systems (Utrecht, The Netherlands)

and the Control Systems group of the Technische Universiteit Eindhoven. FROG provided

testing facilities including two omni-directional AGVs.

Industrial AGVs are custom made for the transportation tasks at hand and come in a

variety of forms. To reduce development times it is desirable to follow a model-based control

design approach as this allows generalization to a broad class of vehicles. We have adopted

rigid body modeling techniques from the field of robotic manipulators to derive the equations

of motion for the AGVs and load in a systematic way. These models are based on physical

considerations such as Newton’s second law and the positions and dimensions of the wheels,

sensors, and actuators. Special emphasis is put on the modeling of the wheel-floor interaction,

for which we have adopted tire models that stem from the field of vehicle dynamics. The

resulting models have a clear physical interpretation and capture a large class of vehicles

with arbitrary wheel configurations. This ensures us that the controllers, which are based on

these models, are applicable to a broad class of vehicles.

An important prerequisite for achieving smooth cooperative behavior is that the individu-

al AGVs operate at the required accuracy. The performance of an individual AGV is directly

related to the precision of the estimates for the odometric parameters, i.e. the effective wheel

diameters and the offsets of the encoders that measure the steering angles of the wheels.
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Cooperative transportation applications will typically require AGVs that are highly maneu-

verable, which means that all the wheels of an individual AGV ahould be able to steer. Since

there will be more than one steering angle encoder, the identification of the odometric pa-

rameters is substantially more difficult for these omni-directional AGVs than for the mobile

wheeled robots that are commonly seen in literature and laboratory settings. In this thesis

we present a novel procedure for simultaneously estimating effective wheel diameters and

steering angle encoder offsets by driving several pure circle segments. The validity of the tu-

ning procedure is confirmed by experiments with the two omni-directional test vehicles with

varying loads. An interesting result is that the effective wheel diameters of the rubber wheels

of our AGVs increase with increasing load.

A crucial aspect in all control designs is the reconstruction of the to-be-controlled varia-

bles from measurement data. Our to-be-controlled variables are the planar motion of the load

and the motions of the AGVs with respect to the load, which have to be reconstruct from the

odometric sensor information. The odometric sensor information consists of the drive enco-

der and steering encoder readings. We analyzed the observability of an individual AGV and

proved that it is theoretically possible to reconstruct its complete motion from the odometric

measurements. Due to practical considerations, we pursued a more pragmatic least-squares

based observer design. We show that the least-squares based motion estimate is independent

of the coordinate system that is being used. The motion estimator was subsequently analyzed

in a stochastic setting. The relation between the motion estimator and the estimated velocity

of an arbitrary point on the vehicle was explored. We derived how the covariance of the ve-

locity estimate of an arbitrary point on the vehicle is related to the covariance of the motion

estimate. We proved that there is one unique point on the vehicle for which the covariance of

the estimated velocity is minimal. Next, we investigated how the local motion estimates of

the individual AGVs can be combined to yield one global estimate. When the load and AGVs

are rigidly interconnected, it suffices that each AGVs broadcasts its local motion estimate and

receives the estimates of the other AGVs. When the load is semi-rigidly interconnected to

the AGVs, e.g. by means of revolute or prismatic joints, then generally each AGV needs to

broadcasts the corresponding information matrix as well. We showed that the information

matrix remains constant when the load is connected to the AGV with a revolute joint that is

mounted at the aforementioned unique point with the smallest velocity estimate covariance.

This means that the corresponding AGV does not have to broadcast its information matrix for

this special situation.

The key issue in the control design for cooperative transportation tasks is that the various

AGVs must not counteract each others’ actions. The decentralized controller that we derived

makes the AGVs track an externally provided planar motion setpoint while minimizing the

interconnection forces between the load and the vehicles. Although the control design is ap-

plicable to cooperative transportation by multiple AGVs with arbitrary semi-rigid AGV-load

interconnections, it is noteworthy that a particularly elegant solution arises when all intercon-

nections are completely rigid. Then the derived local controllers have the same structure as

the controllers that are normally used for individual operation. As a result, changing a few

parameter settings and providing the AGVs with identical setpoints is all that is required to

achieve cooperative behavior on the velocity level for this situation.

The observer and controller designs for the case that the AGVs are completely rigidly

interconnected to the load were successfully implemented on the two test vehicles. Experi-
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ments were carried out with and without a load that consisted of a pallet with 300 kg pave

stones. The results were reproducible and illustrated the practical validity of the observer and

controller designs. There were no substantial drawbacks when the local observers used only

their local sensor information, which means that our setup can also operate satisfactory when

the velocity estimates are not shared with the other vehicles.
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1

Introduction

1.1 Cooperating systems

For several practical control engineering applications it is desirable that multiple systems

can operate independently as well as in cooperation with each other. Especially when the

transition between individual and cooperative behavior and vice versa can be carried out

easily, this results in flexible and scalable systems. A subclass is formed by systems that are

physically separated during individual operation, and very tightly coupled during cooperative

operation. One example is the use of multiple electrical generators to produce the power

that is required by an electrical network. Each generator can work standalone, but they can

also be connected to the same network to achieve output powers that they cannot achieve by

themselves. Since the line frequency is the same for all generators, this introduces strong

physical interconnections. In this example, the main argument for combining systems that

can also operate independently is scalability.

Cooperating devices that are able to act independently are also found in systems where

redundancy is essential to guarantee safe operation even in the presence of malfunctioning

devices. Examples are complex processes such as aircraft control and the operation of chem-

ical plants. A closer examination of such systems learns that redundancy is often already

built-in at the device level. An example of a local device that is constructed with built-in

redundancy is the front wheels’ steering system of the Phileas. Phileas is a light-weight

(multi-)articulated vehicle with all wheel steering that forms the heart of a new type of public

transport that has been operational in and around the city of Eindhoven, The Netherlands,

since the summer of 2004. By detecting magnetic markers that are buried in the road, the

Phileas docks at bus stations very precisely and without any human intervention. Since the

front wheel steering system is critical for safe operation, the front steering axle is equipped

with two identical electrical motors. During normal operation the motors operate together.

In case that one fails, the motor that is still working is able to carry out the steering task by

itself. The main argument for using multiple motors in this example is to increase reliability.

Note that there is a strong physical interaction between the devices, and that the capacity of

the system during normal operation is larger than required.

Intuitively, a necessary condition for achieving cooperative behavior in physically inter-

connected systems is that all systems share a common goal. Two people that are riding a

tandem bicycle should have similar desired speeds in mind to achieve coherent operation.

Carrying a large table with several people does only make sense when all intend to move it to

the same spot. Although the global intention should be the same, there is still room for some

flexibility in the behavior of the individual members. In the tandem bicycle example it is of-

ten desirable that the pedaling force is distributed evenly according to the cyclists’ capacities.
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From a pure individualistic point of view it may be beneficial to let the other person do all

the work. However, when fulfilling the common task takes precedence over satisfying indi-

vidual objectives, then it is only natural that a fair distribution of the required effort among

the members will result in a much better performance.

In a few situations it can be an advantage when multiple connected systems exert oppos-

ing efforts on the object by which they are interconnected. Although there will be no net

movement if one person pushes and the other one pulls the table, they can exploit the forces

they feel to infer information about the intentions of the other individual. People who are

carrying a table together often share messages like ‘I prefer to proceed a little bit slower’ by

using the table as an implicit communication channel. Since opposing efforts such as internal

forces result in power dissipation that does not contribute to executing the cooperative task,

it is generally desirable to restrict those to a minimum.

Another aspect that deserves attention is the influence of measurement errors on the exe-

cution of the cooperative task. Modern control systems rely on measurements to reconstruct

the variables that represent the processes they aim to control. Measurement errors, which are

always present, result in a biased observation of the truth. Even for systems that were de-

signed to be identical, measurements will vary from one system to another due to production

tolerances and random measurement noises. Hence, when several interconnected systems

individually reconstruct a common process from their local measurements only, then each

system will have its own version of reality. Since the local versions will always differ due to

the measurement errors, it is impossible to make them all identical to the desired situation.

Therefore, the local systems should not try to realize the desired situation exactly to avoid

opposing goals that result in large control actions.

1.2 Project description

This thesis focuses on the control of one particular application of multiple systems that can

operate independently as well as in cooperation with each other, namely the cooperative

transportation of a large object by multiple Automated Guided Vehicles (AGVs). AGVs are

used in industry to transport all kinds of goods, ranging from small trays of compact and video

discs to pallets and 40-tonne coils of steel. Current applications typically comprise a fleet of

AGVs, and the vehicles transport products on an individual basis. Recently there has been an

increasing demand to transport very large objects such as sewer pipes, rotor blades of wind

turbines and pieces of scenery for theaters, which may reach lengths of over thirty meters. A

realistic option is to let several AGVs operate together to handle these types of loads, instead

of one unique, complex and cost inefficient vehicle with long and unpredictable development

times.

Combining several AGVs makes it possible to transport larger loads than that each indi-

vidual vehicle is capable of, thus the main reasons for using multiple vehicles are scalability

and flexibility rather than improved robustness. The common goal for the cooperative task

is typically provided by an external reference, for example the plant manager who wants to

transport a load to a certain point in the factory according to a prescribed path. The AGVs’

motions are reconstructed from encoder data of the wheel and steering encoders. Since the

encoder readings are affected by the slip between the wheels and the ground, it is important
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to gain insight in these phenomena for understanding the accuracy of the motion estimates.

Although the main focus of this thesis is cooperative transportation by multiple AGVs, some

of the ideas can be applied to other mechanical systems that are rigidly interconnected.

1.2.1 Partners

The project is a cooperation between FROG Navigation Systems B.V. (Utrecht, The Nether-

lands) and the Control Systems group of the Department of Electrical Engineering of the

Eindhoven University of Technology (Eindhoven, The Netherlands). FROG Navigation Sys-

tems is a company that develops and markets Automated Guided Vehicle Systems and nav-

igation hard- and software. Applications range from industrial AGVs to automated people

movers. The aim of the Control Systems group is to control dynamic physical systems. The

group is actively co-developing the fundamentals of control engineering, namely system and

control theory. This research is supported by the Technology Foundation STW, applied sci-

ence division of NWO and the technology programme of the Ministry of Economic Affairs.

1.2.2 Problem statement

There exists a lot of knowledge on the control of (fleets of) individually operating AGVs. In

this thesis we investigate what extensions are required to let multiple AGVs transport a single

load in cooperation with each other. The strong physical interactions between the AGVs

and the common load make this problem harder than the control of a fleet of physically

separated AVGs, because in the latter case the individual AGVs due not influence each others

motions. We are particularly interested in developing distributed control solutions for the

cooperative transportation task, where the local controllers for achieving cooperative behavior

are extensions of the controllers that are normally used for individual AGV operation.

We focus on the situation that the motion setpoint for the load and the AGVs is provided

by an external host, which can be a computer or a human operator. The load is assumed to

be already present on the vehicles, and therefore docking and grasping procedures are not

considered. Furthermore, the load is assumed to be (semi-)rigidly connected to the AGVs,

e.g. by means of revolute joints, slider joints, or fully rigid interconnections.

1.3 Related work

Studies on multiple AGVs that transport a load in coordination can be classified as research

on mobile multi-robot systems. Research on mobile multi-robot systems is a relatively new

area. Coordination and interactions of multiple intelligent software agents have been studied

in the field of Distributed Artificial Intelligence (DAI) since the early 1970s [24]. Early

work on multiple industrial manipulators handling a single object in coordination started

around the same time (e.g. [88]). With the availability of affordable robotic components

and fast hardware, the field of multiple mobile robot systems exhibiting cooperative behavior

suddenly became very active in the mid 1980s. Whereas the first research concerned small

groups of mobile robots, currently the field is moving toward miniaturization, distributed

control, and larger groups of robots [11].
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Furthermore, research on mobile multi-robot systems is a very broad field and covers all

aspects of robotics. An extensive survey of the cooperative mobile robotics literature up to

the mid 1990s was published by Cao et al. [24]. Other reviews and taxonomies (collection

of axes) to classify multi-robot systems research include the studies by Dudek et al. [34],

Stone et al. [111], Iochi et al. [58], Parker et al. [95], and the book by Liu and Wu [73].

Some prefer to classify research by characteristics of the domain, whereas others favor cat-

egorization according to the properties of the individual robots [58], or the principal topic

areas that have generated significant levels of study [95]. Key issues in multi-robot systems

research are homogenous versus heterogeneous robot teams, centralized versus distributed

approaches, loosely coupled versus tightly coupled tasks, ensemble versus individual per-

formance, known versus unknown environments, and no communication versus extensive

information sharing [11, 111]. Prototypical tasks for multi-robot systems are foraging (e.g.

retrieval, i.e searching and returning certain lost objects), consuming (e.g. mine-clearing),

grazing (e.g. reconnaissance of a certain terrain), formations/flocking, and object transport

[11].

The design of a mobile multi-robot system for commercial applications requires cooper-

ation of scientists of various disciplines. It is characteristic for scientific research to focus

on one particular aspect of multi-robot cooperation, for example path planning, self local-

ization and mapping (SLAM), hardware development, etc. When studying the literature, it

appears that the techniques used to resolve these issues either stem from the field of traditional

robotics or the field of Artificial Intelligence (AI).

1.3.1 Traditional robotics and industry

The first industrial robots became available in the 1960s, marking a new era in the history

of industrial automation [10, 44, 79, 87]. The most important form of the industrial robot

is the mechanical manipulator. They are especially known from their welding, spray paint-

ing and assembly tasks in the highly automated assembly lines of the automotive industries.

To increase the speed and accuracy while at the same time reducing costs, a vast amount of

research has been carried out to model, control and design these devices. The models used

for control typically consist of a set of differential equations based on Newton’s second law.

These models describe the dynamical behavior of the manipulator in response to external

forces. The field of industrial manipulators is one of the most prominent fields where ad-

vanced, model based nonlinear control algorithms are generally accepted and implemented

in practice. A key feature of industrial manipulators is that they perform relatively simple,

repetitive tasks in a manufacturing-oriented environment.

Traditional industrial manipulators are rigidly attached to the ground. Some have sug-

gested to mount the manipulators and other parts of factories on mobile wheeled bases to

increase the reconfigurability of assembly lines. When the mobile bases can be clustered in

various configurations automatically, this makes it possible to realize specific work stations

for the task at hand. One example of a study that analyzed the technical feasibility of such a

concept is the MART-project [32].

Another technique to improve the reconfigurability of factories is by introducing AGVs to

transport goods. The first AGVs were developed in the early 1950s by Barrett Electronics in

the USA. The first system was installed in 1954 at Mercury Motor Freight in Columbia, South
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Caroline [52]. Originally the movement of the AGVs was restricted to paths that were defined

by white lines on the floor or electrical wires in the ground. In the end of the 1980s, FROG

Navigation Systems introduced AGV navigation based on two dimensional grids defined by

e.g. colored tiles on the floor, allowing for more flexibility in the definition of paths [120].

Nowadays a popular method to define the grid is by placing magnetic markers at regular

intervals in the ground. In modern applications, AGVs run day and night, transport loads up

to 40,000 kg, and some can even use elevators to switch floors.

1.3.2 Artificial Intelligence and mobile robotic agents

An aspect often associated with robotics but that has been less relevant for industrial robots

is intelligence. The study and development of intelligent systems finds its roots in Artifi-

cial Intelligence (AI), which deals amongst others with perception of dynamically changing

environments, reasoning about intentions and goals, learning new behaviors, understanding

natural languages, decision making, and deliberate interaction with the environment. Systems

that exhibit one or more of these properties are often referred to as intelligent agents. Intelli-

gent software agents consist of software only, whereas robotic agents are part of the physical

world and can really interact with it and move around. Robotic agents come in a variety of

forms, including snake-like designs, legged versions, humanoids and wheeled systems.

The birth of Artificial Intelligence as a distinct field is generally associated with the Darth-

mouth Summer Research Conference the summer conference held in August 1955 [10]. Orig-

inally, AI focused on using symbolic reasoning to achieve intelligence behavior. When sev-

eral decades of research had not yielded satisfactory results in the mid 1980s, some scientists

started to criticize the symbolic AI paradigm and started exploring alternative ways to realize

intelligent behavior. One of the most important critics was Rodney Brooks. He proposed

that intelligent behavior can be generated without the explicit representations and abstract

reasoning of symbolic AI, and that intelligence is an emergent property of certain complex

systems. Brooks illustrated his ideas by building systems based on his so-called subsump-

tion architecture [22]. A subsumption architecture determines the behavior of the agent by

weighing several –possibly competing– simple low level rules such as ‘turn left when detect-

ing an obstacle’ and ’turn right when you see the light to your right.’ The movement that

was started by Rodney Brooks is referred to as behavior-based robotics. Due to the many

similarities with the control mechanisms that are seen in small organisms such as ants and

bugs, behavior-based roboticists are often inspired by biological systems.

1.3.3 Cooperative transportation by multiple robots

Cooperative transportation of objects by multiple mobile robots has been extensively de-

scribed in literature since the 1990s. One of the earliest studies is the work by Hashimoto et

al. [47, 48]. In that study, the authors introduce a hierarchical coordinative control scheme

to cooperatively transport a common object. They illustrated their approach with simulation

results and equipped a robot with a mechanically compliant coupler to demonstrate that it is

capable to deliver the desired force for transporting the load. It is interesting to note that these

authors propose to use commercially available industrial mobile robots, which they refer to

as AGVs, for their transportation task.
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Another early study that is often cited is the work by Stilwell et al. [109, 110]. They

propose to use multiple mobile robots to collectively transport a single palletized load. Each

robot is equipped with a local controller and a force sensor to distill information about the

intentions of one specific robot that is designated to act as the leader. Stilwell et al. pointed out

that albeit distributed load-bearing problems had been studied before in other areas such as

multi-legged vehicles and multi-fingered grasping, all those approaches assume a centralized

control structure to optimize applied forces. Stilwell et al. used the analogy with the transport

of materials by ants to motivate that a decentralized scheme allows the transport system to

reconfigure itself to handle loads of varying size and shape, and to replace malfunctioning

robots.

Whereas Stilwell et al.’s work was a simulation study and Hashimoto et al. used only

one AGV to demonstrate the force generation capabilities of their setup, around the same

time various research groups started examining cooperative transportation with physical robot

teams that handled real objects.

Box-pushing

An interesting transportation task that has received a fair amount of attention in literature is

the so-called box-pushing problem. Parker used this prototypical task to illustrate the validity

of her behavior-based ALLIANCE architecture for heterogeneous robots. She demonstrated

that a team consisting of two wheeled robots as well as a team consisting of one wheeled

robot plus a six-legged robot were able to cooperatively push a box in a certain direction [94].

Rus et al. describe how coordinated pushing robots can be used to reorient a couch [104].

Mataric et al. successfully managed to let two six-legged walking robots push an elongated

box towards a goal [76]. The reader is referred to the articles by Cao et al. [24] and Mataric et

al. [76] for a more complete description of the earlier work on physical experiments related

to the box-pushing problem.

Transport of objects without floor contact

To reduce friction and consequently avoiding damage to the floor and the object, for some

transportation tasks it is preferred that the object is not in contact with the ground during

transportation. In other words, it is carried instead of pushed. The literature overview pre-

sented below illustrates the diversity in multiple mobile robot transportation studies.

Ahmadabadi et al. propose to divide a multi-robot team in two groups. One group con-

strains the object in the directions in which it should not move, and the other group moves

the object in the unconstrained direction [2]. Their ideas were illustrated with a group of

four wheeled robots that were each equipped with a lifting mechanism. Lacroix et al. ex-

perimented with two car-like robots with servomotor-actuated forklifts to transport a long

beam [68] to a goal. The position and orientation of the beam with respect to the vehicles

is derived from the images of the CCD cameras that are present on the vehicles. Asahiro et

al. present a distributed control algorithm for transporting a ladder by two omni-directional

mobile robots through a corridor [13, 12]. Due to oscillations originating from force sensor

information in combination with a rigid attachment of the ladder to the robots, the authors

decided to introduce additional flexibility in the interconnection of the ladder to the robots.
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Kosuge et al. proposed a leader-follower based scheme where the leader generates the main

effort to move a load along a prescribed trajectory, and the follower robots act like virtual

caster wheels [66]. Their decentralized control algorithm was implemented on a team of two

tracked mobile robots that were equipped with a force sensor and held the object through a

free joint. Hirata et al. extended the algorithm to handle objects in 3D, and implemented

it on two robots with omni-directional wheels and two arm-like manipulators to transported

a plate [51]. Miyata et al. performed experiments with four car-like wheeled robots that

grasped an object using their compliant grasping mechanisms [81]. By deactivating their

electro-magnetic placeholders, the robots are able to change their relative positions during

transport. This is also known as regrasping the object. Trebi-Ollennu et al. describe a pair of

wheeled MARS rovers that transport a long payload such as parts of a photovoltaic tent array

[56, 119]. At the heart of the rovers is a distributed control architecture based on a multia-

gent behavior-based methodology, and the robots are equipped with compliant grippers that

are controlled by local PD controllers. Tang et al. examined a decentralized kinematic con-

trol scheme for multiple differentially driven wheeled mobile robots [118]. Their robots use

relatively large end effectors that can rotate around a revolute joint. Sugar et al. carried out

experiments with two mobile platforms that were each equipped with a dedicated forklift ma-

nipulator [116]. They used a leader-follower based scheme, where the leader plans a desired

trajectory and the followers retain a desired formation with respect to the leader. The object

is not rigidly grasped, but instead clamped between the manipulators of the two robots. As a

last example, Bicho et al. describe experiments with two mobile robots that carry a long beam

using an algorithm that is based on so-called attractor dynamics [17, 18, 107]. The robots,

which had no force/torque sensors and were equipped solely with low-level ultrasonic sen-

sors and sensors to measure the position of the load with respect to the vehicles, were able to

carry the object indoors while avoiding obstacles in a relatively cluttered environment.

1.3.4 Issues in cooperative transportation studies

Although the literature survey above is far from complete, it does illustrate the variety of

studies on the multiple mobile robot transportation task. All studies above make use of real

physical robots. Some teams consist of identical robots, whereas other teams are a collection

of heterogeneous members. Mobility of the robots is achieved by legs, differentially driven

tracks, differentially driven wheels, omni-directional wheels, and wheels in a car-like config-

uration. Mechanisms for holding the to-be-transported objects range from dedicated arms that

resemble industrial manipulators to electro-magnetic placeholders and configurations where

the object is ‘squeezed’ between two robots. The to-be-transported objects themselves in-

clude boxes, furniture, ladders, beams, pallets, and even space mission related objects. The

trend is to study situations where the communication is fairly limited, and to focus on de-

centralized/distributed control approaches. All experimental studies above consider teams of

maximal four robots. Therefore, most studied transportation tasks are tightly coupled tasks

because they cannot be accomplished when one of the team members fails. The box-pushing

problem forms an exception. Parker showed in her experiments that the wheeled robot was

still able to successfully move the box after its team member had been deactivated deliber-

ately.
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Industrial versus human-oriented environments

Although all transportation studies have in common that the objective is to transfer a load

from some initial position to a designated goal, the path that is followed depends on the par-

ticular application that the researchers have in mind. For transportation in a relatively static,

well known environment such as an industrial setting, the load and robots must typically

follow a pre-specified trajectory. Since it is important that products arrive at the designated

location at the specified time, the mobile robots must strictly adhere to their pre-planned

routes. In human-oriented and less structured environments on the other hand, the main

objective is to bring the load to the goal despite obstacles, possibly moving, that are encoun-

tered underway. Adequately reacting to dynamically changing situations is more important

than fast transportation for this scenario. The differences between the industrial and the

human-oriented settings are reflected in the techniques that are used to deal with these two

scenarios. Industrial applications are more likely to borrow ideas from the field of traditional

robotic manipulators, whereas robots that are deployed in human-oriented environments will

typically employ behavior-based robotics strategies.

1.3.5 Positioning of this work

The work that is described in this thesis focuses on cooperative transportation in industrial

environments. As the environment in such applications is rather static and well known, this

work is more related to the field of traditional mechanical manipulators than to the field of

Artificial Intelligence and behavior-based robotics. The path for the load is prescribed in the

applications we consider. Attention is restricted to following a generalized velocity profile

rather than a path. Later on it will become clear that this is in correspondence with the

control architecture that is used by FROG, where achieving operation on the velocity level

is seen as an intermediate step for realizing fully automatic operation. As was stated in the

problem statement, the load is assumed to be present on the vehicles, and therefore docking

and grasping procedures are not considered.

In correspondence with the literature that has been discussed so far, we believe it is impor-

tant to perform real experiments. Two AGVs that were designed to be identical in hardware

were available for experimentation. They will be introduced in more detail in Chapter 2.

Compared to the mobile robots described in the literature, the AGVs we used are quite heavy

(200 kg each) and can move reasonably fast (the maximum speed was limited to 1 m/s for

safety reasons). The load we used was not large in size, but it was heavy (300 kg) compared

to the other studies. We will focus on a decentralized/distributed control strategy approach.

Furthermore, we focus on (semi-)rigid AGV-load interconnections. This is in contrast with

most cooperative transportation literature, where the load is typically hold by some compli-

ant mechanism. We will not use force/torque sensors. In order to position very large objects

accurately, it is natural that the AGVs are designed such that they are omni-directional, i.e.

can move in any direction. Thus constraints introduced by car-like vehicles are not an issue in

this study. Finally, we will incorporate tire models that describe the relation between wheel

slip and tire forces. So our AGV models are more related to what is seen in the automotive

literature than in kinematic mobile robot studies. An extended motivation of these choices is

presented in the next section.
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1.4 Methods

There is a noticeable difference between the aims of research in industry and research that is

performed at academic institutions. The focus of industrial research is to develop techniques

that can be used directly to design new or to improve existing products. In contrast, academic

research targets to produce general theory that covers a large class of problems and systems.

Even when the knowledge that arises from academic research is implemented on a real test

setup to proof the validity of the developed concepts, then the step to a commercial applica-

tion is generally quite large. For fundamental academic research this is of course no problem

as the main issue is to unveil the mysteries of nature rather than to generate commercial prod-

ucts. However, nowadays academic research in the applied sciences is often sponsored by

companies directly, or by governmental bodies that aim to stimulate the transfer of knowl-

edge from universities to industry. For such research it is desirable that newly developed

techniques can find their way to practical applications quite easily.

The discrepancy between scientific literature and commercial applications is particularly

present in the field of (multiple) mobile robots. Despite an impressive amount of scientific

literature on for example Artificial Intelligence and mobile robots, commercially successful

robot systems remain few [65]. Perhaps the most commercially successful robotic AI appli-

cation is the SONY Aibo entertainment robot dog. An important example where academic

research did result in nice demonstrations but not in practical, commercially available prod-

ucts in is the PATH project on Automated Highway Systems (AHS) in the USA. PATH is a

collaboration between the California Department of Transportation (Caltrans), the University

of California, other public and private academic institutions, and private industry. Although

the demonstrations showed satisfactory results, practical issues relating to the robustness,

safety and acceptability of such a large system prohibit it from being implemented in the near

future. The lack of practical applications recently resulted in reduction in funding, and as a

result, the focus of the research performed at the involved academic institutions had to shift

away from the full scale AHS application (Tomizuka, personal communication, Eindhoven,

April 8, 2003).

Another illustrative example is the 320-kilometer Grand DARPA Challenge that was orga-

nized recently by the US Defense Advanced Research Projects Agency (DARPA). It received

a considerable amount of attention in the popular media [67, 77, 99]. In this contest, mobile

robots had to navigate and drive autonomously through the Mojave Desert. Goal was to pass

the finish line within ten hours. None of the competitors came even close to reaching the

finish. The robot that travelled the farthest was the modified Humvee from Carnegie Mellon

University. It travelled a distance of 12 kilometers at an average speed of 36 kilometers be-

fore it got stuck on a rock. Although the contest was held in an extremely rough environment,

one would expect that a team that spent 3 million dollars on equipment and which consists

of more than 25 students as well as volunteers and experts from 30 corporations and orga-

nizations would do better than to travel for 20 minutes only. The DARPA challenge clearly

showed that the individual robots developed by academic institutions are far from reliable

and there is a long way to go to produce real-life applications. This makes one wonder about

the reliability of systems that consist of multiple cooperating robots instead of single robots.

It is often argued that using multiple robots introduces redundancy in the system, and that a

task can still be performed even when one or more robots fail. However, when we are in the
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situation that none of the robots is reliable enough to complete the task at hand, as was e.g.

seen in the DARPA Challenge, then adding more unreliable robots will not solve this.

Although it is not the aim or responsibility for universities to develop commercial prod-

ucts, interesting industry and helping them to benefit from the developed techniques would

certainly help to secure future funding. In turn, industry can help academic research to retain

a down to earth view on the applicability of their research.

1.4.1 Design methodology

This project is carried out in close cooperation with FROG Navigation Systems. Therefore,

additional requirements and limitations have been defined to increase the probability that this

research will indeed result in commercially meaningful applications. The most important

requirement is that the designed control algorithms can actually run on the computers and

architectures used in FROG’s industrial AGVs. The control design procedure that has been

very popular at academic institutions can be summarized as

1. make mathematical models of the system;

2. use the models to design a control law;

3. test the controller in a simulation and/or hardware-in-the-loop environment;

4. if time and resources are available, try the controller on the real system.

Some caveats appear when this procedure is used to develop an industrial application. Usually

a lot of time is spent on steps one to three before the controller is tested in reality. We have

experienced more than once that controllers which performed satisfactory in simulation did

not work on the real system because of modeling imperfections. Furthermore, as the goal of

step four is to test the control algorithm, it is common to develop a small piece of real-time

software for some dedicated digital signal processor (DSP) to implement the control law.

The DSP typically executes the small test program and logs some data, but performs no other

tasks. In contrast, industrial applications require a lot of overhead related to safety issues and

communication with other hosts. Often it is far from trivial how the new control algorithm

can be incorporated in an existing architecture. It takes a lot of effort to start with a small test

program and evolve it into a robust industrial application.

To overcome these problems, we decided to use the current industrial AGV architecture

and controller used by FROG as a starting point. Because we start with a working applica-

tion, we can perform experiments and detect modeling errors at an early stage. The original

architecture and control algorithm are extended and modified as needed to realize the desired

cooperative behavior. Control algorithms are still designed using the four step methodology

described before, but with the important restriction that the models and controllers fit into

the current AGV architecture. Furthermore, new control algorithms are always incorporated

in the full architecture required to constitute an industrial application and are never tested as

standalone applications. Of course, for a final application additional safety loops and com-

munication with operators need to be introduced, but this is a relatively small step compared

to building an application from scratch. Drawback of this approach is that, since attention is

restricted to controllers that fit into the existing AGV framework, more effective controllers

may result if complete design freedom is allowed.



1.4. Methods 23

1.4.2 Centralized versus decentralized control

In the scenario we consider, the AGVs perform some tasks individually and other tasks in

cooperation with each other. To prevent software restarts when switching from individual to

cooperative mode, we aim at developing decentralized controllers for the cooperative tasks.

We expect that with a decentralized solution it is easier to form new couples, for example if

one AGV is under repair. Ideally, it suffices to change a few parameter settings in the control

algorithm to go from individual to cooperative mode and vice versa.

1.4.3 AGV-load interaction

Current AGV controllers have been developed for individual operation. They do not take the

external forces that result from the interconnection of several vehicles by a load into account.

The inability to cope with interconnection forces is the main reason that the original con-

trollers are extended. We decided to focus on the case that the load is (semi-)rigidly attached

to the vehicles, e.g. by means of revolute joints, slider joints, or fully rigid interconnections.

It seems realistic to assume (semi-)rigid connections for the transportation of large objects.

1.4.4 Setpoint

FROG uses a layered architecture for controlling their industrial AGVs. Such a layered ap-

proach makes it easy to define various operation modes. The control architecture will be

discussed in more detail in Chapter 2. As mentioned before, operation on the velocity level

is seen as an intermediate step for achieving fully automatic operation, and is for example

used in manual operation mode where a human operator provides a setpoint with a joystick.

Therefore, we will focus on tracking of a generalized velocity profile rather than a path. Au-

tomatic guidance can be achieved by adding an outer loop that translates position errors into

velocity setpoints, that are subsequently realized by the velocity controller. Extensions to

fully automatic operation are of later concern and beyond the scope of this thesis.

1.4.5 Communication media

Typical industrial AGVs can be connected to a wireless local area network (WLAN) and a

controller area network (CAN). CAN is a serial broadcast type of network that is often used

to facilitate the communication between sensors and electronic control units in passenger cars

and trucks [57]. Attention is restricted to these two communication media.

1.4.6 Number of AGVs

From a theoretical point of view, we aim at control algorithms that can be generalized to an

arbitrary number of AGVs. More AGVs will generally lead to more communication, and

problems with the available bandwidth are expected when the number of AGVs increases

beyond a certain point. Since most cooperative transportation tasks we consider can be per-

formed by two to four AGVs, we do not explicitly take communication bandwidth problems

arising from very large numbers of AGVs into account.
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1.5 Scope

As we indicated in the problem statement that was presented in subsection 1.2.2, in this thesis

we investigate what extensions are required to let multiple AGVs cooperatively transport a

common load. We aim to develop distributed control solutions. Cooperative transportation

applications require highly maneuverable AGVs that can move in every direction, otherwise

it is not possible to move a long load through places where space is limited. We therefore

focus on omni-directional AGVs. AGVs come in a variety of forms as they are tailored to the

transportation task at hand. To be able to deal with a large class of AGVs in a systematic way,

we follow a model-based observer and control design approach. In Chapter 3 we will see that

we use planar rigid body descriptions to model the AGVs and the load, and the interaction

between the wheels and the floor is described by static, linear tire models.

An important prerequisite for achieving smooth cooperative behavior is that the individual

AGVs operate at the required accuracy. The accuracy at which the AGVs can operate is

largely determined by the precision at which their odometric parameters are known, i.e. the

accuracy of the effective wheel diameters and the offsets of the encoders that measure the

wheels’ steering angles. Identification of the odometric parameters is more complicated for

our AGVs than for the simpler laboratory robots that are found in literature, since all the

wheels of our AGVs are steerable to achieve omni-directionality. Therefore, we discuss a

new experimental procedure to systematically identify the odometric parameters. Since the

nominal parameter values are used as a starting value, we refer to this procedure as tuning.

For the control and observer design for the cooperative transportation task, we focus on

cases where the load is (semi-)rigidly attached to the AGVs. This approach differs from

mainstream literature, where the interconnections typically exhibit some compliant behavior.

We feel that (semi-)rigid interconnections are more realistic than compliant mechanisms for

transporting very large objects. Furthermore, in this thesis we focus on control at the velocity

level, i.e. the goal of the controller is to realize a certain planar velocity setpoint that is

provided by an external host. Control at the velocity level is an important intermediate step

towards achieving fully automated operation. To achieve smooth cooperative behavior, the

various AGVs must not counteract each others actions. Finally, we require that the AGVs

are able to operate cooperatively as well as individually, and switching between these modes

should be easy.

This project is carried out in close cooperation with the company FROG Navigation Sys-

tems. We are eager to develop control algorithms that will eventually result in industrially

meaningful applications. Therefore, the developed algorithms are implemented and evalu-

ated on real industrial AGVs. Two AGVs that were designed to be identical in hardware were

provided by FROG. Although the experiments and parameter settings were adjusted to match

these two specific test vehicles, the model-based design approach guarantees us that the ideas

are generalizable to other load-AGV combinations.

1.6 Outline

The outline of this thesis is as follows. Chapter 2 introduces the vehicles that have been used

for the experiments that are described in this thesis. It is intended to give a flavor of the
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components that are used in industrial AGVs. Chapter 3 deals with the modeling of AGVs

in general, and to the modeling of a system that consists of multiple AGVs that are semi-

rigidly connected to a load in particular. Good operation requires accurate identification of

the effective wheel diameters and the offsets of the steering angle encoders. The fine tuning of

these parameters is handled in Chapter 4. Chapter 5 discusses a decentralized observer design

for estimating the velocities of the load and the AGVs with respect to the floor. The relation

between the accuracy of the identified parameters and the velocity estimate from the observer

is analyzed. A distributed controller design for achieving cooperative behavior is presented in

Chapter 6. Experiments with our two test vehicles that are cooperatively transporting a load

are discussed in Chapter 7. Finally, Chapter 8 contains the conclusions and recommendations

for future work.



26 Introduction



2

Experimental setup

Testing facilities including two AGVs for performing experiments were provided by FROG

Navigation Systems. Industrial AGVs are always part of a larger system. This chapter starts

with some background on the various aspects of the AGV applications that are installed in

factories. Subsequently, the AGVs that were available for experimentation are introduced

and the peculiarities of these specific AGVs are highlighted. Because the observers and

controllers that are developed in Chapters 5 and 6 will be tested on the software and control

architecture that is used by FROG, a brief description of these is given towards the end of

this chapter. The discussion of the required hardware adjustments for achieving cooperative

transportation is postponed until Chapter 7, where the cooperative transportation experiments

are presented. The two test vehicles that were used for the experiments are merely examples

of industrial AGVs that could be used for a cooperative transportation task. It is remarked

that the models, the tuning procedure, the observers, and the controllers that will be discussed

in the subsequent chapters are also applicable to other industrial AGVs with different sensor

and actuator configurations.

2.1 Background

From a plant manager’s perspective, AGVs are nothing more than a mean to transport goods

from one place in a factory to another. A plant operator is not really interested in the exact

behavior of the vehicles, as long as they pick-up and deliver the products at the right times

and at the right places. The route planning of the AGVs and the allocation of a specific AGV

to a certain product transportation task are typically carried out by a dedicated supervisory

system that is designed to control the entire fleet of AGVs. This supervisory system interacts

with the plant manager and the control system of the factory, and translates their demands to

routes and commands for the individual AGVs. Modern supervisory controllers communicate

with the AGVs over wireless networks.

Each AGV has its own local computer to follow the routes that are received from the

supervisory control system. It is the AGVs responsibility to keep track of its position. To

this end, they are equipped with encoders that measure the angles of the steering systems

and the rotation of the wheels. Since this so-called odometric data provides only position

information relative to the previous measurement, the AGVs are also equipped with a system

that provides absolute position information. These absolute measurement systems rely on

the detection of for example colored tiles, transponders in the floor, reflectors on the walls,

magnets that are placed at known positions, etc. Furthermore, the vehicles have sensors such

as flexible bumpers with contact switches and SICK laser range finders to avoid running

into obstacles that may have inadvertently blocked the pre-planned routes. The devices for
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loading and unloading the goods depend on the types of products, and include for example

roller conveyer belts and electric lifting mechanisms. Other important components that are

present on all industrial AGVs are the batteries and mechanisms for recharging them, controls

for manual operation, and emergency buttons.

For more background information on Automated Guided Vehicle Systems, the reader is

referred to the books by Müller [86], Hammond [45], and Hollier [53], and the proceedings

of the International Conferences on Automated Guided Vehicle Systems.

2.2 Description of the setup

In the previous section we have seen how the AGV is part of a larger transportation system.

In this section we will focus on the hardware and the software of the test vehicles. The

necessary adjustments for achieving cooperative operation are discussed to Chapter 7, where

the experiments are presented.

2.2.1 Hardware

A photograph of the two AGVs that were used for the experiments is depicted in Figure 2.1.

They are part of a set of four identical AGVs that were designed for the so-called OLS project.

Goal of the OLS project was to investigate the feasibility of an underground logistic sys-

tem between Schiphol Airport, Aalsmeer flower auction and a railterminal at Hoofddorp for

transporting flowers and time critical cargo. The four AGVs were in fact 1:5 scale models of

vehicles that would be used in a final application. Due to these origins, the AGVs are also

referred to as the OLS 1:5 vehicles. After the project had been concluded with a successful

demonstration several years ago, two of the vehicles went to the Delft University of Tech-

nology and the other two to FROG Navigation Systems. The left AGV in Figure 2.1 is the

OLS 1, and the vehicle on the right is the OLS 2. The OLS 2 has been extensively used to

develop and test the latest major revision of FROG’s control software.

Figure 2.1: The two OLS 1:5 AGVs in the hall of FROG Navigation Systems. The left

vehicle is the OLS 1, and the right vehicle is the OLS 2.
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Figure 2.2: Schematic representation of a single OLS 1:5 AGV (dimensions in mm). The

wheels are depicted in their neutral steering positions.

Figure 2.2 sketches a schematic representation of a single OLS 1:5 AGV. The vehicle

weighs about 200 kg and has a moment of inertia of approximately 50 kg·m2. The AGV has

three wheels. The wheel on the middle right is a swivel caster wheel that can rotate freely.

The other two wheels are part of standard Schabmuller units that have been installed on the

front left and rear left of the AGV. Each Schabmuller unit features a wheel, an electric drive

system, an electric steering system, an on/off type of brake, and optical encoders to measure

the wheel’s rotational velocity and steering angle. The resolution of the steering encoder is

17.46 counts per degree steering angle, and the resolution of the drive encoder equals 11.00

per degree rotation of the wheel. The drive system can exert forces up to ±375 N on the

floor. The steering angle range is approximately ±85 deg, and is determined by means of

limit switches. The large steering angles make the AGV highly maneuverable, such that

it can for example move sideways. Figure 2.2 depicts the neutral steering positions of the

wheels. The AGV is powered by two 12 V batteries.

The configuration of the wheels is rather unusual. Ordinary AGVs for transporting light

products typically have a car-like configuration with an un-actuated fixed axis at the rear,

and a single actuated wheel unit for steering and propulsion at the front. AGVs for trans-

porting larger and heavier loads in narrow spaces may feature all wheel steering to improve

maneuverability, but even for those more exotic AGVs are usually symmetrical with respect

to the longitudinal vehicle axis. The actuated wheels of the OLS AGV have been deliberately

placed asymmetrical with respect to the center of gravity to make the vehicle more difficult to

control when accelerating and decelerating. This was done to test all aspects of AGV control.

When the steering angles are fixed to 90 deg, then the AGV is similar to the differentially

driven vehicles often seen in mobile robots literature. When the rear steering angle is fixed to

the neutral steering position, than a car-like vehicle can be emulated. Because for positioning

large objects it is only natural that the AGVs are omni-directional, in this project the full

range of the steering system will be used.

Absolute position information for this AGV is provided by a magnet ruler can detect

magnets that are buried in the floor. The magnets form staggered grid with a width of 80 cm,

see Figure 2.3. The length of the magnet ruler is 40 cm, and its height above the floor is a

few centimeters. The magnet ruler uses the measured magnetic field to determine when it

is exactly above a magnet. At that time instance, the position of the detected magnet along

the ruler is returned. From this information and the relative position of the magnet ruler with

respect to the vehicle it is possible to determine the position of the vehicle with respect to the
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detected magnet. Because the AGV has only a single magnet ruler that is also quite short, it

is difficult to reconstruct the sideways movement for these two test AGVs. It is common to

equip AGVs with multiple magnet rulers that are mounted perpendicular to each other to deal

with sideways motions.

90

40 cm
80 cm

80 cm

80 cm

Figure 2.3: Layout of the magnet grid in the hall of FROG Navigation Systems (top view).

The magnet which origin coincides with the floor coordinate system 90 defines the (0, 0)

coordinate on the floor.

A control panel is mounted on the rear of the AGV. The control panel contains a joystick,

a key switch for selecting manual or automatic operation mode, a serial port for communi-

cating with the computer, a light that indicates that the AGV is on, and a button that can be

configured for various purposes in the software. For safety, the AGV features two emergency

stops and bumpers with contact switches.

Each AGV is equipped with its own Frogbox (a robust industrial PC with local I/O for

AGV applications) with a Pentium I 166 MHz processor, 64 MB ram, and 92 MB flash

disk. The operating system is Linux. A wireless local area network connection, serial ports,

and a controller area network (CAN) interface [57] are available for communication. For

additional analysis purposes, an Toshiba Satellite Pro 4300 series Windows 2000 laptop with

Vector CANalyzer or I+ME PCMCIA Key is available to monitor CAN communication.

2.2.2 Software

In the main introduction we discussed that we aim to develop distributed control laws that

can be seen as an extension of the controllers that are currently used for individual AGV

operation. A block scheme of the control architecture that is present in FROG’s current AGV

controllers is depicted in Figure 2.4. We recognize a layered control structure with an inner

velocity layer to control the velocity, and an outer control loop that controls the position.

The task of the velocity layer is to realize a certain planar velocity setpoint. As we will see

in Chapter 3 about modeling, the planar velocity of the AGV with respect to the floor is also

known as the twist of the AGV with respect to the floor. The planar velocity setpoint consists

of the rotational, longitudinal and lateral velocity setpoints for a coordinate system 9v that is

attached to a special point P on the AGV. The velocity setpoint is compared to the velocity

estimate that is derived from the odometric measurements of the AGV, i.e. its steer and wheel

encoders readings. A velocity controller computes the generalized force, which consists of a

torque, a longitudinal force, and lateral force, that should be exerted on the AGV to realize

the desired behavior. The generalized force on the vehicle is also known as the wrench on
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Figure 2.4: Block scheme of a standard AGV controller. The velocity controller forms the

heart of the controller. The switch ‘S’ is used to select the operation mode of the AGV,

which can be either manual or automatic. In manual mode, the velocity layer aims to realize

the manual velocity setpoint that is provided by a human operator. In automatic mode, the

velocity setpoint for the velocity layer is computed by the outer position control loop from

the position error.

the vehicle. The desired generalized force that was computed by the velocity controller is

distributed among the actuators. Since our AGVs have two steering actuators and two drive

servo’s, they are overactuated. Thus there are multiple possibilities to select the setpoints

for the steering and driving systems that will all result in the same net generalized force. To

overcome this ambiguity, the steering and driving setpoints are chosen such that some norm

of the tire forces is minimized. In subsection 6.2.2 of Chapter 6 on control, we will see that

the control strategies that are applied in the velocity layer of the AGV controller are very

similar to the strategies that are found in generic controllers that are used in modern vehicle

dynamics control systems. In Chapter 5 that deals with observer design, it will become clear

that the steering and driving setpoints are also passed to the observer to enhance the velocity

estimate.

For industrial AGVs it is important to have a manual operation mode as well as an au-

tomatic operation mode. During manual operation, the setpoint for the velocity layer is pro-

vided by joystick that is controlled by a human operator. During fully automatic operation,

the velocity layer is controlled by an outer position control loop. The position control loop

estimates the current AGV position by integrating the twist estimates from the velocity ob-

server and by using information from an absolute reference system. In our case, the absolute

reference system is the magnet ruler that detects magnets in the floor. The estimated AGV

position is compared to the desired path. The position error is translated to a velocity setpoint.

To close the loop, the velocity setpoint is feed to the velocity layer. A switch that is present

on the AGVs allows the user to select between manual and operation mode.

As we will see later, the adjustments for dealing with the interaction forces of the load

and the other AGVs are made in the velocity observer and the velocity controller. These are

most easily tested in manual mode. Because AGVs are always equipped with a manual mode

and because we expect that some cooperative transportation applications do not require an

automatic mode, in the sequel we will focus on the velocity layer and manual operation only.
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Although position information is not required for manual operation, the position observer

remains active during the experiments that will be described in Chapters 4 and 7. It turns out

to be useful to analyze the position observer’s data as a step towards fully automatic control.

To improve the reproducibility for the cooperative transportation experiments, we will also

use velocity setpoints that are generated by a computer instead of a human operator.

The implementation of the control cycle in manual mode is sketched in Figure 2.5. The

execution of the control cycle is triggered by a timer event every 100 ms. At the beginning

of each cycle, the AGV starts reading its sensors. After the sensor information has been

retrieved, a delayed timer event instructs the velocity observer to estimate the AGV’s twist

with respect to the floor. Next, the joystick setpoint is translated into the twist setpoint.

Finally, the velocity layer computes the outputs for the steering and driving actuators, and

these are subsequently send to the actuators.
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Figure 2.5: Implementation of the control cycle for a single AGV in manual mode.

2.3 Summary

In this section we presented the two industrial AGVs that we used for the experiments that

will be discussed in Chapters 4 and 7. We saw that both AGVs are highly maneuverable,

and can move sideways at 85 degree angles. They have rather peculiar asymmetric wheel

configurations, viz. a single caster wheel on one side and two actuated wheel units on the

other side. The fact that the center of gravity is not in between the two actuated wheels

makes these AGVs more difficult to control than standard AGVs.

We saw that the available measurements for each AGV are two optical steering encoders

to measure the steering angles of the actuated wheels, and two optical drive encoders to mea-

sure the driven distance of the actuated wheels. These four sensor readings together constitute

the so-called odometric measurements. Each vehicle is furthermore equipped with a magnet

ruler to detect magnets that are buried in the floor of the hall of FROG Navigation Systems,

where the experiments are carried out. Whereas the optical encoders provide information

about the relative velocity of the AGV with respect to the floor, the magnet ruler provides

information about the relative position of the AGV with respect to the floor.

The wheels of the actuated wheel units are both steered and driven. Each AGV has two

actuated wheel units. So there are four actuator inputs per AGV, namely two steering angle

setpoints for the local steering systems, and two torque setpoints for the local drive servos

of the actuated wheel units. A CAN bus is available for realtime communication. In the

experiments of Chapter 7 we will use the CAN bus to send the setpoints to the AGVs and to

exchange the local velocity estimates.
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A layered control approach is used to control the AGVs. The inner loop deals with control

on the velocity level. In that layer, the difference between the estimated and the desired twist

is translated into a desired wrench on the AGV. The desired wrench is distributed among the

wheels by computing local wheel forces. The local wheel forces are subsequently translated

into setpoints for the AGV’s steering and drive systems. The outer loop consists of position

control, which translates position errors into setpoints for the velocity layer. Only the velocity

control layer is considered in this thesis.

Finally, we would like to remark that the two OLS test vehicles are fully operational

industrial AGVs, with all relevant software, hardware, and safety measures installed. We

believe that implementing and testing new control algorithms directly on a real industrial

system in an early phase will reduce the step towards the development of real, commercially

available applications.
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Model

3.1 Introduction

The model based tuning, observer and control design procedures we will apply in the subse-

quent chapters rely on models of the AGVs. This chapter introduces dynamical models for a

single AGV and for multiple AGVs that are (semi-)rigidly interconnected to a common load.

First we will start with a brief overview of related work on models for wheeled vehicles that

are used in the mobile robotics and vehicle dynamics literature, and give a brief overview of

tire modeling literature. Subsequently, the AGV is modelled as a planar rigid body with tires.

We will use a so-called linear tire model to describe the behavior of the tires, which means

that the force that is exerted by the wheel on the vehicle depends linearly on the wheel slip.

The floor is assumed to be an inertial reference space. Such models proved to be sufficient

to operate individual AGVs at the required accuracy in numerous applications that were re-

alized by FROG. As we will see, the derived model is not affine in the inputs. Input affinity

is a useful property when studying controllability and observability for nonlinear systems.

Therefore, we introduce some additional simplifications to achieve input affinity of the initial

model. The chapter ends with a discussion of a dynamical model for multiple AGVs that are

(semi-)rigidly interconnected to a common, rigid load.

The dynamic models that will be presented in the next sections essentially relate the mass

properties and the external wrenches that are acting on the AGVs and load to the systems ac-

celeration with respect to the inertial floor. It is possible to describe the dynamical behavior of

a rigid body in a coordinate free way using differential geometry. The advantage of differen-

tial geometric formulations is that they use very thorough definitions of concepts as ‘relative

position’ and ‘relative velocity,’ which are in addition independent of a particular choice of

coordinates. Drawback is that the notation becomes very abstract and a lot of preliminary

knowledge is required to interpret the models. Therefore, we will try to avoid abstract dif-

ferential geometric notations and quickly jump to suitable coordinate representations. Thus

the coordinate descriptions that are used throughout this thesis are in fact parameterizations

of more abstract geometric concepts.

3.2 Related work

There is an abundance of literature dealing with the modeling of wheeled vehicles. Two

important research areas where such models are used for observer and control purposes are

the field of mobile robotics and the field of vehicle dynamics. Furthermore, an essential part

for modeling vehicle dynamics is the modeling of tires. Each of these three research fields is

now discussed in more detail.
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3.2.1 Wheeled mobile robots

Since laboratory robots typically operate at low speeds, the wheeled mobile robot (WMR)

community often uses so-called kinematic models. Kinematic models are stated in terms of

positions and velocities. Accelerations resulting from external forces do not play a role. It is

furthermore assumed that there is no wheel slip at the tire-ground interface, i.e. the wheels

are modelled as so-called nonholonomic constraints.

There are a lot of works focusing on control strategies for vehicles with these nonholo-

nomic wheels. This implies that, according to these models, such robots cannot move per-

pendicular to the wheel plane. A robot with nonholonomic wheels can still move in any

direction when all the nonholonomic wheels are steerable. Robots with the ability to move in

any direction are said to be omni-directional. It is remarked that omni-directionality can also

be achieved without steering by equipping the robot with special omni-directional wheels.

These wheels are equipped with rollers that are mounted at an angle of 450 at the wheel

circumference, see e.g. the robots that are described by Hirata et al. [51].

When the robots are not omni-directional, e.g. robots with regular wheels that are posi-

tioned in a car-like configuration (e.g. [68, 81]) or in a parallel fashion as with differentially

steered robots (e.g. [17, 60]), then it is not trivial how to produce a net sideways movement.

Several studies focus on control strategies to tackle this problem. Especially control of side-

ways parking a car-like robot has become a prototypical test case for evaluating nonlinear

control laws, since by Brockett’s Theorem [21] it is not possible to stabilize such a robot to

a certain pose with a (nonlinear) static state feedback that is continuously differentiable with

respect to the state. Other more difficult tasks that use nonholonomic wheel models include

for example the control of a backwards driving truck with multiple trailers that do not have

rear wheel steering, see e.g. [5, 6]. Also studies on wheeled mobile robots where the control

problem is not the primary interest are likely to adopt kinematic models. Examples include

studies on object avoidance, multi-object tracking, path planning, etc.

FROG’s experience with dozens of vehicles is that kinematic models that assume zero

wheel slip often do not yield the required accuracy for estimating an AGV’s velocity. Addi-

tional problems arise when the center of gravity is positioned towards one side of the vehicle.

Then it is not possible to accelerate in a straight line using a kinematic controller due to in-

evitable wheel slip. Therefore, we will use modeling approaches that are typically seen in the

field of vehicle dynamics. It is remarked that not all mobile robot studies model the wheels as

nonholonomic constraints. An interesting work with this respect is the study by Motte [85],

which relates the control design for mobile robots that do satisfy the ideal wheel constraints

to control design for mobile robots that do not satisfy these ideal constraints.

3.2.2 Vehicle dynamics

The use of dynamical vehicle models for the design, analysis and control of modern passenger

cars and trucks has grown over the years. There are models for crash test analyses, durability

analyses and evaluating the comfort of possibly active suspension systems. Our interest is

restricted to models that describe the planar behavior of the vehicles. The study of vehicle

responses to steering, often in combination with braking and acceleration, is also referred

to as handling analysis. An important yet difficult aspect of handling analysis is to relate
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subjective driver feelings to physical quantities. Measuring lateral and yaw rate responses

to standardized steering wheel inputs are commonly used methods. Whereas the translation

of physical quantities to subjective driver feelings is fairly complicated, models that relate

steering inputs to physical vehicle behavior are quite accurate.

In literature we find, in increasing order of complexity (number of degrees of freedoms,

number of parameters, simulation time), single track or bicycle models with static linear tire

models, bicycle models with nonlinear tire characteristics with load transfer during cornering,

four track models that include vehicle roll motion, models where the suspension system and

compliance of the steering system are taken into account, up to finite element (FEM) models

with well over one hundred degrees of freedom. Except for the FEM models, all models

have real-time capabilities. Models for articulated vehicles, i.e. the Phileas [30, 31], truck-

semitrailers [27, 35], dogloggers [36, 37], etc., are typically more complex than passenger

car models due to the articulation point(s) and the larger number of wheels. Allen et al. [4]

describe the role that tire characteristics play in vehicle handling. A comparison of various

models for a truck with trailer is discussed by El-Gindy et al. [35] and later also by Dahlberg

et al. [27]. They compared lateral acceleration, yaw rate and articulation angle as obtained

by computer simulations to measurement results from field experiments. Noticeably, both

articles concluded that a more sophisticated model is not necessarily better than a simpler

model. When a simple non-linear MATLAB model with linear tire characteristics and a more

detailed model in the multi-body package ADAMS were subjected to the same sine wave

steering inputs, this resulted in similar frequency responses for the Phileas in its nominal

range [64].

Because the three-weel AGVs we consider lack a suspension system, we will model them

as planar rigid bodies with wheels. These models have led to satisfactory results for the de-

velopment and analysis of AGV guidance systems in the past. The next subsection discusses

the various tire models that exist in the literature in more detail.

3.2.3 Tire models

Tire models describe the relation between the deformation of a tire and the forces and mo-

ments that are related to this deformation. These models are used, amongst others, for control

purposes, handling analysis, and tire design. Depending on the application, the models range

in complexity from simple algebraic relations between deformation and induced wrenches to

very complex finite element models. There are static models as well as dynamical models

that describe tire behavior for frequencies up to over 50 Hz. Models range from analytical

models, which are open to theoretical analysis, to fully empirical models that are just intended

to represent experimental data as accurately as possible. Another important distinction is that

between models that describe the vertical tire behavior, i.e. perpendicular to the road, and the

horizontal tire behavior. The vertical behavior is important for the evaluation of suspension

systems and ride comfort. Vertical deformation is often characterized by the tire deflection,

which depends on the loaded and unloaded tire radius. The horizontal behavior is closely

related to the “handling characteristics.” For horizontal tire behavior, models for lateral be-

havior (“cornering”), longitudinal behavior (e.g. “braking”), and lateral plus longitudinal

behavior (e.g. “combined steering and braking”) exist. The horizontal behavior will change

with varying vertical loads. Horizontal deformation is typically quantified by two slip quanti-
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ties, namely the so-called longitudinal slip and the slip angle. For different applications, e.g.

motorcycles, off-road vehicles, race-cars, commercial vehicles, aircraft landing gears, etc.,

different tires with their corresponding models have been developed.

Since this project is about AGVs, we will focus on tire models that have been developed

for vehicle dynamic studies and we disregard the nonholonomic models that are often used

by the wheeled mobile robots community. A very popular model for the simulation of vehicle

dynamics is the so-called Magic Formula model, which is based on the ideas that were first

introduced by Bakker et al. [14]. Since then, it has been modified and extended several times.

A recent version with transient properties is described by Pacejka et al. [92]. The Magic

Formula describes the relation between combined horizontal slip and the longitudinal forces,

lateral forces as well as the aligning moment of the tire. It also takes into account that the tire

properties change under different vertical loads. The Magic Formula model is also valid for

extreme maneuvers such as emergency braking and drifting through corners. The model was

designed for pneumatic tires, and in particular, for passenger car tires. Since a typical Magic

Formula tire model contains over hundred parameters, by selecting the appropriate values it

can describe other tire types, such as truck tires, to a certain extend as well. Another vehicle

simulation tire model is STIREMOD. STIREMOD can handle both paved as well as off-road

surfaces such as loose soil [3]. An example of a tire model for truck tires is the one by

Fancher et al. [38]. All three models contain simple relaxation effects. Recently the dynamic

range of tire models has been extended to over 50 Hz. The reader is referred to several Ph.D.

theses [105, 130, 78, 96] by the Delft University of Technology and the Proceedings of the

International Colloquia on Tyre Models for Vehicle Dynamic Analysis for more information

about tire modeling.

The AGVs we consider have a low center of gravity and in addition the trajectories are

often chosen such that the lateral accelerations remain small. Therefore, for our applications

tire models that describe only the horizontal behavior will suffice. Since the maneuvers of

AGVs are smooth and relatively slow, we use tire model where the relation between the

wheel slip and the exerted forces is static. Furthermore, load transfer from the inner to the

outer wheels when cornering is not taken into account.

3.3 Kinematics

This section introduces the notation for the relative position and the relative velocity of an

AGV with respect to the floor. Different parameterizations for both concepts are discussed.

Finally, the advantages and disadvantages of two methods for integrating relative velocities

are discussed. The two main approaches to describe rigid body motions are screw theory and

Lie group theory. See [114] for a description of both methods and their one-to-one and onto

relationship. The approach we follow is most closely related to Lie group theory.

3.3.1 Relative position

To describe the relative position of an AGV with respect to the floor, we attach a coordinate

system 9v to the vehicle and a coordinate system 90 to the floor. The relative position H 0
v of
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the vehicle with respect to the floor is described by the matrix

H0
v =




cϕv −sϕv xv

sϕv cϕv yv

0 0 1


 ∈ SE(2) (3.1)

and the relative position of the floor with respect to the vehicle by

Hv
0 = (H0

v )
−1 =




cϕv sϕv −xvcϕv − yvsϕv

−sϕv cϕv xvsϕv − yvcϕv

0 0 1


 ∈ SE(2). (3.2)

Here (xv, yv) are the coordinates of the origin of 9v expressed in floor coordinates 90, and

ϕv is the orientation of 9v with respect to 90. See Figure 3.1 for an illustration. The relative

position H 0
v of the vehicle with respect to the world is also known as the pose of the vehicle.

The set of all homogenous matrices H 0
v forms the matrix Lie group SE(2). Every element

corresponds to a unique relative position of the vehicle with respect to the floor. Vice versa,

every relative position of the vehicle with respect to the floor corresponds to a unique element

of SE(2). This one-to-one relation (bijectivity) between elements of SE(2) and relative

positions partly explain the popularity of this method.

From equation (3.1) we see that we can also use the triplet qv = (ϕv, xv, yv) ∈ R3 to

describe the relative position of the vehicle with respect to the floor. Advantage of the latter

description is that we only need three numbers instead of the nine numbers for H 0
v . The dis-

advantage is that the one-to-one relationship between the physical pose of the vehicle and the

parametrization is lost. To illustrate this, the relation between the (ϕv, xv, yv) parametriza-

tion and the physical relative positions of the vehicle is sketched in Figure 3.2. The xv and

yv coordinates are on the horizontal axes, and the ϕv coordinate along the vertical axis. Thus

each horizontal plane corresponds to a particular orientation of the vehicle. As we move from

a given point in the vertical direction, every 2π we arrive at a point that represents exactly the

same situation as the one we have started from. To indicate this, we identify all points that

represent the same situation.

90 xv

yv
9v

u v
vv xv,cyv,c

ϕv

ωv

Figure 3.1: Notation for the AGV’s rigid body model. Here ωv is the rotational, uv the

longitudinal, and vv the lateral velocity of the vehicle fixed coordinate system9v with respect

to the floor.
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xv

yv
ϕv

0

2π

Figure 3.2: Sketch of the relation be-

tween the (ϕv, xv, yv) parametrization and

the physical vehicle pose.

xv

yv

ϕv

0

Figure 3.3: Alternative representation

of the relation between the (ϕv, xv, yv)

parametrization and the physical vehicle

pose.

To illustrate the concept of identifying objects, consider the standard textbook example of

a straight line with identified end points, see Figure 3.4. Since the end points are identified,

we can go from point A to point C without passing through point B. To do this, we move

from point A to the left end point, subsequently ‘jump’ to the right end point (actually we

are already there because the two end points are identified), and finally move towards the left

until we reach point C . Just think of the famous computer game PacMan, where the yellow

character leaves the maze on the left to subsequently pop up on the right. From a topological

point of view, the straight line with identified end points is identical to a circle, see Figure 3.4.

Indeed, for the circle we can also go from point A to point C without going through point B.

Similarly as we rolled up the line to a circle, we can roll up the vertical column from

Figure 3.2 to obtain a ring that is topologically identical. The result is sketched in Figure 3.3.

We see that the relative vehicle position with respect to the floor is a three dimensional man-

ifold. It is topologically the same as the manifold S × R2, and also as the three dimensional

manifold SE(2). It is remarked that this is no longer true when we go to a higher dimension,

e.g. the topology of the manifold SE(3) differs from the topology of the manifold S3 × R3.

3.3.2 Relative velocity

The relative velocity of body Bi with respect to another body B j is also known as the twist

of Bi with respect to B j [114]. To parameterize the twist, we only need a single coordinate
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i d e n t i f y

A

A

B

B

C

C

E

E E

Figure 3.4: From a topological point of view, the straight line (left) with identified end points

E is identical to the circle on the right. For both, it is possible to go from point A to C without

passing through point B.

system. We call T
k, j

i the twist of Bi with respect to B j expressed in coordinate system 9k . It

is important to remark that the subscript i and the superscript j indicate bodies, whereas the

superscript k refers to a coordinate system. Before we show how to express T
k, j

i in any other

coordinate system 9l , we will first focus on the special case that 9k is equal to 9i . The twist

of the AVG with respect to the floor expressed in the AGV’s coordinate system 9v reads

T v,0
v =




ϕ̇v

ẋvcϕv + ẏvsϕv

−ẋvsϕv + ẏvcϕv


 =



ωv

uv

vv


 (3.3)

Here the first component ωv is interpreted as the rotational velocity of the AGV with respect

to the floor. The second component uv represents the longitudinal velocity and the last com-

ponent vv the lateral velocity of the origin of 9v with respect to the floor, respectively. This

is illustrated by Figure 3.1. To describe the relation between H 0
v and T v,0

v , it is convenient to

write the components of T v,0
v in a matrix using the tilde operator:

T v,0
v =



ωv

uv

vv


 ⇔ T̃ v,0

v =




0 −ωv uv

ωv 0 vv
0 0 0


 (3.4)

This (bijective) mapping is more general, and can also be applied to a twist of one body Bi

to another body B j expressed in any coordinate system k, i.e. T
k, j

i ⇔ T̃
k, j

i . The relation

between T v,0
v , H0

v , and its time derivative Ḣ0
v satisfies

T̃ v,0
v = (H0

v )
−1 Ḣ0

v = Hv
0 Ḣ0

v =




0 −ωv uv

ωv 0 vv
0 0 0


 ∈ se(2). (3.5)

Note T̃ v,0
v has a special form.Here se(2) denotes the Lie algebra corresponding to SE(2).

To illustrate the interpretation of H v
0 Ḣ0

v , a curve H 0
v (t) has been drawn in Figure 3.5. For

convenience the manifold SE(2) is schematically represented as a two dimensional surface,

but in fact it has the topology that was discussed in the previous section and is sketched in

Figures 3.2 and 3.3. What basically happens is that H v
0 (t) transports the velocity Ḣ0

v (t),
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which lives in the tangent space TH0
v (t)SE(2) of point H 0

v (t), to the tangent space TI SE(2)

that corresponds to the identity element I of the matrix Lie group. The identity element I

is simply the 3 × 3 identity matrix. The tangent space TI SE(2) corresponds to the vector

space of the unique Lie algebra se(2) that comes with the Lie group SE(2). Thus T v,0
v is

interpreted as a parametrization of Ḣ0
v after it has been transported to the tangent space at the

identity of SE(2).

L i e  g r o u p

t r a j e c t o r y

i d e n t i t y  e l e m e n t

t w i s t

L i e  a l g e b r a

t a n g e n t  s p a c e

v e l o c i t y

p o s i t i o n

t a n g e n t  s p a c e  a t  i d e n t i t y  e l e m e n t

TI SE(2)

se(2)

T
H0

v (t)
SE(2)

Ḣ0
v (t)

I

I

SE(2)

T
v,0
v

H0
v (t)

Figure 3.5: Interpretation of T̃ v,0
v = Hv

0 Ḣ0
v .

Another way to interpret T v,0
v is by considering the qv = (ϕv, xv, yv) parametrization of

the manifold Q = S × R2 that is sketched in Figure 3.6. At each point q on the manifold we

have a tangent space Tq Q. The relative velocities corresponding to position q are elements

of the tangent space Tq Q. One possibility to parameterize the elements of Tq Q is by using

the vectors eϕ , ex and ey that point into the directions of their corresponding coordinate axes.

Thus for every point q on the manifold we have three vectors (eϕ, ex , ey) to span the tangent

space at that point. All eϕ vectors together constitute a vector field on the manifold. The same

is true for all vectors ex and ey . These three vector fields (eϕ, ex , ey) together define a frame

of vector fields. For a curve q(t) = (ϕv(t), xv(t), yv(t)), the velocity at point q(t) is simply

ϕ̇v(t)eϕ + ẋv(t)ex + ẏv(t)ey . Furthermore, we note that the frame of vector fields (eϕ, ex , ey)

is a coordinate frame since the Lie brackets1 of all combinations of the vector fields are zero,

see p. 243 of [39]. Indeed, [eϕ, ex ] = [eϕ, ey] = [ex , ey] = 0. An alternative for (eϕ, ex , ey)

is to use the frame of vector fields (eϕ, eu, ev), where

eu = ex cϕv + eysϕv (3.6)

ev = −ex sϕv + eycϕv. (3.7)

The latter parametrization is illustrated in Figure 3.7. Thus we see that eu coincides with

the xv-axis of 9v , and ev coincides with the yv-axis of 9v . The velocity of the curve above

expressed in this base satisfies ωv(t)eϕ + uv(t)eu + vv(t)ev , where uv and vv are defined

according to equation (3.3). Thus we see that the components of T v,0
v can also be interpreted

1The Lie bracket [ f (x), g(x)] of the vectorfields f (x) and g(x) is a third vectorfield. It is computed as

[ f (x), g(x)] =
dg(x)

dx
f (x)−

d f (x)
dx

g(x).
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as the relative velocity expressed in the (eϕ, eu, ev) base. Finally, note that

[eϕ, eu] =






1

0

0


 ,




0

cϕv

sϕv




 =




0

−sϕv

cϕv


 6= 0. (3.8)

Hence, the frame of vector fields (eϕ, eu, ev) is not a coordinate frame.

id
en

ti
fy

xv

yv
ϕv

0

2π

Figure 3.6: The coordinate frame of vector

fields (eϕ, ex , ey).
id

en
ti

fy

xv

yv
ϕv

0

2π

Figure 3.7: The frame of vector fields

(eϕ, eu, ev).

Now that we have seen various interpretations of the components of the twist T v,0
v , we

briefly summarize how to transform a twist that is expressed in one coordinate system 9k

to another coordinate system 9l . A twist that is expressed in ‘tilde’ representation T̃ k,0
v

transforms corresponding to

T̃ l,0
v = H l

k T̃ k,0
v H k

l , (3.9)

and a twist in column notation T k,0
v according to

T l,0
v = AdH l

k
T k,0

v , (3.10)

with

AdH l
k

=




1 0 0

p2 R11 R12

−p1 R21 R22


 , H l

k =




R11 R12 p1

R21 R22 p2

0 0 1


 . (3.11)

From equations (3.9)-(3.10) we see that both transformations are linear. We can use this

notation to investigate the relation between the twist T v,0
v and q̇ = (ϕ̇v, ẋv, ẏv). To this end,

define a new coordinate system 9v̄ such that its origin coincides with the origin of 9v , and
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its orientation corresponds to the orientation of 90. In other words, 9v̄ moves along with 9v

while keeping its rotation with respect to the floor equal to zero.From equations (3.11) and

(3.3) it follows that the components of the twist T v,0
v are related to (ϕ̇v, ẋv, ẏv) by

T v,0
v =



ωv

uv

vv


 =




1 0 0

0 cϕv sϕv

0 −sϕv cϕv




︸ ︷︷ ︸
AdHv

v̄



ϕ̇v

ẋv

ẏv




︸ ︷︷ ︸
T

v̄,0
v

= AdHv
v̄

T v̄,0
v . (3.12)

Thus we see that we can interpret q̇v = T v̄,0
v as the twist of the vehicle with respect to the

floor expressed in the coordinate system 9v̄ .

3.3.3 Steering pole

Every planar rigid body motion has an instantaneous center of rotation, which is also known

as the steering pole. For a given twist T v,0
v expressed in 9v , the coordinates of the steering

pole C expressed in 9v are given by

Cv =




Cv
x

Cv
y

1


 =




−vv/ωv

uv/ωv

1


 (3.13)

see Figure 3.8. The coordinates above are also known as homogenous coordinates, which

basically means that the 2D space of points on a rigid body is extended with an additional

dimension (the last element “1” corresponds to this additional dimension). The additional

dimension makes it for instance possible to use a linear instead of an affine operation to

transform coordinates. Furthermore, homogenous coordinates allows us to deal with points at

infinity. For example, the steering pole is at infinity for pure translational motions (ωv = 0).

The homogeneous coordinates for that case are

Cv =




−vv
uv

0


 . (3.14)

The last element “0” indicates that the steering pole is at infinity. We can express C v , which

may either be finite or infinite, in any other coordinate system 9k using

Ck = H k
v Cv. (3.15)

Note that the steering pole is undefined for T v,0
v = 0. Furthermore, note that the coordinate

transformation above is a linear transportation.

3.3.4 Signed radius, side slip angle and tangential velocity

In Chapter 4 we will drive circle segments with the AGVs for tuning the wheel diameters

and the offsets for the steering encoders. We will see that the algorithm for estimating the
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Cv =




−vv/ωv

uv/ωv

1





Cv =





−vv/ωv

uv/ωv

1





Rv

−Rv

9v

9v

βv

Vv
Vv

ωv

uv

uv

vv

-βv

-vv

−ωv

Figure 3.8: Definitions of the steering pole C , signed radius Rv , side slip angle βv , and

tangential velocity Vv .

parameters does not depend on the vehicle speed, but only on the shape of the realized circle

segment. For that reason it is useful to have a parametrization that decomposes the twist in a

part that is related to the steering pole and a part that represents the velocity of the AGV.

First we discuss the signed radius Rv . The squared distance ||C − ov||2 of the origin ov

of the AGV’s coordinate system 9v to C is denoted by R2
v , i.e. R2

v is the squared radius of

the circle segment corresponding to the instantaneous motion of ov . We define that Rv is of

the same sign as the y-coordinate of the center of orientation C expressed in 9v , that is

sign(Rv) = sign(Cv
y ). (3.16)

In other words, Rv is positive for a left hand turn and negative for a right hand turn. It is

assumed that the center of the vehicle coordinate system does not coincide with the center of

orientation, hence Rv 6= 0. See Figure 3.8 for a sketch of the situations Rv > 0 and Rv < 0.

For dealing with lage radii Rv , the signed curvature ρv is defined as

ρv = R−1
v . (3.17)

Next, the side slip angle βv ∈ (−π
2
, π

2
] is defined as the angle between the tangent to the

instantaneous motion of ov and the xv-axis of 9v , see Figure 3.8. From the figure it is easily

seen that the signed radius and side slip angle are related to the vehicle coordinates of the

steering pole C according to

Cv =




Cv
x

Cv
y

1


 =




−Rvsβv

Rvcβv

1


 . (3.18)

The inverse relation satisfies

Rv = sign(Cv
y )

√
(Cv

x )
2 + (Cv

y )
2, βv = arctan

(
−Cv

x

Cv
y

)
(3.19)
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The equations above show that both the signed curvature Rv and the side slip angle βv depend

on the pose of the vehicle coordinate system 9v . They can be transformed to other coordi-

nate systems, for example a coordinate system that is attached to the wheels. This will turn

out to be useful for the estimation of the steering encoder offsets in Chapter 4. To transform

Rv and βv from coordinate system 9v to coordinate system 9k , first compute Cv with equa-

tion (3.18), subsequently transform this to 9k by Ck = H k
v Cv , and finally compute Rk and

βk with equation (3.19). Note that whereas changing coordinates for a twist T v,0
v was a linear

operation, changing coordinates for the signed radius Rv and side slip angle βv is a nonlinear

operation.

The alternative parametrization of the twist T v,0
v is completed by adding the tangential

velocity Vv that is defined as the absolute velocity of the origin ov of 9v with respect to the

floor:

Vv = uvcβv + vvsβv (3.20)

The components of the twist T v,0
v are related to (Rv, βv, Vv) according to

T v,0
v =



ωv

uv

vv


 =




Vv/Rv

ωvCv
y

−ωvCv
x


 = Vv




R−1
v

cβv

sβv


 = Vv



ρv

cβv

sβv


 . (3.21)

The careful reader must have noted that there are a few situations where the (Rv, βv, Vv)

parametrization is not well defined. First, for pure translational motions Rv is infinite. We

can change Rv for ρv and use the (ρv, βv, Vv) parametrization to overcome this. Second,

equation (3.19) leads to problems when Cv
y = 0. This is resolved by letting Rv = −Cv

x

and βv = π
2

for that case. Finally, the situation that the steering pole coincides with the

origin of 9v is more serious. Then Cv
x = Cv

y = 0 and βv is undefined. Since Vv will

be zero, the translational velocity components uv and vv can still be reconstructed correctly

from equation (3.21). The information for the rotational velocity, however, is lost as ωv =
Vv/Rv = 0/0 for this case.

In conclusion, we saw that a change of coordinates for the (Rv, βv, Vv) parametriza-

tion is a nonlinear transformation. Furthermore, the coordinates are not well defined when

the steering pole coincides with the origin of the coordinate system. The advantage of this

parametrization, however, is that the position of the steering pole is separated from the veloc-

ity information of the motion. We will use the (Rv, βv, Vv) parametrization only in the next

chapter, where the tuning of the AGVs’ wheel diameters and steering angle encoder offsets

is discussed. The AGVs perform circular trajectories with a large radius and a small side slip

angle in those experiments. Therefore, Rv will always be finite and unequal to zero. Thus

we can safely use the (Rv, βv, Vv) parametrization for those experiments without having to

worry about the problem cases described above.

3.3.5 Numerical integration of twists

Although this thesis mainly focuses on control on the velocity level, it is illustrative to study

integrated twist estimates. In Chapter 7 where the experiments are analyzed, these are for

example compared to integrated twist setpoints and to positions estimates from the AGVs’
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ranging modules. The relation between the time derivative of the relative vehicle position H 0
v

and the twist T v,0
v equals [114, 115]:

Ḣ0
v = H0

v T̃ v,0
v . (3.22)

Because the control software is implemented on a digital computer, the twist estimate T̂ v,0
v is

only available at distinct time instances. If the relative position H 0
v of the AGV with respect

to the floor is known at some time instant t , then some assumptions on behavior of the twist

have to be made to compute the relative position of the AGV at time instant t +1t .

Euler integration scheme

One possibility is to assume that the time derivatives of (ϕv, xv, yv), i.e.



ϕ̇v

ẋv

ẏv


 =




ωv

uvcϕv − vvsϕv

uvsϕv + vvcϕv


 , (3.23)

remain constant during [t, t + 1t). Applying a standard forward Euler integration scheme

leads to

ϕv(t +1t) = ϕv(t)+ ϕ̇v(t)1t (3.24)

xv(t +1t) = xv(t)+ ẋv(t)1t (3.25)

yv(t +1t) = yv(t)+ ẏv(t)1t. (3.26)

Twist exponential integration scheme

Another possibility is to assume that the twist is constant. Then it can be shown that (see e.g.

[115])

H0
v (t +1t) = H 0

v (t)e
T̃

v,0
v (t)1t (3.27)

A constant twist implies that the position of steering pole with respect to the floor as well as

with respect to the AGV is constant during the motion, i.e. C0 and Cv are constant. For 3D

rigid body motions there is an explicit expression for the exponential of a 3D twist, see e.g.

[115]. A motion of a planar rigid body can be interpreted as a special case of a 3D rigid body

motion. Thus there also exists an explicit expression for the exponential of T̃ v,0
v 1t ∈ se(2):

eT̃
v,0
v 1t =




cos(ωv1t) − sin(ωv1t) sin(ωv1t) uv

ωv
− (1 − cos(ωv1t)) vv

ωv

sin(ωv1t) cos(ωv1t) (1 − cos(ωv1t)) uv

ωv
+ sin(ωv1t) vv

ωv

0 0 1


 ∈ SE(2).

(3.28)

Here we used ωv = ωv(t), uv = uv(t) and vv = vv(t) for notational convenience. For a pure

translational motion ωv = 0 the expression above reduces to

eT̃
v,0
v 1t =




1 0 uv1t

0 1 vv1t

0 0 1


 ∈ SE(2). (3.29)
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Although analytical expressions exist, in practice it is more convenient to use standard soft-

ware for numerical matrix manipulations to compute the exponential of a matrix. We will use

MATLAB’s ‘expm’ routine, which uses the Padé approximation with scaling and squaring

(see e.g. pp42–43 of the article by Moler and Van Loan for more information [84] on this

routine).

Comparison of the Euler and the twist exponential integration schemes

Since the Euler integration scheme and the twist exponential integration scheme make dif-

ferent assumptions on the behavior of the twist during the time interval [t, t +1t), they will

generally produce different results. To illustrate this, consider a vehicle with a coordinate

system 9v that is fixed to the middle of the vehicle, see Figure 3.9. At time t the position of

the vehicle is such that 9v coincides with 90. Suppose that the rotational velocity is 1 rad/s,

the longitudinal velocity 4 m/s, and the lateral velocity is zero at time t : T v,0
v (t) = (1, 4, 0)T.

Furthermore, we attach an additional coordinate system 9k to the front left corner of the ve-

hicle. Since the vehicle in this example has a length of 1 m and a width of 0.5 m, this results

in T k,0
v (t) = (1, 3.75, 0.5)T. Let us take 1t = 1 s.

The vehicle positions as computed with the Euler scheme (3.24)-(3.26) applied to 9v

and 9k , and the positions as computed with the twist exponential integration scheme (3.27)

applied to 9v and 9k are drawn in Figure 3.9. The Figure shows that for the Euler scheme

it obviously matters which coordinate system is chosen to carry out the integration. Since

choosing a different coordinate system implicitly means assuming a different behavior for

the twist, the results depend on the particular choice of coordinates for the Euler integration

scheme. For the twist integration scheme, however, the results are independent of the selected

coordinate system. No matter what coordinate system is chosen, the twist exponential inte-

gration scheme will always assume that the vehicle performs a pure circular motion around

the steering pole. Since a different choice of coordinates gives the same results, the twist

exponential integration scheme is said to be geometrically well defined.

That the twist exponential integration scheme is geometrically well defined can be verified

as follows. Consider a finite point P that is fixed to the vehicle. Its homogenous coordinates

expressed in 9v are denoted as Pv:

Pv =




Pv
x

Pv
y

1


 , (3.30)

where (Pv
x , Pv

y ) are the x− and y−coordinates of P expressed in 9v . The last component of

Pv is equal to zero for a point at infinity, and it is usually taken equal to one for a finite point.

At time t + 1t , the coordinates of P as computed with the exponential integration scheme

and expressed in 90 are

P0(t +1t) = H 0
v (t +1t)Pv = H0

v (t)e
T̃

v,0
v (t)1t Pv. (3.31)

Next, consider the coordinate system 9k that is also attached to the vehicle. The relation

between 9v and 9k is described by H k
v . Since both 9v and 9k are fixed with respect to each

other, the matrix H k
v is constant. Furthermore, The coordinates of P expressed in 9k are
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Figure 3.9: For the Euler integration scheme, the final position of the vehicle depends on the

choice of coordinates. For the twist exponential integration scheme, the final position of the

vehicle is independent of the chosen coordinate system.

Pk = H k
v Pv . Applying the exponential integration scheme using this alternative coordinate

system 9k results in

P0(t +1t) = H 0
k (t +1t)Pk = H0

k (t)e
T̃

k,0
v (t)1t Pk = H0

k (t)e
H k

v T̃
v,0
v (t)Hv

k 1t Pk

= H0
k (t)H

k
v eT̃

v,0
v (t)1t Hv

k Pk = H0
v (t)e

T̃
v,0
v (t)1t Pv. (3.32)

Here we used that H v
k = (H k

v )
−1 to write H k

v and Hv
k outside the exponent. Note that the two

equations (3.31) and (3.32) produced identical coordinates for P0(t +1t). So it does indeed

not matter for the final result what coordinate system is used to perform the twist exponential

integration scheme.

Because the twist integration scheme is geometrically well defined whilst the Euler in-

tegration scheme is not, we prefer to use the former for our numerical integrations. Since

every integration scheme makes certain assumptions on the behavior of the twist, all integra-

tion schemes produce slightly incorrect results when the assumptions are violated. The twist

exponential integration scheme produces exact results when the steering pole is constant, i.e.

for motions that are purely circular and have constant speed during the integration period.

The Euler integration scheme has a worse performance for these circular motions. There

are, of course, also situations where the Euler scheme performs better. One example is the

reconstruction of the trajectory of a rock that is tumbling through free space in the absence

of gravity. Then the steering pole is not constant but moving at a constant velocity that is

identical to the velocity of the object’s center of gravity. Whereas the Euler scheme applied

to the center of gravity produces the exact results,the twist exponential integration scheme

will result in unrealistic trajectories with very large loops for this situation. Interestingly,

there are also special cases where the two schemes produce identical results. For example

when the twist equals zero or when pure translational motions are considered. A less trivial
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situation is when the origin of the coordinate system used to carry out the Euler integration

scheme coincides exactly with the steering pole. Although there are situations where the Eu-

ler integration scheme performs better, in the sequel we will solely use the twist exponential

integration scheme (3.27) as the latter is geometrically well defined.

3.4 Dynamics

This section discusses a model for the dynamics of an AGV. The dynamical model describes

the relation between the acceleration, inertial properties, and generalized forces that act on

the body. First we will zoom in on the concept of acceleration. Subsequently the Lagrangian

approach is used to derive the equations of motion. The relation between the steering angles

of the wheels, the torques exerted by the drive systems, and the net wrench on the AGV are

discussed in section 3.5 that deals with the model of the wheels.

3.4.1 Acceleration

At first it may seem counterintuitive that the discussion of the concept of ‘acceleration’ is

found here in the dynamics section and not in the kinematics section. The rationale behind

this decision will become clear in a minute. When the relative velocity of a body at time t

is denoted as v(t), then intuitively the definition for the acceleration a(t) of that body would

look something like

a(t) = lim
1t→0

v(t +1t)− v(t)

1t
. (3.33)

From a differential geometrical perspective, however, a serious problem occurs when inter-

preting this expression. In section 3.3.2 we have seen that relative velocities live in tangent

spaces. Let us consider a trajectory q : R → Q. At time t the relative position of the body is

q(t) and its relative velocity equals v(t) = q̇(t) ∈ Tq(t)Q. At time t +1t the relative position

is q(t +1t) and its relative velocity is v(t +1t) = q̇(t +1t) ∈ Tq(t+1t)Q. This is sketched

in Figure 3.10. Generally speaking q(t) 6= q(t + 1t). Thus we see that the velocities v(t)

and v(t +1t) are elements of different tangent spaces: v(t) lives in the tangent space Tq(t)Q

that corresponds to q(t), and v(t +1t) lives in the tangent space Tq(t+1t)Q that corresponds

to q(t + 1t). Recall that a tangent space is a vector space. As the ‘−’ operator is only de-

fined for elements that live in the same vector space, the expression ‘v(t + 1t) − v(t)’ in

equation (3.33) is undefined as v(t +1t) and v(t) are elements of different vector spaces.

This problem of computing the ‘difference’ between elements of two different tangent

spaces is resolved by transporting one element to the tangent space of the other element, e.g.

transporting v(t + 1t) to the tangent space Tq(t)Q of v(t). Since the ‘−’ operator is well

defined for two elements in the same tangent space, v(t) can easily be subtracted from the

transported version of v(t +1t) that also is in Tq(t)Q.

Obviously we need a recipe that describes how to transport elements from one tangent

space to another. To this end we use a so-called connection. For an n-dimensional manifold, a

connection is expressed in coordinates using n3 connection coefficients Ŵk
i j .

2 The connection

2Usually the symbols ωk
i j

are used to express a connection. Since ω was already used for the rotational velocity,

here we will use Ŵk
i j

instead.
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q(t)

q(t +1t)
v(t)

v(t +1t)

Tq(t) Q

Tq(t+1t) Q

Q

Figure 3.10: The velocities v(t) and v(t +1t) live in different tangent spaces.

allows us to compute the geometrical acceleration of a curve. Since the connection gives

an expression for the acceleration, we can now consider the situation that the geometrical

acceleration is zero. This corresponds to the situation that no external forces are acting on a

body. A curve with zero acceleration is called a geodesic. The geodesic q(t) passing through

a point q(t0) = q0 with relative velocity v(t0) = q̇(t0) = v0 is found by solving the set of n

differential equations

q̈k + Ŵk
i j q̇

i q̇ j = 0 (3.34)

with initial conditions q(t0) = q0 and q̇(t0) = v0. The complete left hand side, i.e. ‘q̈k +
Ŵk

i j q̇
i q̇ j ,’ is the kth component of the geometrical acceleration expressed in coordinates. In

differential geometry it is the convention to sum over indices that appear in subscripts as

well as in superscripts, i.e. Ŵk
i j q̇

i q̇ j means
∑n

i=1

∑n
j=1 Ŵ

k
i j q̇

i q̇ j . This is called the Einstein

summation convention. Later on we will see that most of the connection coefficients for a

rigid body are zero, and that we can write the geometrical acceleration in matrix notation

instead of the ‘k th component’ notation (3.34). It is important to note that the k th component

of the geometrical acceleration of a curve expressed in coordinates, i.e. q̈ k + Ŵk
i j q̇

i q̇ j , is

generally not identical to the second time derivative of the k th coordinate of that curve, which

is given by q̈k . In the sequel we will see that, once the inertial properties of the vehicle are

known, it is straightforward to calculate the connection coefficients and the equations of

motion. Furthermore, we will see how the connection coefficients transform when they are

expressed in another coordinate system.

3.4.2 Acceleration and gravity

As the concept of acceleration is the key ingredient for interpreting the equations of motion,

we will now shortly illustrate that there are several ways to define acceleration even for the

same problem. Consider an apple that is hanging in a tree. As the apple is not moving, person

A says its acceleration is zero. He furthermore notes that the force resulting from gravity, i.e.

fgrav = −mg, is exactly cancelled out by the force fstalk = mg that is exerted by the tree on

the apple stalk. Thus the net force on the apple is zero, resulting in zero acceleration. Person
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A writes the apple’s equation of motion as

ḧ = m−1( fgrav + fstalk), (3.35)

with h the height of the apple above the ground and m its mass. The term ‘ḧ’ represents the

geometrical acceleration of the apple. It is in fact equal to ḧ + Ŵh
hh ḣḣ, but the Christoffel

symbol Ŵh
hh = 0 for this case. When the stalk breaks ( fstalk = 0), then it follows that

ḧ = m−1 fgrav = −g, and the apple falls from the tree with a nonzero, negative geometric

acceleration.

Person B, on the other hand, looks at the apple from a general relativistic point of view.

He does not model the effect of gravity as an explicit force on the apple. Instead, in his

view of the universe gravity curves the space-time continuum, and time t is part of the space-

time coordinates used to describe the behavior of the apple. Information about the effects

of gravity, i.e. the curvature of the space-time continuum, is encapsulated in the Christoffel

symbols that are related to the metric for the space-time continuum. His equation of motion

for the height of the apple reads3

ḧ + g = m−1 fstalk (3.36)

Hence, for person B the geometrical acceleration of the apple is represented by the term

‘ḧ + g,’ where g comes from the term Ŵh
tt

dt
dt

dt
dt

= g. Thus for person A the acceleration of the

apple is zero (‘ḧ’ = 0) when it is hanging in the tree, whereas for person B the acceleration

of the apple is zero (‘ḧ + g’ = 0) when the apple is in free fall. Since person A models

gravity as a force and person B does not, in both cases it is true that zero acceleration of

the apple corresponds to zero net force on the apple. The physical motion of the apple is of

course different for the two situations. Conversely, for a particular physical motion there can

be different definitions of the geometrical acceleration depending on the view of the universe

that is used. The definitions have in common that zero acceleration corresponds to zero net

force on the object.

3.4.3 Equations of motion

The Lagrangian approach and the Hamiltonian approach are the two most popular methods

to derive the equations of motions for mechanical systems. The Lagrangian approach uses

the the relative velocity v = q̇ as state. The Hamiltonian approach uses momentum p = mv

as state. A manual operator can directly infer the velocity of a vehicle from its movement.

Since a human operator usually has only a very rough idea about the inertial properties of

the vehicle, it is much more difficult to spot the momentum of a vehicle. Furthermore, in

3Schwarzschild derived in 1916 that the gravity around a spherical body of mass M is described by ds2 =

(1 − 2G M

c2r
)c2dt2 − (1 − 2G M

c2r
)−1c2dt2 − r2(d2θ + sin2 θdϕ), which is known as the Schwarzschild solution

or Schwarzschild metric. Here (t, r, θ, ϕ) are the (spherical) coordinates for the space time-continuum, G is the

gravitational constant, and c is the speed of light. The motion γ → (t, r, θ, ϕ) for an object that is falling towards the

center of the earth is found by computing the Christoffel symbols corresponding to the Schwarzschild metric, noting

that dθ
dγ

=
dϕ
dγ

= 0, letting γ = t since d2θ

dγ 2 ≈ 0, and finally substituting γ = t and the properties of the earth in the

equation for d2r

dγ 2 . Since Ŵr
rr is very small, this yields d2r

dt
+Ŵr

tt
dt
dt

dt
dt

+Ŵr
rr

dr
dt

dr
dt

≈ r̈ +
(c2r−2G M)G M

c2r3 = r̈ +g = 0.
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our problem statement the setpoints are provided in terms of velocities and not in terms

of momentum. Therefore, we use the Lagrangian approach to derive the AGV’s equations

of motion. The floor is assumed to be an inertial reference frame. As we consider planar

motions only, the influence of the earth’s gravitational field is not considered.

The inertial properties of the AGV are described by the inertia tensor. The inertia ten-

sor corresponding to a certain position q expressed in the coordinate frame of vector fields

(eϕ, ex , ey) (see section 3.3.2) is a symmetric matrix:4

Mv̄,v(qv) =




Iv + mv(x
2
v,c + y2

v,c) sym.

−mv(xv,csϕv + yv,ccϕv) mv

mv(xv,ccϕv − yv,csϕv) 0 mv


 . (3.37)

Here mv is the mass of the AGV, (xv,c, yv,c) the coordinates of its center of gravity expressed

in 9v , and Iv the moment of inertia corresponding to the center of gravity. The subscript

v̄ in Mv̄,v indicates that the inertia tensor is expressed using the coordinate frame of vector

fields (eϕ, ex , ey). Later on we will express the inertia tensor in the frame of vector fields

(eϕ, eu, ev), and denote this as Mv,v = Mv . The inertia tensor defines a so-called Riemannian

metric on the manifold, which is a norm for the magnitude of velocity vectors. We can for

example use the metric to compute the kinetic co-energy Ek of the rigid body for a given

velocity q̇v:

Ek = 1
2
q̇T
v Mv̄,v(qv)q̇v. (3.38)

For a given metric M , there is one particular unique connection that has some special proper-

ties. This special connection is called the Levi-Civita connection. Its connection coefficients

are computed from the metric M as

Ŵk
i j = 1

2
M lk

(
∂Ml j

∂q i
+ ∂Mli

∂q j
− ∂Mi j

∂ql

)
. (3.39)

Here Mi j denotes the (i, j)th component of M , and M i j denotes the (i, j)th component of

M−1. When the connection coefficients of the Levi-Civita connection are expressed in a

coordinate frame of vector fields, as we did here, they are also known as the Christoffel

symbols of the second kind. For the AGV there are only two Christoffel symbols of the

second kind that are nonzero:

(Ŵv̄,v)xϕϕ = −xv,ccϕv + yv,csϕv (3.40)

(Ŵv̄,v)y
ϕϕ = −xv,csϕv − yv,ccϕv (3.41)

Again we added the superscript v̄ to indicate that the connection coefficients are expressed

in the coordinate frame of vector fields (eϕ, ex , ey). Note that the connection coefficients

depend on ϕv , but not on xv and yv . Now that we have the connection coefficients and,

hence, the acceleration of the vehicle, we are ready to introduce the equations of motion for

the AGV:

(q̈v)
k + (Ŵv̄,v)kpr (q̇v)

p(q̇v)
r = (Mv̄,v)

ks(W v̄)s . (3.42)

4To be precise, the inertia tensor is a 2-covariant tensor. Here we used the basis (e∗
ϕ , e∗

x , e∗
y)⊗ (e∗

ϕ , e∗
x , e∗

y), with

(e∗
ϕ , e∗

x , e∗
y) the unique frame of co-vector fields that corresponds to the frame of vector fields (eϕ , ex , ey).
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The left-hand side represents the geometrical acceleration of the AGV, and W v̄ is the gen-

eralized force acting on the AGV. Generalized forces acting on rigid bodies are also called

wrenches [114]. Although we will simplify the notation for the equations of motion in the

next section, in equation (3.42) we can readily recognize the formula a = m−1 f that we

already saw in the dynamical equations (3.35)-(3.36) for the apple in section 3.4.2.

Body fixed coordinates

It is more convenient to express the equations of motion (3.42) in ‘body fixed’ coordinates. In

other words, in terms of the components of the twist T v,0
v , or, equivalently, in terms of the co-

ordinates that correspond to the frame of vector fields (eϕ, eu, ev). The matrix representation

of the inertia tensor expressed in body fixed coordinates equals

Mv = AdT
H v̄

v
Mv̄,v AdH v̄

v
=




Iv + mv(x
2
v,c + y2

v,c) −mv yv,c mvxv,c

−mv yv,c mv 0

mvxv,c 0 mv


 (3.43)

Mv,v was abbreviated to Mv for notational convenience. The connection coefficients that

represent the Levi-Civita connection are expressed in this alternative frame of vector fields

(eϕ, eu, ev) as well, which yields four nonzero components (Ŵv,v is abbreviated to Ŵv):

(Ŵv)uϕϕ = −xv,c (3.44)

(Ŵv)uϕv = −1 (3.45)

(Ŵv)vϕϕ = −yv,c (3.46)

(Ŵv)vϕu = +1. (3.47)

To express the equations of motion in a more convenient matrix notation, define the matrix

Ŵv,v = Ŵv as

Ŵv =



(Ŵv)

ϕ
ϕϕ (Ŵv)

ϕ
ϕu (Ŵv)

ϕ
ϕv

(Ŵv)uϕϕ (Ŵv)uϕu (Ŵv)uϕv

(Ŵv)vϕϕ (Ŵv)vϕu (Ŵv)vϕv


 =




0 0 0

−xv,c 0 −1

−yv,c 1 0


 (3.48)

Note that Ŵv is constant. The equations of motion in body fixed coordinates in matrix notation

are

Ṫ v,0
v + ωvŴvT v,0

v = M−1
v (W v)T (3.49)

The left-hand side again represents the geometric acceleration. Furthermore, W v is a row

vector with the components of the wrench that is exerted on the AGV expressed in 9v . The

row representation highlights that wrenches are of a covariant nature. The relation between

the twist and the relative position of the AGV with respect to the floor was given by equa-

tion (3.22), which we will reiterate here to complete the AGV’s equations of motion:

Ḣ0
v = H0

v T̃ v,0
v (3.50)
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For a single AGV, the net wrench acting on the AGV is equal to the wrench that is exerted by

the wheels on the AGV. Hence, the equation of motion for a single AGV satisfies

Ṫ v,0
v + ωvŴvT v,0

v = M−1
v (W v

w)
T, (3.51)

where W v
w is the wrench that is exerted by the wheels on the vehicle. The model for the

wheels is discussed in the next section.

3.5 Wheel model

The wrench W v
w that is exerted by the wheels on the AGV depends on the longitudinal and

lateral forces that are acting on each wheel. The model for a single wheel consists of two

parts. The kinematic part describes how the twist of wheel wi with respect to the floor is

related to the twist of the AGV with respect to the floor and the steering angles. The second

part is formed by the constitutive equations that describe the relation between the wrench that

is exerted by the wheel on the vehicle and the twist of the wheel with respect to the floor.

For the OLS vehicles, the longitudinal wheel forces are prescribed by electric drive sys-

tems, and the lateral wheel forces depend on the twist of the vehicle with respect to the floor

and the steering angles of the wheels. The steering angles are realized by electric servo sys-

tems.

3.5.1 Kinematics

Consider wheelwi of an arbitrary AGV. We attach a coordinate system9wi
to the wheel such

that the xwi
-axis is aligned with the wheel plane, the ywi

-axis is perpendicular to the wheel

plane, and the origin is at the center of the contact patch of the wheel. This is illustrated in

Figure 3.11. Furthermore, the steering angle δwi
for wheel wi is defined as the relative angle

of 9wi
with respect to 9v , see also Figure 3.11. Thus the steering angle is zero when the

xwi
-axes of 9wi

is aligned with the xv-axis of 9v . The relative position of the wheel with

w h e e l  p l a n e

n e u t r a l  s t e e r i n g

p o s i t i o n

s t e e r i n g  a n g l e

v e h i c l e  c o o r d i n a t e

s y s t e m

9wi

9v

δwi

Figure 3.11: Definitions of the coordinate system 9wi
and the steering angle δwi

for wheel

wi of an arbitrary AGV.

respect to the vehicle is parameterized by a homogeneous matrix H v
wi

that depends on the

steering angle δwi
of wheel wi , i.e. Hv

wi
= Hv

wi
(δwi

) . The twist of the wheel with respect to

the vehicle can be expressed in the 9wi
coordinate system and satisfies

T̃ wi ,v
wi

= Hwi
v Ḣv

wi
= Hwi

v

∂Hv
wi

∂δwi

∣∣∣∣
δwi

δ̇wi
. (3.52)
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The twist of the wheel with respect to the floor expressed in 9wi
reads

T̃ wi ,0
wi

= H
wi

0 Ḣ0
wi

= Hwi
v Hv

0

d H0
v Hv

wi

dt
= Hwi

v Hv
0 Ḣ0

v︸ ︷︷ ︸
T̃

v,0
v

Hv
wi

+ Hwi
v

I︷ ︸︸ ︷
Hv

0 H0
v Ḣv

wi︸ ︷︷ ︸
T̃

v,v
wi

= Hwi
v T̃ v,0

v Hv
wi

+ T̃ wi ,v
wi

, (3.53)

which can also be written as

T wi ,0
wi

= Ad
H

wi
v

T v,0
v + T wi ,v

wi
= T wi ,0

v + T wi ,v
wi

(3.54)

Here Ad
H

wi
v

depends on δwi
, and T

wi ,v
wi

generally depends on both δwi
and δ̇wi

. Thus we see

that the twist of the wheel with respect to the floor is equal to the twist of the vehicle with

respect to the floor plus the twist of the wheel with respect to the vehicle.

3.5.2 Constitutive equations

In section 3.2.3 it was discussed that there exist numerous tire models in the literature. All

models have in common that the relation between the quantities that represent the tire de-

formation and the induced wrench is approximately linear for normal operation. For more

extreme maneuvers, i.e. when a vehicle is subjected to high accelerations, the tire deforma-

tion becomes larger and nonlinearities start to appear. In the most extreme cases, e.g. during

braking with full wheel lock, the tire simply behaves as a piece of rubber that is dragged

over the ground. Since AGVs are operated such that extreme accelerations are avoided, the

tire deformation remains relatively small and the tire operates in its linear region. Therefore,

we will restrict ourselves to linear tire models. This means that the relation between the slip

and the induced force is linear. Additionally, attention is restricted to static tire models, i.e.

models where the relation between the slip and the induced wrench is static.

First we introduce the tire model that is used by FROG in its applications. Subsequently

we show that when some small terms are neglected, the FROG model is identical to the linear

tire models that are commonly found in literature.

FROG tire model

According to the FROG tire model, the wrench that is exerted by wheel wi on the vehicle

expressed in 9wi
reads

W wi ,v
wi

=
(

0 C
wi

long

θ̇wi
rwi

−(T
wi ,0
wi

)u

|θ̇wi
|rwi

−C
wi

lat

(T
wi ,0
wi

)v

|θ̇wi
|rwi

)
, (3.55)

with C
wi

long the longitudinal stiffness, C
wi

lat the lateral cornering stiffness, rwi
the wheel radius

of wheel wi . θ̇wi
is the wheel’s spin velocity, i.e. the rotational velocity of the wheel about

its shaft. Furthermore, (T
wi ,0
wi

)u denotes the second component and (T
wi ,0
wi

)v the third com-

ponent of T
wi ,0
wi

, respectively. The “0” in the equation above means that the aligning moment
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of the wheel is neglected. For the OLS vehicles, the longitudinal wheel force (W
wi ,v
wi

)u is

prescribed by a drive system. Solving the longitudinal wheel velocity (T
wi ,0
wi

)u for a given

longitudinal wheel force (W
wi ,v
wi

)u from the second component of equation (3.55) yields

(T wi ,0
wi

)u = θ̇wi
rwi

− |θ̇wi
|rwi

(W
wi ,v
wi

)u

C
wi

long

= θ̇wi
rwi

(
1 − (W

wi ,v
wi

)u

C
wi

long

sign(θ̇wi
)

)
(3.56)

This equation can for example be used to estimate the longitudinal velocity of the wheel

for a given measured spin velocity θ̇wi
and drive setpoint (W

wi ,v
wi

)u . Because during normal

operation |(W wi ,v
wi

)u/C
wi

long| < 0.1 [-], the last term in the equation above is always larger

than zero. The wheel radius rwi
is also larger than zero. Therefore, it follows that, according

to the FROG wheel model, the spin velocity θ̇wi
must have the same sign as the longitudinal

wheel velocity during normal operation:

sign(θ̇wi
) = sign(T wi ,0

wi
)u . (3.57)

After substituting this equality in equation (3.56), solving for 1

θ̇wi
rwi

and subsequently for

1

|θ̇wi
|rwi

results in

1

θ̇wi
rwi

=
1 − (W

wi ,v
wi

)u

C
wi
long

sign(T
wi ,0
wi

)u

(T
wi ,0
wi

)u
⇒ 1

|θ̇wi
|rwi

=
1 − (W

wi ,v
wi

)u

C
wi
long

sign(T
wi ,0
wi

)u

|(T wi ,0
wi

)u |
. (3.58)

By substituting the last expression in the third component of equation (3.55), we find that the

lateral wheel force (W
wi ,v
wi

)v satisfies

(W wi ,v
wi

)v = −C
wi

lat

(T
wi ,0
wi

)v

|(T wi ,0
wi

)u |


1 −

small︷ ︸︸ ︷
(W

wi ,v
wi

)u

C
wi

long

sign(T wi ,0
wi

)u


 . (3.59)

In the sequel we will neglect the contribution of the coupling term
(W

wi ,v
wi

)u

C
wi
long

sign(T
wi ,0
wi

)u to

the lateral wheel force. Thus for a given drive force (W
wi ,v
wi

)u , the wrench that is exerted by

wheel wi on the vehicle satisfies

W wi ,v
wi

=
(

0 (W
wi ,v
wi

)u −C
wi

lat

(T
wi ,0
wi

)v

|(T
wi ,0
wi

)u |

)
(3.60)

Relation to other wheel models described in literature

The slip quantities that are typically encountered in the tire models found in literature are

the slip angle α for the lateral tire behavior and the longitudinal slip κ for the longitudinal



58 Model

behavior. The slip angle αwi
for wheel wi is usually defined as

αwi
= arctan

(
(T

wi ,0
wi

)v

|(T wi ,0
wi

)u |

)
≈ (T

wi ,0
wi

)v

|(T wi ,0
wi

)u |
(3.61)

For our applications αwi
is small, typically less than 5 deg. Then αwi

is approximately equal

to the ratio of the lateral and longitudinal wheel velocities as indicated above. The longitudi-

nal slip κwi
for wheel wi is typically defined as

κwi
= θ̇wi

rwi
− (T

wi ,0
wi

)u

|(T wi ,0
wi

)u |
, (3.62)

where rwi
is the effective rolling radius of weel wi . The absolute signs in the denominator

are often left out when only forward driving is considered. Comparing the slip quantities αwi

and κwi
with the quantities that are used in the FROG tire model, i.e. respectively

(T
wi ,0
wi

)v

|θ̇wi
|rwi

and
θ̇wi

rwi
−(T

wi ,0
wi

)u

|θ̇wi
|rwi

(see equation (3.55)), then we see that they are very similar. In particular,

the slopes of the slip-force relation is identical for the zero slip situation. With the aid of side

slip angle αwi
, the wrench that is exerted by wheel wi on the vehicle can be written as

W wi ,v
wi

=
(
0 (W

wi ,v
wi

)u −C
wi

lat αwi

)
(3.63)

Note the linear relation between the lateral wheel force (W
wi ,v
wi

)v and the slip angle αwi
. The

slope is determined by the cornering stiffness C
wi

lat . This in correspondence with the linear,

static tire models that are found in literature.

Netto wrench exerted by the wheels on the vehicle

The netto wrench W v,v
w

def= W v
w that is produced by the n wheels together on the vehicle is

equal to the sum of the individual wrenches:

W v
w =

n∑

i=1

W v
wi

=
n∑

i=1

W wi ,v
wi

Ad
H

wi
v

(3.64)

Note that Ad
H

wi
v

depends on δwi
as H

wi
v depends on δwi

. For the OLS vehicles we have n = 2

as the caster wheel is assumed to produce no forces. This completes the model of the wheels.

3.5.3 Additional assumptions for OLS vehicles

The wheel units of the OLS vehicles were designed such that the center of the contact patch

of the wheels remains at the same place with respect to the vehicle when the wheels are

steered. This makes it possible to steer when the vehicle stands still without moving the
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vehicle. Therefore, for the OLS vehicles it is assumed that the origin of 9wi
is fixed with

respect to 9v . Then it is easily seen that the twist of wheel wi with respect to the vehicle

satisfies

T wi ,v
wi

=



δ̇wi

0

0


 . (3.65)

Since T
wi ,0
wi

= T
wi ,0
v + T

wi ,v
wi

(see equation (3.54)) and the u- and v-components of T
wi ,v
wi

are

zero for the OLS vehicles (see above), this implies that

(T wi ,0
wi

)u = (T wi ,0
v )u (3.66)

(T wi ,0
wi

)v = (T wi ,0
v )v. (3.67)

These equations (3.66)-(3.67) can be used to rewrite the wrench that is exerted by wheel wi

on the AGV (3.60) as

W wi ,v
wi

=
(

0 (W
wi ,v
wi

)u −C
wi

lat
(T

wi ,0
v )v

|(T
wi ,0
v )u |

)
. (3.68)

Thus the wrench that is exerted by a certain wheel on the OLS vehicle depends on the twist

T
wi ,0
v of the AGV with respect to the floor, but not on the twist T

wi ,v
wi

of the wheel with

respect to the AGV.

Alternative notation for wrenches exerted by wheels

To ease notation, define the longitudinal velocity uwi
, the lateral velocity vwi

, the longitudinal

force Fwi ,u and the lateral force Fwi ,v for wheel wi as

uwi
= (T

wi ,0
wi

)u = (T
wi ,0
v )u

vwi
= (T

wi ,0
wi

)v = (T
wi ,0
v )v

Fwi ,u = (W
wi ,v
wi

)u
Fwi ,v = (W

wi ,v
wi

)v

(3.69)

The assumption that the actuated wheels of the OLS AGV steer about the center of their

contact patch (3.66)-(3.67) was used in the first two equations. As the caster wheel is assumed

to exert no horizontal forces on the OLS AGVs, we consider the situation that i ∈ {1, 2} for

now. To express the wrench W v
w that is exerted by the wheels on the OLS vehicle in a more

convenient form, define matrix B as

B = B(δw1
, δw2

) =




Bw1,u

Bw2,u

Bw1,v

Bw2,v


 =




xv
w1

sδw1
− yv

w1
cδw1

cδw1
sδw1

xv
w2

sδw2
− yv

w2
cδw2

cδw2
sδw2

xv
w1

cδw1
+ yv

w1
sδw1

−sδw1
cδw1

xv
w2

cδw2
+ yv

w2
sδw2

−sδw2
cδw2


 (3.70)

Here (xv
wi
, yv

wi
) are the coordinates of the center of wheel wi expressed in 9v . It can be

shown that

uwi
= Bwi ,u T v,0

v (3.71)

vwi
= Bwi ,vT v,0

v . (3.72)
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Now the wrench W v
w that is exerted by the wheels on the vehicle can be written as

(W v
w)

T =
n∑

i=1

AdT

H
wi
v

(W
wi ,v
wi

)T = BT




Fw1,u

Fw2,u

−C
w1

lat

vw1
|uw1

|

−C
w2

lat

vw2
|uw2

|




=
(

Bw1,u

Bw2,u

)T (
Fw1,u

Fw2,u

)
−
(

C
w1

lat BT
w1,v

C
w2

lat BT
w2,v

)T




Bw1,v

|Bw1,u T
v,0
v |

Bw2,v

|Bw2,u T
v,0
v |


 T v,0

v

(3.73)

Although the expression above is tailored for the OLS vehicles with n = 2 actuated wheels,

it can easily be generalized to an AGV with n actuated wheels as long as they all steer about

the centers of their corresponding contact patches and the wheel slip remains small.

3.6 Model of a single AGV that is affine in the inputs

The equations of motion for the AGV that were derived in the previous sections consist of two

parts. One part describes the relation between the geometrical acceleration and the wrench

that is acting on the AGV (3.49). The other part relates the derivative of the AGV’s relative

position to the instantaneous relative twist of the AGV (3.50). As this thesis mainly focuses

on control at the velocity level of the AGV, we are mainly interested in the former. Recall

that acceleration of a single OLS AGV is described by (3.49)

Ṫ v,0
v + ωvŴvT v,0

v = M−1
v (W v

w)
T, (3.74)

with W v
w the wrench that is exerted by the wheels on the vehicle (3.73):

(W v
w)

T = BT




Fw1,u

Fw2,u

−C
w1

lat

vw1
|uw1

|

−C
w2

lat

vw2
|uw2

|


 . (3.75)

Here B depends on (δw1
, δw2

). If we consider the inputs to be (Fw1,u, Fw2,u, δw1
, δw2

) and

take the twist T v,0
v as the state x , then we see that equation (3.74) combined with equa-

tion (3.75) is of the form

ẋ = f (x, Fw1,u, Fw2,u, δw1
, δw2

). (3.76)

This model is obviously not affine in the inputs (Fw1,u, Fw2,u, δw1
, δw2

). This makes it for

example difficult to find the inputs corresponding to the equilibrium ẋ = Ṫ v,0
v = 0. In

addition, several analysis tools for nonlinear systems require that the nonlinear system is

affine in the inputs. It is therefore desirable to adjust the model such that it does become

affine in the inputs.
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First it is briefly discussed why two traditional methods to achieve input affinity are not

so appropriate for the AGV model. Subsequently, the model is approximated using the mo-

mentary twist T v,0
v of the vehicle with respect to the floor and the corresponding ‘kinematic

steering angles’ as a starting point. The simplified model will be used in Chapter 5 to show

that a single AGV is locally observable, and in Chapter 6 to show that the state is locally

strongly accessible.

3.6.1 Traditional methods

In handling dynamics studies of passenger cars and trucks, the steering angles δwi
remain

typically small: δwi
≈ 0. So in those studies the vehicle models are often linearized about the

nominal steering angle(s) δwi
= 0. In the OLS vehicles we consider, however, the steering

angles can become as large as 85 [deg]. Thus in our applications it is not justifiable to linearize

about δwi
= 0 to produce a system that is affine in the inputs.

Another method to achieve input affinity is by defining new inputs ν1...2n that are equal to

the derivatives of the original inputs (see e.g. p. 190 in [89]). Then the system becomes

Ṫ v,0
v = f (T v,0

v , Fw1,u, Fw2,u, δw1
, δw2

) (3.77)

Ḟwi ,u = νi (3.78)

δ̇wi
= νn+i , (3.79)

with x = (T v,0
v , Fw1,u, Fw2,u, δw1

, δw2
)T the new state. Although the above model is indeed

affine in the new inputs ν1...2n , the new state has dimension seven and the model is as complex

as the original model. Therefore, we will follow a different approach to achieve affine inputs.

Before we discuss the approximation, we will first introduce the concept of the kinematic

steering angle.

3.6.2 Kinematic steering angle

Suppose that the twist T v,0
v of the vehicle with respect to the floor is given. If wheel wi is

modelled as a nonholonomic constraint, i.e. such that wheel slip cannot occur, then the wheel

plane must be aligned with the velocity vector of the wheel. Otherwise motion is not possible.

The steering angle δ̄wi
corresponding to this theoretical, nonholonomic situation is called the

kinematic steering angle for wheel wi . When there is no lateral wheel slip, this implies that

T
wi ,0
wi

is of the form

T wi ,0
wi

= Ad
H

wi
v

T v,0
v + T wi ,v

wi
=




∗
∗
0


 . (3.80)

We already saw with equation (3.65) that the last component of T
wi ,0
wi

is zero for the OLS

vehicles. Furthermore, the relative position of wheel wi with respect to the vehicle is given

by

Hv
wi

=




cδwi
−sδwi

xv
wi

sδwi
cδwi

yv
wi

0 0 1


 , (3.81)
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and the relative position of the vehicle with respect to the wheel wi satisfies

Hwi
v = (Hv

wi
)−1 =




cδwi
sδwi

−xv
wi

cδwi
− yv

wi
sδwi

−sδwi
cδwi

xv
wi

sδwi
− yv

wi
cδwi

0 0 1


 , (3.82)

with (xv
wi
, yv

wi
) the coordinates of the wheel center expressed in 9v , and (x

wi
v , y

wi
v ) the coor-

dinates of the origin of 9v expressed in 9wi
. Hence,

Ad
H

wi
v

=




1 0 0

y
wi
v cδwi

sδwi

−x
wi
v −sδwi

cδwi


 =




1 0 0

xv
wi

sδwi
− yv

wi
cδwi

cδwi
sδwi

xv
wi

cδwi
+ yv

wi
sδwi

−sδwi
cδwi


 . (3.83)

Use this expression to rewrite the bottom row of equation (3.80) as

0 = (xv
wi

cδwi
+ yv

wi
sδwi

)(T v,0
v )ϕ − sδwi

(T v,0
v )u + cδwi

(T v,0
v )v

=
(

xv
wi
(T v,0

v )ϕ + (T v,0
v )v

)
cδwi

+
(

yv
wi
(T v,0

v )ϕ − (T v,0
v )u

)
sδwi

=
(
xv
wi
ωv + vv

)
cδwi

+
(
yv
wi
ωv − uv

)
sδwi

. (3.84)

All solutions to this transcendental equation are [44]

δwi
= arctan

(
xv
wi
ωv + vv

−yv
wi
ωv + uv

)
+ kπ, k ∈ N. (3.85)

In theory, each solution corresponds to a kinematic steering angle δ̄wi
. By physical consid-

erations, we select the one with the smallest absolute value. This yields the relation between

the kinematic steering angle δ̄wi
and the twist of the vehicle T v,0

v that we were looking for:

δ̄wi
= arctan

(
xv
wi
ωv + vv

−yv
wi
ωv + uv

)
(3.86)

Finally, we define a new coordinate system 9w̄i
such that its origin coincides with the origin

of 9wi
and that its relative rotation with respect to 9v equals δ̄wi

. This is illustrated in

Figure 3.12.

3.6.3 Approximation based on the momentary twist

We will use these kinematic steering angles that correspond to the momentary twist T v,0
v as

the basis for our approximation. Since the slip angle αwi
for wheel wi is in fact defined as the

difference between the kinematic steering angle δ̄wi
and the true steering angle δwi

, see also

equation (3.61), the latter can be written as

δwi
= δ̄wi

− αwi
sign(uwi

) = δ̄wi
− αwi

sign(uw̄i
) (3.87)



3.6. Model of a single AGV that is affine in the inputs 63

w h e e l  p l a n e

n e u t r a l  s t e e r i n g

p o s i t i o n

k i n e m a t i c  s t e e r i n g  a n g l e

s t e e r i n g

p o l e
w h e e l  c e n t e r ' s

v e l o c i t y  v e c t o r

C

9w̄i
δ̄wi

Figure 3.12: Definition of the kinematic steering angle δ̄wi
and coordinate system 9w̄i

for

wheel wi .

The sign is added to account for backwards driving. Here uwi
is the longitudinal velocity

of the wheel center with respect to the floor expressed in 9wi
. Analogously, uw̄i

is the

longitudinal velocity of the wheel center with respect to the floor expressed in 9w̄i
. For

|δwi
| < π

2
it holds that

sign(uwi
) = sign(uw̄i

). (3.88)

Matrix B will be approximated using first order Taylor expansion around the kinematic steer-

ing angles δ̄wi
. The derivatives of the rows of B with respect to the steering angles satisfy

∂Bwi ,u

∂δwi

= ∂

∂δwi

(
xv
wi

sδwi
− yv

wi
cδwi

cδwi
sδwi

)

=
(
xv
wi

cδwi
+ yv

wi
sδwi

−sδwi
cδwi

)
= Bwi ,v (3.89)

∂Bwi ,v

∂δwi

= ∂

∂δwi

(
xv
wi

cδwi
+ yv

wi
sδwi

−sδwi
cδwi

)

=
(
−xv

wi
sδwi

+ yv
wi

cδwi
−cδwi

−sδwi

)
= −Bwi ,u (3.90)

and

∂Bwi ,u

∂δw j

= ∂Bwi ,v

∂δw j

= 0, i 6= j. (3.91)

Hence, the first order Taylor approximation for B around the kinematic steering angles δ̄wi
is

B =




Bw1,u

Bw2,u

Bw1,v

Bw2,v


 ≈




B̄w1,u − ∂ Bw1,u

∂δw1

∣∣∣
δ̄w1

αw1
sign(uw̄1

)

B̄w2,u − ∂ Bw2,u

∂δw2

∣∣∣
δ̄w2

αw2
sign(uw̄2

)

B̄w1,v − ∂ Bw1,v

∂δw1

∣∣∣
δ̄w1

αw1
sign(uw̄1

)

B̄w2,v − ∂ Bw2,v

∂δw2

∣∣∣
δ̄w2

αw2
sign(uw̄2

)




=




B̄w1,u − B̄w1,vαw1
sign(uw̄1

)

B̄w2,u − B̄w2,vαw2
sign(uw̄2

)

B̄w1,v + B̄w1,uαw1
sign(uw̄1

)

B̄w2,v + B̄w2,uαw2
sign(uw̄2

)


 ,

(3.92)
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where 


B̄w1,u

B̄w2,u

B̄w1,v

B̄w2,v


 =




Bw1,u(δ̄w1
)

Bw2,u(δ̄w2
)

Bw2,v(δ̄w2
)

Bw2,v(δ̄w2
)


 = B̄ (3.93)

Substitute this in (3.75), neglect the slip angles for the longitudinal forces Fwi ,u , neglect the

higher order terms with α2
wi

, and use B̄wi ,vT v,0
v = 0 to arrive at

(W v
w)

T ≈
(
B̄T

w1,u
B̄T

w2,u

) (Fw1,u

Fw2,u

)
−




C
w1
lat B̄T

w1,v B̄w1,uαw1
sign(uw̄1

)

|B̄w1,u T
v,0
v |

C
w2
lat B̄T

w2,v B̄w2,uαw2
sign(uw̄2

)

|B̄w2,u T
v,0
v |


 T v,0

v

=
(
B̄T

w1,u
B̄T

w2,u
−C

w1

lat B̄T
w1,v

−C
w2

lat B̄T
w2,v

)



Fw1,u

Fw2,u

αw1

αw2




(3.94)

Here we used that B̄w1,u T v,0
v sign(uw̄i

) = |B̄wi ,u T v,0
v |. The physical interpretation of the

above approximation is that the longitudinal drive forces Fwi ,u are tangent to the instan-

taneous motion of the corresponding wheel centers. The lateral tire forces −C
wi

lat αwi
act

perpendicular to the instantaneous motion of the corresponding wheel centers, i.e. in the di-

rection of the steering pole. This is illustrated in Figure 3.13. Next, define the inputs u as

s t e e r i n g

p o l e

r e a r

w h e e l

f r o n t

w h e e l

C

Fw2,u

−C
w2
lat
αw2

Fw1,u

−C
w1
lat
αw1

Figure 3.13: Physical interpretation of the approximated wheel forces in the simplified AGV

model.

u =




Fw1,u

Fw2,u

αw1

αw2


 (3.95)

From equation (3.94) we see that there is a linear relation between the wrench W v
w and the

above inputs u. Take x = T v,0
v as the vehicle state. Since the mass matrix M−1

v of the vehicle
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is constant, we see that with the approximations above the vehicle model is now of the form

ẋ = f (x)+ g(x)u, (3.96)

with

f (x) = −ωvŴvT v,0
v (3.97)

and

g(x) = M−1
v

(
B̄T

w1,u
B̄T

w2,u
−C

w1

lat B̄T
w1,v

−C
w2

lat B̄T
w2,v

)
. (3.98)

As desired, the simplified model is affine in the inputs u.

3.7 Model of the interconnected system

In the cooperative transportation applications we consider, multiple AGVs operate together to

transport a load. Whereas the previous sections deal with modeling of the dynamic behavior

of single AGVs, this section will treat the modeling of the interconnected system consisting

of an arbitrary number AGVs and a single load.

3.7.1 Equation of motion for the load

It is assumed that the load can be modelled as a planar rigid body. Therefore, the equations of

motion for the load are very similar to the equations of motion for a single AGV (3.49). We

fix a coordinate system 9ℓ to the load. Let us denote the twist of the load with respect to the

floor and expressed in 9ℓ as T
ℓ,0
ℓ , and denote the wrench that is exerted by all the vehicles

on the load and expressed in 9ℓ as W
ℓ,ℓ
V

def= W ℓ
V . Then the equations of motion for the load

are written as

Ṫ
ℓ,0
ℓ + ωℓŴℓT

ℓ,0
ℓ = M−1

ℓ (W ℓ
V )

T (3.99)

The matrices Ŵℓ and Mℓ are given by equations (3.43) and (3.48), respectively. The wrench

W ℓ
V that is exerted by all the AGVs on the load is the sum of the AGVs’ individual wrenches

on the load:

W ℓ
V = W ℓ

v1
+ . . .+ W ℓ

vN
=

N∑

k=1

W ℓ
vk
, (3.100)

where N is the number of AGVs and W ℓ
vk

the wrench that is exerted by AGV k on the load.

3.7.2 Interconnections

The ultimate goal of our transportation task is to move a certain object from one place to

another. The motion of the object can be influenced by exerting wrenches on the object,

which is also illustrated by equation (3.99). In our case the net wrench W ℓ
V that is applied

to the load is produced by the wrenches W ℓ
vk

that are exerted by the individual AGVs on the

load. If we want to be able to move the load in an arbitrary direction, then all the AGVs

together must be able to generate a net wrench W ℓ
V in any arbitrary direction.



66 Model

The wrench W ℓ
vk

that is applied by an individual AGV to the load depends on how the

load is interconnected to that particular AGV. If the load is boldly fixed to the AGV, then

wrenches can be transmitted in any direction. If the load is attached using a revolute joint,

then forces can be transmitted at the joint, but it is not possible to transmit a torque.

Lower pairs and allowed twists

We will restrict ourselves to interconnections between the AGV and the load that are so-called

lower pairs. As any interconnection, a lower pair restricts the relative motion T i,ℓ
vk

between

the AGV and the load. For a lower pair, the twist T i,ℓ
vk

between AGV k and the load can

be expressed as the product of a constant matrix Si,k times a reduced set of new “velocity”

coordinates ηk ∈ Rd.o.f.:

T i,ℓ
vk

= Si,kηk, ηk ∈ Rd.o.f. (3.101)

The first subscript i denotes the coordinate system 9i , which is fixed to either the load or the

AGV. Without loss of generality we assume that Si,k has full column rank. Then the (column)

rank of Si,k is equal to the degrees of freedom (d.o.f.) of the lower pair, or, equivalently, three

minus the degrees of freedom that are fixed by the lower pair. Examples of lower pairs that

are often encountered in practice include:

• Fully rigid interconnection. The fully rigid interconnection is also called a rigid

kinematic pair ([114], p.41). There are zero degrees of freedom, hence Si,k = ∅;

• Prismatic joint. This is also called slider joint. One translational motion is free. When

the origin of 9i is fixed to one of the two bodies, then Si,k is of the form ( 0 a b )T,

with a2 + b2 = 1, and ηk ∈ R represents the sliding velocity of the prismatic joint;

• Revolute joint. This interconnection allows rotation about one particular axis between

the two bodies. Si,k takes a special form when 9i is fixed to one of the bodies and

when in addition its origin coincides with the rotation axis of the revolute joint. For

that situation Si,k equals ( 1 0 0 )T, and ηk ∈ R represents the rotational velocity of the

revolute joint;

• No interconnection. The bodies are physically separated. It is also called a degenerate

kinematic pair ([114], p.41). There is no restriction on the motion between the two

bodies, e.g. Si,k = I 3×3. This situation is not relevant for our cooperative transporta-

tion application.

By pre-multiplying either equation (3.101) by Ad
H

j
i

, it follows that Si,k transforms as

S j,k = Ad
H

j
i

Si,k . (3.102)

Note that we did not require that 9 j is fixed to the load or to the AGV. Thus although here

Si,k is constant as 9i was either fixed to the load or the AGV, S j,k is generally not constant.

Finally, we remark that the set (T i,ℓ
vk
)A of all the twists T i,ℓ

vk
that are allowed by a lower pair

between the AGV and the load can be expressed in terms of the image of the matrix Si,k :

(T i,ℓ
vk
)A = Im Si,k (3.103)
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The reader is referred to e.g. pp. 46–50 of the book by Stramigioli [114] for more information

on lower pairs.

Constrained wrenches

It was already argued that the wrenches W ℓ
vk

that can be transmitted from a certain AGV to the

load depend on how the AGV is interconnected to the load. In case that the interconnection

between a particular AGV k and the load is a lower pair, then the set of allowed twists (T i,ℓ
vk
)A

is equal to the image of a matrix Si,k that characterizes the interconnection. The wrenches

that can be transmitted from an AGV to the load through the fixed degrees of freedom, e.g.

by exploiting the kinematic constraints of the lower pair, are called the constraint wrenches

(see [114], p.49). The set of constraint wrenches (W i,ℓ
vk
)C for the lower pair between AGV k

and the load satisfies

(W i,ℓ
vk
)C = ann Si,k = {W i,ℓ

vk
∈ se∗(2) | W i,ℓ

vk
Si,k = 0} (3.104)

in other words, the set (W i,ℓ
vk
)C of constraint wrenches consists of all the wrenches that an-

nihilate Si,k . From physical considerations we require that all the AGVs together can exert

a net wrench W ℓ
V on the load in any arbitrary direction. This means that the union of all the

sets of constraint wrenches must be equal to the entire wrench space se∗(2). For notational

convenience we express all the constraint sets in a common coordinate system9ℓ that is fixed

to the load. In these coordinates, it must hold that

(W ℓ
V )

C =
N⋃

k=1

(W ℓ
vk
)C =

N⋃

k=1

ann Sℓ,k = se∗(2). (3.105)

Since
N⋃

k=1

ann Sℓ,k = ann (

N⋂

k=1

Im Sℓ,k) (3.106)

should be equal to se∗(2), it follows that condition (3.105) is equivalent to

N⋂

k=1

Im Sℓ,k = 0 (3.107)

We will need this condition for the observer design that is discussed in subsection 5.5 of

Chapter 5.

3.7.3 Equations of motion for the interconnected system

In the previous subsections we saw that the equations of motion for the load and a single

AGV k are given by (3.99) and (3.49), i.e.

Ṫ
ℓ,0
ℓ + ωℓŴℓT

ℓ,0
ℓ = M−1

ℓ (W ℓ
V )

T (3.108)

Ṫ vk ,0
vk

+ ωvk
Ŵvk

T vk ,0
vk

= M−1
vk
(W vk

w − W vk ,ℓ
vk

)T. (3.109)
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Here W ℓ
V is the net wrench that is exerted by all the AGVs on the load, W

vk
w is the wrench

that is exerted by the wheel on AGV k, and W
vk ,ℓ
vk

is the wrench that is exerted by AGV k

on the load. There are N AGVs and one load, so there are 3(N + 1) twists to describe the

system (3.108)-(3.109). However, the various AGV-load interconnections reduce the number

of freedoms. Since the interconnections we consider are lower pairs, it is relatively easy to

describe the dynamics of the system (3.108)-(3.109) with a reduced set of coordinates η. For

notational convenience we will illustrate the procedure using two AGVs and a load, but it

is straightforward to generalize it to an arbitrary number of AGVs. As new coordinates we

take the twist T
ℓ,0
ℓ of the load with respect to the floor plus the variables ηk that express the

motion of AGV k with respect to the load. First we transform all the twists T
vk ,0
vk

to the load

coordinate system 9ℓ:

AdHℓ
vk

T vk ,0
vk

= T ℓ,0
vk

= T
ℓ,0
ℓ + T ℓ

vk
= T

ℓ,0
ℓ + Sℓ,kηk, (3.110)

If we stack the twists of the load and the AGVs with respect to the floor in a single vector T

and express them all in the load coordinate system 9ℓ, then we obtain

T =




T
ℓ,0
ℓ

T ℓ,0
v1

T ℓ,0
v2


 =




I 0 0

I Sℓ,1 0

I 0 Sℓ,2




︸ ︷︷ ︸
S




T
ℓ,0
ℓ

η1

η2




︸ ︷︷ ︸
η

= Sη (3.111)

We would like to express the equations of motion in terms of Ṫ . This requires the derivatives

of T
ℓ,0
ℓ and T ℓ,0

vk
. The derivative of T

ℓ,0
ℓ follows straightforward from (3.108). The derivative

of T ℓ,0
vk

satisfies

Ṫ ℓ,0
vk

= d

dt

(
AdHℓ

vk
T vk ,0

vk

)
= ȦdHℓ

vk
T vk ,0

vk
+ AdHℓ

vk
Ṫ vk ,0

vk

= AdHℓ
vk

ad
T

vk ,ℓ
vk

T vk ,0
vk

+ AdHℓ
vk

Ṫ vk ,0
vk

= AdHℓ
vk

ad
T

vk ,ℓ
vk

T vk ,0
vk

+ AdHℓ
vk

(
−ωvk

Ŵvk
T vk ,0

vk
+ M−1

vk
(W vk

w − W vk ,ℓ
vk

)T
)

= AdHℓ
vk
(ad

T
vk ,ℓ
vk

− ωvk
Ŵvk

)T vk ,0
vk

+ AdHℓ
vk

M−1
vk
(W vk

w − W vk ,ℓ
vk

)T, (3.112)

where

ad
T

vk ,ℓ
vk

=




0 0 0

−vvk ,ℓ
vk

0 ω
vk ,ℓ
vk

u
vk ,ℓ
vk

−ωvk ,ℓ
vk

0


 , T vk ,ℓ

vk
=



ω

vk ,ℓ
vk

u
vk ,ℓ
vk

v
vk ,ℓ
vk


 . (3.113)

Since S is constant because the interconnections are lower pairs, the derivative Ṫ is related to

η by

Ṫ = Ṡη + Sη̇ = Sη̇. (3.114)
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Next, define the mass matrix for the interconnected system and expressed in 9ℓ as

M =




Mℓ 0 0

0 AdT

H
v1
ℓ

Mv1
Ad

H
v1
ℓ

0

0 0 AdT

H
v2
ℓ

Mv2
Ad

H
v2
ℓ


 =




Mℓ 0 0

0 Mℓ,v1
0

0 0 Mℓ,v2


 (3.115)

Here Mℓ,vk
is the inertia tensor of AGV k expressed in 9ℓ. If we pre-multiply Ṫ

ℓ,0
ℓ (3.108)

with Mℓ, and Ṫ ℓ,0
vk

(3.112) with AdT

H
vk
ℓ

Mvk
Ad

H
vk
ℓ

, then we obtain

MṪ =




MℓṪ
ℓ,0
ℓ

Mℓ,v1
Ṫ ℓ,0

v1

Mℓ,v2
Ṫ ℓ,0

v2


 =




−ωℓMℓŴℓT
ℓ,0
ℓ + (W ℓ

V )
T

AdT

H
v1
ℓ

Mv1
(ad

T
v1,ℓ
v1

− ωv1
Ŵv1

)T
v1,0
v1

+ AdT

H
v1
ℓ

(W
v1
w − W

v1,ℓ
v1

)T

AdT

H
v2
ℓ

Mv2
(ad

T
v2,ℓ
v2

− ωv2
Ŵv2

)T
v2,0
v2

+ AdT

H
v2
ℓ

(W
v2
w − W

v2,ℓ
v2

)T




=




−ωℓMℓŴℓT
ℓ,0
ℓ + (W ℓ

v1
)T + (W ℓ

v2
)T

AdT

H
v1
ℓ

Mv1
(ad

T
v1,ℓ
v1

− ωv1
Ŵv1

)T
v1,0
v1

+ AdT

H
v1
ℓ

(W
v1
w )

T − (W ℓ
v1
)T

AdT

H
v2
ℓ

Mv2
(ad

T
v2,ℓ
v2

− ωv2
Ŵv2

)T
v2,0
v2

+ AdT

H
v2
ℓ

(W
v2
w )

T − (W ℓ
v2
)T


 = M Sη̇. (3.116)

Subsequently, we will eliminate the constraint wrenches W ℓ
v1

and W ℓ
v2

. The usual way to do

this is by pre-multiplying (3.116) with the matrix ST, see e.g. [29]. Since W ℓ
vk

∈ annSℓ,k

implies that ST
ℓ,k(W

ℓ
vk
)T = 0, we find that

ST



(W ℓ

v1
)T + (W ℓ

v2
)T

−(W ℓ
v1
)T

−(W ℓ
v2
)T


 =




I I I

0 ST
ℓ,1 0

0 0 ST
ℓ,2





(W ℓ

v1
)T + (W ℓ

v2
)T

−(W ℓ
v1
)T

−(W ℓ
v2
)T


 =




0

0

0


 . (3.117)

Hence, the constraint wrenches will indeed drop out of the equation. Pre-multiplying (3.116)

with ST results in

ST M Sη̇ = ST




−ωℓMℓŴℓT
ℓ,0
ℓ

AdT

H
v1
ℓ

Mv1
(ad

T
v1,ℓ
v1

− ωv1
Ŵv1

)T
v1,0
v1

AdT

H
v2
ℓ

Mv2
(ad

T
v2,ℓ
v2

− ωv2
Ŵv2

)T
v2,0
v2


+ ST




0

AdT

H
v1
ℓ

(W
v1
w )

T

AdT

H
v2
ℓ

(W
v2
w )

T


 (3.118)

The last term on the right-hand side represents the forces that are applied by the wheels on

the AGVs, and can be considered as the inputs of the interconnected system. Since S has full

column rank, the “mass” matrix ST M S of the reduced system is invertible. Hence, an explicit

expression for the derivatives η̇ is easily found by pre-multiplying the above equation (3.118)

by (ST M S)−1. The equation of motion (3.118) for an interconnected system in reduced

coordinates
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4

Tuning

4.1 Introduction

Accurate identification of effective wheel diameters and steering encoder offsets is a prerequi-

site for achieving accurate AGV operation. Estimation errors in the effective wheel diameters

lead to incorrect estimates for the AGV’s velocity and travelled distance. Inaccurate steer-

ing encoder offset settings result in crabwise or rotational motions in situations where the

vehicle is expected to drive a straight line. Furthermore, the AGV solely relies on the in-

tegration of its odometric data to calculate position estimates in between absolute position

measurements. Sometimes the absolute reference system consists of grid points that are in-

distinguishable from one another. This is for instance the case for the magnet grid in the hall

of FROG Navigation Systems, which was used for the experiments that are discussed in this

chapter and in Chapter 7. For such reference systems, the position estimate from the AGV’s

position observer is used to identify the magnets that are detected by the vehicle. When the

position estimate is unreliable due to poor calibration, then this may lead to identification of

the wrong magnets.

Since rough estimates are always available, we do not have to start from scratch to identify

the steering angle encoder offsets and effective wheel diameters. Nominal wheel diameters

are specified by the manufacturer and can also be measured by hand up to a certain accuracy.

Steering encoders often have an index pulse that corresponds approximately to the zero posi-

tion, and the offsets can also be estimated by merely looking at the wheels. Since the nominal

wheel diameters and visually identified steering encoder offsets are used as a starting point in

our estimation procedure, we refer to this procedure as tuning.

Apart from the effective wheel diameters and steering encoder offsets, several other pa-

rameters are required to operate an AGV at the desired accuracy. In particular, the mass of

the AGV, the position of its center of gravity, its moment of inertia, and the friction forces

in the wheels are important parameters. The mass properties were provided by FROG and

can be measured quite easily, with exception of the moment of inertia. An elegant way to

determine the complete inertia tensor for a rigid body experimentally (including the moment

of inertia) is described by Previati et al. [100]. Furthermore, it is important to know the fric-

tion phenomena that occur in the driveline, such as the loss torques of the electromotors and

the losses that occur in the reduction between the wheels and the motor. A simple Coulomb

friction model with a different friction force for driving forwards and backwards is used to

model the friction of the OLS vehicles. The parameters were tuned manually such that the

vehicle maintains its motion when the gain of the velocity controller is set to zero.

In this chapter we will focus on the identification of steering encoder offsets and effective

wheel diameters. It is assumed that the positions of the wheels and the magnet ruler are
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known. We start with a brief discussion of related work. Subsequently, we present a three-

step procedure to estimate the steering encoder offsets and the effective wheel diameters. The

procedure has been tested in practice on both our test vehicles, which were designed to be

identical in hardware. The results are presented, and the influence of different vehicle loads

on the estimated parameters is investigated. Although the discussion of the tuning procedure

is tailored to the OLS AGVs, it is easily generalized to other vehicles with two actuated

wheels and one or more magnet rulers.

4.2 Related work

Practically all wheeled mobile robot applications use odometry as an aid to estimate the cur-

rent velocity and position of the robot. Drive encoders measure the rotation of wheels when

its rolling, and steering encoders measure the steering angles of the steerable wheels. Boren-

stein and Feng [20] list several reasons why inaccuracies occur when the encoder readings

are translated to linear velocities. They classify the various error sources as ‘systematic er-

rors’ (unequal wheel diameters, misalignment of the wheels, etc.) and ‘nonsystematic errors’

(travel of uneven floors, wheel slippage due to slippery floors, etc.). Furthermore, Borenstein

and Feng point out that odometry errors on smooth indoor surfaces are mainly attributed to

systematic errors, whereas nonsystematic errors are dominant on rough surfaces with sig-

nificant irregularities. The aim of calibration is to minimize the systematic errors. In our

case, that means finding the steering encoder offsets and wheel diameters of the two actuated

wheels for the OLS vehicles.

The wheeled mobile robot (WMR) literature is dominated by differential-drive robots,

which have two actuated parallel wheels and one or more passive, free rotating caster wheels.

Since the actuated wheels are not steerable, there are of course no steering encoders on these

wheels. Sometimes a caster wheel is equipped with a steering encoder, but this situation

is rather rare. Hence, the WMR community focuses on the calibration of differential-drive

robots, and, in particular, the identification of the wheel radii and the wheel base of the

driven wheels. Calibration procedures for more complex vehicles such as car-like vehicles

or vehicles with multiple steering wheels, e.g. the Phileas or our OLS vehicles, are hardly

seen. Also, identification of steering encoders and wheel diameters is not an important topic

in vehicle dynamics studies. Therefore, the literature survey below focuses on the WMR

literature.

4.2.1 Wheeled mobile robots

Borenstein and Feng [20] introduced a bidirectional (i.e. clockwise and counterclockwise)

square path experiment for calibrating the wheel radii and the wheel base for differential-

drive mobile robots. In their procedure, the robot is driven around a 4×4 m square for several

times in clockwise as well as in counterclockwise direction. The wheel base and the radii of

the left and right wheels are estimated from the initial and final pose measurements together

with the encoder readings. The method that was proposed by the authors has become quite

popular, and is known as the UMBmark method.

Chong and Kleeman [26] describe how they used the UBMmark method to calibrate their
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differential-drive “Werrimbi” robot. To overcome non-systematic odometry errors related to

wheel slip, their robot is equipped with two dedicated ‘encoder wheels’ that are mounted par-

allel to the two driven wheels. The encoder wheels are sharp-edged to reduce the wheel base

uncertainty. They are mounted on linear bearings to ensure contact with the floor. Estimated

parameters are the wheel base of the encoder wheels and their radii.

The paper by McKerrow and Ratner [80] discusses the calibration of a four-wheeled car-

like mobile robot that was build from an electric wheel chair. The front wheels are caster

wheels equipped with steering encoders, and the rear wheels are actuated and equipped with

drive encoders. Two methods for estimating the steering encoder offsets are proposed. In the

first method the steering encoder offset is calibrated mechanically by turning the front wheels

until they just touch a straight edge. As a second method the authors propose to drive the robot

along a straight edge while simultaneously using an ultrasonic sensor to measure the distance

between the robot and the edge. The steering encoder offset is estimated by considering the

radius of the realized curve. The authors also discuss an extension to the UMBmark method

to estimate the distance between the front and rear wheels and the relation between the drive

encoder counts and the driven distance.

Caltabiano et al. [23] describe an Extended Kalman Filter (EKF) for estimating the wheel

radii, wheel base and pose of their “Robovolc” mobile robot. Robovolc is a robot that was

designed for volcano exploration. It has three driven wheels on either side that cannot steer.

Changing the orientation of the robot is accomplished by means of ‘skid-steering.’ The avail-

able measurements are two optical encoder readings (from one wheel at each side) and ab-

solute position measurements from a DGPS system. Since the proposed EKF automatically

estimates the odometry parameters (wheel radii of the encoder wheels and the wheel base)

during operation, the authors suggest that a dedicated, time-consuming calibration phase as

with the UMBmark method is not required.

Martinelli [74] proposes a strategy for estimating four odometry-related parameters of

their three-wheeled Nomad 150 robot that features a synchronous drive system. The pro-

posed method only requires measuring the change in the pose between the initial and the

final position of the robot. In another work, Martinelli et al. [75] adopted the Augmented

Kalman Filter (AKF) by Larsen et al. [71] to estimate the wheel base and wheel radii of their

differential-drive robot “Donald Duck.” Martinelli et al. use encoder readings as inputs and

laser range finder as observations for the AKF. The contribution of Martinelli et al. is that

they extended the AKF to estimate a non-systematic component of the odometry.

Antonelli et al. [9] describe a least-squares-based technique for odometry calibration

for a unicycle-like mobile robot based on absolute position measurements before and after

completing several suitably defined trajectories. Instead of identifying the usual differential-

drive robot parameters (i.e. the radii of the two wheels and the wheel base), Antonelli et al.

choose to identify the four elements of the 2×2 matrix that relates the rotational velocities

of the left and right wheel to the rotational and forward velocity of the robot. This makes

their method somewhat more general. Another advantage of the new parameters set is that

the problem becomes linear in the parameters, which makes it relatively easy to solve us-

ing a pseudo-inverse. Furthermore, the authors point out that the condition number of the

regressors provide information on the ‘optimality’ of the trajectories.

The works by Hardt et al. [125, 126] focus on the calibration of the odometry, magnetic

compass and gyroscope of their four-wheel outdoor differential-drive mobile robot “RO-
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MANE” (RObot Mobile Autonome de Navigation en Extérieur). In [126], the wheel base

is estimated by a linear least squares estimator and the wheel radii by approximately driv-

ing a straight and manually measuring the distances covered by the left and right wheel. In

[125], the authors propose a generalized least squares approach to identify parameters and

present the estimation of the wheel base, magnetic compass and gyroscope parameters of the

ROMANE robot as an example.

Roy and Thrun [103] discuss the estimation of odometry parameters in a stochastic, max-

imum likelihood setting. They propose to use only two parameters that respectively represent

the systematic translational and rotational components of the odometry error of their four-

wheel synchro-drive “RWI B21” mobile robot. The systematic odometry errors are assumed

to be linearly related to the driven distance. The robot is equipped with a SICK laser range

finder and 24 sonar sensors to provide absolute position measurements.

4.2.2 Positioning of our work

To the best of our knowledge, there is currently no systematic approach for estimating two or

more steering encoder offsets available. The robots that are described in literature are always

equipped with at least one fixed axis which is assumed to have a steering angle equal to zero.

In other words, those wheels are assumed to be perfectly aligned with the vehicle. Since there

is no fixed axis in our case as all wheels are steerable, we have the additional problem that

inaccurate steering encoder offsets result in a crab-like motions, i.e. a motion with a nonzero

side slip angle. Therefore, the procedure by McKerrow and Ratner [80] where the steering

encoder offset is determined by considering the radius of the realized curve is not appropriate

for our vehicles. Although their method does provide information on the difference in the

steering encoder offsets, it does not yield information about their common term.

Furthermore, our vehicles are equipped with an absolute positioning system that differs

from the systems generally found in mobile robotics. Our magnet measurement systems

returns the position of the detected magnet in vehicle coordinates. This means that a single

measurement provides very accurate information about the absolute position of one specific

point on the vehicle, namely the point on the vehicle that corresponds to the position of the

detected magnet. However, a single magnet measurement does not provide any information

on the orientation of the vehicle. Although it is certainly possible to equip the vehicles with

a SICK laser range finder and ultrasonic sensors, we prefer to use the magnet measurement

system that is readily available.

Also, we prefer to work with parameters that have a direct physical interpretation rather

than using lumped or artificial parameters. Besides the possibility to intuitively verify the

results with physically meaningful parameters, another important reason is that the odometry

parameters are used in the observer as well as for control. To translate the drive motor torques

to the forces that are exerted on the floor, it is required to know the diameter of the wheels

and the offsets of the steering encoders.

Finally, we decided to assume that the position of the wheels is known. Although we

recognize that correct identification of the wheel base is very important for differential-drive

robots with a small wheel base, we believe that the main systematic odometry errors in our

test vehicles stem from the unknown steering encoder offsets.
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4.3 Procedure

Goal of the tuning procedure is to estimate the offsets of the steering angle encoders and the

effective wheel diameters. It is assumed that the relative positions of the wheels with respect

to the vehicle are known. The effective wheel diameter is twice the effective wheel radius,

and for notational convenience we will use the effective wheel radius in this section. Let us

denote the effective wheel radius and the steering angle offset for wheel wi by respectively

rwi
and δoffset

wi
, where i ∈ {1, . . . , n} for a vehicle with n sensed wheels and i ∈ {1, 2} for

the OLS vehicles. The procedure that we propose to estimate rwi
and δoffset

wi
consists of three

steps:

1. In the experimental part of our procedure, we fix the steering angles δwi
of the wheels

and then drive a certain distance at a low, constant speed. Ideally, this should result in a

perfect circular trajectory. An example of a realized experiment with our OLS 2 test

vehicle is depicted in Figure 4.1.
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Figure 4.1: Estimated circular trajectory between the first and last detected magnets for low

speed experiment 22 of the OLS 2 test vehicle (see section 4.6 for a more detailed description

of this experiment). The vehicle was driving backwards.

2. The second step is to reconstruct the circular trajectory of the AGV from the sensor

data that have been logged in step one. The available sensors are:

• a magnet ruler that detects magnets that are buried in the floor; the number of

magnets that have been detected is denoted by m; the magnet ruler returns the

relative position Mv(k) of the detected magnet with respect to the AGV in the

vehicle coordinate system 9v , where k ∈ {1, . . . ,m};
• steering encoders that measure the steering angles δencoder

wi
of the wheels; the

steering angles remain (approximately) constant during the experiment;
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• drive encoders that measure the rotations of the wheels at the time instances

k that the magnet ruler detects a magnet; the encoder readings ϑwi
(k) are “un-

wrapped,” such that they are either monotonically increasing or monotonically

decreasing;

• the AGV’s position observer that remained active during the calibration exper-

iments estimated the trajectory of the AGV by integrating the (relatively poorly

calibrated) odometric sensor data, and by performing corrections based on the

magnet ruler’s measurements; the position observer’s estimate corresponding to

the kth detected magnet is denoted by H 0
v,a-priori(k); this data is used to identify

the floor position of the detected magnet and to establish an initial estimate for

the circular trajectory that was performed by the vehicle;

• the intended magnet positions G0(k) of the detected magnets as expressed in the

floor coordinate system 90; the magnets are placed in a regular grid, and G0(k)

corresponds to the position where the magnet was intended to be placed; it is

computed by using the AGV’s a-priori position estimate to transform the magnet

measurement Mv(k) to its approximate floor coordinates

M0
a-priori(k) = H 0

v,a-priori(k)M
v(k), (4.1)

and subsequently identifying the grid position G0(k) that is the closest to the

a-priori estimate M0
a-priori(k).

The shape of the AGV’s circular trajectory is parameterized by the position (a, b) of the

steering pole with respect to the floor and by the position (Rv, βv) of the steering pole

with respect to the vehicle. Here (a, b) are the (x, y)-coordinates of steering pole as

expressed in the floor coordinate system 90, and Rv and βv are respectively the signed

radius and the side slip angle corresponding to the motion of the vehicle coordinate

system 9v . The reader is referred to section 3.3.4 for more information on the steering

pole parametrization using Rv and βv . The AGV’s position along the circular trajectory

is parameterized by the path variable Sv , see Figure 4.2. The definitions of Sv = 0 for

a left-hand (Rv > 0) and a right-hand (Rv < 0) turn are also depicted in the figure.

The situation Rv = 0 is not considered, because in our experiments the AGV always

performs curved motions. The relation between the drive encoder measurement ϑwi
(k)

of wheelwi at the time of magnet detection k and the path variable Sv(k) corresponding

to that magnet measurement is modelled as

Sv(k) = cwi
ϑwi

(k)+ owi
+ ξwi

(k). (4.2)

Here cwi
(in meters/count) describes the increase in the path variable Sv per drive en-

coder count of wheel wi , and owi
represents the AGV’s position when wheel wi ’s

unwrapped drive encoder reading ϑwi
= 0. Furthermore, ξwi

(k) is the measurement

noise. We will see later that cwi
is related to the effective wheel radius of wheel

wi and to the ratio of the signed radii of the motions of the vehicle coordinate sys-

tem 9v and the wheel center. Because the signed radius of the realized trajectory

varies between experiments, cwi
and owi

will also vary from experiment to exper-

iment. The AGV’s trajectory is described in terms of the intermediate parameters
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θ = (a, b, Rv, βv, cwi
, owi

), and we will minimize a nonlinear least-squares criterion

to estimate these parameters.

3. The third and last step of our tuning procedure is to translate the circular trajectory of

the AGV, which was parameterized by (a, b, Rv, βv, cwi
, owi

), into the to-be-estimated

parameters rwi
and δoffset

wi
. From the intermediate parameters we can compute the so-

called kinematic steering angles δ̄wi
, which are the virtual wheel angles that would

correspond to perfect tracking of the wheels. Because we assumed that the positions

of the wheels are known, we can also compute the radius Rwi
of the circular trajectory

of wheel wi for the experiment. In this step, we assume that there was no wheel slip

during the experiment. That is also the reason why the experiment was performed at

a low speed. This allows us to compute the effective wheel radius rwi
and the steering

encoder offset δoffset
wi

from Rwi
, δ̄wi

, the intermediate parameters (βv, Rv, cwi
), and the

steering encoder reading δencoder
wi

. The presence of lateral wheel slip would result in a

bias term for the estimated steering encoder offset δoffset
wi

, and longitudinal wheel slip

would result in a bias term for the estimated effective wheel radius rwi
.

The first two steps of this procedure are applicable to vehicles with an arbitrary number of

wheels. In the third step we had to assume that there was no wheel slip to be able to translate

the identified trajectory to the steering encoder offsets and effective wheel radii. An OLS

vehicle has two actuated wheels and one caster wheel. If we assume that the caster wheel

does not exert horizontal forces on the floor and if we assume that the longitudinal wheel

forces are very small due to the low vehicle speed, then we can safely assume that the wheel

slip is negligibly small during the experiment. This still holds when the steering encoder

offsets are not precisely known.

For vehicles with three or more steerable wheels, however, inaccurate steering encoder

offsets will result in substantial lateral wheel slip. For these kind of vehicles, we may first

tune the steering encoder offsets heuristically such that the counteracting lateral wheel forces

are minimized. Subsequently, we can carry out the three-step procedure that is discussed

above.

In the next section 4.4, we discuss the estimation of the realized circular trajectory by

means of identifying the intermediate parameters (a, b, Rv, βv, cwi
, owi

). The computation

of the estimates for the steering encoder offsets δoffset
wi

and the effective wheel radii rwi
is

detailed in section 4.5. Experimental results are presented and analyzed in section 4.6.

4.4 Estimation of the circular trajectory

In this section we will present a method for estimating the trajectory that was realized by

the AGV during the experimental part of our calibration procedure. Since the steering an-

gles were kept constant during the experiment, we assume that the realized trajectory is a

pure circle segment. Consequently, the steering pole C is assumed to remain constant with

respect to the floor as well as with respect to the AGV during our experiment. As we dis-

cussed in the previous section, the available measurements are the positions M v(k) of the m

detected magnets with respect to the vehicle, the rotations ϑwi
(k) of the wheels as measured
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Figure 4.2: Parametrization of the vehicle’s circular motion.

by the drive encoders, the position estimates H 0
v,a-priori(k) from the AGV’s position observer,

and the intended floor positions G0(k) of the detected magnets. The steering angle encoder

measurements δencoder
wi

not used for the estimation of the trajectory. For the OLS vehicles we

have two sensed wheels, i.e. i ∈ {1, 2}.
The circular trajectory is parameterized by (a, b, Rv, βv, cwi

, owi
). Recall that (a, b) is

the position of the steering pole with respect to the floor coordinate system 90, (Rv, βv) is

the position of the steering pole with respect to the vehicle coordinate system9v , and cwi
and

owi
represent the relation between the path variable Sv and the drive encoder readings ϑwi

for

wheel wi . It is remarked that, as long as the wheel slip remains constant during the vehicle

trajectory under consideration, the procedure for estimating the circular trajectory will work

for an arbitrary number of wheels.

The parameter estimates for the circular trajectory will be based on the minimization of

a nonlinear least-squares criterion. Before we introduce the criterion, we will first discuss

the noise sources ξx (k), ξy(k), and ξwi
(k) and introduce the definitions of the radial residuals

ξr (θ, k) and the tangential residuals ξti (θ, k).

4.4.1 Radial residuals

The most important source of noise or modelling inaccuracies stems from the precision at

which the magnets are placed in the floor. The grid position at which the k th detected magnet

was intended to be placed is denoted by G0(k). Usually the magnets are arranged according

to a regular grid. The true magnet position G0
t (k) will slightly deviate from its intended

grid position G0(k) due to e.g. inaccuracies in the drilling of the hole in which the magnet

is placed. The relation between the unknown true magnet position G0
t (k) and the known
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intended magnet position G0(k) is modelled as

G0
t (k) = G0(k)+



ξx (k)

ξy(k)

0


 (4.3)

Here ξx (k) and ξy(k) represent the deviations in respectively the x- and y-directions of the

true magnet position with respect to the intended magnet position. This is also illustrated in

Figure 4.3. It is assumed that the deviations ξx (k) and ξy(k) are normally distributed with

zero mean and standard deviation σM , i.e.

(
ξx (k)

ξy(k)

)
∼ N

((
0

0

)
,

(
σ 2

M 0

0 σ 2
M

))
. (4.4)

Because there is no reason to assume that the placement of the magnets is more accurate in

one direction than in another direction, ξx (k) and ξy(k) are assumed to have the same standard

deviation and to be uncorrelated. From Figure 4.3 we see that the distance RG(k) from the
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Figure 4.3: Relations between the true magnet position G0
t (k), the intended magnet position

G0(k), the steering pole C , and the radial residual ξr (θ, k).

intended magnet position G0(k) to the steering pole C0 equals

RG(k) = ‖G0(k)− C0‖ =
√
(G0

x (k)− a)2 + (G0
y(k)− b)2. (4.5)

Analogously, we can compute the distance RM (k) from the magnet ruler’s measurement

Mv(k) to the steering pole Cv , as both are expressed in the vehicle coordinate system 9v:

RM (k) = ‖Mv(k)− Cv‖2 =

∥∥∥∥∥∥




Mv
x (k)+ Rvsβv

Mv
y (k)− Rvcβv

0



∥∥∥∥∥∥

2

=
√
(Mv

x (k)+ Rvsβv)2 + (Mv
y (k)− Rvcβv)2. (4.6)

We assume that the errors in the measurements Mv(k) of the magnet ruler can be neglected,

as these errors are much smaller than the deviations ξx (k) and ξy(k). This means that the
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magnet ruler’s measurement Mv(k) coincides exactly with the true magnet position G0
t (k).

Therefore, the distance between the true magnet position and the steering pole C 0 is equal to

RM (k). The radial residuals ξr (θ, k) are defined as

ξr (θ, k) := RM (k)− RG(k), k ∈ {1, . . . ,m}, (4.7)

see also Figure 4.3. Substitution of the expressions (4.5)-(4.6) for RG(k) and RM (k) in this

definition results in

ξr (θ, k) =
√
(Mv

x (k)+ Rvsβv)2 + (Mv
y (k)− Rvcβv)2 −

√
(G0

x (k)− a)2 + (G0
y(k)− b)2

(4.8)

Hence, the radial residuals ξr (θ, k) depend on the intermediate parameters (a, b, Rv, βv), on

the (perfect) magnet ruler’s measurements Mv(k), and on the known grid positions G0(k)

at which the detected magnets were intended to be placed in the floor. To relate the radial

residuals ξr (θ, k) to the noise sources ξx (k) and ξy(k), with the aid of Figure 4.3 we write the

distance RM (k) from the true magnet position G0
t (k) to the steering pole C0 as

RM (k) =
√(

G0
t,x (k)− a

)2 +
(
G0

t,y(k)− b
)2

=
√
(
G0

x (k)+ ξx (k)− a
)2 +

(
G0

y(k)+ ξy(k)− b
)2

=
√

RG(k)2 + 2(G0
x (k)− a)ξx (k)+ 2(G0

y(k)− b)ξy(k)+ ξx (k)2 + ξy(k)2

≈
√

RG(k)2 +
2(G0

x (k)− a)ξx (k)+ 2(G0
y(k)− b)ξy(k)+ ξx (k)

2 + ξy(k)
2

2
√

RG(k)2

≈ RG(k)+
(G0

x (k)− a)ξx (k)+ (G0
y(k)− b)ξy(k)√

(G0
x (k)− a)2 + (G0

y(k)− b)2
. (4.9)

The square root was approximated using a first order Taylor expansion around RG(k). Since

RG(k) is typically larger than 10 meters and ξx (k) and ξy(k) are smaller than 0.01 meters,

this approximation is allowed. The quadratic terms ξx (k)
2 and ξy(k)

2 have been neglected

because they are small when compared to the other terms. Substitution of the last expres-

sion (4.9) in (4.7) yields the relation between the radial residuals ξr (θ, k) and the noise

sources ξx (k) and ξy(k) that we were looking for:

ξr (θ, k) ≈
(G0

x (k)− a)ξx (k)+ (G0
y(k)− b)ξy(k)√

(G0
x (k)− a)2 + (G0

y(k)− b)2
∼ N (0, σ 2

M ) (4.10)

Thus we see that the radial residuals ξr (θ, i) are approximately normally distributed with

mean zero and standard deviation σM , i.e. the standard deviation at which the magnets were

placed in the floor.
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4.4.2 Tangential residuals

To derive an expression for the tangential residuals ξti (θ, k), we recall from equation (4.2) that

the relation between the true path variable Sv(k) and the unwrapped drive encoder reading

ϑwi
(k) of wheel wi corresponding to the k th detected magnet was modelled as

Sv(k) = cwi
ϑwi

(k)+ owi
+ ξwi

(k) (4.11)

Here cwi
is the increase in the path variable Sv per drive encoder count ϑwi

, owi
is the AGV’s

position when the encoder reading of wheel wi is ϑwi
= 0, and ξwi

(k) is an additive noise

term that represents the modeling error. Next, we consider the relation between the true

vehicle position Sv(k), the magnet measurement Mv(k), the intended magnet grid position

G0(k), the true magnet position G0
t (k), and the intermediate parameters θ that parameterize

the AGV’s circular trajectory. To this end, we will first define the auxiliary angles αv,t (k)

and αv,t (k) according to Figure 4.4. From the figure we see that αv(k) is the angle between

the vertical axis and the line that connects the steering pole C0 and the grid position G0(k)

at which the magnet was intended to be placed in the ground. Similarly, αv,t (k) is the angle

between the vertical axis and the line that connects the steering pole C 0 and the true magnet

position G0
t (k). The angles αv(k) are “unwrapped” such that the difference between subse-

quent αv(k)’s is always smaller than 2π . From Figure 4.4 we find that the expressions for

αv(k) and αv,t (k) are given by

αv(k) = arctan2
(

G0
x (k)− a , sign(Rv)

(
b − G0

y(k)
) )

+ 2πkk (4.12)

αv,t (k) = arctan2
(

G0
x (k)+ ξx (k)− a , sign(Rv)

(
b − G0

y(k)− ξy(k)
) )

+ 2πkk

≈ αv(k)+
−(G0

y(k)− b)ξx (k)+ (G0
x (k)− a)ξy(k)

Rv

√
(G0

x (k)− a)2 + (G0
y(k)− b)2

. (4.13)

We take k1, i.e. the unwrap factor corresponding to the first measurement, equal to zero:

k1 = 0. Furthermore, we define the angle γv(k) as the angle between the line that connects

the magnet measurement Mv(k) and the steering pole Cv and the line that connects the origin

of the vehicle coordinate system9v with the steering pole Cv . This is illustrated in Figure 4.4.

If we assume that |γv(k)| < π
2

, then we see from the figure that

γv(k) = sign(Rv) arctan

(
Mv

x (k)cβv + Mv
y (k)sβv

Rv + Mv
x (k)sβv − Mv

y (k)cβv

)
. (4.14)

As we described before, the magnet measurement Mv(k) is modelled as being perfect. It

therefore follows from Figure 4.4 and equation (4.13) that the true AGV position Sv(k) is

related to Rv , γv(k), and αv(k) by

Sv(k) = |Rv|αv(k)− |Rv|γv(k)+ ξs(θ, k) (4.15)

with

ξs(θ, k) = |Rv|
(
αv,t (k)− αv(k)

)
. (4.16)
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Figure 4.4: Definition of the auxiliary angles αv(k), αv,t (k), and γv(k).

From (4.12)-(4.13) we see that

ξs(θ, k) ≈ sign(Rv)
−(G0

y(k)− b)ξx (k)+ (G0
x (k)− a)ξy(k)√

(G0
x (k)− a)2 + (G0

y(k)− b)2
∼ N (0, σ 2

M ) (4.17)

If we denote the number of wheels by n, then we see from equations (4.11) and (4.15) that

we have n + 1 expressions for the unknown true AGV position Sv(k) corresponding to the

kth magnet detection. It is possible to eliminate the unknown AGV position Sv(k) from these

equations by subtracting equation (4.15) from the n other equations (4.11). If we define the

tangential residual ξti (θ, k) for wheel wi as

ξti (θ, k) = ξs(θ, k)− ξwi
(k) (4.18)

then it follows from equations (4.11) and (4.15) that

ξti (θ, k) = cwi
ϑwi

(k)+ owi
+ |Rv|γv(k)− |Rv|αv(k) (4.19)

Hence, we see that the tangential residuals ξti (θ, k) depend on the intermediate parame-

ters (a, b, Rv, βv, cwi
, owi

), on the (perfect) magnet ruler measurements Mv(k), and on the

known grid positions G0(k) at which the detected magnets were intended to be placed in the

floor. In equation (4.17) we saw that ξs(θ, k) was normally distributed with zero mean and

standard deviation σM . In contrast, ξwi
(k) is generally not normally distributed as it is mainly

related to the the unroundness of the wheels and the quantization errors that stem from the

digital drive encoders. Therefore, we can not conclude that the tangential residuals ξti (θ, k)

will follow a normal distribution. In particular, the tangential residual ξti (θ, k) will only be

normally distributed when the errors ξwi
(k) are small as compared to ξs(θ, k).
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4.4.3 Nonlinear least-squares estimator

In the previous two subsections we saw that the radial residuals ξr (θ, k) and the tangential

residuals ξti (θ, k) were defined by

ξr (θ, k) = RM (k)− RG(k) (4.20)

ξti (θ, k) = cwi
ϑwi

(k)+ owi
+ |Rv|γv(k)− |Rv|αv(k), (4.21)

with k ∈ {1, . . . ,m} and i ∈ {1, . . . , n}. Here m id the number of measurements, n is the

number of wheels, and RM (k), RG(k), γv(k) and αv(k) all depend on θ . We will use an

estimator θ̂ that minimizes the sum of squares of the residuals. Because relation between

the residuals and the to-be-estimated parameters θ is nonlinear, this results in a nonlinear

least-squares (NLSQ) optimization problem. In particular, we estimate our parameters θ =
(a, b, Rv, βv, cwi

, owi
) such that

θ̂ = arg min
θ

(
m∑

k=1

ξr (θ, k)2 +
n∑

i=1

m∑

k=1

ξti (θ, k)2

)
(4.22)

The first term with ξr (θ, k) is independent of the choice of the vehicle coordinate system 9v ,

and represents the sum of the squared radial geometric distances between the true and the

intended magnet grid positions. The second term with ξti (θ, k) does depend on the choice of

9v . For practical situations, however, 9v is somewhere fixed to the vehicle and the distance

between 9v and the magnet ruler’s measurements Mv(k) is quite small compared to the ra-

dius |Rv| of the realized circular trajectory. Therefore, in practice the second term represents

for each wheel the sum of the squared geometric distances between the tangential deviations

of the true magnet position from their intended positions minus the encoder inaccuracies of

that wheel.

There are a variety of methods available to solve the NLSQ problem (4.22). We adopted

the Gauss-Newton algorithm for our experiments, because this method was successfully used

by Gander et al. [43] to find circles and ellipses for which the sum of the squares of the

geometric distances to a given set of points was minimal. The procedure that we used is

detailed in Appendix A.

4.5 Calculation of steering angle encoder offset and effec-

tive wheel radius

This section discusses how the steering encoder offset δoffset
wi

and the effective wheel ra-

dius rwi
for wheel wi can be estimated from the circular trajectory that was identified in

the previous section. The circular trajectory was described by the intermediate parameters

θ = (a, b, Rv, βv, cwi
, owi

). From this set we will only use the variables (Rv, βv, cwi
). From

the parameters (Rv, βv) and the known position H v
i of the wheel center with respect to the

vehicle, we reconstruct the kinematic steering angle δ̄wi
that is compatible with the performed

motion and the signed radius of the circular trajectory that was performed by the wheel cen-

ter. Subsequently, the steering encoder offset δoffset
wi

and the effective wheel radius rwi
are

calculated.
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4.5.1 Kinematic steering angle and signed radius of the wheel center

We attach a coordinate system 9i to the vehicle such that its origin corresponds with the

wheel center of wheel wi and such that its x-axis indicates the neutral steering position of the

wheels. This is illustrated in Figure 4.5. The steering angle δwi
is defined as the angle between

the wheel plane and the x-axis of the coordinate system 9i .
1 In section 3.6.2 of Chapter 3

we saw that the kinematic steering angle δ̄wi
corresponds to the (theoretical) situation that

the wheel plane is perfectly aligned with the motion of the wheel center. This means that the

angle between the wheel plane and the line that connects the wheel center with the steering

pole Cv is exactly 90 deg. This is sketched in Figure 4.6. Figure 4.6 shows that the kinematic

steering angle δ̄wi
of wheel wi corresponds exactly to the side slip angle βi of the motion

of coordinate system 9i . The position of 9i with respect to 9v is assumed to be known.

The position of the steering pole Cv with respect to 9v as parameterized by (Rv, βv) was

estimated in the previous section. Therefore, we can use the procedure that was discussed in

subsection 3.3.4 to compute the side slip angle βi . Thus to compute the kinematic steering

angle δ̄wi
= βi , we first transform the expression for the steering pole from9v to9i to obtain

C i :

C i =




−Rwi
sδ̄wi

Rwi
cδ̄wi

1


 = H i

vCv = H i
v




−Rvsβv

Rvcβv

1


 , (4.23)

with H i
v = (Hv

i )
−1 the relative position of 9v with respect to 9i , and Cv is the position of

the steering pole as expressed in vehicle coordinates 9v . For simplicity we assume that 9i

and 9v have the same orientation, i.e. that they are of the form

H i
v =




1 0 x
wi
v

0 1 y
wi
v

0 0 1


 =




1 0 −xv
wi

0 1 −yv
wi

0 0 1


 , (4.24)

with −(xwi
v , y

wi
v ) = (xv

wi
, yv

wi
) the coordinates of the wheel center expressed in 9v . From

expressions (4.23)-(4.24) we see that

C i = H i
v




−Rvsβv

Rvcβv

1


 =




−Rvsβv − xv
wi

Rvcβv − yv
wi

1


 (4.25)

1Note that this definition does not hold anymore when the steering angles exceed ±90 deg. For the OLS vehicles,

however, the absolute values of the steering angles are always smaller than 90 deg.
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Figure 4.5: Definition of the steering angle δwi
.
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Figure 4.6: Coordinate system 9i , kinematic steering angle δ̄wi
, and the signed radius Rwi

of the wheel center’s motion.

Finally, by equating (4.25) with (4.23) it follows that the kinematic steering angle δ̄wi
and the

signed radius Rwi
of the circular motion performed by wheel wi satisfy

δ̄wi
= − arctan

(
C i

x

C i
y

)
= arctan

(
Rvsβv + xv

wi

Rvcβv − yv
wi

)

Rwi
= sign(C i

y)
√
(C i

x )
2 + (C i

y)
2

= sign(Rvcβv − yv
wi
)

√
R2

v + (xv
wi
)2 + (yv

wi
)2 + 2xv

wi
Rvsβv − 2yv

wi
Rvcβv

(4.26)

Here C i
x and C i

y respectively denote the first and second component of C i as computed

with (4.25). To compute estimates for δ̄wi
and Rwi

, we simply substitute the estimated pa-

rameters R̂v and β̂v of the previous section in the expressions above.

4.5.2 Steering encoder offsets and effective wheel radius

For all the analyses that were performed previously in this chapter it was assumed that the

vehicle executed a pure circular motion and that the wheel slip was constant during this

maneuver. Therefore, all previous results hold for vehicles with multiple active wheels. To

compute the steering encoder offsets δoffset
wi

and the effective wheel radius rwi
we need

to restrict the constant wheel slip assumption to the case that there is zero wheel slip. In

that case, the true steering angle δwi
is equal to the kinematic steering angle δ̄wi

:

δwi
= δ̄wi

. (4.27)

Then the steering angle offset δw,offset for wheel wi is computed as

δoffset
wi

= δ̄wi
− δencoder

wi
(4.28)
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Here δ̄wi
is the kinematic steering angle (4.26), and δencoder

wi
is the steering encoder reading

converted to radians. Because the wheels’ steering angles are controlled by local steering

controllers, the encoder data may fluctuate by some counts during the motion. Therefore,

δencoder
wi

is taken to be the average of the encoder readings between the first and the last magnet

measurement that are used to reconstruct the circular trajectory.

To compute the effective wheel radius rwi
, we recall that the parameter cwi

represents

the number of meters travelled by the origin of 9v per drive encoder count ϑwi
of wheel

wi . As can be seen from Figure 4.6, the signed radii Rv and Rwi
of the motions that are

performed by the vehicle coordinate system 9v and the center of wheel wi are generally not

identical. Consequently, the distances travelled by the center of wheel wi differs from the

distance travelled by 9v . From Figure 4.6 we see that the number of meters travelled by the

center of wheel wi per drive encoder count ϑwi
of that wheel equals

K meters/count
wi

= cwi

Rwi

Rv

(4.29)

Let us denote the number of encoder counts per radian wheel rotation by K
counts/rad
wi

. It can be

computed from the encoder specifications and the known gear ratio of the reduction between

the encoder shaft and the wheel shaft. Since we assumed that there is no wheel slip, the

effective wheel radius rwi
equals

rwi
= K meters/count

wi
K counts/rad

wi
= cwi

Rwi

Rv

K counts/rad
wi

(4.30)

This concludes the calculation of the steering encoder offset δoffset
wi

and the effective wheel

radius rwi
.

4.6 Experimental results

This section discusses the experimental results for estimating the steering encoder offsets and

the effective wheel diameters2 of the OLS 1 and the OLS 2. For improved readability we

take i ∈ {F, R}, where i = F denotes the front wheel and i = R denotes the rear wheel.

First, thirty experiments were carried out without load with both vehicles at very low speeds

(≈ 0.2 m/s) to minimize the influence of lateral and longitudinal wheel slip. This resulted in

thirty circular trajectories for each vehicle. Subsequently, several experiments were carried

out at three medium speed levels (0.6, 0.9, 1.2 m/s) and with varying loads (0, 50, 100 kg)

to investigate how this would influence the parameter estimates that were obtained during

the first set of experiments. Six experiments were carried out at each medium speed/load

combination. This resulted in fifty-four circular trajectories per vehicle.

4.6.1 General issues and a priori parameter settings

For all experiments, the steering angles were kept constant by providing a constant planar

velocity setpoint to the vehicle controller. Magnet measurement outliers occurred when the

2The effective wheel diameter is simply twice the effective wheel radius.
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detected magnet was closer than 2 mm to one of the ends of the magnet ruler, when the

same magnet was detected twice, or when the data association resulted in an off-magnet grid

position after no magnets were detected for some time. These outliers were removed from the

analyses. In addition, one measurement in low speed experiment 29 for the OLS 1 (see next

subsection) was removed from the analyses because it produced a radial residual of 73 mm,

which was much larger than the rest of the residuals. Inspection of the logged steer encoder

data revealed that, after a short transient effect, the steering angles remained constant within a

few encoder counts. When larger deviations than a few encoder counts occurred, only the part

of the data was selected where the deviations remained small. A typical example of steering

and unwrapped drive encoder data is displayed in Figure 4.7. For the steering angles, optical
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Figure 4.7: Steering encoder data (top panel) and unwrapped drive encoder data (bottom

panel) for the OLS 2 for low speed experiment 22. The AGV was driving backwards during

this experiment. The resolutions of the steer and drive encoders are respectively 17.4603

counts per degree steering angle and 11.0000 counts per degree wheel rotation.

encoders with a resolution of 2000 counts per revolution are connected through a reduction

of 3.14286 to the steering axis, thus the number of counts per degree steering angle is

2000×3.14286

2π
= 1000.40 counts/rad steering angle = 17.4603 counts/deg steering angle.

(4.31)

To measure the rotation of the wheels, optical encoders with a resolution of 400 counts per

revolution are connected using a reduction of 9.9 to the drive shafts, hence the number of

counts per degree wheel rotation equals

400×9.9

2π
= 630.254 counts/rad wheel rotation = 11.0000 counts/deg wheel rotation.

(4.32)

The nominal wheel diameter of 150 mm corresponds to approximately 150/(2 × 630.254) =
0.12 mm/count. In all analysis, the drive encoder data was unwrapped to obtain an affine

relation between the drive encoder data and the rotation of the wheel.
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In FROG’s control software, the steering encoder measurements δencoder
wi

(t), drive encoder

measurements ϑwi
(t), and magnet measurements Mv(k) are stored together with their corre-

sponding time stamps. Whereas the encoder measurements are read at a fixed sample rate,

the magnet measurements take place asynchronously. Therefore, linear interpolation is used

to estimate the encoder positions at the time instance k of the magnet measurement M v(k).

Linear interpolation is particularly appropriate in this case, as the vehicles operate at constant

speed during the experiments.

The a-priori parameters settings for the steering angle offsets and the effective wheel

diameters that were used during the calibration experiments are listed in Table 4.1.

Parameter OLS 1 OLS 2

Front steering angle offset (mrad) 20 10

Rear steering angle offset (mrad) 10 −20

Difference (mrad) 10 30

Front effective wheel diameter (mm) 151.5, 151.8 151.5, 151.8

Rear effective wheel diameter (mm) 152.5, 152.8 152.5, 152.8

Table 4.1: A-priori steering angle offsets and wheel diameters for the OLS 1 and the OLS 2.

Because the software distinguishes between a wheel diameter used in odometry computations

and a wheel diameter for relating wheel torques to forces on the floor, two numbers are listed

for these parameters (they should normally be equal).

4.6.2 Low speed experiments

For both the OLS 1 and the OLS 2, several tests were carried out at approximately 0.2 m/s.

The constant planar velocity setpoints were selected in such a way that the vehicles performed

circular motions at five different curvatures R−1
v with a desired side slip angle βv of zero

degrees (see section 3.3.4 for the definitions of Rv and βv). Each test was performed three

times forwards, and three times backwards. This resulted in thirty low speed experiments

for each vehicle. An overview of the low speed experiments is given in Table 4.2. As the

experiments were numbered afterwards, i.e. they were not necessarily carried out in the order

that is listed in the table.

Experiment Curvature (m−1) Velocity (m/s) Load (kg)

1. . .6 0.08 ±0.2 0

7. . .12 0.06 ±0.2 0

13. . .18 0.00 ±0.2 0

19. . .24 −0.06 ±0.2 0

25. . .30 −0.08 ±0.2 0

Table 4.2: Overview of the low speed experiments. The vehicles drive forwards for the odd

numbered experiments, and backwards for the even numbered experiments.
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Estimated motion radius Rv and side slip angle βv

The radius Rv and side slip angle βv of the circular trajectory performed by the vehicle

coordinate system 9v were estimated using the procedure that was described in sections 4.3

and 4.4. Figure 4.8 displays the setpoints and the estimated values for the OLS 1 and OLS 2.

The figure shows that the realized values of R−1
v were lower than the setpoints for the OLS 1,

whereas for the OLS 2 the realized values were higher than the setpoints. In other words, the

OLS 1 had a tendency to steer to the right, whereas the OLS 2 had a tendency to steer to the

left during the calibration experiments. The figure also shows that the estimated realized side

slip angles βv are close to zero. The average side slip angle βv for the OLS 1 was slightly

negative, and the average side slip angle βv for the OLS 2 was slightly positive.
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Figure 4.8: Curvature setpoint and estimated realized curvature (top panel) and side slip angle

setpoint and estimated realized side slip angles (bottom panel) for the OLS 1 and OLS 2

during the low speed experiments.

Residuals

For each of the k ∈ {1, . . . ,m} magnet measurements and estimated intermediate parameters

θ̂ for a given experiment, the radial residuals ξr (θ̂ , k) were computed with equation (4.8) and

the tangential residuals ξtF
(θ̂ , k) and ξtR

(θ̂ , k) for respectively the front and rear wheel with

equation (4.19). Box plots of the results are presented in Figure 4.9. The magnitude of the

residuals depends, amongst others, on the number of detected magnets per experiment and

the distance travelled by the origin of the vehicle coordinate system 9v . These quantities

are also indicated in the figure. The absolute values of almost all residuals are fairly smaller
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than 10 mm. Since the parameter estimation algorithm assumed that the vehicle performs a

perfect circular trajectory, deviations from this ideal trajectory will result in an increase of

the residuals. Given that the residuals are very small –especially when we take into account

that the vehicles also drive distances that exceed 20 meters– it can be concluded that the

realized trajectories very closely resemble true circular trajectories. It is remarked that for all

experiments the steering angles as measured by the steering encoders were nearly constant,

because the data was selected this way. If part of an experiment had contained a step in steer

encoder data of, say, five counts halfway the experiment, this will immediately lead to much

larger residuals as the realized motion would not have a constant radius anymore in that case.
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Figure 4.9: Box plots of the radial residuals ξr (θ̂ , k) and the tangential residuals ξtF
(θ̂ , k)

and ξtR
(θ̂ , k).

Figure 4.9 also shows that the radial residuals ξr (θ̂ , k) are of the same order of magnitude
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as the tangential residuals ξtF
(θ̂ , k) and ξtR

(θ̂ , k). Some preliminary experiments revealed

that the residuals corresponding to a given magnet reproduced very well when the same ex-

periment was repeated over exactly the same magnets. This led us to conclude that the largest

part of the residuals is caused by the accuracy at which magnets were placed into the ground.

Therefore, the low speeds experiments that are discussed here were carried out on different

floor areas. A relative frequency histogram of all the radial and tangential residuals for all

the low speed experiments together is plotted in Figure 4.10. The total number of low speed

residuals is 3261. The mean of all the residuals is 0 mm, and the standard deviation equals

2.2374 mm. The probability density function of the normal distribution N (0, 2.23742) with

these parameters is also drawn in the figure. Qualitatively the normal probability density

function is very close to the empirically obtained normalized histogram of the residuals.
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Figure 4.10: Relative frequency histogram of the 3261 longitudinal and lateral residuals for

all the low speed experiments for the OLS 1 and the OLS 2 together. The thick black line

is the probability density function of the normal distribution with mean 0 mm and standard

deviation 2.2374 mm.

Figure 4.11 displays a typical example of the radial and tangential residuals of the OLS 1

and the OLS 2 for a single experiment. Although all the residuals together are approximately

normally distributed, Figure 4.11 shows that they are not always particularly white and inde-

pendent. Moreover, the tangential residuals ξtF
(θ̂ , k) and ξtR

(θ̂ , k) for the OLS 1 are as good

as identical, whilst this is not the case for the OLS 2. Other experiments show the same trend,

which can also be recognized from Figure 4.9. The differences between the front and rear

tangential residuals for the OLS 2 are thought to be caused by unroundness of the front and

rear wheel. Since the OLS 2 has been used much more frequently than the OLS 1 in the past,

increased wear on the OLS 2’s wheels may explain why the these residuals differ more for

the OLS 2 than for the OLS 1. Furthermore, in this particular example the radial residuals

ξr (θ̂ , k) for the OLS 1 exhibit a sinusoidal trend.

To investigate the whiteness properties of the residuals more systematically, we can con-

sider at their autocorrelation functions ψξ (τ ). An estimate for the autocorrelation function



92 Tuning

for the residuals ξ(,̂k) can be computed with (see e.g. pp. 120–121 of [28])

ψ̂ξ (τ ) = 1

m − τ

m−τ∑

k=1

ξ(θ̂ , k)ξ(θ̂ , k + τ), (4.33)

where m is the number of detected magnets. If the residuals are white, then 95% of autocorre-

lation function for τ 6= 0 lies within ±1.960ψ̂ξ (0)/
√

m − τ . The estimated autocorrelation

functions for experiment 22 that was discussed before are displayed in Figure 4.12. From

equation (4.18) we see that the difference between the two tangential residuals equals

ξtR
(θ̂ , k)− ξtF

(θ̂ , k) = ξwF
(k)− ξwR

(k). (4.34)

The autocorrelation function of the ξwF
(k)− ξwR

(k) is also displayed in Figure 4.12, because

this provides us information about the properties of the modeling errors ξwi
in the drive en-

coder model. From the figure we recognize a sinusoidal trend in the autocorrelation function

of the radial residual ξr (θ̂ , k) for the OLS 1. We believe that this is due to a deviation from

the pure circular trajectory. Since the absolute values of the residuals for this experiment

are still small, the deviation is very modest. Furthermore, we see from Figure 4.12 that the

autocorrelation function of the ξwF
(k)− ξwR

(k) varies greatly between the two vehicles. The

magnitude of the residuals ξwF
(k)−ξwR

(k) for the OLS 1 corresponds to the size of the quan-

tization errors in the drive encoders for that vehicle, i.e. 0.12 mm/count. The autocorrelation

function for the OLS 2 for ξwF
(k) − ξwR

(k) is much larger, and we believe that it is due to

the unroundness of the wheels. Other experiments give similar results.
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22 for the OLS 2 (bottom panel) as a function of the magnet detection number.



4.6. Experimental results 93

−10

−5

0

5

10

O
L

S
 1

 (
m

m
2
)

  0  5   10  15 20  

−10

−5

0

5

10

O
L

S
 2

 (
m

m
2
)

  0  5   10  15 20    0  5   10  15 20    0  5   10  15 20  

ξr ξtF
ξtR

ξwF
− ξwR

ττττ
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the OLS 2 for low speed experiment 22, together with the 95% reliability interval that would

correspond to a white noise sequence.

Estimated steering encoder offsets

The steering encoder offsets were estimated for each low speed experiment according to

section 4.5. Figure 4.13 displays the estimated steering encoder offsets for the OLS 1 and

OLS 2. The difference between the lowest and highest estimated steering encoder offset

for a given wheel is approximately 1.5 deg. Given that the steering encoder offset should be

approximately constant, this deviation is quite large. From equations (4.26) and (4.28) we see

that the estimated steering encoder offset is directly related to the estimated side slip angle

β̂v . In particular, βv enters approximately additively in the estimated steering encoder offsets

for small side slip angles. Because the effective length of the magnet ruler is somewhat less

than 400 mm (since magnets detected near the ends produce outliers and are disregarded), it

is difficult to produce an accurate side slip angle estimate β̂v . Therefore, the large spread that

is seen in the estimated steering encoder offsets is mostly due to the low accuracy of the side

slip angle estimate.

Since the side slip angle estimate term is present in both the front and rear steering encoder

offset estimates, its effect can be eliminated by considering the difference between the front

and rear steering encoder offset estimates. The differences are displayed in Figure 4.13.

The figure shows that the spread for the differences is indeed smaller than the spread for

the individual offset estimates. Furthermore, the spread in the differences between the front

and rear steer encoder offset estimates is larger and more random for the OLS 2 than for the
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OLS 1. Because the OLS 2 has been used much more frequently than the OLS 1, this might

be due to increased wear and backlash of the OLS 2’s steering systems. The fact that the

differences of the OLS 1 slightly decrease with increasing experiment number (i.e., towards

right hand turns) suggests inaccuracies in the relative positions of the wheels with respect to

the magnet ruler. It is not clear why the OLS 1’s differences are larger for forwards motions

than for backwards motions.
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Figure 4.13: Estimated steering encoder offsets for the low speed experiments.

The posteriori steering encoder offsets that will be used in the software for the OLS 1 and

the OLS 2 are simply the means of the experiments displayed in Figure 4.13. The values are

listed in Table 4.3.

Parameter OLS 1 OLS 2

Front steering encoder offset (SE) (mrad) 14.22 (1.01) 21.64 (0.84)

Rear steering encoder offset (SE) (mrad) 8.44 (1.11) −18.60 (0.92)

Difference (SE) (mrad) 5.77 (0.24) 40.24 (0.36)

Front effective wheel diameter (mm) 151.67 151.22

Rear effective wheel diameter (mm) 151.99 153.24

Table 4.3: Estimated steering encoder offsets with standard errors (SE) and the estimated

effective wheel diameters for the OLS 1 and the OLS 2 based on the low speed experiments.

Because the effective wheel diameters estimates are not normally distributed, the standard

deviations have been omitted for these parameters.
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Estimated effective wheel diameters

The effective wheel diameters of the front and rear wheels were estimated for each low speed

experiment from the estimated intermediate parameters θ̂ according to section 4.5. The esti-

mated effective wheel diameters for each experiment are displayed in Figure 4.14. The most

striking characteristic of the estimated effective wheel diameters is that they depend on the

direction of travel. In particular, the estimated effective front wheel diameter is larger for for-

wards movement than for backwards movement, whereas the estimated effective rear wheel

diameter is larger for backwards movement than for forwards movement. A closer exam-

ination of the vehicles revealed that the caster wheel points towards the rear when driving

forwards, and towards the front when driving backwards. This results in a different distri-

bution of the vertical wheel forces. The vertical force on the front wheel and the estimated

effective front wheel diameter are both larger when driving forwards than when driving back-

wards. Similarly, the vertical force on on the rear wheel and the estimated effective rear wheel

diameter are both smaller when driving forwards than when driving backwards. Thus we see

that the effective wheel diameter increases with increasing vertical wheel load. This relation

will be studied in more detail in section 4.6.3, where the experiments with varying vehicle

loads are discussed.

Figure 4.14 shows that the difference in estimated effective wheel diameters between

forwards and backwards movement is larger for the OLS 1 than for the OLS 2. Because the

OLS 1 was equipped with a steel roller conveyor and the OLS 2 was not, the OLS 1 was

heavier than the OLS 2. This resulted in more load shift for the OLS 1, which can explain the

a larger variation of the estimated effective wheel diameters between forwards and backwards

movement.

From the cumulative relative frequency diagrams in Figure 4.14 we see that, although we

can clearly distinguish between forwards and backwards motions, the overall range of the

estimated effective wheel diameters is quite small compared to the mean estimated effective

wheel diameter itself. The mean values are listed in Table 4.3. Since the estimated effective

wheel diameters are within ±0.3 mm from the means that are listed in the Table 4.3, the

absolute error is only about 0.2% of the estimated value. Therefore, we will not distinguish

between forwards and backwards movement in the software, but instead use the mean of the

forwards and backwards experiments as the parameter setting.

4.6.3 Medium speed experiments with various loads

The previous section presented estimates for the steering encoder offsets and the effective

wheel diameters that were based on very low speed experiments that were performed at

≈ 0.2 m/s. In this section we will investigate how these estimates depend on the vehicle

speeds and on loads on the vehicle. To this end, experiments were carried out at three differ-

ent speeds (0.6, 0.9, 1.2 m/s) and with three different loads (0, 50,100 kg). For each load and

each speed, the vehicle moved three times forwards and three times backwards. Table 4.4

presents an overview of the experiments. Because for the low speed experiments the esti-

mated parameters were as good as independent of the radius of the circular trajectory, the

planar velocity setpoints for the vehicle were chosen such that the curvature R−1
v and the

side slip angle βv setpoints were both equal to zero for all medium speed experiments. This
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Figure 4.14: Estimated effective wheel diameters for each low speed experiment (top panels)

and the cumulative relative frequency diagrams for the estimated effective wheel diameters

(bottom panels). The vehicles moved forwards during the odd numbered experiments, and

backwards during the even numbered experiments.

resulted in fifty-four experiments per each vehicle. Outlier removal was identical to the low

speed case. However, because especially the steering angles of the OLS 1 often showed os-

cillatory behavior, extra care was taken to select the data such that the steering encoder data

was nearly constant. The steering encoder offset estimates that were estimated in the previous

section were used in the experiments (see Table 4.3 for their values).

Estimated motion radius Rv and side slip angle βv

The estimated curvatures R−1
v and the estimated side slip angles βv of the circular trajectories

of the vehicle coordinate system 9v for the medium speed experiments are displayed in
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Experiment Curvature (m−1) Velocity (m/s) Load (kg)

1. . .6 0 ±0.6 100

7. . .12 0 ±0.9 100

13. . .18 0 ±1.2 100

1. . .6 0 ±0.6 50

7. . .12 0 ±0.9 50

13. . .18 0 ±1.2 50

1. . .6 0 ±0.6 0

7. . .12 0 ±0.9 0

13. . .18 0 ±1.2 0

Table 4.4: Overview of the medium speed experiments with varying loads. The vehicles

drive forwards for the odd numbered experiments, and backwards for the even numbered

experiments.

Figure B.1 of Appendix B. The estimates for the motion radii satisfied | R̂v| ∈ [141, 6278]
for the OLS 1, and |R̂v| ∈ [69, 1141] m for the OLS 2. As Figure B.1 shows, the trajectories

of the OLS 1 were indeed closer to straight lines then the trajectories of the OLS 2. The

intervals for the estimated side slip angles are β̂v ∈ [−1.83, 1.13] for the OLS 1, and β̂v ∈
[−1.27, 1.85] for the OLS 2. They are qualitatively similar for both vehicles. Figure B.1

also suggest that the realized curvatures and side slip angles were independent of the vehicle

speed and load.

Residuals

Box plots of the radial residuals ξr (θ̂ , k) and the tangential residuals ξtF
(θ̂ , k) and ξtR

(θ̂ , k)

for each experiment are displayed in Figure 4.9 of Appendix B. For the OLS 2, the residuals

of the medium speed experiments are similar to the residuals of the low speed experiments.

For the OLS 1, on the other hand, several radial residuals of the 50 kg experiments are quite

large. This is caused by oscillatory behavior of the steering system, which made it sometimes

impossible to select a data slice with nearly constant steer encoder data. For the experiments

where fluctuating steering angles did occur (e.g. OLS 1 50 kg experiments 10, 12, 14), the

radial residuals are typically enlarged whereas the magnitude of the tangential residuals is

comparable to other experiments.

Figure 4.15 shows a relative frequency histogram of all the radial and tangential residuals

for all the medium speed experiments together. The total number of medium speed residuals

is 4962. Compared to the low speed experiments, the relative frequency histogram of the

medium speed experiments has considerably more elements in its tails. These stem from

the large radial residuals of the OLS 1’s 50 kg experiments that are induced by oscillatory

behavior of the steering system. The probability density function of the normal distribution

N (0, 2.23742) that corresponds to the residuals of the low speed experiments is also plotted

in the figure. It still describes the middle section quite well, but has problems at the tails.

The medium speed residuals themselves have a mean of 0 mm and a standard deviation of

2.7507 mm.
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Figure 4.15: Relative frequency histogram of the 4962 longitudinal and lateral residuals for

all the medium speed experiments for the OLS 1 and the OLS 2 together. The thick black

line is the probability density function of the normal distribution N (0, 2.23742) as estimated

from the residuals of the low speed experiments.

Estimated steering encoder offsets

The estimated steering encoder offsets are plotted in Figure 4.16. The differences between

the front and rear steering encoder offset estimates are also displayed. As with the low speed

experiments, here we see again that the variation in the difference between the front and rear

estimates is much smaller than the variation in the estimates themselves. From Figure 4.16

we conclude that the steering encoder offset estimates do not significantly depend on the load

or the vehicle speed. Therefore, estimates for these parameters were obtained by considering

the medium speed experiments for all loads and all speeds together. The resulting parame-

ter estimates are listed in Table 4.5. When comparing the steering encoder offset estimates

obtained with the low speed experiments with the steering encoder offset estimates obtained

with the medium speed experiments, it follows that the largest difference between the two

sets of experiments occurs for the front steering encoder offset of the OLS 1. The difference

between the low speed and the medium speed estimate equals 14.22 − 12.30 = 1.92 mrad

(0.110 deg). Although this is quite large in absolute value, it is of the same magnitude as the

reported standard errors of approximately 1 mrad (0.057 deg). It is noted that although the

difference between the front minus rear steering angle offsets between the low and medium

speed experiments for the OLS 2 (40.24 − 38.67 = 1.57 mrad) is of the same magnitude

as the other differences, in this case it is large compared to the reported standard errors of

0.36 mrad and 0.20 mrad.

Estimated effective wheel diameters

Figure 4.17 displays the estimated effective front and rear wheel diameters for each medium

speed experiment for each of the three loads. It is immediate from the figure that the load has

a strong influence on the estimates. In particular, we see that an increase in load results in an

increase of the effective wheel diameters. This is counter-intuitive as the weel axis will be
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Figure 4.16: Estimated steering encoder offsets for the medium speed experiments with load.

Parameter OLS 1 OLS 2

Front steering encoder offset (SE) (mrad) 12.30 (1.03) 19.79 (1.22)

Rear steering encoder offset (SE) (mrad) 6.75 (1.06) -18.88 (1.22)

Difference (SE) (mrad) 5.55 (0.10) 38.67 (0.20)

Table 4.5: Estimated steering encoder offsets with standard errors (SE) for the OLS 1 and the

OLS 2 based on the medium speed experiments.

closer to the floor when the vertical load on a wheel is increased due to the compression of

the rubber of the wheel.

Figure 4.17 also shows that the vertical load on the front wheel is larger for forward

motion because then the caster wheel points towards the rear, and the vertical load on the

rear wheel is larger for backwards motion because then the caster wheel points towards the

front. The mean of the front and rear wheel diameter estimates (Front + Rear)/2 are also

displayed in Figure 4.17. Because the caster wheel is mounted at the middle of the vehicle

and the center of gravity is also in the middle of the vehicle, the load shift is symmetrical for

forwards and backwards movement. Since the front and rear wheel have similar mechanical

properties, the increase in the front wheel diameter is equal to the decrease in the rear wheel

diameter. Hence, their sum (divided by two) is approximately constant.

Cumulative relative frequency diagrams of the estimated front, rear and (front+rear)/2 di-

ameters are plotted in Figure 4.18. When comparing the medium speed 0 kg diagrams with

the low speed 0 kg diagrams (Figure 4.14), it is seen that the distributions for the medium
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speed experiments are wider. From Figure 4.17 we see that for increasing speeds, the differ-

ences between the forwards and backwards wheel diameters seem to become slightly bigger.

This partially explains why the distributions are wider for the medium speed experiments than

for the low speed experiments. Noticeably, all low speed estimates fall within the medium

speed distributions.

The influence of various loads on the effective rolling radius has already been studied in

1958 by Parish within the scope of metal and rubber-covered pressure rollers [93]. Since the

wheels of our AGVs also consist of an inner metal part that is covered with a small layer of

solid rubber, there are many similarities with the rubber-covered pressure rollers. The ex-

periments that are described by Parish indicate that in a roller system consisting of a metal

and a rubber-covered roller rotating in contact under load, the metal roller always has the

higher apparent peripheral speed whether it is driving or is driven by the rubber roller. Parish

attributes this phenomenon to the extension of the rubber surface in the region of the nip,

which can be ascribed to the normal loading and to the forces necessary for torque transmis-

sion through the nip. We believe that the stretching of the rubber in the tangential direction of

our wheels under the influence of load results in a larger circumference of the wheel, which

in turn corresponds to a larger effective wheel radius. As in our experiments, the experiments

by Parish also indicated that the effective rolling radius increases for increasing loads. In

addition, Parish showed that the effective rolling radius was always greater than the free (i.e.

unloaded) radius, it was larger at lower speed, and it was larger for the case that the metal
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Figure 4.17: Estimated effective wheel diameters for each medium speed experiment. The

vehicles moved forwards during the odd numbered experiments, and backwards during the

even numbered experiments.
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Figure 4.18: Cumulative relative frequency diagrams for the estimated effective wheel diam-

eters for the medium speed experiments with load. The vehicles moved forwards during the

odd numbered experiments, and backwards during the even numbered experiments.

was driving the rubber roller than for the rubber roller driving the metal one. Interestingly,

for pneumatic tires an increase in load results in a decrease of the effective wheel diameter.

See for example Figures 4 and 8 in the thesis by Zegelaar [130] for experimental results of

the effective (rolling) radius as a function of vertical wheel load and speed for a pneumatic

passenger car tire.

4.7 Concluding remarks and discussion

Cooperative transportation applications will typically require AGVs that are highly maneu-

verable, which means that all the wheels of an individual AGV can steer. For accurate AGV

operation it is important that the offsets of the steering encoders and the effective wheel di-

ameters are determined with high precision. Our test vehicles have two steerable wheels,

which means that two steering encoder offsets and two effective wheel diameters have to be

identified. It is substantially more difficult to identify the odometric parameters for omni-

directional vehicles with multiple steerable wheels then for differential drive and car-like

robots and AGVs, since the latter require the identification of at most one steering encoder

offset. To the best of our knowledge, there is currently no systematic procedure available to

estimate the odometric parameters for vehicles with multiple steerable wheels.

We therefore developed a novel procedure for simultaneously estimating steering angle
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encoder offsets and wheel diameters for a vehicle that is equipped with a magnet ruler that

can detect magnets that are placed in the floor. The procedure that we propose consists of

three steps.

1. The first step is the experimental part. In this step, the setpoints for the vehicle’s steer-

ing systems are set to constants and the vehicle is instructed to drive a certain distance

at a constant, low speed. In practice this will result in a curved trajectory with a nonzero

side slip angle. Ideally, the trajectory is a pure circle segment.

2. The second step is to estimate the realized trajectory from the logged steering encoder,

drive encoder, and magnet ruler data. In this step we assume that the realized trajectory

was indeed a pure circle segment, possibly with a nonzero side slip angle. It is noted

that the second step remains valid for nonzero wheel slip, as long as it remains constant

during the motion.

3. The third and last step is to translate the realized trajectory to steering encoder offsets

and effective wheel diameters. To this end, we need to strengthen the constant wheel

slip assumption of the second step to a nonzero wheel slip assumption. The OLS

vehicles have two actuated wheels and one caster wheel. Since the caster wheel exerts

(almost) no horizontal forces on the floor, it is reasonable to assume that the wheel slip

is very small during the experiment due to the low speeds.

For vehicles with three or more steerable wheels with uncalibrated steering encoder offsets,

there will be substantial lateral wheel slip as the wheels are not perfectly aligned. Since there

is almost no longitudinal wheel slip, we can still use the three-step procedure above to esti-

mate the effective wheel diameters. To minimize the lateral wheel slip, we may first vary the

steering encoder offsets heuristically by hand such that the counteracting lateral wheel forces

are minimized. Subsequently, we can carry out the three-step procedure above, although the

identified steering encoder offsets will be less accurate than for OLS-like vehicles.

The three-step procedure was tested on our two test vehicles, which were designed to be

identical in hardware. The residuals were very small, and we concluded that they are mainly

caused by the precision at which the magnets are placed in the floor. The accuracy of the

estimated steering encoder offsets is directly related to accuracy of side slip angle estimates

for the various experiments. The short magnet ruler made it rather difficult to estimate the

motion’s side slip angle. Consequently, the steering encoder offsets could only be estimated

within 0.1 deg. The effective wheel diameters, on the other hand, can be estimated very pre-

cisely. Interestingly, the effective wheel diameter for the rubber tires of our vehicles increase

with increasing vertical wheel loads. This is opposite to the behavior of pneumatic tires,

where the effective wheel diameter decreases with increasing load. Finally, it was investi-

gated whether experiments at higher speeds and with varying loads substantially influenced

the steering encoder offsets and effective wheel diameters. This was not the case. The steer-

ing encoder offsets were also independent of the load.
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Observer

5.1 Introduction

For any controlled system it is true that the accuracy at which the system can be operated

depends directly on the accuracy of the sensors. Often the desired behavior of the controlled

system is not directly expressed in terms of the sensor outputs, but rather in a physical quan-

tity that is closely related to the sensor outputs. In our case, the desired behavior of the

controlled system is expressed in terms of the longitudinal, lateral and rotational velocities

of a coordinate system 9ℓ that is attached to the load. Of secondary interest are the motions

of the AGVs. Clearly, these twists of the load and vehicles with respect to the world are not

measured directly. So we have to find the state by combining the odometry readings in a

smart way.

In this chapter we design an observer that will be used in the control algorithm for cooper-

ative operation that is presented in the next chapter. We start with a discussion of related work

and discuss the positioning of our own study. Subsequently, we will focus on the observer

for a single AGV. We answer the theoretical question if it is at all possible to reconstruct

the twist from the steering and driving encoder measurements. Although this turns out to be

the case, this theoretical result has limited practical meaning as it is elementary that there is

no meaningful information available on the components of the vehicle speed in the direction

perpendicular to the wheel planes, i.e. in the direction of the steering pole. Therefore, we

subsequently focus on a more pragmatic least-squares approach to estimate the AGV’s twist

from the odometry measurements. Next, we will extend the single AGV case to a central

least-squares based observer (in the sense that it uses the measurements of all the vehicles)

for multiple AGVs that are cooperatively transporting a load. Finally, it is discussed how the

central observer can be implemented in a distributed way. The necessary amount of commu-

nication is also analyzed.

5.2 Related work

In the overview of related work on modeling that was presented in section 3.2, we distin-

guished between the field of wheeled mobile robots (WMRs) and the field of vehicle dy-

namics. The most important difference was that the kinematic wheel models where slip is

neglected suffice for the low speed WMR applications, whereas the prediction of wheel slip

by accurate tire models is essential for the field of vehicle dynamics. Motion estimation is an

important aspect of both fields, and we see that similar sensors are employed for this purpose.

The majority of the applications features drive encoders to measure the travelled distance of

the wheels. If the wheels are able to steer, then they are also equipped with steering angle
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encoders. Although more exotic sensors such as laser range finders, radar, vision systems,

magnet measurement systems, fiber optic gyroscopes, solid-snake yaw rate sensors, ultra-

sonic sensors, are used in both fields, they are certainly not found on every system. The

motion observers in industrial AGVs are mostly based on odometric measurements, i.e. data

from drive encoders and steering encoders. The techniques that are used are similar to the

observers of the wheeled mobile robot and the vehicle dynamics fields. As it was already ar-

gued that the kinematics models used by the WMR community are not able to capture all the

relevant behavior of our AGVs, we will only focus on the estimation techniques from the field

of vehicle system dynamics. We conclude this section with a discussion of the positioning of

our work.

5.2.1 Vehicle dynamics

The subfield of vehicle dynamics that is relevant for our estimation problem is the subfield

that deals with the horizontal behavior of vehicles. Contrary to the WMR literature, in hori-

zontal vehicle dynamics the main focus is on velocities rather than on absolute positions. The

reason is that the behavior of a vehicle in response to the actions of a driver strongly depends

on the momentary velocities and is best characterized in terms of accelerations in response to

steering inputs. Although the condition of the road is a very important factor in the vehicle

behavior, this can be modelled as an independent variable without considering the absolute

position of the vehicle in the world. The behavior of the vehicle is usually described in terms

of its longitudinal velocity, its rotational velocity, and the lateral velocity or the side slip angle

at e.g. its center of gravity, depending on the preference of the authors. This triple is often

referred to as the state of the vehicle, and the rotational velocity is also called yaw rate.

Nowadays we witness a vast increase of driver assistance systems that aid the driver in

operating the vehicle. The interest in techniques for estimating the vehicle state, which is

required by these control systems to function appropriately, has increased accordingly. The

first driver assistance systems were developed to aid the driver in controlling the vehicle

during extreme maneuvers to enhance the occupants’ safety. Such systems include Anti-lock

Braking Systems (ABS), Electronic Stability Programs (ESP), and Traction Control (TC).

Since extreme maneuvers are characterized by high accelerations (in the order of one g), these

systems typically combine acceleration and yaw rate sensors with information from digital

encoders that are mounted on the wheels to estimate the current behavior of the vehicle. When

the vehicle is on the verge of getting out of control, then these systems will act and try to bring

the state of the vehicle back within safe limits. Besides the estimation of the vehicle state,

for these systems it is also very important to have an indication about the current condition of

the road. A slippery wet and icy road requires more subtle actions than dry tarmac. However,

even under ideal road surface conditions the wheels will exhibit large side slip angles during

these extreme maneuvers. Since large wheel slips are precisely the reason that the vehicle

becomes uncontrollable and since the wheels’ slip angles form the key to get the vehicle back

into a safer operating region, these systems cannot adopt the wheel models from the WMR

community with their ideal no-slip conditions.

Besides the driver assistance systems that help the driver during extreme maneuvers to

improve safety, currently we also see an increase of systems that are also active during normal

operation. The aim of these systems is to improve the driver’s comfort or the drivability of
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the car. One can think of the original cruise control systems and its successor Adaptive Cruise

Control (ACC). Whereas the normal cruise control will keep the vehicle at a certain constant

speed, in addition the ACC will automatically decelerate when the vehicle in front of the

driver slows down. There are also systems that act in the lateral direction of the vehicle. At

the moment experiments are carried out with systems that influence the steering angle of the

front wheels. Some of these systems superimpose a small steering angle offset on top of the

driver’s own action to improve the handling of the car, see e.g. [63, 117]. Other systems

take complete control over the lateral behavior as is the case in Automated Highway Systems

(AHS) research and also in the Phileas that drives in Eindhoven city.

Most vehicle state estimators that are described in literature exploit data from wheel en-

coders to estimate the relevant variables. Since it is not possible to extract meaningful in-

formation about the wheel’s side slip angle from the rotational velocity of the wheels, either

additional measurements or vehicle models are needed to estimate the missing data. The ad-

ditional measurements typically consist of inertial measurements systems, such as yaw rate

sensors and accelerometers. Although the yaw rate can be measured directly, measuring the

lateral velocity requires integration of a lateral accelerometer signal. These sensors are par-

ticularly interesting for estimating the vehicle state during extreme maneuvers. In those cases

the signals are large compared to the sensor noise and other offsets. For normal operation,

however, acceleration signals are so small that it is not possible to distinguish between bank-

ing of the road and the lateral acceleration of the vehicle with respect to the road. Likewise,

the relatively cheap yaw rate sensors that are found in modern passenger cars are quite capable

to detect large yaw rates. Measuring the small yaw rates that occur during normal operation,

however, calls for more advanced sensors,such as fiber optic rate gyroscopes. Since the latter

are too expensive for mass produced passenger cars, the observers that estimate the vehicle

state during normal operation will instead incorporate vehicle models to deal with the sensor

drift of the inertial systems to estimate the state during normal vehicle maneuvers.

The early driver assistance systems dealt with only one aspect of vehicle control, e.g. lon-

gitudinal velocity control (cruise control), yaw rate control, etc. Therefore, in the past these

individual control systems only required a small part of the vehicle state that was relevant

for their own local control task. Currently there is a trend to integrate these various control

systems. More on this is found in section 6.2 of the next chapter on control. Since each sys-

tem has its own sensors, there is also a trend from estimating part of the vehicle state towards

estimating the complete vehicle state by fusing the measurements of the various subsystems.

Often the to-be-estimated variables also include some vehicle parameters, such as inertial

properties and the tire-road friction coefficient, and some external disturbances, such as the

banking or the inclination of the road.

Thus there is a vast amount of literature on vehicle state observers. Several have been

applied with succes in the driver assistance systems of modern passenger cars. For example,

Fukuda [41] describes a system to estimate the road slant, the road friction coefficient, and

the vehicle side slip angle. The algorithm combines a yaw rate sensor and accelerometer with

a vehicle model that incorporates a nonlinear tire model. This slip angle estimation procedure

has been applied to Toyota’s Vehicle Stability Control (VSC) since 1997. Also a lot of atten-

tion has been given to the problem of fusing inertial measurements with a dynamic vehicle

model. For instance, Huang et al. [55] present a vehicle state observer that estimates the

longitudinal vehicle velocity and the vehicle sideslip angle. In their strategy, measurements
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from the wheel encoders, a yaw rate sensor and a longitudinal accelerometer are combined

with a vehicle model. For normal driving situations, the wheel speeds and steering angle

are used in combination with a linear vehicle model to determine the required states. As

soon as the vehicle enters a critical driving situation with non-linear vehicle behavior, they

switch to integration of vehicle accelerations. Possible offsets in the measured accelerations

are estimated with Luenberger observers. Wenzel et al. [128] propose a different strategy

for fusing data from the wheel encoders, yaw rate sensor and lateral accelerometer with a

nonlinear vehicle model. Their Dual Extended Kalman Filter (DEKF) estimates three inertia

parameters of the vehicle plus the vehicle state. Besides the side slip angle, yaw rate, and

side slip angle, their estimator also estimates other quantities, such as accelerations, that are

required by some advanced driver assistance systems. Since the vehicle inertia parameters

remain constant during a journey, the authors argue that the parameter estimating part of the

DEKF can be switched of once the parameters are known at the required accuracy. Some

other Kalman filter solutions for vehicle dynamics estimation are for instance described by

Venhovens and Naab [123]. For some more references the interested reader may consult the

short literature survey in [102].

5.2.2 Positioning of our work

The observers from the wheeled mobile robot community generally assume that there is no

wheel slip. From practical experience we know that for normal AGV operation the wheels’

slip angles become too large to justify this assumption. This is especially the case during

cornering, acceleration and braking. Therefore, for our application it is better to focus on the

estimation techniques that are found in the field of vehicle dynamics. We saw that modern

vehicle state observers combine vehicle and tire models for estimation during normal opera-

tion with inertial measurement systems for estimation during more extreme maneuvers. For

our applications extreme maneuvers such as drifting through corners and full lock braking

will not occur. So we are only interested in the parts of the vehicle state observers that deal

with estimation during normal operation. From literature and also from our own experience

[50] we learned that the measurements that are provided by inertial sensors, in particular

accelerometers and solid-state yaw rate sensors, do not provide meaningful information for

these situations. Therefore, we will restrict ourselves to state estimation that is based on odo-

metric measurements in combination with a vehicle model. The vehicle models that are used

in driver assistance systems are very similar to the dynamic AGV model with static linear

tires that was presented in Chapter 3. Thus we will base our observer design on that model.

Although the observer for an individual AGV has a lot in common with the vehicle state ob-

servers that are found in driver assistance systems, some important differences occur when

we have to simultaneously estimate the twists of several AGVs that are cooperatively trans-

porting a load. In addition, where vehicles will only drive forwards and backwards, AGVs

are much more maneuverable and can also move sideways. The observer design and analysis

for a single AGV is the topic of sections 5.3 and 5.4. Observer design for multiple physically

interconnected AGVs will be addressed in section 5.5.
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5.3 Observability

In this section we will investigate whether it is fundamentally possible to estimate the twist

T v,0
v of a single AGV from the vehicle’s odometric measurements (drive and steering encoder

data). Recall that the twist T v,0
v of an AGV with respect to the floor was parameterized by the

rotational velocity ωv , the longitudinal velocity uv and the lateral velocity vv of a coordinate

system 9v that is fixed to the AGV with respect to the floor:

T v,0
v =



ωv

uv

vv


 . (5.1)

Each of the actuated wheel units of an OLS vehicle is equipped with a steering angle encoder

and a drive encoder. This combination results in a single velocity measurement for the center

of each wheel. Since an OLS vehicle has only two actuated wheel units, which corresponds

to two velocity measurements, it is not possible to estimate all three components of the twist

directly. Therefore, we will investigate if it is possible to estimate all three components by

using the AGV model that was presented in Chapter 2. We will use the nonlinear observability

concept as discussed in Chapter 3 of Nijmeijer and Van der Schaft [89]. Their discussion is

based on a model of the form

ẋ = f (x)+ g(x)u

y = h(x)
(5.2)

Here x is the state, u is the input, and y are the measured outputs. With equation (3.49) of

Chapter 3 we saw that the equation of motion for our AGVs is given by

Ṫ v,0
v = −ωvŴvT v,0

v + M−1
v (W v)T. (5.3)

Thus we see that in our case the twist T v,0
v of the vehicle with respect to the floor plays the

role of the state x . Since Ŵv is constant and since ωv is simply the first component of T v,0
v ,

the first term −ωvŴvT v,0
v on the right hand side depends on the state T v,0

v only. In the second

term on the right hand side, Mv is the constant mass matrix and W v is the wrench that is

exerted on the vehicle. In case of a single vehicle this wrench is equal to the wrench that

is exerted by the wheels: W v = W v
w. Although the analysis that follows is applicable to a

broader class of vehicles, in the remainder of this section we will restrict ourselves to the

OLS vehicles for clarity. It was already argued in section 3.6 that the original vehicle model

(3.51),(3.73) was not affine in the inputs. Therefore, the model was subsequently simplified

by considering the first order Taylor expansion around the momentary steering pole. This

resulted in a model that is indeed of the form (5.2), where the inputs u are given by (3.95)

u =




Fw1,u

Fw2,u

αw1

αw2


 (5.4)
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Here Fwi ,u
def= (W

wi ,v
wi

)u is the driving force and αwi
is the slip angle of wheel i . It is

straightforward to convert the desired slip angle αwi
to the setpoint δwi

for the corresponding

steering system by using equation (3.61). The advantage of using αwi
over δwi

as the input,

is that the equations are of a simpler form. According to the simplified model, the wrench

W v
w that is exerted by the wheels on the vehicle satisfies (3.94)

(W v
w)

T =
(
B̄T

w1,u
B̄T

w2,u
−C

w1

lat B̄T
w1,v

−C
w2

lat B̄T
w2,v

)
u. (5.5)

If we define

f (x) = −ωvŴvT v,0
v

g(x) = M−1
v

(
B̄T

w1,u
B̄T

w2,u
−C

w1

lat B̄T
w1,v

−C
w2

lat B̄T
w2,v

) (5.6)

then we see that the equation of motion (5.3)-(5.5) for the (simplified) vehicle model is indeed

in the familiar form ẋ = f (x)+g(x)u. In addition to the equation of motion, the observability

analysis also requires an output model y = h(x). To simplify the analysis, we will now

assume that the steering angle measurements are perfect. Furthermore, we will perform a

continuous analysis where the driving encoders are assumed to measure the spin velocities of

the wheels. From equation (3.56) it follows that the spin velocity θ̇wi
of wheel wi satisfies

θ̇wi
= uwi

rwi

(
1 − K

wi

long Fwi ,usign(uwi
)
) ≈ B̄wi ,u T v,0

v

rwi

(
1 − K

wi

long Fwi ,usign(B̄wi ,u T
v,0
v )

) , (5.7)

with K
wi

long

def= (C
wi

long)
−1 the inverse of the longitudinal stiffness of wheel wi . Here uwi

was

approximated by B̄wi ,u T v,0
v in the second step. When θ̇wi

is measured, an estimate for the

longitudinal wheel velocity can be obtained from this equation as

ûwi
= r̂wi

(
1 − K̂

wi

long F set
wi ,u

sign(uwi
)
)
θ̇wi

(5.8)

By substituting (5.7) and using uwi
≈ B̄wi ,u T v,0

v , this can be written as

ûwi
=

r̂wi

(
1 − K̂

wi

long F set
wi ,u

sign(uwi
)
)

rwi

(
1 − K

wi

long Fwi ,usign(uwi
)
)uwi

≈
r̂wi

(
1 − K̂

wi

long F set
wi ,u

sign(uwi
)
)

rwi

(
1 − K

wi

long Fwi ,usign(uwi
)
) B̄wi ,u T v,0

v .

(5.9)

Next, assume that the effective wheel diameter is perfectly known, so r̂wi
= rwi

. In addition,

assume that K
wi

long Fwi ,u is small compared to 1 such that the direct feed through from the

inputs Fwi ,u to the outputs ûwi
can be neglected. Under these assumptions it holds that the

estimated longitudinal velocity ûwi
is equal to

ûwi
= B̄wi ,u T v,0

v . (5.10)

We stack the estimated longitudinal velocities ûwi
of all the wheels in a single vector, and

define this to be our measurements y. The i th component of the measurement vector y is

denoted by yi , and satisfies

yi = hi (x) = B̄wi ,u T v,0
v (5.11)
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One of the nice properties of the simplified model is that the measurements yi only provide

information about the velocity component that is tangent to the path of the wheel centers.

In other words, for the simplified model all the information about the velocity components

in the direction of the steering pole is hidden from the measurements. This is in correspon-

dence with our intuition, which says that there is indeed no meaningful information for these

velocity components available.

5.3.1 Local observability

We have seen that the equations of motion of the vehicle and the output model are of the form

ẋ = f (x)+ g(x)u

y = h(x),
(5.12)

where f (x) and g(x) are given by (5.6), and hi (x) by (5.11); i ∈ {1, 2}. We do not consider

cases where any of the longitudinal wheel velocities are zero, hence

B̄wi ,u T v,0
v 6= 0 ∀i. (5.13)

According to Corollary 3.33 of Nijmeijer and Van der Schaft [89], the system (5.12) is locally

observable at x0 if it satisfies the so-called observability rank condition. The observability

rank condition is satisfied if the dimension of the observability codistribution, denoted as dO,

is equal to the dimension of the state. The observability codistribution can be computed from

the observation space O, which in turn can be determined from f (x), g(x) and h i (x). Due

to the complicated forms of f (x), g(x) and hi (x), we will use Proposition 3.31 of Nijmeijer

and Van der Schaft [89] to compute the observation space O. This requires the so-called

accessibility algebra C. Since Mv is nonsingular and B̄T has full row rank for our vehicles,

see (3.70) and (3.93), we know from (5.6) that g(x) has full row rank. This means that by

choosing the appropriate input u, the derivative ẋ of the state can be excited in every direction.

Thus accessibility distribution C(x) generated by the accessibility algebra C has full rank:

dim C(x) = 3. This means that the accessibility distribution is equal to the tangent space for

the states T v,0
v that we consider.

Next, we use Definition 3.29 and Proposition 3.31 of Nijmeijer and Van der Schaft [89]

to characterize the observation space O and to compute the observability codistribution dO.

In order to do this, we need the derivatives of the output functions h i (x) with respect to the

state x = T v,0
v . The derivative of output function hi with respect to the state equals

∂hi

∂T
v,0
v

= ∂ B̄wi ,u T v,0
v

∂T
v,0
v

= ∂ B̄wi ,u

∂δ̄wi

T v,0
v

∂δ̄wi

∂T
v,0
v

+ B̄wi ,u = B̄wi ,vT v,0
v︸ ︷︷ ︸

0

∂δ̄wi

∂T
v,0
v

+ B̄wi ,u = B̄wi ,u,

(5.14)

where δ̄wi
is the kinematic steering angle of wheel wi . For the third equality we used equa-

tion (3.89): ∂ B̄wi ,u/∂δ̄wi
= B̄wi ,v . From the definition of the kinematic steering angle (3.86)

we know that the lateral velocity expressed in the coordinate system 9w̄i
corresponding to

the kinematic steering angle is zero, hence B̄wi ,vT v,0
v = 0. This was used in the last step.
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Thus the co-vectorfield dhi is given by

dhi = ∂hi

∂T
v,0
v

= B̄wi ,u (5.15)

The OLS vehicles have one front wheel and one rear wheel: i ∈ {1, 2}. The dimension of

the codistribution spanned by dh1 and dh2 is at most two. Because this is smaller than the

dimension of the state, which is three, we continue to compute more co-vectorfields to span

the observability distribution dO. Corresponding to Proposition 3.31, we may use the co-

vectorfields d L X j
hi to this end, where X j is any vectorfield in the accessibility distribution

C(x). In particular, consider a constant vector field X j that does not depend on the state T v,0
v .

Then

L X j
hi = ∂hi

∂T
v,0
v

X j = B̄wi ,u X j . (5.16)

To find the corresponding codistribution, we need to compute ∂L X j
hi/∂T v,0

v . This requires

the derivative of the kinematic steering angle δ̄wi
with respect to the state T v,0

v :

∂δ̄wi

∂T
v,0
v

= 1

(yv
wi
ωv − uv)2 + (xv

wi
ωv + vv)2




xv
wi

uv + yv
wi
vv

−xv
wi
ωv − vv

−yv
wi
ωv + uv




T

= 1
(

B̄wi ,u T
v,0
v

)2
(B̄T

wi ,v
B̄wi ,u T v,0

v︸ ︷︷ ︸
a number

)T = B̄wi ,u T v,0
v(

B̄wi ,u T
v,0
v

)2
B̄wi ,v

= 1

B̄wi ,u T
v,0
v

B̄wi ,v. (5.17)

It follows that the codistribution d L X j
hi satisfies

d L X j
hi =

∂L X j
hi

∂T
v,0
v

= ∂ B̄wi ,u X j

∂T
v,0
v

= B̄wi ,u

0︷ ︸︸ ︷
∂X j

∂T
v,0
v

+XT
j

∂ B̄T
wi ,u

∂T
v,0
v

= XT
j

B̄T
wi ,v︷ ︸︸ ︷

∂ B̄T
wi ,u

∂δ̄wi

∂δ̄wi

∂T
v,0
v

= XT
j B̄T

wi ,v︸ ︷︷ ︸
a number

1

B̄wi ,u T
v,0
v︸ ︷︷ ︸

a number6=0

B̄wi ,v = B̄wi ,v X j

B̄wi ,u T
v,0
v

B̄wi ,v. (5.18)

For the third equality we used that B̄wi ,u X j = XT
j B̄T

wi ,u
, since this is a single number. For

the fourth equality it was used that the derivative of X j with respect to the state is zero, as X j

was chosen to be constant. Since we were free to choose X j , we can always find a constant

X j such that for a given state T v,0
v it holds that

d L X j
hi =

∂L X j
hi

∂T
v,0
v

= B̄wi ,v (5.19)
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So the observability codistribution dO can be written as

dO = span
{

dh1, dh2, d L X j1
h1, d L X j2

h2

}
= span

{
B̄w1,u, B̄w2,u, B̄w1,v, B̄w2,v

}
= Im(B̄).

(5.20)

Since

dim(dO) = dim(B̄) = dim(T v,0
v ) = 3 (5.21)

the system (5.12) satisfies the observability rank condition. Hence, the system (5.12) is lo-

cally observable for all the T v,0
v that satisfy B̄wi ,u T v,0

v 6= 0. As we did not consider the

(unrealistic) situations where B̄wi ,u T v,0
v = 0, we cannot conclude that the system is observ-

able for all T v,0
v .

5.3.2 Practical considerations

The previous subsection illustrated that the single AGV model is locally observable for all

relevant T v,0
v . Thus in theory it is possible to reconstruct the rotational, longitudinal, and lat-

eral velocity of the AGV with respect to the floor when the steering angles and the rotational

velocities of the wheel are measured. Since an OLS vehicle has only two drive encoders and

since the number of to-be-estimated variables is three, it is not possible to reconstruct all the

to-be-estimated variables directly. In particular, there are no direct measurements for the ve-

locity component in the direction of the steering pole available. Even if we had more wheels

with longitudinal sensors, then it would still be practically impossible to directly translate

these measurements into information about the missing velocity component.

Intuitively, we can retrieve information about this missing component by exciting the sys-

tem in such a way that the position of the steering pole changes. Then the the orientation of

the wheels will change, and the drive encoder will consequently measure a velocity com-

ponent that lies in the direction of the old steering pole. This is the reason why we needed

to compute an additional Lie bracket to show that the AGV model is locally observable. In

reality we would have to change the motion of the AGV quite drastically to obtain practically

meaningful information about the velocity component that is not measured directly. Since

AGVs must strictly adhere to their predefined paths in industrial settings and since the design

freedom of the paths is limited by the geometry of the environment, it is not a realistic option

to drastically change the motion to improve the motion estimate. In addition, a change from

one motion to another can only be carried out quite slowly (in the order of seconds) for AGVs

and other vehicles. Thus when the wheels are finally oriented in the missing direction, then

in the meantime the estimate for the velocity in another direction will have deteriorated too

much. Since it is not realistic to design an observer that uses large excursions from the

nominal motion to estimate all the three velocity components T
v,0
v = (ωv, uv, vv), we

pursue a more pragmatic approach where it is assumed that the setpoints αset
wi

for the

wheels’ slip angles are realized exactly. As we will see in the next section, it is straight-

forward to obtain an estimate for the lateral wheel velocity once the wheel’s slip angle αwi
is

known.
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5.4 Least-squares observer for a single AGV

Although it was shown that the affine model (5.2) of our system is locally observable, in the

previous subsection it was argued that this theoretical result is not very relevant for practice.

Therefore, FROG uses a velocity observer that is based on a least-squares estimation tech-

nique. To be able to deal with situations where the steering angles are not measured directly,

the true steering angles are considered to be unknowns in FROG’s observer concept. This is

for example the case for some of the steering systems that are encountered in passenger cars,

busses and trucks. For the OLS vehicles, however, the steering angles are measured directly.

Hence, for our situation the estimates of the steering angles will be identical to the encoder

measurements. Therefore, we will focus on the estimation of the twist only.

5.4.1 Description of the observer

A schematic representation of the observer is depicted in Figure 5.1. The test vehicles that we

consider have two drive encoders and two steering encoders. So there are four measurements

available. The measurements of the drive encoders are used to estimate the longitudinal

velocities uwi
of wheels. From equation (5.8) we see that

ûwi
= r̂wi

(
1 − K̂

wi

long F set
wi ,u

sign(uwi
)
)
θ̇wi

(5.22)

This requires the spin velocity θ̇wi
as obtained from the drive encoder measurements, the

effective wheel radius r̂wi
that was estimated in Chapter 4, the inverse longitudinal stiffness

K̂
wi

long, and the driving force F set
wi ,u

. The longitudinal cornering stiffness K̂
wi

long is usually not

very accurate. However, we know that the estimated longitudinal wheel velocity ûwi
depends

linearly on the term (1 − K̂
wi

long F set
wi ,u

). The product K̂
wi

long F set
wi ,u

is typically small as compared

to 1, especially when the driving force is small. Therefore, the estimated longitudinal velocity

ûwi
of wheel wi is quite accurate. In addition, the orientation of the wheel is known from the

steering encoder measurement δwi
. Thus we know both the magnitude as well as the direction

of the longitudinal wheel velocity uwi
.

In contrast, information about the lateral wheel velocity vwi
is poor. In subsection 6.3.3

that deals with the generation of the actuator signals, we will see that the setpoints αset
wi

for

the wheels’ slip angles are used as an intermediate step to compute the setpoints δset
wi

for the

steering systems. In equation (6.14) of that subsection we will also see that δset
wi

is related to

αset
wi

by

δset
wi

= δ̂wi
− αset

wi
sign(ûwi

), (5.23)

where δ̂wi
is the steering angle of wheel wi as measured by the steering encoder. We obtain

an estimate for the lateral wheel velocity vwi
by assuming that the true wheel slip angle

αwi
equal to its setpoint αset

wi
. From the definition (3.61) of the slip angle αwi

it follows that

our estimate for the lateral wheel velocity is given by

v̂wi
= αset

wi
|ûwi

| (5.24)
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Figure 5.1: Velocity observer for a single AGV.

Let us stack the estimates ûwi
and v̂wi

for all the wheels in a new vector z. Thus for the OLS

vehicles we have

z =




ûw1

ûw2

v̂w1

v̂w2


 (5.25)

We consider z, which consists of the estimates ûwi
for the longitudinal wheel velocities

and the estimates v̂wi
for the lateral wheel velocities, to be our measurements. They are

directly related to the twist T v,0
v of the vehicle with respect to the floor. Furthermore, they

are corrupted by some (additive) measurement noise. The measurement noise for the four

measurements is stacked in a vector ξ . From equations (3.70)-(3.72) it follows that

z = BvT v,0
v + ξ. (5.26)

This expression can be generalized to the twist of the vehicle with respect to the floor that is

expressed in an arbitrary coordinate system 9i . The relation between the measurements z,

the twist of the vehicle with respect to the floor T i,0
v expressed in coordinate system 9i , and

the measurement noise ξ , is given by

z = Bi T
i,0
v + ξ (5.27)

Matrix B depends on the steering angles δwi
of the wheels. The measurements of the steer-

ing encoders are use to reconstruct the matrix Bi that describes the relation between

the (pseudo-)measurements z and the AGV’s twist T
i,0
v . Since

z = Bi T
i,0
v + ξ = Bi

T
i,0
v︷ ︸︸ ︷

AdH i
j
T j,0

v +ξ =
B j︷ ︸︸ ︷

Bi AdH i
j

T j,0
v + ξ = B j T

j,0
v + ξ, (5.28)
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it follows that B j is related to Bi by

B j = Bi AdH i
j

(5.29)

The elements of the 3×3–matrix AdH i
j

depend on H i
j only, and can be found in equa-

tion (3.11). Since AdH i
j

is nonsingular, the transformation (5.29) does not change the rank

and size. The “tall” (i.e. more rows than columns) matrix B and its transformed versions

Bi = B AdHv
i

and B j have full column rank in practical applications. There are many possi-

bilities to combine the measurements z to obtain an estimate T̂ i,0
v for the twist of the vehicle

with respect to the floor. We will use an estimator that minimizes a weighted least-squares

criterion that is quadratic in z. In particular, our estimator will minimize the weighted least-

squares criterion

V (T i,0
v ) = ||z − Bi T

i,0
v ||2

6−1 = (z − Bi T
i,0
v )T6−1(z − Bi T

i,0
v ) (5.30)

Here6−1 is a positive-definite weighting matrix, and z−Bi T
i,0
v is the residual. The estimator

T̂ i,0
v that minimizes the least-squares criterion (5.30) satisfies (see e.g. p. 44 of the book by

Kailath [59])

T̂ i,0
v = (BT

i 6
−1 Bi )

−1 BT
i 6

−1z (5.31)

The symmetric matrix BT
i 6

−1 Bi is called the information matrix. By using relation (5.29)

we see that the estimated twist but now expressed in 9 j can be written as

T̂ j,0
v = (BT

j 6
−1 B j )

−1 BT
j 6

−1z

= (AdT

H i
j

BT
i 6

−1 Bi AdH i
j
)−1 AdT

H i
j

BT
i 6

−1z

= (AdT

H i
j

BT
i 6

−1 Bi AdH i
j
)−1(AdT

H
j

i

)−1 BT
i 6

−1z

= (AdT

H
j

i

AdT

H i
j

BT
i 6

−1 Bi AdH i
j
)−1 BT

i 6
−1z

= (BT
i 6

−1 Bi AdH i
j
)−1 BT

i 6
−1z

= Ad−1

H i
j

(BT
i 6

−1 Bi )
−1 BT

i 6
−1z

= Ad
H

j
i

(BT
i 6

−1 Bi )
−1 BT

i 6
−1z

= Ad
H

j
i

T̂ i,0
v . (5.32)

Hence, estimating the twist in9 j and subsequently transforming this estimate to9i yields the

same result as estimating the twist directly in 9 j . Thus the weighted-least-squares estimate

for the twist is geometrically well-defined. From the second equality of this equation we also

see that the information matrix transforms according to

BT
j 6

−1 B j = AdT

H i
j

BT
i 6

−1 Bi AdH i
j

(5.33)

Hence, the information matrix transforms in the same way as a mass matrix.
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5.4.2 Stochastic interpretation

Now we will look at a stochastic interpretation of the least-squares estimator for the single

AGV that was discussed in the previous subsection. Later on we will see that the theory

that is derived in this section for a single AGV also applies to the case that multiple AGVs

are all rigidly interconnected to the load. Furthermore, it allows us to reduce the amount of

information sharing when the AGVs are semi-rigidly interconnected to the load by means of

revolute joints. Recall that the relation between the measurements z, the real twist T i,0
v and

the additive disturbances satisfies (5.24), (5.27)

z =




ûw1

ûw2

v̂w1

v̂w2


 =




ûw1

ûw2

αset
w1

|ûw1
|

αset
w2

|ûw2
|


 = Bi T

i,0
v + ξ. (5.34)

The covariance of the additive measurement error ξ is denoted by

E[ξξT] = 6, (5.35)

with E[·] the expected value operator and the square matrix 6 positive definite. Since the

lateral velocity estimates v̂wi
= αset

wi
|ûwi

| are directly related to the longitudinal velocity es-

timates ûwi
, one may expect that the matrix 6 is not diagonal. To investigate the structure of

6, we consider the measurements of a single wheel wi . From experience we know that in our

applications most of the error in the longitudinal velocity estimate ûwi
stems from inaccura-

cies in the parameter estimate for the effective wheel radius and from the unmodeled parts of

longitudinal wheel slip. This was also reflected in equation (5.22). Thus for our applications,

where the AGVs drive on smooth floors, the additive error ξuwi
in the longitudinal velocity

estimate ûwi
is approximately proportional to the longitudinal velocity. Hence,

E[ξ2
uwi

] = u2
wi
σ 2

uwi
, (5.36)

where σuwi
is the standard deviation of the relative error. From Chapter 4 we know that the

relative error in the parameter value for the effective wheel radius is in the order of mag-

nitude of 1%, i.e. σuwi
≈ 0.01. Uncertainties in the lateral velocity estimate are caused by

uncertainties in the longitudinal velocity estimate ûwi
and because the true slip angle αwi

will

deviate from its setpoint αset
wi

. We model the deviation from the setpoint by an additive noise

term ξαwi
. Thus we find

v̂wi
= αset

wi
|ûwi

| = (αwi
+ ξαwi

)|uwi
+ ξuwi

| = vwi
+ ξvwi

, (5.37)

with

ξvwi
= ±(uwi

ξαwi
+ αwi

ξuwi
+ ξαwi

ξuwi
). (5.38)

The ‘+’ of ‘±’ corresponds to the situation that |uwi
+ξuwi

| > 0, and the ‘−’ to |uwi
+ξuwi

| <
0. The variance of ξαwi

is modelled as

E[ξ2
αwi

] = σ 2
αwi
. (5.39)
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The noise ξαwi
represents the deviation from the known slip angle setpoint αset

wi
from the un-

known true slip angle αwi
. The deviation is mainly caused by inaccuracies in the steering

encoder offset, the non-ideal response of the wheel’s steering system, and the modeling er-

rors in the dynamics of the AGV. The inaccuracies for the OLS vehicles are in the order of

one degree, i.e. σαwi
≈ 0.02 rad. The slip angle inaccuracy ξαwi

and the longitudinal mea-

surement error ξuwi
and their higher order moments are assumed to be uncorrelated. Hence,

the variance of ξαwi
is given by

E[ξ2
αwi

] = E[(uwi
ξαwi

+ αwi
ξuwi

+ ξαwi
ξuwi

)2]

= E[u2
wi
ξ2
αwi

+ α2
wi
ξ2

uwi
+ ξ2

αwi
ξ2

uwi

+2uwi
αwi

ξαwi
ξuwi

+ 2uwi
ξ2
αwi
ξuwi

+ 2αwi
ξαwi

ξ2
uwi

]

= E[u2
wi
ξ2
αwi

+ α2
wi
ξ2

uwi
] = u2

wi
E[ξ2

αwi
] + α2

wi
E[ξ2

uwi
] = u2

wi
σ 2

αwi
+ α2

wi
u2

wi
σ 2

uwi

= u2
wi
(σ 2

αwi
+ α2

wi
σ 2

uwi
). (5.40)

Furthermore, the covariance of ξuwi
ξαwi

reads

E[ξuwi
ξαwi

] = ± E[ξuwi
(uwi

ξαwi
+ αwi

ξuwi
+ ξαwi

ξuwi
)]

= ± E[uwi
ξαwi

ξuwi
+ αwi

ξ2
uwi

+ ξαwi
ξ2

uwi
]

= ± E[αwi
ξ2

uwi
]

= ± u2
wi
αwi

σ 2
uwi
. (5.41)

Thus the covariance of the measurements errors ξwi
= stack(ξuwi

, ξvwi
) for wheel wi is

E[ξwi
ξT
wi

] = E

[(
ξ2

uwi
ξvwi

ξvwi

ξuwi
ξvwi

ξ2
vwi

)]
= u2

wi
σ 2

uwi

(
1 ±αwi

±αwi
α2

wi
+ σ 2

αwi
/σ 2

uwi

)

≈ u2
wi
σ 2

uwi

(
1 0

0 σ 2
αwi
/σ 2

uwi

)

(5.42)

As the wheel’s slip angle αwi
is in the order of 0.02 rad, the terms αwi

and α2
wi

can be

neglected. The term σ 2
αwi
/σ 2

uwi
is the ration between the variation σ 2

αwi
of the additive slip

angle noise and the variation σ 2
uwi

of the multiplicative longitudinal velocity noise. Both

increase for motions that are subject to larger wheel slips. During acceleration and braking

there is relatively much longitudinal wheel slip and little lateral wheel slip. Thus for those

situations the ratio σ 2
αwi
/σ 2

uwi
will be smaller as σ 2

uwi
is large due to the inaccurate wheel

slip model (5.22). During cornering there is typically little longitudinal wheel slip and more

lateral wheel slip. The slip angle estimate will deteriorate due to inaccuracies in the lateral

wheel model, so the ratio σ 2
αwi
/σ 2

uwi
becomes larger during cornering. For the OLS vehicles,

the ratio σ 2
αwi
/σ 2

uwi
various roughly between 1 and 25. If we assume that the measurements of
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one wheel are uncorrelated with the measurements from another wheel, then it follows from

(5.42) that the covariance matrix 6 for two OLS AGVs equals

6 =




u2
w1
σ 2

uw1
0 0 0

0 u2
w2
σ 2

uw2
0 0

0 0 u2
w1
σ 2

αw1
0

0 0 0 u2
w2
σ 2

αw2


 . (5.43)

From equation (5.31) we know that the estimator that minimizes our cost criterion (5.30)

satisfies

T̂ i,0
v = (BT

i 6
−1 Bi )

−1 BT
i 6

−1z (5.44)

If E[ξ ] = 0, then this estimator is interpreted as the minimum-mean-square-error unbiased

linear estimator for T̂ i,0
v , which is also called the best linear unbiased estimator (BLUE), see

e.g. pp. 96–97 of the book by Rao [101]. Note that we did not require that the noise follows

a Gaussian distribution.

Next, we investigate the stochastic properties of the twist estimation error. Let us denote

the difference between the true twist T i,0
v and the estimate T̂ i,0

v by

T̆ i,0
v = (T̂ i,0

v − T i,0
v ) (5.45)

The mean and covariance of this estimation error T̆ i,0
v are

E[T̆ i,0
v ] = (BT

i 6
−1 Bi )

−16−1 BT
i E[ξ ] (5.46)

E
[
T̆ i,0

v T̆ i,0
v

T
]

= E






(ω̆i,0

v )
2 ω̆i,0

v ŭi,0
v ω̆i,0

v v̆
i,0
v

ω̆i,0
v ŭi,0

v (ŭi,0
v )

2 ŭi,0
v v̆

i,0
v

ω̆i,0
v v̆

i,0
v ŭi,0

v v̆
i,0
v (v̆i,0

v )2





 = (BT

i 6
−1 Bi )

−1 def= Qi (5.47)

Here ω̆i,0
v , ŭi,0

v , and v̆i,0
v are respectively the estimation errors in the rotational, the longitudinal

and the lateral velocity of the AGV with respect to the floor. The first component ωi,0
v of

the twist T i,0
v is invariant under coordinate transformations as we consider planar motions

T i,0
v ∈ se(2) only. Therefore, we write

ω̆0
v = ω̆i,0

v = ω̆ j,0
v . (5.48)

The other two coefficients ui,0
v and vi,0

v are not invariant. Therefore, the covariance matrix Q i

depend on the selected coordinate system 9i . Since

Q j = (BT
j 6

−1 B j )
−1 = (AdT

H i
j

BT
i 6

−1 Bi AdH i
j
)−1 = Ad

H
j

i

(BT
i 6

−1 Bi )
−1 AdT

H
j

i

= Ad
H

j
i

Qi AdT

H
j

i

, (5.49)

we see that the covariance transforms as a 2-contravariant tensor. Stated differently, the

covariance Q transforms in the same way as the inverse of the mass matrix.
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5.4.3 Velocity estimate for an arbitrary point on the AGV

Now that we have an estimate T̂ i,0
v for the twist of the AGV with respect to the floor, we

can use this to estimate the velocity of an arbitrary point P that is fixed to the vehicle. We

use so-called homogenous coordinates P i to express the position of a point P in a certain

coordinate system 9i . For the finite points that we consider, P i is of the form

P i =




pi
x

pi
y

1


 . (5.50)

When both the point P and the coordinate system 9i are fixed to the AGV, then the coordi-

nates P i are constant. It follows that

Ṗ i = 0. (5.51)

If we express the coordinates of P in a coordinate system90 that is fixed to the floor, we find

that the derivatives of the coordinates satisfy

Ṗ0 = H0
i T̃ i,0

v P i , (5.52)

where we recall from equation (3.4) that the tilde operator is given by

T =



ω

u

v


 ⇔ T̃ =




0 −ω u

ω 0 v

0 0 0


 . (5.53)

The first two components of Ṗ0 are interpreted as the velocity of P with respect to the floor.

The expected value of the estimate ̂̇P0 for Ṗ0 is

E
[̂̇P0

]
= E

[
H0

i
̂̃
T

i,0
v P i

]
= E

[
H0

i
˜̂
T

i,0
v P i

]
= H0

i E
[˜̂
T

i,0
v

]
P i = H0

i
˜

E[T̂ i,0
v ]P i . (5.54)

When the expected value of the sensor noise equals zero, i.e. E[ξ ] = 0, then E[T̂ v,0
v ] = T v,0

v ,

and ̂̇P0 will be an unbiased estimate for Ṗ0. The estimation error ˘̇P0 for Ṗ0 is related to the

twist estimation error T̆ i,0
v by

˘̇P0 = ̂̇P0 − Ṗ0 = H0
i
˜̂
T

i,0
v P i − H0

i T̃ i,0
v P i = H0

i (
˜̂
T

i,0
v − T̃ i,0

v )P i = H0
i
˜̆
T

i,0
v P i . (5.55)
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Using the expression above, we find that the expected mean-square-error equals

E

[
˘̇P0

T ˘̇P0

]
= E

[
P i T˜̆

T
i,0
v

T

H0
i

T
H0

i
˜̆
T

i,0
v P i

]

= E







−pi
yω̆

0
v + ŭi,0

v

pi
x ω̆

0
v + v̆i,0

v

0




T (
R0

i

T 0
0

∗ ∗ 1

)(
R0

i
∗
∗

0 0 1

)


−pi
yω̆

0
v + ŭi,0

v

pi
x ω̆

0
v + v̆i,0

v

0







= E







−pi
yω̆

0
v + ŭi,0

v

pi
x ω̆

0
v + v̆i,0

v

0




T


1 0 ∗
0 1 ∗
∗ ∗ 1






−pi
yω̆

0
v + ŭi,0

v

pi
x ω̆

0
v + v̆i,0

v

0







= E







−pi
yω̆

0
v + ŭi,0

v

pi
x ω̆

0
v + v̆i,0

v

0




T


−pi
yω̆

0
v + ŭi,0

v

pi
x ω̆

0
v + v̆i,0

v

0







= E

[
P i T˜̆

T
i,0
v

T˜̆
T

i,0
v P i

]

= P i T
E

[
˜̆
T

i,0
v

T˜̆
T

i,0
v

]
P i , (5.56)

where pi
x is the x-component of P i , pi

y is the y-component of P i , and

E

[
˜̆
T

i,0
v

T˜̆
T

i,0
v

]
= E





(ω̆0

v)
2 0 ω̆0

v v̆
i,0
v

0 (ω̆0
v)

2 −ω̆0
v ŭi,0

v

ω̆0
v v̆

i,0
v −ω̆0

v ŭi,0
v (ŭi,0

v )
2 + (v̆i,0

v )2




 . (5.57)

Because

P i T
E

[
˜̆
T

i,0
v

T˜̆
T

i,0
v

]
P i = P j T

H i
j

T
E

[
H

j
i

T ˜̆
T

j,0
v

T

H i
j

T
H i

j

˜̆
T

j,0
v H

j
i

]
H i

j P j

= P j T
H i

j

T
E

[
H

j
i

T ˜̆
T

j,0
v

T ˜̆
T

j,0
v H

j
i

]
H i

j P j

= P j T
H i

j

T
H

j

i

T
E

[
˜̆
T

j,0
v

T ˜̆
T

j,0
v

]
H

j

i H i
j P j

= P j T
E

[
˜̆
T

j,0
v

T ˜̆
T

j,0
v

]
P j , (5.58)

the expected-mean-square error for the velocity of point P with respect to the world is inde-

pendent of the coordinate system used to express the twist and P . If we expand expression
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(5.56) above, we see that the mean-square error is related to P according to

E

[
˘̇P0

T ˘̇P0

]
= P i T

E

[
˜̆
T

i,0
v

T˜̆
T

i,0
v

]
P i

= (pi
x )

2E[(ω̆0
v)

2] + 2pi
x E[ω̆0

v v̆
i,0
v ] + E[(v̆i,0

v )2]
+(pi

y)
2E[(ω̆0

v)
2] − 2pi

yE[ω̆0
v ŭi,0

v ] + E[(ŭi,0
v )

2]

= E[(ω̆0
v)

2]





(
pi

x + E[ω̆0
v v̆

i,0
v ]

E[ω̆0
vω̆

0
v]

)2

+
(

pi
y − E[ω̆0

v ŭi,0
v ]

E[ω̆0
vω̆

0
v]

)2




+E[(ŭi,0
v )

2] + E[(v̆i,0
v )2] − (E[ω̆0

v ŭi,0
v ])2 + (E[ω̆0

v v̆
i,0
v ])2

E[ω̆0
vω̆

0
v]

. (5.59)

The terms on the last expression depend on the coordinates (pi
x , pi

y) of the point P and on the

covariance matrix Qi . Since Qi is fixed, this expression is quadratic in pi
x and pi

y . Inspection

of (5.59) shows that the expected mean-square-error has a unique global minimum at the point

P i
m , where

P i
m = arg min

P i

(
P i T

E

[
˜̆
T

i,0
v

T˜̆
T

i,0
v

]
P i

)
=




−E[ω̆0
v v̆

i,0
v ]

E[ω̆0
vω̆

0
v]

E[ω̆0
v ŭi,0

v ]
E[ω̆0

vω̆
0
v]

1




(5.60)

The unique point P i
m where the covariance of the velocity estimate error is minimal

depends only on the covariance tensor Q i . When we attach a new coordinate system 9m

with its origin to point Pm , then the covariance matrix Qm takes a special form. If Pm is

expressed in 9m , we must have that Pm
m = (0, 0, 1)T. Hence,

P i
m = H i

m Pm
m = H i

m




0

0

1


 ⇒ H i

m =
(

Ri
m pi

m

0 0 1

)
=
(

Ri
m

0 0
P i

m

)
, (5.61)

where Ri
m , i.e. the orientation of 9m with respect to 9i , is yet unspecified. By using AdHm

i

to transform the covariance matrix from 9i to 9m , we obtain

Qm = AdHm
i

Qi AdT
Hm

i
=




E[(ω̆0
v)

2] 0 0

0

0
S


 , (5.62)

where S ∈ R2×2 is a symmetric, positive definite matrix. When in addition R i
m is chosen

appropriately, then Qm reduces to

Qm = AdHm
i

Qi AdT
Hm

i
=




E[(ω̆0
a)

2] 0 0

0 E[(ŭm,0
v )2] 0

0 0 E[(v̆m,0
v )2]


 (5.63)
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In particular, exactly four distinct values of Rm
j will result in the form above. In subsec-

tion 5.5.2 we will exploit the special diagonal form of the covariance matrix Qm as expressed

in 9m to reduce the amount of information that needs to be broadcasted by an individual

AGV in a distributed observer setting. For completeness, we mention that in this coordinate

system 9m the expected mean-square-error (5.59) reduces to

E

[
˘̇P0

T ˘̇P0

]
= Pm T

E

[
˜̆
T

m,0
v

T
˜̆
T

m,0
v

]
Pm

= E
[
(ω̆0

v)
2
] {
(pm

x )
2 + (pm

y )
2
}

+ E
[
(ŭm,0

v )2 + (v̆m,0
v )2

]
. (5.64)

Finally, we find that the covariance of ˘̇P0 is given by

E

[
˘̇P0 ˘̇P0

T
]

= E

[
H0

i
˜̆
T

i,0
v P i P i T˜̆

T
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2 (ŭi,0
v − pi

yω̆
0
v)(p

i
x ω̆

0
v + v̆i,0

v ) 0
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T
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(5.65)

If we use 9m , this simplifies to

E

[
˘̇P0 ˘̇P0

T
]

= E
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H0
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T
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v Pm Pm T˜̆
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(pm

y )
2E[(ω̆0

v)
2] + E[(ŭm,0

v )2] −pm
x pm

y E[(ω̆0
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−pm
x pm

y E[(ω̆0
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2] (pm
x )

2E[(ω̆0
v)

2] + E[(v̆m,0
v )2] 0

0 0 0


 H0

m

T
.

(5.66)

Note that the components of the covariance matrix depend on the position of the point P .
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5.4.4 Example

We illustrate the theory that was derived in the previous subsection with an example that

deals with our OLS test vehicles. In our first preliminary experiments that are describe in

[113], the two AGVs were rigidly interconnected using an aluminum frame as is depicted in

Figure 5.2. As illustrated in the figure, we attached a coordinate frame 9ℓ at the heart of

the combination. Since everything is rigidly interconnected, the position of 9ℓ is fixed with

respect to both vehicles as well as to the load. For notational convenience, we define two

additional coordinate systems 9v1
and 9v2

such that 9v1
= 9v2

= 9ℓ. This allows us to

exchange the coordinate indices vk for ℓ and vice versa, where k ∈ {1, 2}. The twist of the

load with respect to the floor is denoted by T
ℓ,0
ℓ . Because all connections are completely

rigid, it follows that T
ℓ,0
ℓ = T ℓ,0

vk
= T

vk ,0
vk

. We adopt the measurement model (5.27) for the

measurements zk of AGV k, i.e.

zk = Bvk ,k T vk ,0
vk

+ ξk = Bℓ,k T
ℓ,0
ℓ + ξk, (5.67)

where ξk is the additive measurement noise for the measurements zk of AGV k. In equations

(5.42) and (5.43) we saw that the covariance matrix 6k of ξk was diagonal. In this example,

we assume that the longitudinal velocities of all the wheels are approximately the same, i.e.

uw1,1 ≈ uw2,1 ≈ uw1,2 ≈ uw2,2. (5.68)

The second subscript refers to the AGV under consideration. This is the case when the

steering pole is relatively far away. Because the AGVs were designed to be identical in

hardware, we furthermore assume that the covariances of the longitudinal measurements are

identical for all vehicles, and that the variances of the lateral measurements are identical:

σ 2
uw1,1

≈ σ 2
uw2,1

≈ σ 2
uw1,2

≈ σ 2
uw2,2

σ 2
αw1,1

≈ σ 2
αw2,1

≈ σ 2
αw1,2

≈ σ 2
αw2,2

(5.69)

1
2
0
0

6
0
0

2
0
0

2
0
0

1 5 0
1 2 03 0 0

6 0 0 8 0 0
4 0 0

O L S  1 O L S  2

a c t u a t e d  w h e e l

c a s t e r  w h e e l

c e n t e r  o f  g r a v i t y

9ℓ

Figure 5.2: Schematic representation of the setup with two interconnected OLS AGVs used

by Stouten and De Graaf [113] (dimensions in mm).
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If we denote

σ 2 = u2
wi
σ 2

uwi

s = σ 2
αwi
/σ 2

uwi

(5.70)

then we see from equations (5.42) and (5.43) that the covariance matrix 6k of ξk can be

written as

6k = σ 2




1 0 0 0

0 1 0 0

0 0 s 0

0 0 0 s


 . (5.71)

We indicate that the ratio s varied approximately between 1 and 25 for our OLS vehicles. We

can derive an estimate for T
ℓ,0
ℓ by using the measurements zk of AGV k only, which yields

(5.31)

T̂
ℓ,0
ℓ|zk

= T̂
vk ,0
vk |zk

= (BT
ℓ,k6

−1
k Bℓ,k)

−1 BT
ℓ,k6

−1
k zk, (5.72)

The subscripts k indicate that we refer to AGV k. From equation (5.47) it follows that the

covariance matrix Qℓ
k of the corresponding estimation error T̂

ℓ,0
ℓ|zk

− T
ℓ,0
ℓ reads

Qℓ
k = (BT

ℓ,k6
−1
k Bℓ,k)

−1. (5.73)

Since the AGVs and the load are completely rigidly interconnected in this example, we may

also consider the entire interconnected setup as one single vehicle. Then an estimate for T
ℓ,0
ℓ

can be obtained by considering all the measurements z = stack(z1, z2) of the two vehicles

together. This leads to

T̂
ℓ,0
ℓ|z = (BT

ℓ 6
−1 Bℓ)

−1 BT
ℓ6

−1z (5.74)

Qℓ = (BT
ℓ 6

−1 Bℓ)
−1, (5.75)

where

6 =
(
61 0

0 62

)
, Bℓ =

(
Bℓ,2

Bℓ,1

)
, z =

(
z1

z2

)
. (5.76)

Next, we will discuss two examples where we investigate the covariances of the estimation

errors for various points on the vehicle. In the first example, the ratio σ 2
αwi
/σ 2

uwi
is equal to 1,

and in the second example it is equal to 25.

Example 1: ratio σ 2
αwi

/σ 2
uwi

= 1

When the ratio s = σ 2
αwi
/σ 2

uwi
= 1, then we see from equations (5.71) and (5.76) that the

covariance matrices reduce to

61 = 62 = σ 2 I, 6 = σ 2. (5.77)
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From equation (3.70) of subsection 3.5.3 we know that the 4×3-matrix Bvk ,k for a single OLS

vehicle satisfies

Bvk ,k =




x
vk

w1,k
sδw1,k − y

vk

w1,k
cδw1,k cδw1,k sδw1,k

x
vk

w2,k
sδw2,k − y

vk

w2,k
cδw2,k cδw2,k sδw2,k

x
vk

w1,k
cδw1,k + y

vk

w1,k
sδw1,k −sδw1,k cδw1,k

x
vk

w2,k
cδw2,k + y

vk

w2,k
sδw2,k −sδw2,k cδw2,k



, (5.78)

where (x
vk

wi ,k
, y

vk

wi ,k
) are the coordinates of the center of wheel wi of OLS vehicle k expressed

in coordinate system 9vk
, and δwi ,k is the steering angle of that wheel. Since only the two

active wheels of the OLS vehicles are equipped with sensors, we have i ∈ {1, 2}. Although

Bvk ,k depends on the steering angles of the wheels, it turns out that the corresponding infor-

mation matrix BT
vk ,k
6−1

k Bvk ,k does not for the case that 6k = σ 2 I . If we write it out, then

we obtain

BT
vk ,k
6−1

k Bvk ,k = 1

σ 2
BT

vk ,k
Bvk ,k = 1

σ 2

2∑

i=1



(x

vk

wi ,k
)2 + (y

vk

wi ,k
)2 −y

vk

wi ,k
x

vk

wi ,k

−y
vk

wi ,k
1 0

x
vk

wi ,k
0 1


 .

(5.79)

Let us denote the front wheel of AGV k by w1,k , and the rear wheel by w2,k . From Figure 5.2

we see that the coordinates (m,m) of the front and rear wheel of the AGV on the left (OLS 1)

are respectively (0.40, 0.85) and (−0.40, 0.85). The coordinates (m,m) of the front and rear

wheel of the AGV on the right (OLS 2) are respectively (0.40,−0.55) and (−0.40,−0.55).

Thus the corresponding covariance matrices Qℓ
k read

Qℓ
1 = (BT

v1,1
6−1

1 Bv1,1)
−1 = (BT

ℓ,16
−1
1 Bℓ,1)

−1 =




3.125 2.656 0.000

2.656 2.758 0.000

0.000 0.000 0.500


 , (5.80)

Qℓ
2 = (BT

v2,1
6−1

1 Bv2,1)
−1 = (BT

ℓ,26
−1
2 Bℓ,2)

−1 =




3.125 −1.719 0.000

−1.719 1.445 0.000

0.000 0.000 0.500


 .(5.81)

Recall that we are allowed to exchange the indices vk and ℓ as9vk
= 9ℓ in this example. The

covariance matrix Qℓ that corresponds to the case where the measurements of both vehicles

are used is given by

Qℓ = (BT
ℓ6

−1 Bℓ)
−1 = 1

σ 2
(BT

ℓ Bℓ)
−1 =




0.385 0.058 0.000

0.058 0.259 0.000

0.000 0.000 0.250


 . (5.82)

Note that the variance of the estimate for the rotational velocity –the (1,1)-component of the

Q-matrices above– is much smaller when the estimates are combined (E[(ω̆0
ℓ|z)

2] = 0.385)

than when they are not combined (E[(ω̆0
ℓ|zk
)2] = 3.125). The unique points where the covari-
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ance of the error in the estimated point velocities is minimal, satisfy

Pℓ
m|z1

=




− (Qℓ
1)1,3

(Qℓ
1)1,1

(Qℓ
1)1,2

(Qℓ
1)1,1

1




=




− 0.000
3.125

2.656
3.125

1


 =




0.00

0.85

1


 , (5.83)

Pℓ
m|z2

=




− (Qℓ
2)1,3

(Qℓ
2)1,1

(Qℓ
2)1,2

(Qℓ
2)1,1

1




=




− 0.000
3.125

−1.719
3.125

1


 =




0.00

−0.55

1


 , (5.84)

Pℓ
m|z =




− (Qℓ)1,3

(Qℓ)1,1

(Qℓ)1,2

(Qℓ)1,1

1


 =




− 0.000
0.385

0.058
0.385

1


 =




0.00

0.15

1


 . (5.85)

Note that σ 2 does not appear in these equations. The points Pℓ
m|z1

, Pℓ
m|z2

, and Pℓ
m|z and the

covariance of the estimation errors in the velocities of several points that are (virtually) fixed

to the AGVs are displayed in Figure 5.3 for a certain value of σ 2. We are mainly interested

in the shape of the covariances.
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Figure 5.3: Covariances of the velocity estimation errors for various points on the vehicles.

The unique points where the covariances are minimal are indicated by a ‘∗’. The small

squares ‘�’ in the figure indicate the positions of the wheels.

As is expected from symmetry considerations, the points Pm with the minimum veloc-
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ity estimate error covariance are in the center of the wheels that are used to compute the

corresponding twist estimates. Hence, Pm|z1
lies in between the two actuated wheels of the

OLS 1, Pm|z2
in between the two actuated wheels of the OLS 2, and Pm|z in between the four

actuated wheels of the interconnected system. The farther we move away from the points

Pm , the larger the variance of the velocity error becomes due to the uncertainty in the rota-

tional velocity ω0
ℓ . Because the variance of ω0

ℓ is much smaller when the measurements z

of all four wheels are used to compute the twist estimate T̂
ℓ,0
ℓ|z , the variance of the estimated

point velocities increases much slower than for the estimate T̂
ℓ,0
ℓ|zk

that is based on the local

measurements zk of AGV k only. This example illustrates that it is beneficial to pursue a

centralized observer design that uses all available measurements over local observers that use

only local measurements.

Example 2: ratio σ 2
αwi

/σ 2
uwi

= 25

In our second example, we consider the situation that the ratio s = σ 2
αwi
/σ 2

uwi
is equal to

25. It turns out that for this case the information matrices Qℓ
k = (BT

ℓ,16
−1
k Bℓ,1)

−1 and

Qℓ = (BT
ℓ6

−1 Bℓ)
−1 are not constant anymore. Instead, they will depend on the steering

angles δwi ,k . As a result, the positions of the points Pm|zk
and Pm|z where the velocity estimate

is optimal will also depend on the steering angles δwi ,k .

Figure 5.4 displays the covariances of the velocity estimation errors for various points on

the vehicles for four positions of the steering pole as estimated from the covariance matrix

Qℓ, i.e. all the measurements z are used. The steering angles have been chosen such that the

wheel planes are perfectly aligned with the motion of the interconnected system. We clearly

see that the position of Pmz as well as the shapes of the confidence intervals depends on the

position of the steering pole in this example.

5.5 Least-squares observer for multiple AGVs transporting

a common load

In this section we consider the situation that N possibly non-identical AGVs are semi-rigidly

interconnected to the load. The example of subsection 5.4.4 showed us that an estimator

that uses the measurements of all the AGVs performs better than a local estimator that uses

measurements from only one AGV. In the example all the AGV-load interconnections were

completely rigid. In this section we will relax this by considering interconnections that are

lower pairs. This allows us to deal with revolute and prismatic joints as well. First we

consider a centralized observer design, and later we will discuss how it can be implemented

in a distributed fashion.

5.5.1 Centralized observer design

The goal for the central observer is to simultaneously estimate the twist of the load with

respect to the floor and the twists of all the AGVs with respect to the floor. For convenience
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Figure 5.4: Covariances of the velocity estimation errors for various points on the vehicles

for four positions of the steering pole ‘•’ when the measurements of both vehicles are used.

The unique point Pm|z where the covariance is minimal is indicated by a ‘∗’.

we express all the estimates in a single coordinate system 9ℓ that is fixed to the load. Thus

the goal is to derive an estimator for

T =




T
ℓ,0
ℓ

T ℓ,0
v1

...

T ℓ,0
vN


 . (5.86)

The available measurements are the local measurements from all the N individual AGVs. Let

us denote the measurements of AGV k by zk . If we let mk = length(zk), then we see that

there are M =
∑N

k=1 mk measurements available.

Intuitively, each AGV can estimates its own motion from its local measurements zk using

the least-squares estimator (5.31) that was derived in subsection 5.4.1. Even when the load

has no sensors to measure its relative velocity with respect to the floor, intuitively it should be

possible to reconstruct the motion of the load by using the information about the kinematic

constraints at the interconnections. In subsection 3.7.2 we made the assumption that all the

interconnections behave as lower pairs. This means that the twist T ℓ,ℓ
vk

between AGV k and

the load can be described as (3.101)

T ℓ,ℓ
vk

= Sℓ,kηk, (5.87)

where Sℓ,k is constant and has full column rank. Furthermore, ηk ∈ Rrank(Si,k ) are new veloc-

ity coordinates. For a revolute joint ηk ∈ R represents the rotational velocity of the joint, and
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for a prismatic joint it represents the sliding velocity of the joint. We assume that the relative

position Hℓ
vk

of each AGV k with respect to the load is known, e.g. because it is mea-

sured by a sensor at the interconnection or because the interconnection is completely

rigid. Furthermore, we assume that direct measurements about the relative motion of

the AGVs with respect to the load are not available.

In the remainder of this subsection we will focus on the situation that there are only two

AGVs (N = 2) to ease notation. It is straightforward to generalize the results to an arbitrary

number of AGVs. First, we stack all the measurements in a single vector zk , so we have

z = stack(z1, z2). Extending our single AGV measurement model (5.27) to two AGVs yields

z =
(

z1

z2

)
=
(

0 Bℓ,1 0

0 0 Bℓ,2

)

︸ ︷︷ ︸
H




T
ℓ,0
ℓ

T ℓ,0
v1

T ℓ,0
v2




︸ ︷︷ ︸
T

+
(
ξ1

ξ2

)

︸ ︷︷ ︸
ξ

= H T + ξ (5.88)

This equation has the same form as the measurement model for a single AGV (5.27), in the

sense that the measurements z consist of a term that is linearly related to the to-be-estimated

variables T plus an additive noise term ξ . The major difference with the single AGV case

is that H in the equation above does not have full column rank, hence H T H is singular.

Therefore, it is not possible to determine a unique least-squares estimator T̂ that minimizes

V (T ) = ||(z − H T )||2
6−1 = (z − H T )T6−1(z − H T ), (5.89)

where 6−1 is a positive definite matrix. To overcome this situation we use equation (5.87) to

express the to-be-estimated variables T in terms of the twist T
ℓ,0
ℓ of the load with respect to

the floor and the velocity coordinates ηk . Since (3.110)

T ℓ,0
vk

= T
ℓ,0
ℓ + T ℓ,ℓ

vk
= T

ℓ,0
ℓ + Sℓ,kηk, (5.90)

we can write T as (3.111)

T =




T
ℓ,0
ℓ

T ℓ,0
v1

T ℓ,0
v2


 =




I 0 0

I Sℓ,1 0

I 0 Sℓ,2




︸ ︷︷ ︸
S




T
ℓ,0
ℓ

η1

η2




︸ ︷︷ ︸
η

= Sη (5.91)

Subsequently, we focus on the estimation of the reduced set of coordinates η. For completely

rigid interconnections η1 and η2 are equal to ∅, and we are just left with T
ℓ,0
ℓ . When the load

is attached to the vehicles by means of revolute joints, then the dimension of η is equal to

3 + 1 + 1 = 5. By substituting the previous equality (5.91) in our minimization criterion

(5.89) we arrive at

V (η) = ||(z − H Sη)||2
6−1 = (z − H Sη)T6−1(z − H Sη). (5.92)

To find a unique estimator η̂ that minimizes (5.92) we need to have that H S has full column

rank. The requirement of full column rank for H S is equivalent to the requirement that
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ST HT H S is nonsingular. Since ST HT H S is symmetric, the non-singularity requirement

implies that ST HT H S should be positive definite:

ηTST HT H Sη > 0 ∀η 6= 0. (5.93)

Thus a necessary condition is that the kernel of S is identical to the zero element, i.e. S has full

column rank. Otherwise there would exist a vector η 6= 0 such that Sη = 0 and, consequently,

ηTST HT H Sη = 0. Recall that all matrices Sℓ,k have full column rank. Therefore, from the

definition (5.91) of S it follows that S has full column rank. So indeed

ker S = 0. (5.94)

Furthermore, we know that H does not have full column rank. In other words, the kernel

of H consists of more than the zero element. Since Bℓ,k has full column rank for all k, it is

readily seen from equation (5.88) that the kernel of H satisfies

ker H = ker

(
0 Bℓ,1 0

0 0 Bℓ,2

)
= Im




I

0

0


 . (5.95)

Condition (5.93) can only be fulfilled when Sη is not in the kernel of H for all η 6= 0. Since

we already showed that ker S = 0, condition (5.93) is equivalent to

ker H ∩ Im S = 0. (5.96)

If we write this out using the expressions for the kernel of H and the image of S, then we get

Sη =




I 0 0

I Sℓ,1 0

I 0 Sℓ,2






T
ℓ,0
ℓ

η1

η2


 =




T
ℓ,0
ℓ

T
ℓ,0
ℓ + Sℓ,1η1

T
ℓ,0
ℓ + Sℓ,2η2


 =




T
ℓ,0
ℓ

T ℓ,0
v1

T ℓ,0
v2


 6=




∗
0

0


 ∀η 6= 0.

(5.97)

This condition tells us that the AGVs should be interconnected to the load in such a way that

the situation where the load is moving whilst the AGVs are standing still, i.e. T
ℓ,0
ℓ 6= 0 whilst

T ℓ,0
v1

= T ℓ,0
v2

= 0, should never occur. Intuitively, this condition is fulfilled when there are

sufficient kinematic constraints between the AGVs and the load. To show this mathematically,

we investigate condition (5.97) in more detail. We start by noting that if Sη would be in the

kernel of H for a certain η 6= 0, then certainly T
ℓ,0
ℓ must be unequal to zero. But if T

ℓ,0
ℓ 6= 0,

then the last two rows of (5.97) can only be both equal to zero when there exist η1 and η2

such that

−T
ℓ,0
ℓ = Sℓ,1η1 = Sℓ,2η2 (5.98)

for some T
ℓ,0
ℓ 6= 0. In other words, condition (5.97) can only be violated when T

ℓ,0
ℓ is in the

intersection of the images of Sℓ,1 and Sℓ,2. Conversely, for condition (5.97) to hold we must

have that the intersections of Sℓ,1 and Sℓ,2 is equal to the zero element. If we generalize this

to N AGVs, we obtain (since we already showed that ker S = 0)

ker H ∩ Im S ⇔
N⋂

k=1

Im Sℓ,k = 0. (5.99)
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We already saw in equation (3.107) of subsection 3.7.2 that this indeed is the case, as this fol-

lows from the requirement that the AGVs should collectively be able to exert a netto wrench

in any arbitrary direction on the load. Hence, H S has indeed full column rank. Moreover, we

have that ST HT H S is positive definite and nonsingular. Since the weighing matrix 6 was

assumed to be positive definite, then also ST HT6H S is positive definite. This allows us to

derive a standard least-squares estimator η̂ that minimizes our criterion V (η) that was given

by equation (5.92). Hence, we find

η̂ = (ST HT6−1 H S)−1ST HT6−1z (5.100)

To obtain an estimator for our original to-be-estimated variables T , we simply pre-multiply

our estimator η̂ for the reduced set of coordinates by S. This yields

T̂ = Sη̂ = S(ST HT6−1 H S)−1ST HT6−1z (5.101)

5.5.2 Distributed implementation

In the previous sections we derived a centralized observer design to estimate T . To implement

it in a distributed manner, we make an additional assumption on the structure of the weighting

matrix6. We assume that the weighting matrix 6 that is applied to all the measurements

in the interconnected system is constant and has a block diagonal form, where each

(symmetric) block 6k is positive definite and corresponds to the measurements of AGV

k. Since the number of available measurements for AGV k is equal to mk = length(zk), it

follows that under these assumptions 6 takes the form

6 = diag (61, . . . , 6N ), 6T
k = 6k ∈ Rmk×mk , 6k > 0. (5.102)

From a stochastic point of view this structure is not always justifiable. The lateral velocity

measurement errors of AGV 1 are for example certainly correlated with the lateral velocity

measurement errors of AGV 2 when an unmodelled external force is acting in the lateral di-

rection of the interconnected system. Such a force can for example be caused by the banking

of the floor, by a wind gust that is blowing on a load that is transported outdoors, etc. The

influence of such disturbances will result in off-block-diagonal terms. Depending on the ap-

plication, one may choose to slightly deteriorate the observer’s performance by disregarding

the off-block-diagonal terms to allow a distributed observer implementation.

If we are to implement the central design of the previous subsection in a distributed way,

then we have to communicate variables that do not change over time only once at the initial-

ization phase. Inspection of the estimator T̂ (5.101) shows that some terms are fortunately

constant, whereas others are not. Since we restricted ourselves to lower-pair interconnec-

tions, S is constant. The two terms are not (necessarily) constant are H T6−1 H and H T6−1z.

When 6 is of the form (5.102), then writing out H T6−1 H for N = 2 results in

HT6−1 H =




0 0 0

0 BT
ℓ,16

−1
1 Bℓ,1 0

0 0 BT
ℓ,26

−1
2 Bℓ,2


 (5.103)
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Because direct measurements on the load’s motion T
ℓ,0
ℓ are not available, the first three

columns are zero. When we express the least-squares estimator (5.31) that we derived for

a single AGV k that is not transporting a load in 9ℓ we arrive at

T̂
ℓ,0
vk |zk

= AdHℓ
vk

T̂
vk ,0
vk |zk

= (BT
ℓ,k6

−1
k Bℓ,k)

−1 BT
ℓ,k6

−1
k zk . (5.104)

Here T̂
vk ,0
vk |zk

is the estimate for the twist T
vk ,0
vk

of AGV k with respect to the floor expressed

in vehicle coordinates 9vk
that is based on the local measurements zk of AGV k only. It is

assumed that the relative position H ℓ
vk

of the load with respect to the AGV is known, such

that it is possible to express the local estimate in terms of the load coordinate system9ℓ. The

latter estimate is denoted by T̂
ℓ,0
vk |zk

. Pre-multiplying the previous equation by BT
ℓ,k6

−1
k Bℓ,k

leads to

BT
ℓ,k6

−1
k zk = BT

ℓ,k6
−1
k Bℓ,k T̂

ℓ,0
vk |zk

. (5.105)

This expression can be exploited to write out the second non-constant term H T6−1z of our

centralized observer. For N = 2 this results in

HT6−1z =




0 0

BT
ℓ,16

−1
1 0

0 BT
ℓ,26

−1
2



(

z1

z2

)
=




0

BT
ℓ,16

−1
1 z1

BT
ℓ,26

−1
2 z2


 =




0

BT
ℓ,16

−1
1 Bℓ,1T̂

ℓ,0
v1|z1

BT
ℓ,26

−1
2 Bℓ,2T̂

ℓ,0
v2|z2




= HT6−1 H




0

T̂
ℓ,0
v1|z1

T̂
ℓ,0
v2|z2


 . (5.106)

Hence, our centralized observer (5.101) can equivalently be written as

T̂ = Sη̂ = S
(

ST HT6−1 H S
)−1

ST HT6−1 H




0

T̂
ℓ,0
v1|z1

T̂
ℓ,0
v2|z2


 (5.107)

The matrix S, which was defined in (5.91), is constant. The last term, which contains the

twists estimates T̂
ℓ,0
vk |zk

that are based on the local measurements zk only, is certainly not

constant. The twist estimate T̂
ℓ,0
vk |zk

of AGV k with respect to the floor can be computed

locally by AGV k, see equations (5.31) and (5.104). To decentralize the last term in the

observer algorithm (5.107), AGV k should locally compute the twist estimate T̂
ℓ,0

vk|zk
that

corresponds to its own measurements zk, and subsequently broadcast the result to the

other AGVs. Since a twist has three components, this requires the broadcasting of three

double precision numbers per AGV.

The remaining term H T6−1 H appears twice in our alternative formulation (5.107) above.

Inspection of (5.103) shows that all the elements of H T6−1 H are matrices of the form

BT
ℓ,k6

−1
k Bℓ,k . Since the information matrix BT

ℓ,k
6−1

k
Bℓ,k depends on information that is
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related to AGV k only, it can be computed locally by AGV k, and subsequently broad-

casted to the other vehicles. In particular, from equation (5.33) it is seen that the formula to

compute BT
ℓ,k6

−1
k Bℓ,k satisfies

BT
ℓ,k6

−1
k Bℓ,k = AdT

H
vk
ℓ

(BT
vk ,k
6−1

k Bvk ,k)Ad
H

vk
ℓ

. (5.108)

Because the information matrices BT
ℓ,k6

−1
k Bℓ,k for each AGV are symmetric and consist

of 3 × 3 = 9 elements, sharing an information with other vehicles requires broadcasting

six double precision numbers. The interesting question is whether there exist AGV-load

interconnections such that BT
ℓ,k6

−1
k Bℓ,k remains constant during operation. The answer is

yes. In the special cases where the information matrix BT

ℓ,k
6−1

k
Bℓ,k remains constant

during operation, it has to be broadcasted only once. In the next subsection we will discuss

two situations where BT
ℓ,k6

−1
k Bℓ,k is constant.

5.5.3 Examples where the amount of information sharing can be re-

duced

This subsection presents two examples where the amount of information sharing between the

AGVs can be reduced as BT
ℓ,k6

−1 Bℓ,k remains constant during operation. Before we discuss

the two examples, it is convenient to express BT
ℓ,k6

−1 Bℓ,k in terms of the vehicle coordinate

system 9vk
. We therefore repeat equation (5.108)

BT
ℓ,k6

−1
k Bℓ,k = AdT

H
vk
ℓ

(BT
vk ,k
6−1

k Bvk ,k)Ad
H

vk
ℓ

, (5.109)

where Ad
H

vk
ℓ

depends on the relative position H
vk

ℓ of the load with respect to the vehicle.

Example 1: Rigid AGV-load interconnection with 6k = I

In our first example, the load is boldly fixed to the AGVs. This implies that Ad
H

vk
ℓ

is constant.

From equation (5.79) we know that BT
vk ,k
6−1

k Bvk ,k takes a special form for our OLS vehicles

when 6k = I :

BT
vk ,k
6−1

k Bvk ,k = BT
vk ,k

Bvk ,k =
2∑

i=1



(x

vk

wi ,k
)2 + (y

vk

wi ,k
)2 −y

vk

wi ,k
x

vk

wi ,k

−y
vk

wi ,k
1 0

x
vk

wi ,k
0 1


 . (5.110)

Because the coordinates (x
vk

wi ,k
, y

vk

wi ,k
) of the wheel centers of AGV k as expressed in 9vk

are

constant, so is BT
vk ,k

Bvk ,k . Because both BT
vk ,k
6−1

k Bvk ,k and Ad
H

vk
ℓ

are constant, it follows

from (5.109) that the information matrix BT
ℓ,k6

−1
k Bℓ,k is indeed constant for this case.

Case 2: Revolute joint with 6k = I

Our second example deals with the situation that the interconnection between AGV k and the

load is not completely rigid. We consider an OLS vehicle with 6k = I again, hence the local
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information matrix BT
vk ,k
6−1

k Bvk ,k = BT
vk ,k

Bvk ,k is constant. Since Ad
H

vk
ℓ

is not constant

anymore as the load can move with respect to the vehicle, expression (5.109) is generally

not constant. An interconnection puts restrictions on the allowed relative positions H
vk

ℓ .

Consequently, an interconnection also restricts the allowed matrices Ad
H

vk
ℓ

. Thus we will

investigate which kind of interconnections limit Ad
H

vk
ℓ

in such a way that the transformed

information matrix AdT

H
vk
ℓ

BT
vk ,k
6−1

k Bvk ,k Ad
H

vk
ℓ

is constant for all relative positions H
vk

ℓ that

are allowed by the interconnection. Note that when a certain information matrix is constant,

then so is its inverse. The inverse of BT
ℓ,k6

−1
k Bℓ,k equals (5.49)

Qℓ
k = (BT

ℓ,k6
−1
k Bℓ,k)

−1 = AdHℓ
vk
(BT

vk ,k
6−1

k Bvk ,k)
−1 AdT

Hℓ
vk

= AdHℓ
vk

Q
vk

k AdT
Hℓ

vk

, (5.111)

where Qℓ
k and Q

vk

k represent the covariance tensor of AGV k as expressed in 9ℓ and 9vk
,

respectively. Since BT
vk ,k
6−1

k Bvk ,k is constant, so is its inverse Q
vk

k . We know from equa-

tion (5.63) that there exits a unique point Pmk
for AGV k with a corresponding coordinate

system 9mk
where the matrix representation of the covariance tensor Qk takes a diagonal

form. Since Q
vk

k is constant and since the position of Pmk
depends on Qk only, the position

of Pmk
is constant with respect to the vehicle. We already saw in subsection 5.4.3 that for a

single OLS vehicle, the point Pmk
lies exactly in the middle of its two actuated wheels. If we

fix 9mk
with its origin to Pmk

and orient its axes appropriately, then the covariance tensor Qk

expressed in 9mk
becomes

Q
mk

k =



(Q

mk

k )1,1 0 0

0 (Q
mk

k )2,2 0

0 0 (Q
mk

k )3,3


 =




a 0 0

0 b 0

0 0 c


 . (5.112)

The relation between Q
mk

k and Qℓ
k (5.111) is given by

Qℓ
k = AdHℓ

vk
Q

vk

k AdT
Hℓ

vk

= AdHℓ
vk

Ad
H

vk
mk

Q
mk

k AdT

H
vk
mk

AdT
Hℓ

vk

= AdHℓ
mk

Q
mk

k AdT
Hℓ

mk

, (5.113)

where we used that H
vk
mk

is constant since 9mk
was fixed to the vehicle. To find out when this

expression is constant, we parameterize H ℓ
mk

and AdHℓ
mk

as

H ℓ
mk

=




cϕ −sϕ x

sϕ cϕ y

0 0 1


 ⇒ AdHℓ

mk
=




1 0 0

y cϕ −sϕ

−x sϕ cϕ


 , (5.114)

where (x, y) are the coordinates of the origin of 9mk
expressed in 9ℓ, and ϕ is the angle

between 9mk
and 9ℓ. Substitution in equation (5.113) leads to

Qℓ
k =




a ay −ax

ay ay2 + c + (b − c) cos2(ϕ) −axy + 1
2
(b − c) sin(2ϕ)

−ax −axy + 1
2
(b − c) sin(2ϕ) ax2 + b − (b − c) cos2(ϕ)


 . (5.115)

Since Q
mk

k is positive definite, a, b and c are all larger than zero. It follows that for Qℓ
k to be

constant, we certainly must have that x and y are constant. This means that the origin of 9mk
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is fixed with respect to the origin of 9ℓ. Thus the only degree of freedom that is left for the

interconnection is the rotation ϕ. This corresponds to a revolute joint which axis of rotation

goes exactly through the special point Pmk
. If we leave ϕ free, then from the equation above

we see that for Qℓ
k to be constant, we must in addition have that b = c. In other words, the

last two diagonal components of Q
mk

k should be equal. It turns out that this is indeed the

case for our OLS vehicles. This can for example be seen from equation (5.110). Since Pmk

lies in between the two wheels, we have x
mk

w1,k
= −x

mk

w2,k
= 0.40 and y

mk

w1,k
= y

mk

w2,k
= 0.

Substituting these values in (5.110) results in

Q
mk

k =
(

BT
mk ,k

Bmk ,k

)−1
=




2 × (0.40)2 0 0

0 2 0

0 0 2




−1

=




3.125 0 0

0 0.5 0

0 0 0.5


 . (5.116)

The last two diagonal elements are indeed identical. Thus when the load is interconnected

to an OLS vehicle by means of a revolute joint that is attached exactly in the middle

of the two actuated wheels and when in addition 6k = I , then the information matrix

BT

ℓ,k
6−1 Bℓ,k remains constant during operation. In that case, this vehicle only needs to

communicate its local twist estimate T̂
ℓ,0
vk |zk

in real time.

5.6 Concluding remarks and discussion

The reconstruction of to-be-controlled variables from measurement data is a crucial aspect in

all control designs. Our to-be-controlled variables are the planar motion of the load and, in

case the AGV-load interconnection is not fully rigid, the motions of the AGVs with respect

to the load. These variables have to be reconstruct from the odometric sensor information,

which usually consists of the drive encoder and steering encoder readings. We analyzed the

observability of an individual AGV and proved that it is indeed possible to reconstruct the

motion from the odometric measurements.

Driven by practical considerations, we pursued a pragmatic least-squares based observer

design and derived a least squares observer for a single AGV. Because there are no mea-

surements on the velocity in the lateral directions of the wheels available, it was assumed

that the wheels’ side slip angles were identical to their desired values. This resulted in two

additional, virtual measurements. This estimator was subsequently analyzed in a stochastic

setting. The relation between the motion estimator and the estimated velocity of an arbitrary

point on the vehicle was explored. We derived an expression for the covariance of the veloc-

ity of an arbitrary point on the AGV. We proved that there is one unique point for which the

covariance of the estimated velocity is minimal. This was illustrated by an example where the

derived theory was applied to two interconnected OLS vehicles. The example also illustrated

that it would be advantageous to combine the measurements of several AGVs when all the

AGV-load interconnections are completely rigid to enhance the estimate for the load’s planar

motion.

Therefore, in the last part of this chapter we derived a generalized observer for the case

that the load is interconnected to an arbitrary number of AGVs using so-called lower pairs.

Interconnections that can be described by lower pairs include fully rigid interconnections,
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revolute joints, and prismatic joints. We extended the least squares observer that was derived

for the single AGV case and exploited information about the kinematic constraints to infer in-

formation about the load’s motion. This resulted in a centralized least squares based observer

that estimates the motion of the load and the vehicles using all the available measurements.

Subsequently, we discussed a distributed implementation of this observer. It is assumed that

the positions of the AGVs with respect to the load are known. Measurements of the velocity

of the load with respect to the AGVs are not required. For a distributed implementation of the

observer we propose that each AGV estimates its own planar motion using local sensor in-

formation and subsequently broadcasts the result. This requires broadcasting of three double

precision numbers per AGV. In addition, the AGVs are required to broadcast their own in-

formation matrices. Since the information matrices are symmetric, this requires broadcasting

six double precision numbers per AGV. With this information, each AGV is able to compute

the global estimate that corresponds to the centralized observer design.

Finally, we showed that there are some special situations where the information matrices

remain constant during operation. When they are constant, they only need to be set once.

This reduces the amount of information that has to be shared in real-time. We presented two

such examples. Both examples are related to OLS vehicles that are collectively transporting

a load. In the first example where the information matrix remains constant, the load-AGV

interconnections are completely rigid. In the second example, the load is interconnected to

the vehicles with revolute joints. It is shown that the information matrix remains constant

when the axis of rotation of the revolute joint between vehicle k and the load coincides with

the aforementioned unique point for which the variance of the estimated velocity is minimal.

For an OLS vehicle this means that the revolute joint should be mounted in the middle of the

two actuated wheels.

The main limitations of the distributed observer that was presented in this chapter are

1) the matrices that describe the relation between the motion of the vehicles and the mea-

surements are assumed to be known, 2) the load is assumed to behave as a rigid body, 3) the

position of the load with respect to the vehicles is assumed to be known, and 4) the observer

assumes that the true side slip angles are equal to their setpoints. For a real system all these

assumptions will be slightly violated. Instead of adding all the uncertainties to our model and

deal with them in a theoretical framework, we prefer to follow a more pragmatic approach

and just implement the designed observer on a real system to see how it performs. The ex-

perimental results for two OLS vehicles that are cooperatively transporting a load that is fully

rigidly interconnected to the AGVs will be presented in Chapter 7.
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6

Control

6.1 Introduction

This chapter deals with the control design for cooperatively transporting a load by multiple

AGVs. We decided to restrict ourselves to control on the velocity level, as we regard this

as an essential intermediate step for achieving fully automated control. The setpoint for the

motions of the load and the AGVs is provided by an external host, which can be either a

human operator or a computer.

In the main introduction of this thesis we formulated several requirements to increase the

chance that our control design will indeed lead to practically meaningful industrial applica-

tions. The AGVs must be able to operate cooperatively as well as individually, switching

between these two modes should be easy, and the algorithms must fit the industrial AGVs

and the software framework that are used by FROG. We aim at a decentralized control de-

sign. Ideally, the control law for cooperative behavior is an extension of the controllers that

are currently used for individual operation. We also aim at a generic control structure, such

that the designed controller is capable of controlling a large class of vehicles. Furthermore,

the AGVs should not counteract each other’s actions. Docking and grasping procedures are

not considered.

Each AGV has multiple actuated wheels. Also because the load is semi-rigidly attached to

the AGVs, the interconnected system will typically have more actuators than to-be-controlled

variables. Thus our system is overactuated, i.e. there are multiple ways of driving the actu-

ators such that the desired motion is realized. Therefore, we need an additional requirement

to resolve this ambiguity. We chose to minimize interconnection forces between the load and

AGVs.

Now we continue this chapter by reviewing related work on vehicle dynamics control and

cooperative transportation. Subsequently, we briefly discuss the controller that is currently

used for controlling a single AGV. After that, we introduce a control strategy for cooperatively

transporting a load by multiple AGVs that are semi-rigidly interconnected to the load. The

chapter ends with the conclusions and a discussion.

6.2 Related work

The control of any electro-mechanical system requires the cooperation of various disciplines.

Two fields are of particular importance for our cooperative transportation task, namely the

field of vehicle dynamics that concerns the control of horizontal vehicle behavior, and the

research field that deals with the cooperative transportation of a load by mobile robots. Before
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we review these two fields and discuss the positioning of our work, we first spend some words

on dedicated AGV control.

6.2.1 Automated Guided Vehicle control

The first industrial AGVs that were installed in factories followed paths that were defined by

white lines on the floor or electrical wires in the ground. They transported relatively light

products and operated at speeds of only a few meters per seconds. Therefore, controllers

that were based on kinematic vehicle models were capable to operate these early AGVs at

the required precision. A common method to control these vehicles was to translate the

measured path deviation into a setpoint for the rotational and the longitudinal velocity of the

AGV. The desired rotational and longitudinal velocity were subsequently realized by a lower

level control loop, that drives the steering and drive actuators. These kinematic controllers

are still widely used for low speed laboratory robots and low speed AGVs, see e.g. [17, 60,

90, 108, 131].

In the future, the AGV market will demand more complex vehicles and vehicles that

operate at higher speeds. As a result, the study of vehicle dynamics will become increasingly

important to control the more exotic future AGVs. At the European Container Terminal of

Rotterdam harbour, AGVs with diesel engines and truck tires automatically transport heavy

containers. The heavy load in combination with the relatively compliant truck tires require

that vehicle dynamics have to be taken into account to achieve the desired behavior. Similarly,

the current generation of fully automatic people movers at Rivium/Capelle aan de IJssel in

Holland may already reach speeds of 30 km/h. And in autumn 2004, the double-articulated

Phileas has become operational in Eindhoven. Although a driver is present for safety reasons,

the Phileas is able to achieve speeds of 70 km/h in fully automatic mode. Controllers that are

based on kinematic models are not suited for these high speed applications. Therefore, control

designs for high speed AGVs are generally based on planar rigid body models with static,

linear tire models. Such controllers are also capable of controlling AGVs at low speeds.

Moreover, low speed applications will in fact benefit from wheel slip models, as this will

improve velocity estimates that are derived from odometric measurements. Hence, for AGV

control we see a trend from kinematic models and low speed operation towards dynamical

models with wheel slip and high speed operation.

6.2.2 Vehicle dynamics control

In section 5.2 of the previous chapter, we already mentioned that nowadays we witness a

steady increase in advanced driver assistance systems for passenger cars and trucks. We

also indicated that the earlier systems typically dealt with one aspect of vehicle control. For

example, anti-lock braking systems (ABS) help the driver to keep the vehicle under control

during extreme braking maneuvers, Electronic Stability Programs (ESP) assist the driver in

controlling the vehicle’s yaw rate, advanced cruise control (ACC) helps the driver to keep

the vehicle at a certain constant speed, etc. Currently we see a trend to integrate the various

individual systems. The idea is that sensor fusion in combination with a smart distribution of

the control actions will improve the vehicle’s handling behavior. The interested reader may
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consult the review by Shladover [106] and the articles by Abe [1] and Van Zanten et al. [121]

for an overview of the development of advanced driver assistance systems.

Some driver assistance systems act on the vehicle by influencing the brakes (ABS,ESP),

whereas others also influence the engine torque (ACC). Systems that directly influence the

steering angles, such as four wheel steering (4WS), are less common, but they are available.

The reader can consult the review by Furukawa et al. [42] for an overview of the earlier

work on 4WS and a list of the first commercially available 4WS vehicles. It is expected that

steer-by-wire systems, i.e. systems where there is no mechanical link between the steering

wheel and the wheels, will become commercially available in the near future. Until then, car

manufacturers can resort to systems that superimpose small offsets on the driver’s steering

angle.

Combining braking and steering commands offers new possibilities for integrated vehicle

dynamics control. An early study that uses a dynamical model to optimize the braking and

handling performance of a truck-semitrailer is the article by Van Zanten and Krauter [122]. It

was one of the first articles where braking and the steering actions of a vehicle were optimized

for certain maneuvers using the recently developed theory of optimal control.

The traditional way to design vehicle controllers is to consider the setpoint for the steering

actuator and the braking torques for the wheels as inputs, see e.g. [54]. Whereas traditional

cars have one steering system and four brakes, it is expected that the number actuators will

increase in the future. For example, some cars will be equipped with additional rear wheel

steering systems, for some cars the front wheels will not be mechanically coupled anymore as

they are steered by means of electric servos, etc. As a result, the number of actuator configu-

rations will also increase. This has led several researchers to investigate control architectures

that are more generic in nature. The generic control designs have in common that they use a

layered control architecture. The idea is that the top layer is the same for all vehicles. In case

of passenger cars, it is usually based on a planar rigid body model of the vehicle. The purpose

of the top layer is to translate the desired rotational, longitudinal and lateral accelerations into

a wrench setpoint for the vehicle. The desired wrench is subsequently distributed among the

wheels. How the forces are distributed among the wheels depends on the particular vehicle

configuration, and the available actuators. When a wheel is steered but not driven, this basi-

cally means that the wheel can actively generate lateral forces and a braking force. A wheel

that is connected to the cars driveline by means of a fixed axis can exert braking as well as

acceleration forces, but can not influence the lateral force. The lower layers have to fit the

sensor and actuator configuration of the to-be-controlled vehicle.

Nowadays, generic control architectures are studied by several research groups. The

Chalmers University of Technology/Royal Institute of Technology group from Sweden fo-

cuses on the control of the next generation passenger cars [7, 8, 40, 69, 70]. Besides vehicle

dynamics control, their research interests also include driveline control for vehicles that are

equipped with hybrid drivelines, energy management systems, and control of electric hybrid

vehicles in general. The work of the Advanced Chassis and Transport Systems group of TNO

Automotive in Helmond (The Netherlands) [72, 97, 98, 124] is related to their VEHIL lab-

oratory, which includes a hall of 200 meters long with two so-called moving bases. Each

moving base is in fact a high performance automated guided vehicle, which weighs 500 kg

and has four steerable wheels that are equipped with racing tires. They use a generic control

setup to control their mobile bases. There is also some work by Toyota Vehicle Control Lab,
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see the article by Hattori [49], in which the author investigates a wheel force distribution

strategy that can deal with both normal as extreme maneuvers. Finally, there are studies that

do not explicitly aim to develop a generic controller, but nevertheless use similar techniques

by computing the required wrench on the vehicle, and subsequently decompose this to the

local tire forces (e.g. [83]).

In the future we may expect that the driver assistance systems become so advanced and

integrated that the car is fully equipped with steer- and drive-by-wire systems. We will see

more similarities with modern aircraft and helicopter control systems, where the pilot pro-

vides the setpoint for the motion. That setpoint is translated into a desired wrench, which

is subsequently distributed among the various actuators. The autonomy of a car’s control

system may even increase up to a point that it is able to drive itself without any intervention

of the driver. Then the car has started to look like an AGV from a functional point of view.

There has already been a large amount of research on Automated Highway Systems (AHS)

for quite some years. But it will take many more years before such system is reliable and

accepted enough to become operational. Current state-of-the-art in autonomous car-like ve-

hicles are the completely autonomous People Movers, which have been successfully applied

for quite some years now. Hence, automated transport on dedicated, structured lanes is nowa-

days possible. The DARPA challenge showed that autonomous operation in unstructured and

unknown environments is being actively researched, and that still a lot of work has to be done

before we will see the first successful applications.

6.2.3 Cooperative transportation

An overview of relevant studies on cooperative transportation was given in subsection 1.3.3

of the main introduction of this thesis. We distinguished between behavior-based robotic

studies, and research that adopted ideas of traditional industrial manipulators. Since we are

interested in realizing well defined velocity setpoints in static, structured, well known envi-

ronments, we concluded that our cooperative transportation application is closer related to the

control of cooperating industrial mechanical manipulators than to the field of behavior-based

robotics.

The first works on cooperative industrial manipulators appeared in the 1970s, see e.g.

[88] for an early study. Since the cooperating industrial manipulators are relatively close to

one another and fixed to the ground, there was no real need to pursue decentralized control

implementations. There are many similarities between cooperating industrial manipulators

and multi-fingered robotic hands, as multi-fingered robotic hands can be seen as small scale

multiple cooperating manipulators. A summary of the evolution and the state of the art in

the field of robot hands is given by Bicchi [15]. Important research issues in the control of

cooperating manipulators as well as multi-fingered robotic hands include the modeling of the

object-manipulator contacts, computation of the optimal grasp positions, and the determina-

tion of the optimal grasp forces.

From perspective of the handled object, both the multiple manipulators as well as the

multi-fingered hand setups are overactuated systems. In other words, there are multiple ways

to drive the actuators that all result in the same net wrench on the handled object, and con-

sequently, the same object motion. The remaining degrees of freedom in the selection of ac-

tuator signals is usually resolved by imposing an additional constraint on the contact forces.
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Possible strategies are to minimize the maximum contact force, to minimize the internal ob-

ject loading, to maximize the margin to the maximum transmittable force by a finger, etc.

From a conceptual perspective this is very similar to multiple AGVs transporting a load. On

a higher level, the AGV platforms can be seen as the actuators, where each AGV is able to

exert a certain wrench on the object. On a lower level, the wheels can be seen as the actuators

that realize a certain wrench on the combine AGV-load system. There will exist sets of steer-

ing angles and wheel force setpoints that all result in the same net wrench on the combination,

and consequently in the same net motion.

There are several studies on the cooperative transportation by multiple mobile robots

that are closely related to our research and that adopt ideas from industrial manipulators and

multi-fingered robotic hands. A recent paper dealing with a decentralized control strategy that

was based on kinematic modeling ideas from traditional robotic manipulators is the work by

Tang et al. [118]. Examples of studies that exploit dynamical models to arrive at a control

law are the works by Stilwell and Bay [110], Hashimoto et al. [47], and Miyata et al. [82].

In these studies, the forces that should be exerted by each robot on the load to realize the

desired motion are computed by a centralized algorithm. An example of research that uses

dynamic models to design a decentralized control law are the studies of Khatib et al. [61, 62].

Their mobile platforms are equipped with manipulator arms and six-axis force/torque sensor

in the wrist. Hirata et al. [51] also uses torque/force sensors to transport a plate using two

mobile robots that each have two manipulator arms. Finally, there is a more recent study by

Hashimoto et al. [46], in which the authors present a hierarchical control system to operate a

loading deck with multiple wheel modules. Each wheel module consists of two differential

drive wheels, and is connected to the loading deck by means of a revolute joint. Because the

revolute’s rotation axis does not lie in between the two drive wheels, each wheel module can

exert both longitudinal as well as lateral forces on the loading deck.

The general trend in cooperative transportation by mobile robots is to use compliant

mechanisms to hold the to-be-transported object, often in combination with sensors to mea-

sure the forces and torques between the object and the robots. The reason to use compliant

mechanisms is that it is generally believed that the wheels impose very rigid constraints on

the behavior of the vehicle, which in turn lead to unacceptably high interconnection forces.

In contrast to the field of vehicle dynamics control, we see that research on cooperative trans-

portation by multiple robots is characterized by a high heterogeneity, where robots, controller

design goals, models, actuators, and sensors vary greatly between studies.

6.2.4 Positioning of our work

To be able to deal with a large variety of AGVs, we are particularly interested in the generic

control designs from the field of vehicle dynamics control. FROG has used a generic control

structure for several years now to control their AGVs. Their philosophy is described in the

paper by De Graaf [33]. Since we are mainly interested in modest vehicle maneuvers, we

will not enter the tires’ nonlinear operating regions. In particular, we will not come near the

maximum transmittable tire force. This means that we can use static, linear tire models and

relatively simple methods to distribute the forces amongst the AGV’s wheels.

In case that the load is semi-rigidly attached to multiple AGVs, e.g. by revolute joints,

then we have to deal with the control of multiple physically interconnected vehicles. This
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problem is not considered explicitly in vehicle dynamics control studies. However, there are

some links with works that deal with the control of truck-semitrailer and car-trailer combi-

nations. The usual solution to control the latter systems is to derive a dynamic model based

on Lagrange method. The algebraic equations that represent the mechanical constraints are

avoided by a smart choice of the generalized coordinates. Once the dynamical model of the

articulated combination is known, it is relatively straightforward to control that system. There

are two differences between our work and the control of an articulated vehicle. Firstly, AGVs

used for cooperative transportation are highly maneuverable. Thus whereas articulated vehi-

cles basically move only forwards and backwards, our interconnected system can also move

sideways and perform much more complex maneuvers. Secondly, our AGVs have to be able

to operate cooperatively as well as individually. We therefore aim to derive a decentralized

control law. In articulated vehicle control, it is common to derive a centralized solution.

We saw that the trend in research on mobile robot cooperative transportation is to use

compliant mechanisms to hold the to-be-transported object. Often sensors are used to mea-

sure the forces and torques between the object and the robots. In our research, we would

like to follow a different approach. In contrast to the compliant mechanisms, we choose to

attach the load to the AGVs by means of (semi-)rigid interconnections. We also aim to avoid

force and torque sensors. The necessary compliance is achieved by means of wheel slip. We

therefore have to consider the wheels as imperfect constraints, otherwise a minimal error in

the steering encoder offset would theoretically lead to a system that cannot move. It is exactly

the wheel slip that allows us to rigidly interconnect the load the AGVs. The disadvantage of

wheel slip is that it makes it difficult to determine the relative velocities of the AGVs with

respect to the floor.

6.3 Velocity controller for a single AGV

This section introduces the controller that is currently used to control individual AGVs. In the

next section we will extend this controller to achieve cooperative behavior. The general setup

of FROG’s AGV controllers has been introduced in section 2.2.2 of Chapter 2. It consisted of

an inner control loop to control the velocity of the AGV, and an outer control loop to control

its position. In this thesis we focus on control at the velocity level, hence we restrict ourselves

to the so-called velocity layer of the controller.

A detailed block scheme of the velocity layer is depicted in Figure 6.1. The measurements

are the readings from the odometry, which consist of the steering angle and drive encoder

readings. The inputs for the actuators of the AGV are the setpoints for the steering and

driving systems. The odometric measurements are fed to the observer that was described in

section 5.4 of Chapter 5. The observer computes an estimate T̂ v,0
v for the twist of the vehicle

with respect to the floor. T̂ v,0
v is expressed in some vehicle fixed coordinate system 9v . For

a single AGV, 9v is often chosen at the middle of the vehicle and with the x-axis pointing

towards the front. Later on we will see that 9v may also lie outside the vehicle, as long as

it remains rigidly connected. For example, from symmetry considerations it seems logical

to choose 9v to lie at the geometric center of the participating vehicles for a cooperative

transportation application.

The velocity controller receives the twist estimate T̂ v,0
v and an extern twist setpoint T

v,0
v,set.
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Figure 6.1: Block scheme of the single AGV controller.

The setpoint is provided by a human operator during manual operation, by the outer position

control loop during automatic operation, and by an external laptop during our cooperative

transportation experiments that are discussed in the next chapter. The velocity controller

uses the error T
v,0
v,set − T̂ v,0

v and a planar rigid body description of the vehicle to compute the

wrench W v
w,des that should be exerted by the wheels on the AGV. A force distribution block

subsequently distributes the wrench W v
w,des among the wheels. Several AGVs have more than

three actuators. This means that they are overactuated, i.e. several actuator inputs will result

in the same behavior. To resolve this ambiguity, there is an additional criterion to minimize

the squared norm of all the longitudinal and lateral tire forces. In vehicle dynamics control

we encounter different norms that take nonlinearities such as saturation effects of tires during

large wheel slip into account. Since we only consider gentle maneuvers, the squared norm of

the tire forces is satisfactory for our applications.

In the next subsections, we will discuss the control laws of the velocity layer in more

detail.

6.3.1 Desired behavior

It is desired that the rotational, longitudinal and lateral velocity components of 9v with re-

spect to the floor respond as decoupled first order linear systems to the corresponding set-

points. This is illustrated in Figure 6.2. Decoupled first order linear behavior is desired,

because it prohibits infinite forces that are required to follow stepwise velocity setpoints, and

it is easy to interpret for humans when they move the load in manual mode. It readily follows

that the desired time derivative of T v,0
v satisfies

Ṫ
v,0
v,des = Kv(T

v,0
v,set − T v,0

v ) (6.1)
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A decoupled first order linear behavior corresponds to a nonsingular, diagonal gain matrix

Kv . When the desired behavior is expressed in another coordinate system 9a that is fixed to

the load, then the expression for the desired behavior is still equal to the above equation with

v replaced by a. However, the transformed gain matrix

Ka,v = AdHa
v

Kv AdHv
a
. (6.2)

corresponding to the new coordinates will in general not be diagonal anymore.

← desiredsetpoint →

R
es

p
o
n
se

Time (s)

Figure 6.2: The desired behavior is a linear, first order response to (human) setpoints.

6.3.2 Velocity controller

The control law that is used in current AGV applications is obtained by substituting the de-

sired behavior Ṫ
v,0
v,des into the equation of motion of the vehicle. This yields the net wrench

W v
w,des that the wheels should exert on the AGV to realize the desired behavior. From equa-

tion (3.51) we recall that the equation of motion for a single AGV is given by

Ṫ v,0
v + ωvŴvT v,0

v = M−1
v (W v

w)
T, (6.3)

where Ŵv and Mv are constant matrices that encapsulate the inertial properties of the vehicle.

Injecting the desired behavior (6.1) into the AGV’s equation of motion (6.3) yields

(W v
w,des)

T = Mv Kv(T
v,0
v,set − T̂ v,0

v )+ ω̂v MvŴv T̂ v,0
v (6.4)

Because the true twist T v,0
v and true rotational velocity ωv are unknown, they were replaced

by their respective estimates T̂ v,0
v and ω̂ in the control law (6.4) above. In fact, ω̂ is the first

component of T̂ v,0
v . The key point is that W v

w,des depends on the error T
v,0
v,set − T̂ v,0

v , the twist

estimate T̂ v,0
v , and some constant matrices Mv , Kv and Ŵv .

To conclude, we would like to remark that the control law (6.4) can also be interpreted as

a feedback linearizing controller, where the new input ν is equal to Kv(T
v,0
v,set − T̂ v,0

v ). Indeed,

if we assume that T̂ v,0
v = T v,0

v and substitute

(W v
w,des)

T = Mvν + ω̂v MvŴv T̂ v,0
v (6.5)
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in the equation of motion for the single AGV (6.3), then we obtain

Ṫ v,0
v = ν. (6.6)

Thus by applying the feedback (6.5) we have achieved that the derivative of the state de-

pends linearly on the new input ν. If we subsequently substitute the proportional controller

Kv(T
v,0
v,set − T̂ v,0

v ) for ν, then we see that the resulting behavior is equal to our desired behav-

ior (6.1).

6.3.3 Force distribution

The net wrench W v
w,des that should be exerted on the AGV to achieve the desired behavior,

is subsequently translated into the setpoints for the actuators. Because our test vehicles are

overactuated, we choose to minimize the squared norm of the tire forces as an intermediate

step. The longitudinal tire force for wheel wi is denoted by Fwi ,u , and the lateral tire force

for wheel wi is denoted by Fwi ,v . Let us stack the tire forces in a single vector Fw. If we

combine the tire model (3.63), i.e. Fwi ,v = −C
wi

lat αwi
, with the definition (3.95) of u, then

we see that the wheel forces Fw can also be written as

Fw =




Fw1,u

Fw2,u

Fw1,v

Fw2,v


 =




1 0 0 0

0 1 0 0

0 0 −C
w1

lat 0

0 0 0 −C
w2

lat




︸ ︷︷ ︸
C




Fw1,u

Fw2,u

αw1

αw2




︸ ︷︷ ︸
u

= Cu. (6.7)

Here αwi
is the side slip angle of wheel wi . From equations (3.73) and (3.94) we recall that

the relation between the tire forces and the net wrench that is exerted by the wheels on the

vehicle reads

(W v
w)

T = BT Fw ≈ B̄T Fw, (6.8)

where B was defined in equation (3.70) and B̄ in equation (3.93):

B = B(δw1
, δw2

) =




Bw1,u

Bw2,u

Bw1,v

Bw2,v


 =




xv
w1

sδw1
− yv

w1
cδw1

cδw1
sδw1

xv
w2

sδw2
− yv

w2
cδw2

cδw2
sδw2

xv
w1

cδw1
+ yv

w1
sδw1

−sδw1
cδw1

xv
w2

cδw2
+ yv

w2
sδw2

−sδw2
cδw2


 , (6.9)

B̄ = B(δ̄w1
, δ̄w2

), (6.10)

where (xv
wi
, yv

wi
) are the constant coordinates of the center of wheel wi expressed in the

vehicle coordinate system 9v . Matrix B depends on the steering angles δw1
and δw2

of

the two actuated wheels. Matrix B̄, on the other hand, was an approximation for B that was

obtained by replacing the actual steering angles δwi
by the so-called kinematic steering angles

δ̄wi
. Since the kinematic steering angles only depend on the current vehicle state T v,0

v , see

equation (3.86), matrix B̄ does not depend on δwi
anymore. Minimizing the squared norm

of the wheel forces while satisfying the constraint that their net result is equal to the desired
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wrench W v
w,des gives us the desired wheel forces

Fw,des = arg min
Fw

{
‖Fw‖2

2 | B̄T Fw = (W v
w,des)

T
}

(6.11)

Note that B̄T has full row rank. From linear algebra we know that the unique solution to the

convex quadratic problem (6.11) is given by

Fw,des = B̄(B̄T B̄)−1(W v
w,des)

T. (6.12)

Since u = C−1 Fw, the corresponding setpoints uset for the longitudinal forces and the slip

angles are

uset = C−1 B̄(B̄T B̄)−1(W v
w,des)

T (6.13)

In a discrete time implementation, we may also take the matrix B that corresponds to the

steering angles of the previous time instance as an alternative for B̄. Because B does not

change so much between two samples. Once uset is available, then it is straightforward to

compute the torque setpoint for the drive servo of wheel wi by dividing the longitudinal

force setpoint F set
wi ,u

by the wheel radius and the gear ratio of the reduction. An additional

constant term is added to the drive system setpoint to counteract the Coulomb friction. With

equation (3.61), the setpoint for the steering system for wheel wi is found by subtracting the

setpoint αset
wi

for the side slip angle from the kinematic steering angle. This yields

δset
wi

= δ̂wi
− αset

wi
sign(ûwi

). (6.14)

More advanced strategies for distributing wheel forces that also take the maximal transmit-

table tire forces into account are for example found in the works by Andreasson et al. [8, 7].

The modifications for cooperative transportation will be made in the higher level velocity

control law (6.4). Thus this block remains unchanged.

6.4 Control for the cooperative system

We consider N AGVs that are semi-rigidly attached to a single load by means of lower pairs.

The load is modelled as a planar rigid body. We aim at a decentralized implementation by

extending the single AGV controllers that are already present on the individual AGVs. The

general setup of the cooperative transportation controller is sketched in Figure 6.3. Each

AGV has its own velocity observer, velocity controller, and a force distribution module. The

decentralized velocity observers for cooperative transportation have been discussed in detail

in section 5.5 of Chapter 5. In that section, we saw that the local twists estimates T̂
ℓ,0
vk |zk

and

the corresponding information matrices BT
ℓ,k6

−1
k Bℓ,k have to be communicated in order to

compute a the estimates T̂
ℓ,0
ℓ and η̂k for the motion of the load and the motion of AGVs with

respect to the load. We also saw that there were certain circumstances where Bℓ,k T6−1
k Bℓ,k

was constant, which means that we do not have to broadcast the information matrices in these
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special cases. Furthermore, in that section we assumed that the relative position H
vk

ℓ of the

load with respect to AGV k is known.

The module that distributes the forces among the various actuators remains identical to

the single vehicle case. See subsection 6.3.3 for a description of this module.

The remainder of this section focusses on the velocity controller for cooperative trans-

portation. The goal of the velocity controller is to compute the net wrench W
vk

w,des that should

be exerted by the wheels of a particular AGV k on that AGV. Analogously to the description

of the single AGV controller, we will first introduce the desired behavior of the combined

AGVs-load system. Subsequently, we derive a control law that calculates the desired net

wrench that should be exerted by the wheels of a particular AGV on that AGV. Finally, we

consider the special case that the AGV-load interconnections are completely rigid. We will

see that the modifications for achieving cooperative behavior for that case are particularly

simple.
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Figure 6.3: Block scheme of the cooperative transportation controller. The adjustments for

achieving cooperative transportation were made in the velocity observers and the velocity

controllers.

6.4.1 Desired behavior

We consider the situation that a single load is transported by N AGVs. Hence, our system

consists of N + 1 planar rigid bodies. If we use a single twist to describe the motion for each

individual body, then we have in total N + 1 twists for the interconnected system. Since the

dimension of a twist is three, this corresponds to 3(N + 1) variables. However, we know that

the AGVs are semi-rigidly interconnected to the load. Thus the interconnected system has

less than 3(N + 1) degrees of freedom. Because the interconnections we consider are lower

pairs,we saw with equation (3.111) of subsection 3.7.3 that the interconnected system can be
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described by the reduced set of coordinates

η =




T
ℓ,0
ℓ

η1

...

ηN


 . (6.15)

Here T
ℓ,0
ℓ is the twist of the load with respect to the floor, and ηk parameterizes the relative

motion of AGV k with respect to the load. For a revolute joint, ηk is the rotational velocity of

the AGV with respect to the load, and for a slider joint ηk is the translational velocity of the

AGV with respect to the load. From equation (3.101) we recall that

T i,ℓ
vk

= Si,kηk . (6.16)

We require that the desired behavior of the interconnected system satisfies

η̇des = K (ηset − η) (6.17)

Furthermore, we require that the gain matrix K has the following block diagonal form:

K =




Kℓ 0 · · · 0

0 K1 0
...

. . .

0 0 KN


 (6.18)

where
Kℓ ∈ R3×3

Kk ∈ Rdim ηk×dim ηk
. (6.19)

For the desired behavior of the interconnected system, we can distinguish between the desired

behavior Ṫ
ℓ,0
ℓ,des of the load and the desired behavior η̇k,des of AGV k with respect to the load.

It follows from equations (6.17)-(6.19) that the desired time derivatives of T
ℓ,0
ℓ and ηk are

given by

Ṫ
ℓ,0
ℓ,des = Kℓ(T

ℓ,0
ℓ,set − T

ℓ,0
ℓ )

η̇k,des = Kk(ηk,set − ηk)
(6.20)

Note that the desired behavior of the load is very similar to the desired behavior of an AGV

during individual operation (6.1). It is assumed that the setpoints T
ℓ,0

ℓ,set
and ηk,set are

given.

Now that we have the desired behavior of the interconnected AGVs as expressed in the

reduced set of coordinates η, we can compute the desired time derivative of T
vk ,0
vk

. From

equation (3.101) we know that

T vk ,0
vk

= T
vk ,0
ℓ + T vk ,ℓ

vk
= Ad

H
vk
ℓ

T
ℓ,0
ℓ + Svk ,kηk . (6.21)
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Therefore, its derivative can be written as

Ṫ vk ,0
vk

= Ȧd
H

vk
ℓ

T
ℓ,0
ℓ + Ad

H
vk
ℓ

Ṫ
ℓ,0
ℓ + Ṡvk ,k︸︷︷︸

0

ηk + Svk ,k η̇k

= Ad
H

vk
ℓ

ad
T

ℓ,vk
ℓ

T
ℓ,0
ℓ + Ad

H
vk
ℓ

Ṫ
ℓ,0
ℓ + Ad

H
vk
ℓ

Sℓ,k η̇k

= Ad
H

vk
ℓ

Ṫ
ℓ,0
ℓ + Ad

H
vk
ℓ

Sℓ,k η̇k − Ad
H

vk
ℓ

adT ℓ
vk

T
ℓ,0
ℓ . (6.22)

It follows that the desired time derivative of T
vk ,0
vk

satisfies

Ṫ
vk ,0
vk ,des = Ad

H
vk
ℓ

(
Ṫ

ℓ,0
ℓ,des + Sℓ,k η̇k,des − adT ℓ

vk
T

ℓ,0
ℓ

)
(6.23)

6.4.2 Velocity controller

The idea is to realize the desired twist of the load while at the same time minimizing the local

forces that occur at the interconnection points where the load is attached to the AGVs. The

same rationale has often been used for cooperative handling of an object by multiple robotic

manipulators, and was e.g. adopted for the transportation of an object by mobile robots in the

studies by Stilwell and Bay [110], Miyata et al. [82], and Hashimoto et al. [47], and Khatib

et al. [62]. Recall that the equation of motion for the load satisfies (3.99)

Ṫ
ℓ,0
ℓ + ωℓŴℓT

ℓ,0
ℓ = M−1

ℓ (W ℓ
V )

T. (6.24)

The net wrench that should be exerted by the AGVs on the load to realize the desired behavior

is found by substituting the desired behavior (6.20) in the equation of motion for the load.

This yields

(W ℓ
V,des)

T = MℓKℓ(T
ℓ,0
ℓ,set − T

ℓ,0
ℓ )+ ωℓMℓŴℓT

ℓ,0
ℓ . (6.25)

The net wrench that is exerted by the AGVs on the load is the sum of the wrenches that are

exerted by each individual AGV on the load, see equation (3.100). Consequently, the sum

of the desired wrenches W ℓ
vk ,des that should be exerted by the individuals AGVs on the load

should be equal to the desired net wrench W ℓ
V,des above. When expressed in an arbitrary

coordinate system 9i , this condition reads

N∑

k=1

W
i,ℓ
vk ,des = W

i,ℓ
V,des. (6.26)

The forces and torques that are exerted by the AGVs on the load must be transmitted through

the kinematic constraints of the interconnections. It is not possible to transmit torques and

forces in the directions of the degrees of freedom that are free. With equation (3.104) of

subsection 3.7.2 we saw that the constraint wrench W i,ℓ
vk

is an element of the set

(W i,ℓ
vk
)C = ann Si,k = {W i,ℓ

vk
∈ se∗(2) | W i,ℓ

vk
Si,k = 0}. (6.27)
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Thus the constraint wrenches W i,ℓ
vk

annihilate the columns of the matrix Si,k . For the sequel

it is useful to express (W i,ℓ
vk
)C in terms of the span of the rows of a certain matrix Ai,k . This

allows us to write the constraint wrench W i,ℓ
vk

as

W i,ℓ
vk

= λT
k Ai,k (6.28)

When Ai,k is properly scaled, the Lagrange multipliers λk are interpreted as the local

interconnection forces and torques that occur at the k th interconnection. Since the con-

straint wrenches are not producing power, we must have that

W i,ℓ
vk

T i,ℓ
vk

= λT
k Ai,k Si,kηk = 0 ∀λk,∀ηk, (6.29)

which implies that

Ai,k Si,k = 0 (6.30)

Thus the dual product of the rows (“unit wrenches”) of Ai,k and the columns (“unit twists”)

of Si,k should be zero. To span the entire constraint wrench space (W i,ℓ
vk
)C , we require that

rank Ai,k + rank Si,k = dim se∗(2) = 3 (6.31)

Thus Ai,k and Si,k are closely related. Since the interconnections we consider are lower pairs,

it follows that Ai,k is constant when the coordinate system 9i is fixed to either the load or to

AGV k. For the sequel it it is useful to stack all the local interconnection forces λk in a single

vector λ, i.e.

λ =



λ1

...

λN


 . (6.32)

Since the constraint wrench W i,ℓ
vk

was a linear combination of the local interconnection forces

λi , this wrench can also be written as a linear combination of the vector λ with all the inter-

connection forces. To ease notation, we define a new matrix G i,k such that

(W i,ℓ
vk
)T = AT

i,kλk =
(
0 AT

i,k 0
)

︸ ︷︷ ︸
Gi,k

λ = Gi,kλ. (6.33)

Consequently, we may write the net wrench that is exerted by the AGVs on the load as

(W
i,ℓ
V )T =

N∑

k=1

(W i,ℓ
vk
)T =

N∑

k=1

Gi,kλ = (Gi,1 + . . .+ Gi,N )︸ ︷︷ ︸
Gi

λ = Giλ (6.34)

Similar to the desired wrench W ℓ
V,des that should be exerted by the vehicles on the load to

realize the desired behavior, we now try to find the desired interconnection forces λdes that

will result in the desired behavior when they are applied to the load. The relation between the

interconnection forces λ and the wrench W
i,ℓ
V is described by equation (6.34). If we substitute
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the latter expression in equation (6.25), then we find that the desired wrench W ℓ
V,des and the

desired local interconnection force λdes must satisfy

(W ℓ
V,des)

T = Gℓλdes = MℓKℓ(T
ℓ,0
ℓ,set − T

ℓ,0
ℓ )+ ωℓMℓŴℓT

ℓ,0
ℓ . (6.35)

Since the AGVs and the load-vehicle interconnections have been designed such that the

AGVs can move the load in any direction, Gℓ has full row rank. Hence, there exists at

least one λdes such that equality (6.35) holds. Generally there are more, see e.g. [127] for

all solutions. To resolve this ambiguity, we select the one such that a certain Q-norm of the

interconnections forces is minimized:

λdes = arg min
λ

{
1
2
λT Qλ s.t. Gℓλ = (W ℓ

V,des)
T = MℓKℓ(T

ℓ,0
ℓ,set − T

ℓ,0
ℓ )+ ωℓMℓŴℓT

ℓ,0
ℓ

}
,

(6.36)

where Q = P PT > 0 is a physically meaningful, positive-definite weighting matrix. By

choosing Q appropriately it is possible to indicate the importance that certain interconnection

forces will be small. Although the above expression was derived to minimize the intercon-

nection forces, it is remarked that the forces in the load can also be taken into account to some

extend by choosing appropriate Gℓ, λ, and Q. See for instance [129] for details. From linear

algebra we know that the unique solution to the convex quadratic problem (6.36) is given by

λdes = QGT
ℓ (GℓQGT

ℓ )
−1(W ℓ

V,des)
T = P(Q P)+

(
MℓKℓ(T

ℓ,0
ℓ,set − T

ℓ,0
ℓ )+ ωℓMℓŴℓT

ℓ,0
ℓ

)

(6.37)

Here (Gℓ P)+ = PTGT
ℓ (Gℓ P PTGT

ℓ )
−1 denotes the pseudo-inverse of Gℓ P . Other criteria

than (6.36) can be used to select λdes. One of the reasons that we chose this one is because the

corresponding pseudo-inverse solution is easy to implement and can be carried out in real-

time. Now that we have the desired interconnection forces λdes, we also know the desired

interconnection forces λk,des between AGV k and the load. From equations (6.34) and (6.37)

it follows that the corresponding desired wrench W ℓ
vk ,des that must be exerted by AGV k on

the load equals

(W ℓ
vk ,des)

T = Gℓ,kλdes = Gℓ,k P(Q P)+
(

MℓKℓ(T
ℓ,0
ℓ,set − T̂

ℓ,0
ℓ )+ ω̂ℓMℓŴℓT̂

ℓ,0
ℓ

)
(6.38)

We replaced the unknown, true twist T
ℓ,0
ℓ and true rotational velocity ωℓ by their respective

estimates T̂
ℓ,0
ℓ and ω̂ℓ. From equation (3.109) we recall that the equation of motion for an

AGV k that is attached to a load satisfies

Ṫ vk ,0
vk

+ ωvk
Ŵvk

T vk ,0
vk

= M−1
vk
(W vk

w − W vk ,ℓ
vk

)T, (6.39)

where W
vk ,ℓ
vk

is the wrench that is exerted by the AGV on the load. Note that this wrench was

not presented in the equation of motion for an individual AGV that is not interconnected to a

load (6.3). If we substitute the desired behavior Ṫ
vk ,0
vk ,des (6.23) and the desired wrench W ℓ

vk ,des

(6.38) in expression (6.39), then we find that the wrench that should be exerted by the wheels

on the AGV satisfies

(W
vk

w,des)
T = Mvk

Ṫ
vk ,0
vk ,des + ω̂vk

Mvk
Ŵvk

T̂
vk ,0
vk

+ Gℓ,k P(Q P)+
(

MℓKℓ(T
ℓ,0
ℓ,set − T̂

ℓ,0
ℓ )+ ω̂ℓMℓŴℓT̂

ℓ,0
ℓ

) (6.40)
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This wrench will be distributed among the actuators of the various wheel units by the force

distribution module that was described in subsection 6.3.3. The control law (6.40) contains

the term Ṫ
vk ,0
vk ,des. From equations (6.20) and (6.23) we see that Ṫ

vk ,0
vk ,des is related to the setpoints

T
ℓ,0
ℓ,set and ηk,set, and the estimates T̂

ℓ,0
ℓ and η̂k , by

Ṫ
vk ,0
vk ,des = Ad

H
vk
ℓ

Kℓ(T
ℓ,0
ℓ,set − T̂

ℓ,0
ℓ )+ Svk ,k Kk(ηk,set − η̂k)− Ad

H
vk
ℓ

adSℓ,k η̂k
T̂

ℓ,0
ℓ (6.41)

It is remarked that the estimate T̂
vk ,0
vk

is related to the estimates T̂
ℓ,0
ℓ and η̂k by

T̂ vk ,0
vk

= Ad
H

vk
ℓ

T̂
ℓ,0
ℓ + Svk ,k η̂k . (6.42)

Equations (6.40)-(6.41) constitute the control law for cooperative transportation. To see on

which terms it depends, we first note that

(W
vk

w,des)
T = Mvk

Ṫ
vk ,0
vk ,des + ω̂vk

Mvk
Ŵvk

Ad
H

vk
ℓ

T̂ ℓ,0
vk

+ AdT
Hℓ

vk

(W ℓ
vk ,des)

T

= Mvk
Ṫ

vk ,0
vk ,des + ω̂vk

Mvk
Ŵvk

Ad
H

vk
ℓ

(T̂
ℓ,0
ℓ + Sℓ,k η̂k)+ AdT

Hℓ
vk

Gℓ,kλdes

= Mvk
Ad

H
vk
ℓ

(
Ṫ

ℓ,0
ℓ,des + Sℓ,k η̇k,des − adSℓ,k η̂k

T̂
ℓ,0
ℓ

)

+ω̂vk
Mvk

Ŵvk
Ad

H
vk
ℓ

(T̂
ℓ,0
ℓ + Sℓ,k η̂k)

+AdT
Hℓ

vk

Gℓ,k P(Gℓ P)+
(

MℓṪ
ℓ,0
ℓ,des + ω̂ℓMℓŴℓT̂

ℓ,0
ℓ

)
. (6.43)

By rearranging the terms in the last expression and by substituting the desired behavior (6.20):

Ṫ
ℓ,0
ℓ,des = Kℓ(T

ℓ,0
ℓ,set − T̂

ℓ,0
ℓ )

η̇k,des = Kk(ηk,set − η̂k)
, (6.44)

we arrive at

(W
vk

w,des)
T =

(
Mvk

Ad
H

vk
ℓ

+ Gvk ,k P(Gℓ P)+Mℓ

)
Kℓ(T

ℓ,0
ℓ,set − T̂

ℓ,0
ℓ )

+Mvk
Svk ,k Kk(ηk,set − η̂k)

+
(
ω̂vk

Mvk
Ŵvk

Ad
H

vk
ℓ

+ ω̂ℓGvk ,k P(Gℓ P)+MℓŴℓ − Mvk
Ad

H
vk
ℓ

adSℓ,k η̂k

)
T̂

ℓ,0
ℓ

+ ω̂vk
Mvk

Ŵvk
Svk ,k η̂k

(6.45)

Careful inspection shows that this expression has the same structure as the control law for the

single vehicle (6.4), which was given by

(W v
w,des)

T = Mv Kv(T
v,0
v,set − T̂ v,0

v )+ MvŴvω̂v T̂ v,0
v . (6.46)

The first two lines of (6.45) correspond to the first term of the single vehicle controller,

although the cooperative control law has an extended state that consists of T
ℓ,0
ℓ and ηk . The

last two lines of (6.45) correspond to the last term of the single vehicle controller, which
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represent the coriolis effects that stem from the non-inertial coordinates systems that are fixed

to the AGV and load. Thus the first two lines of (6.45) correspond to a proportional control

action, and the last two lines to a linearizing feedback. Furthermore, we see from (6.45) and

(6.45) that the control law for cooperative transportation for AGV k depends on the

• setpoints T
ℓ,0

ℓ,set
and ηk,set, which were assumed to be given;

• estimates T̂
ℓ,0

ℓ
and η̂k, which are computed by the decentralized observer that was

presented in section 5.5;

• relative position H
vk

ℓ
of the load with respect to the vehicle, which was assumed to

be measured directly;

• constant inertial parameters Mvk
, Ŵvk

, Mℓ, Ŵℓ of AGV k and the load, respectively;

• constant controller gains Kℓ and Kk;

• constant matrices Gℓ, Gvk,k, Sℓ,k, Svk,k, which represent the lower pair intercon-

nection between AGV k and the load;

• constant matrix P , which is related to the metric Q = PT P that is used to minimize

the interconnection forces λ.

6.4.3 Special case: completely rigid interconnections

Although most terms are constant, the velocity control law for cooperative transportation

(6.45) still looks quite difficult. The expression will simplify considerably when considering

the special case that the interconnection between AGV k and the load is completely rigid.

In that case, all terms with Si,k and ηk drop out of the equation. Furthermore, the rotational

velocity ωvk
of AGV k will be identical to the rotational velocity ωℓ of the load, hence

ω̂vk
= ω̂ℓ. (6.47)

Injecting this in the control law (6.45) results in

(W
vk

w,des)
T =

(
Mvk

Ad
H

vk
ℓ

+ Gvk ,k P(Gℓ P)+Mℓ

)
Kℓ(T

ℓ,0
ℓ,set − T̂

ℓ,0
ℓ )

+ω̂ℓ

(
Mvk

Ŵvk
Ad

H
vk
ℓ

+ Gvk ,k P(Gℓ P)+MℓŴℓ

)
T̂

ℓ,0
ℓ . (6.48)

This expression is almost identical to the velocity controller for a single AGV (6.4). Since

the AGV is rigidly interconnected to the load, we can take the vehicle coordinate system 9vk

identical to the load coordinate system 9ℓ, i.e.

H
vk

ℓ = I ⇔ Ad
H

vk
ℓ

= I. (6.49)

This will not affect the behavior of the controlled system. Moreover, when9vk
= 9ℓ and the

AGV and load are rigidly interconnected, then it is also true that

T̂ vk ,0
vk

= T̂
ℓ,0
ℓ (6.50)
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Subsequently, we define

K ∗
vk

= Kℓ

M∗
vk

= Mvk
+ Gvk ,k P(Gℓ P)+Mℓ

Ŵ∗
vk

= (M∗
vk
)−1

(
Mvk

Ŵvk
+ Gvk ,k P(Gℓ P)+MℓŴℓ

) (6.51)

Note that the matrices K ∗
vk

, M∗
vk

and Ŵ∗
vk

are constant. Hence, they can be computed

offline. It is assumed that M∗
vk

is indeed invertible. By using equations (6.49)-(6.51) we can

cast the control law (6.48) into the convenient form

(W
vk

w,des)
T = M∗

vk
K ∗

vk
(T

ℓ,0
ℓ,set − T̂ vk ,0

vk
)+ ω̂vk

M∗
vk
Ŵ∗

vk
T̂ vk ,0

vk
(6.52)

Thus when the load is fully rigidly interconnected to the AGVs, then the derived local

controllers for cooperative operation have the same structure as the controllers that are

normally used for individual operation. As a result, changing the parameter settings for

Kvk
, Mvk

, and Ŵvk
and providing the AGVs with identical setpoints T

ℓ,0
ℓ,set is all that is re-

quired to achieve cooperative behavior on the velocity level. We may use either the local

twist estimate T̂
vk ,0
vk |zk

or the load’s twist estimate T̂
ℓ,0
ℓ in the controller law. The latter requires

communication of the local twist estimates T̂
vk ,0
vk |zk

, whereas the former does not. In Chapter 7

we will investigate experimentally how the behavior of the interconnected system is influ-

enced by the two estimates. Although the velocity controllers for cooperative transportation

(6.52) and single operation (6.4) have identical structures, the properties of the parameters

are slightly different. In particular, M∗
vk

is not symmetrical anymore. Furthermore, Ŵ∗
vk

may

have one additional nonzero component compared to the original Ŵvk
. To show this, we recall

from equation (3.48) of subsection 3.4.3 that Ŵvk
and Ŵℓ are given by

Ŵvk
=




0 0 0

−xvk ,c 0 −1

−yvk ,c 1 0


 , Ŵℓ =




0 0 0

−xℓ,c 0 −1

−yℓ,c 1 0


 . (6.53)

We can use this to rewrite Ŵ∗
vk

as

Ŵ∗
vk

= (M∗
vk
)−1

(
Mvk

Ŵvk
− Mvk

Ŵℓ + Mvk
Ŵℓ + Gvk ,k P(Gℓ P)+MℓŴℓ

)

= (M∗
vk
)−1

(
Mvk

(Ŵvk
− Ŵℓ)+ M∗

vk
Ŵℓ

)
= (M∗

vk
)−1 Mvk

(Ŵvk
− Ŵℓ)+ Ŵℓ

= (M∗
vk
)−1 Mvk




0 0 0

xℓ − xvk ,c 0 0

yℓ − yvk ,c 0 0


+




0 0 0

−xℓ,c 0 −1

−yℓ,c 1 0


 =




∗ 0 0

∗ 0 −1

∗ 1 0


.(6.54)

Hence, we see that the upper left component of Ŵ∗
vk

may be unequal to zero. The control law

(6.52) was evaluated on a setup with two rigidly interconnected AGVs. The experimental

results will be discussed in Chapter 7.

6.5 Distributed central vehicle controller

The rationale behind the controller for cooperative transportation that was presented in the

previous section is to realize the desired behavior while minimizing the interconnection forces



6.5. Distributed central vehicle controller 155

between the load and the AGVs. Another approach to design a controller for the intercon-

nected system is to consider the complete system as a single, overactuated vehicle. Similar

to the control design for individual AGV operation that was discussed in section 6.4, the

actuator redundancy can be resolved by minimizing the tire forces. In the cooperative trans-

portation experiments that will be discussed in the next chapter, we consider the case that our

two test vehicles are completely rigidly interconnected to the load, because in this situation

the interaction between the AGVs and the load is the strongest. In the special case that N

AGVs are attached to the load by means of fully rigid interconnections, the control law that is

designed by minimizing the tire forces and considering the interconnected system as a single

vehicle becomes particularly simple. Moreover, we will show that it is closely related to the

control law for a single AGV (6.4) and, hence, well suited for a distributed implementation.

Since all AGVs are rigidly interconnected to the load, the desired behavior of the load

characterizes the desired behavior of the complete interconnected system. Because the in-

terconnected system behaves as a single rigid body, we can write its equations of motion as

Ṫ
ℓ,0
ℓ + ωℓŴT

ℓ,0
ℓ = M−1

N∑

k=1

(W vk
w )

T = M−1W V
w , (6.55)

where W
vk
w is the net wrench that is exerted by the wheels of AGV k on the system, and W V

w

is the net wrench that is exerted by the wheels of all N AGVs together on the system. The

mass matrix M and the connection coefficients Ŵ for the total interconnected system read

M =




It + mt (x
2
t,c + y2

t,c) −mt yt,c mt xt,c

−mt yt,c mt 0

mt xt,c 0 mt


 = Mℓ +

N∑
k=1

Mvk

Ŵ =




0 0 0

−xt,c 0 −1

−yt,c 1 0


 =




0 0 0

−mt xt,c

mt
0 −1

−mt yt,c

mt
1 0




(6.56)

The position of the center of gravity (xt,c, yt,c) of the total interconnected system is easily

computed from the components of M . The input uset for the entire system consists of all

inputs uset,k of the individual AGVs k ∈ {1, . . . , N } together. Because the AGVs are rigidly

interconnected, we take the vehicle coordinate systems 9vk
equal to the load coordinate sys-

tem 9ℓ, hence

T vk ,0
vk

= T
ℓ,0
ℓ . (6.57)

Furthermore, the C and the B̄ℓ matrix of the total system are

C =




C1

. . .

CN


 , B̄ℓ =




B̄ℓ,1

...

B̄ℓ,N


 , (6.58)

where Ck and Bℓ,k are the matrices that correspond to AGV k. With the above characteriza-

tions of the tot interconnected system, it follows from the control law (6.4) and (6.13) for a
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single AGV that the setpoints for the inputs uset of the interconnected system are given by

uset = C−1 B̄ℓ(B̄
T
ℓ B̄ℓ)

−1(W V
w,des)

T

= C−1 B̄ℓ(B̄
T
ℓ B̄ℓ)

−1
(

M Kℓ(T
ℓ,0
ℓ,set − T̂

ℓ,0
ℓ )+ ω̂ℓMŴT̂

ℓ,0
ℓ

)
. (6.59)

If we write this out, then we see that the setpoints uset,k for the individual AGVs equal

uset =




uset,1

...

uset,N


 =




C−1
1 B̄ℓ,1

...

C−1
N B̄ℓ,N



(

B̄T
ℓ B̄ℓ

)−1 (
M Kℓ(T

ℓ,0
ℓ,set − T̂

ℓ,0
ℓ )+ ω̂ℓMŴT̂

ℓ,0
ℓ

)
. (6.60)

We know that B̄T
ℓ B̄ℓ and its inverse are constant for the OLS vehicles. Let us write the local

control law for AGV k as

(W
vk

w,des)
T = M∗

vk
K ∗

vk
(T

ℓ,0
ℓ,set − T̂ vk ,0

vk
)+ ω̂vk

M∗
vk
Ŵ∗

vk
T̂ vk ,0

vk
(6.61)

We select the parameters K ∗
vk

, M∗
vk

and Ŵ∗
vk

in this control law according to

K ∗
vk

= Kℓ

M∗
vk

= (B̄T
ℓ,k B̄ℓ,k)(B̄

T
ℓ B̄ℓ)

−1 M

Ŵ∗
vk

= Ŵ

(6.62)

Note that M∗
vk

is not necessarily symmetric. If we substitute these parameters in (6.61) then

we see that the setpoints uset,k for the individual AGVs are indeed compatible with the cen-

tralized control law (6.60):

uset,k = C−1
k B̄ℓ,k(B̄

T
ℓ,k B̄ℓ,k)

−1(W
vk

w,des)
T

= C−1
k B̄ℓ,k(B̄

T
ℓ B̄ℓ)

−1
(

M Kℓ(T
ℓ,0
ℓ,set − T̂ vk ,0

vk
)+ ω̂vk

MŴT̂ vk ,0
vk

)
. (6.63)

Thus when the load is fully rigidly interconnected to the AGVs and the total system

is considered as a single vehicle, then a central controller design that minimizes the

tire forces can be implemented in a distributed fashion by providing the AGVs with

identical setpoints and adjusting the parameter settings of the original, individual AGV

controllers.

6.6 Concluding remarks and discussion

In this chapter we presented a decentralized controller for cooperatively transporting a com-

mon load by multiple AGVs. The main difference between our study and other works that

have been presented in literature is that we do not use force and torque sensors to measure the

interaction between the load and the AGVs. Furthermore, in our study the load is attached

to the AGVs by means of (semi-)rigid interconnections instead of the compliant mechanisms



6.6. Concluding remarks and discussion 157

that are usually seen in literature. The necessary compliance to limit the interconnection

forces is provided by the slip of the wheels.

The decentralized controller that we derived makes the AGVs track an externally pro-

vided planar motion setpoint while minimizing the interconnection forces between the load

and the vehicles. Our control design is applicable to cooperative transportation by multiple

AGVs with arbitrary semi-rigid AGV-load interconnections. It is noteworthy that a particu-

larly elegant solution arises when all interconnections are completely rigid. Then the derived

local controllers have the same structure as the controllers that are normally used for individ-

ual operation. As a result, changing a few parameter settings and providing the AGVs with

identical setpoints is all that is required to achieve cooperative behavior on the velocity level

for this case.

For the special case that all AGVs are rigidly attached to the load, we can also consider

the complete interconnected system as a single vehicle and design a central controller. We

showed that such a controller, which minimizes the tire forces, can be implemented in a

distributed way. Again, the corresponding local controllers have the same structure as the

controllers that are normally used for individual operation, and we only need to provide the

AGVs with identical setpoints and change a few parameter settings to achieve cooperative

behavior.

To achieve fully automatic operation, the velocity layer can be extended with an additional

position control loop. As we discussed in subsection 2.2.2, the position control loop for a

single AGV controller consists of a position observer and a position controller. The position

observers integrates the AGV’s twist estimate T̂
vk ,0
vk

and uses measurements from an absolute

magnet measurement system to estimate the AGV’s position. When the velocity estimates of

the velocity observers are accurate, then we can almost directly adopt the position observer

module of the single AGV controller for our cooperative transportation applications. If we

know the absolute position of the AGV and the relative position of the load with respect to

the AGV, then it is straightforward to compute the absolute position of the load. The position

controller has to be slightly modified to achieve cooperative behavior. Whereas the single

AGV position controller generates a setpoint T
vk ,0
vk ,set for the AGV’s twist, the position control

for the cooperative transportation case will have to generate setpoints T
ℓ,0
ℓ,set and ηk,set for the

relative motion of the load with respect to the floor, and the relative motion of the AGVs with

respect to the load. In addition, the AGVs must receive compatible setpoints for their own

paths and the desired path of the load.
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7

Results

7.1 Introduction

In the previous two chapters we discussed the observer and controller design for cooperatively

transporting a load by multiple AGVs. This chapter presents the results of several cooperative

transportation experiments with the two OLS vehicles, which were introduced in Chapter 2.

We decided to focus on the case that the load is fully rigidly attached to the AGVs, because

in this situation the interaction between the vehicles and the load is the strongest.

In our earlier publications we presented and analyzed preliminary experiments where

the two OLS vehicles were rigidly interconnected but did not transport a load [113] (see

Figure 7.1), and we presented experiments where they were rigidly interconnected and trans-

ported a medium load of 150 kg [112] (see Figure 7.2). We used the decentralized controller

of section 6.4 in those tests, which means that the underlying rationale was to minimize the

interconnection forces between the AGVs and the load. We did exchange but not yet com-

bine the local twist estimates of the vehicles to arrive at one global twist estimate. In other

words, the vehicles used their individual twist estimates that were based on their own local

odometric measurements in the control law.

Figure 7.1: Picture of the experimental setup

without load that was used in [113].

Figure 7.2: Picture of the experimental setup

with the 150 kg load that was used in [112].

In this chapter we present an extension of the experiments that we presented earlier

in [112]. Because the load of 150 kg in our first experiments was relatively small compared

to the overall vehicle weight of 2 × 200 = 400 kg, in the new experiments we use a load

of 300 kg. We expect that a larger load has a more profound influence on the dynamics of

the interconnected system. In the first experiments we only considered the decentralized con-

troller that minimizes the interconnection forces in combination with local observers. In this

chapter we compare the performance of that controller with the distributed implementation

of the control design of section 6.5, which treats the interconnected system as a single vehicle
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and aims to minimize the tire forces. Furthermore, we will compare the performance of the

distributed centralized observer design that was proposed in section 5.5 with the approach

that uses local observers only.

The outline of this chapter is as follows. First we introduce the experimental setup with

the two rigidly interconnected OLS vehicles, and describe the adjustments that have been

made in the hardware and the software to implement the proposed observer and controller al-

gorithms. Subsequently, we discuss the parameter settings for the cooperative transportation

experiments. We present results for the case that the two AGVs are physically interconnected

but do not transport a load, and for the case that they transport a load of 300 kg paving stones.

The chapter ends with the concluding remarks and discussion.

7.2 Experimental setup

7.2.1 Hardware

The two OLS vehicles that were available for testing have been described in detail in Chap-

ter 2. They are named the OLS 1 and the OLS 2, and were designed to be identical in

hardware. As we discussed in Chapter 2, each vehicle has one caster wheel and two actuated

wheels. Each actuated wheel has a steering system and a drive system, and is equipped with

a steering angle encoder and a drive encoder to measure respectively the steering angle and

the travelled distance of that wheel. Furthermore, each vehicle is equipped with a magnet

ruler to detect the magnets that are placed in the floor were the experiments are carried out.

Both vehicles have their own FrogBox to run the control algorithms.1 The operating system

is Linux. A wireless local area network (WLAN) connection, serial ports, and a controller

area network (CAN) interface are available for communication. The mass of a single vehicle

is approximately mvk
= 200 kg, its moment of inertia equals about Ivk

= 50 kg·m2, and the

center of gravity lies in the middle of the vehicle.

Adjustments have been made in the hardware and in the software for achieving cooper-

ative behavior. Pictures of the interconnected system with load are depicted in Figures 7.3

and 7.4, and a schematic representation in Figure 7.5. The two vehicles are rigidly coupled

by means of a rectangular aluminum frame (see also Figure 7.2). The frame has a width of

80 cm and a length of 120 cm. A diagonal beam provides additional stiffness for the frame.

The frame is attached to each vehicle with two bolts, which makes it relatively easy to sep-

arate them if necessary. The vehicles have been oriented with their actuated wheels towards

the middle, because the combination is more stable with four wheels on the inside. The load

consists of a pallet of 38 concrete paving stones. Although the original intention was to put

the entire load on top of the aluminium frame, in reality part of the pallet also rested on the

vehicle frames. The mass of a single concrete paving stone is approximately 8.2 kg, hence

the mass of the entire load is approximately mℓ = 300 kg. When the set of paving stones is

considered to as a homogenous mass with a length of 90 cm and a width of 60 cm, then we

find that its moment of inertia equals Iℓ = 1
12

× 300 × (0.62 + 0.92) = 29.25 kg·m2. The

center of gravity is assumed to lie in the middle of the load. Due to the load’s weight and the

flexibility of the frame, the caster wheels on the outside of the setup are clear from the ground

1The FrogBox of the OLS 1 is the fb1103, and the FrogBox of the OLS 2 is named the fb1101.
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when the load is present. This is not a problem as the four actuated wheels on the inside of

the setup remain in contact with the ground. Each actuated wheel can carry a load of 200 kg.

The mass of the total setup is 2×200+300 = 700 kg, which means that the overall weight is

close to the maximum capacity of 4 × 200 = 800 kg that the four actuated wheels can carry.

Figure 7.3: Interconnected system with load. Figure 7.4: Close-up of the paving stones.
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Figure 7.5: Schematic representation of the two interconnected vehicles (dimensions in mm).

7.2.2 Architecture

The architecture that is currently used for industrial AGVs that operate individually has been

modified to implement the observer and control algorithms of Chapters 5 and 6. A descrip-

tion of the original architecture can be found in subsection 2.2.2 and section 6.3, and a block

scheme of the modified architecture is depicted in Figure 7.6. The adjustments for achieving

cooperative transportation were made in the velocity observers and the velocity controllers.

Since the AGVs and the load are rigidly interconnected in our experiments, the adjustments
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are particularly simple as we saw in the previous chapters. Because the load is rigidly at-

tached to the AGVs, we do not need sensors to measure the position of the load with respect

to the AGVs. As we discussed in Chapter 6, all vehicles should receive the same setpoint

to achieve cooperative behavior. In addition, when the distributed observer design of Chap-

ter 5 is applied, then each vehicle wil also have to broadcast its local twist estimate. A

brief investigation showed that the time to transmit a double precision number is shorter and

much more predictable for the CAN connection than for the available WLAN connection.

Some simple tests with the standard ‘ping’ command that measures the time required to send

packages of 64 bytes from one of the vehicles to a desktop PC and back using the available

WLAN connection showed that the loopback time ranged from 8 ms to 390 ms. The bit

rate of the available CAN connection is 250 kBit/s, and the length of a single message con-

taining one double precision number is approximately 100 bit. This means that it requires

100/250 = 0.4 ms to send a CAN message. Comparison of the time stamps of the moments

that the CAN messages are send and received by various hosts showed that the time stamp

resolution was better than 1 ms. Therefore, CAN is used for real-time communication. The

sequence of setpoints are stored on a Windows 2000 laptop and broadcasted by the CANa-

lyzer that is installed on the laptop. This allows us to repeat an experiment with the identical

setpoints for various controller settings.
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Figure 7.6: Block scheme of the cooperative transportation controller. Adjustments for

achieving cooperative transportation were performed in the velocity observers and the ve-

locity controllers.

We aim to synchronize the discrete time control cycles of the two AGVs as much as

possible, because this results in the most deterministic behavior. In particular, we would like

to synchronize the moments that the sensors are read and also the moments that the outputs

are released. The execution of the control cycle is sketched in Figure 7.7. In the CANopen

protocol that we use, a special message referred to as ‘sync’ is reserved for synchronization

purposes. So it was natural to base the synchronization of the control cycles on this message
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type. The sync message is broadcasted by the laptop’s CANalyzer every 100 ms, which

results in a sample rate of 10 Hz. As soon as AGV k receives a sync message, it starts reading

its odometric sensor data zk . After the drive encoder and steering encoder data have been

retrieved, a delayed timer event that is linked to the time instance that the sync was received

instructs the vehicle’s local velocity observer to compute the twist estimate T̂
ℓ,0
vk |zk

of that

AGV with respect to the floor. This local twist estimate is subsequently broadcasted on the

CAN bus to the other vehicle and the laptop. Because each CAN message contains a single

double precision number, three CAN messages per vehicle are needed to share the local twist

estimates with the other vehicles. Sixty milliseconds after the generation of the sync message,

the laptop broadcasts the setpoints on the CAN bus. Besides the setpoints for the twist, it also

contains information about the position of the steering pole, a possible feed forward signal

(not used in our experiments), and information to lift or activate the mechanical brakes. In

total, the setpoint consists of six CAN messages. As soon as the setpoints are received, the

local vehicle controller compute the desired wrench W
vk

w,des that should be exerted by the

wheels on the AGV to realize the desired behavior. The control law uses either the local

twist estimate T̂
ℓ,0
vk |zk

or a weighted version of T̂
ℓ,0
v1|z1

and T̂
ℓ,0
v2|z2

, depending on the observer

settings. Finally, the force distribution module of the AGV distributes the desired wrench

W
vk

w,des among the vehicle’s wheels by computing and releasing the setpoints for the steering

and driving setpoints.

Although the absolute position measurements of the magnet rulers are not used in closed-

loop in our experiments, the AGVs’s position observers were operational during our exper-

iments. They estimate the current position of the AGVs by integrating the twist estimates

and performing position corrections based on the magnet measurements. Currently, the posi-

tion observer of AGV k integrates that AGV’s local twist estimates T̂
ℓ,0
vk |zk

and uses the local

magnet measurements to obtain the position estimate.
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Figure 7.7: Implementation and synchronization of the control cycles.
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7.3 Parameter settings

In this section we summarize the parameter settings that have been used in the cooperative

transportation experiments. The dimensions of the setup are constant and illustrated in Fig-

ure 7.5. From Figure 7.6 we see that the load coordinate’s system 9ℓ and the vehicles’

coordinate systems 9vk
were chosen to coincide: 9ℓ = 9v1

= 9v2
. This is allowed as both

vehicles are rigidly attached to the load. First we discuss the parameters that are related to the

wheels. Subsequently, we specify the desired behavior. Finally, we summarize the parameter

settings for the two observer and the two control algorithms that have been used in the exper-

iments. The controllers have different settings for the situation without load and the situation

with load.

7.3.1 Wheel parameters

The values for the wheel parameters that were used in the experiments are summarized in

Table 7.1. They are based on the situation that there is no load on the vehicles. The steering

encoder offsets δoffset
wi

and wheel diameters 2rwi
were determined in Chapter 4, see Table 4.3.

The longitudinal stiffness C
wi

long and the lateral cornering stiffness C
wi

lat were not determined

exactly, but rather based on experience. Furthermore, there is a Coulomb friction model for

each wheel, and the corresponding friction force is compensated. The values were deter-

mined by setting the controller gain to zero and fixing the wheels in a certain position. Then

the vehicle should retain a constant speed when it is pushed and the friction forces are set

correctly. By pushing the vehicle during straight ahead motions as well as crab wise motions

it is possible to heuristically tune the friction compensation per wheel. For the OLS 1 the

friction forces turned out to be different for forwards and backwards motion.

It is reasonable to assume that the positions (xℓ
wi
, yℓ

wi
) and the steering encoder offsets

δoffset
wi

of the wheels are identical for the experiments with and without load. For the other

parameters this is less obvious. In Chapter 4 we saw that the effective wheel diameters 2rwi

of the OLS vehicles will increase for increasing loads. It is also likely that the friction forces

and the tire stiffnesses become higher. Because it is difficult to quantify the parameter values

for the situation with load, the settings for the situation without load have been adopted for

the experiments.

xℓ
wi

yℓ
wi

δoffset
wi

2rwi
C

wi
long

C
wi
lat

F fric
f w

F fric
bw

AGV Wheel (m) (m) (mrad) (mm) (kN) (kN/rad) (N) (N)

OLS 1 Front (i=1) −0.40 0.55 14.22 151.67 100 100 21 −18

OLS 1 Rear (i=2) 0.40 0.55 8.44 151.99 100 100 24 −21

OLS 2 Front (i=1) 0.40 −0.55 21.64 151.22 100 100 25 −25

OLS 2 Rear (i=2) −0.40 −0.55 −18.60 153.24 100 100 25 −25

Table 7.1: Wheel parameters for the cooperative transportation experiments: (x ℓ
wi
, yℓ

wi
) is

the position of wheels wi as expressed in 9ℓ, δoffset
wi

is the steering encoder offset, 2rwi
the

effective wheel diameter , C
wi

long the longitudinal stiffness, C
wi

lat the lateral cornering stiffness,

F fric
f w the forwards friction compensation, and F fric

bw the backwards friction compensation for

wheel wi .
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7.3.2 Desired behavior

The desired behavior of the controlled system is specified in terms of the twist T
ℓ,0
ℓ of the

setup with respect to the floor as expressed in the coordinate system 9ℓ that is fixed to the

middle of the experimental setup as illustrated in Figure 7.5. The desired behavior of the

controlled system is that the rotational velocity ωℓ, the longitudinal velocity uℓ, and the

lateral velocity vℓ of the coordinate system 9ℓ respond as decoupled, first order systems to

their corresponding setpoints. We choose identical time constants τ for the three decoupled

systems. Hence, the desired time derivatives of the components of the load’s twist T
ℓ,0
ℓ with

respect to the floor are given by

Ṫ
ℓ,0
ℓ,des =



ω̇ℓ,des

u̇ℓ,des

v̇ℓ,des


 = 1

τ



ωℓ,set − ωℓ

uℓ,set − uℓ

vℓ,set − vℓ


 = 1

τ
(T

ℓ,0
ℓ,set − T

ℓ,0
ℓ ). (7.1)

For all experiments we took a time constant of τ = 0.4 s for the desired behavior, which is

identical to the setting that is used for individual operation of these OLS vehicles.

7.3.3 Observer

The goal of the observer is to compute an estimate T̂
ℓ,0
ℓ for the twist of the setup with respect

to the floor. In our experiments we consider two observer algorithms:

1. The first observer algorithm treats the two AGVs and the load as a single vehicle,

and computes a global twist estimate based on the odometric measurements of all the

vehicles together. From equations (5.103) and (5.107) of section 5.5 we see that the

estimated twist T̂ ℓ,0
vk

for AGV k with respect to the floor for that case can be written as

T̂ ℓ,0
vk

= E1T̂
ℓ,0
v1|z1

+ E2T̂
ℓ,0
v2|z2

, (7.2)

where

Ek =
(

BT
ℓ,16

−1
1 Bℓ,1 + BT

ℓ,26
−1
2 Bℓ,2

)−1
BT

ℓ,k6
−1
k Bℓ,k . (7.3)

Here T̂
ℓ,0
vk |zk

is AGV k’s local twist estimate that is based on the own odometric mea-

surements of that AGV only, 6k is a weighting matrix, and Bℓ,k is the matrix that

models the relation between the AGV’s twists and the measurements. The latter de-

pends on the steering angles of the wheels, and is given by equation (3.70). Since

9ℓ = 9v1
= 9v2

, we see that T̂
ℓ,0
ℓ = T̂ ℓ,0

v1
= T̂ ℓ,0

v2
for this observer strategy. For the

distributed implementation of this algorithm, generally each AGV has to share its local

twist estimate T̂
ℓ,0
vk |zk

and information matrix BT
ℓ,k6

−1
k Bℓ,k with the other AGVs. In our

experiments we set all weighting matrices equal to 6k = σ 2 I , as this is the setting

that is commonly used for individual operation. We showed in subsection 5.5.3 that

the information matrices, and consequently also E1 and E2, remain constant during

operation for this particular choice of 6k . Substituting the dimensions of Figure 7.5
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into equations (3.70) and (7.3) yields

E1 =




0.500 −0.595 0

−0.275 0.500 0

0 0 0.500


 , E2 =




0.500 0.595 0

0.275 0.500 0

0 0 0.500


 . (7.4)

Note that E1 + E2 = I .

2. The second observer algorithm that we investigate in our experiments simply uses the

AGV’s local twist estimates T̂
ℓ,0
vk |zk

. For this situation we have that Ei is equal to the

identity for i = k, and equal to zero otherwise:

Ei=k =




1 0 0

0 1 0

0 0 1


 , Ei 6=k




0 0 0

0 0 0

0 0 0


 . (7.5)

7.3.4 Controller

We consider two control strategies in our experiments. The structure of the control law is

identical for both strategies and satisfies

(W
vk

w,des)
T = M∗

vk
K ∗

vk
(T

ℓ,0
ℓ,set − T̂ vk ,0

vk
)+ ω̂vk

M∗
vk
Ŵ∗

vk
T̂ vk ,0

vk
. (7.6)

Here W
vk

w,des is the wrench that should be exerted by the wheels on AGV k to realize the

desired behavior (7.1), T
ℓ,0
ℓ,set is the setpoint for the twist of the system with respect to the

floor, T̂
vk ,0
vk

= T̂ ℓ,0
vk

is the estimated twist of AGV k with respect to the floor (see the previous

paragraph), and ω̂vk
is its first component. The matrices K ∗

vk
, M∗

vk
, and Ŵ∗

vk
constitute the

control settings. Because all AGV-load interconnections are completely rigid, these three

matrices remain constant during our experiments. In particular, K ∗
vk

= I/τ as we choose

a single time constant τ for the desired behavior. The matrices M∗
vk

and Ŵ∗
vk

depend on the

particular control strategy that is used and on the inertial properties of vehicles and the load

that is transported. From subsection 7.2.1 we recall that the mass of a single AGV equals

mvk
= 200 kg, its moment of inertia equals Ivk

= 50 kg·m2, and the center of gravity is in

the middle of the vehicle. Furthermore, the mass of the load is mℓ = 300 kg, its moment of

inertia equals Iℓ = 29.25 kg·m2, and its center of gravity coincides with the origin of 9ℓ.

The parameter settings M∗
vk

and Ŵ∗
vk

for the two control strategies without load and with load

are described below:

1. The first strategy treats the setup of the two interconnected vehicles and the load as a

single vehicle and aims to minimize the tire forces. The distributed implementation of

this centralized control design was discussed in section 6.5. By setting mℓ = 0 kg and

Iℓ = 0 kg·m2 and plugging the inertial properties of the vehicles into equations (6.56)

and (6.62), we find that the parameters M∗
vk

for the situation without load read

M∗
v1

=




148 −110 0

−176 200 0

0 0 200


 , M∗

v2
=




148 110 0

176 200 0

0 0 200


 . (7.7)
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Analogously, for the situation with load we have

M∗
v1

=




163 −192 0

−193 350 0

0 0 350


 , M∗

v2
=




163 192 0

193 350 0

0 0 350


 . (7.8)

For this control strategy, the matrix Ŵ∗
vk

is always equal to

Ŵ∗
v1

= Ŵ∗
v2

=




0 0 0

0 0 −1

0 1 0


 . (7.9)

for our experiments.

2. The second strategy is to minimize the interconnection forces between the AGVs and

the load. This strategy was discussed in section 6.4 for a general setup with semi-rigid

interconnections. Subsection 6.4.3 dealt with the special case that the interconnections

were completely rigid. The computation of the parameters for this control strategy

require a model for the relation between the local interconnection forces λk and the

wrench W ℓ
vk

that is exerted by AGV k on the load, see equations (6.28) and (6.33) of

subsection 6.4.2. To this end we take

W ℓ
v1

= λT
1 Aℓ,1 = λT

1




−0.4 1 0

0.4 0 1

−0.4 1 0

−0.4 0 1


 , W ℓ

v1
= λT

2 Aℓ,2 = λT
2




0.4 1 0

0.4 0 1

0.4 1 0

−0.4 0 1


 .

(7.10)

This corresponds to pure longitudinal and lateral forces in the bolts that connect the

rectangular aluminum frame to the AGVs. If all interconnection forces are weighted

equally, then the corresponding parameter settings for the situation without load are

M∗
v1

=




148 −140 0

−140 200 0

0 0 200


 , M∗

v2
=




148 140 0

140 200 0

0 0 200


 , (7.11)

Ŵ∗
v1

=




0 0 0

0 0 −1

−0.7 1 0


 , Ŵ∗

v2
=




0 0 0

0 0 −1

0.7 1 0


 . (7.12)

This corresponds to the settings for a single vehicle controller with its coordinate

shifted to the position that is indicated in Figure 7.5. The parameters for the situa-

tion with load are

M∗
v1

=




163 −200 0

−158 350 0

0 0 350


 , M∗

v2
=




163 200 0

158 350 0

0 0 350


 , (7.13)

Ŵ∗
v1

=




0 0 0

0 0 −1

−0.4 1 0


 , Ŵ∗

v2
=




0 0 0

0 0 −1

0.4 1 0


 . (7.14)
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Since part of the pallet rests on the vehicles themselves, it is noted that the above model

(7.10) for the interconnection force is not very accurate. Although the interconnection

force will therefore not be minimized, the settings above do theoretically result in the

desired behavior (7.1).

7.4 Experimental results

The experiments were carried out in the hall of FROG Navigation Systems (Utrecht, The

Netherlands) on March 16 and 17, 2005. Goal of the experiments was to investigate the

performance of the two observer and the two controller algorithms that were introduced in

Chapters 5 and 6. Observer algorithm 1 treats the setup as a single vehicle and computes a

global twist estimate, and observer algorithm 2 uses only local measurements to determine a

local twist estimate. Furthermore, control algorithm 1 regards the setup as a single vehicle

and aims to minimize the tire forces, whereas control algorithm 2 aims to minimize the in-

terconnection forces between the AGVs and the load. Thus there are four observer-controller

combinations. For each combination, two test runs without a load and two test runs with a

load were performed with identical setpoints. This resulted in the following sixteen experi-

ments:

• global twist estimate, distributed central controller (2× no load, 2× with load);

• global twist estimate, interconnection force controller(2× no load, 2× with load);

• local twist estimates, distributed central controller (2× no load, 2× with load);

• local twist estimates, interconnection force controller (2× no load, 2× with load).

The parameter settings were discussed in the previous section. Before the start of each ex-

periment, the vehicles were manoeuvred manually to the initial position on the floor that was

designated as (x, y, ϕ) = (0, 0, 0), and the position observers were initialized accordingly.

Synchronization of the various log files was achieved by defining the time stamp of the sync

pulse just before the first lift braking setpoint as t = 0.

7.4.1 Setpoints

The laptop broadcasted the same twist and braking setpoints during all experiments, which

allows us to compare the results. The twist setpoints, the desired twists and their differences

are displayed in Figure 7.8. They are identical to the setpoints that we used in [112], with the

exception of a minor change around t = 67 s (the position of the steering pole position now

changes instantaneously instead of smoothly at the end of the pirouette-like motion). The

desired twists differ from the twist setpoints, because the desired behavior is to respond to

the twist setpoints as a first order system (7.1) and not to follow them as close as possible.

The twist setpoints were designed such that the vehicles approximately followed the tra-

jectory that is sketched in Figure 7.9. First, they drive forward for about nine meters. After

a left-hand turn, a straight of about five meters and a second left hand turn, the vehicles start
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performing a crab wise motion, where they move sideways to the left and subsequently side-

ways to the right while keeping their original orientation. Then they come to a stop, and

subsequently perform a counter-clockwise pirouette. Next, there is a section that combines

crab wise and rotational movements. Finally, the vehicles move backwards and crab slightly

to the left to return approximately to the positions where they have started from.

Because the controllers in our experiments operate at the velocity level, the vehicles’

real positions will soon deviate from the positions that are found by integrating the twist

setpoints and the desired twists. Therefore, the twist setpoint was designed experimentally

by modifying the curvatures of the first two left hand turns, the duration of the pirouette, and

the length of the reverse section, until the vehicles returned to their initial positions. The

integrated versions of the twist setpoints and desired twists of Figure 7.8 are displayed in

Figure 7.10. They were computed by the algorithm that was discussed in subsection 3.3.5,

which assumes that the position of the steering pole remains constant during the sample

interval. They clearly deviate from the desired trajectory sketched in Figure 7.9.
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Figure 7.8: Twist setpoints and desired twists.

7.4.2 Realized trajectories

The realized trajectories of the vehicles as estimated by the AGVs’ local position observers

are displayed in Figure 7.11 for the tests without load and in Figure 7.12 for the tests with the

300 kg load. It is difficult for the magnet ruler to detect magnets during the crab wise motion,

which results in the jumps in the estimated position at the end of the crab section. From the

figures we see that the trajectories for the experiments without load clearly differ from the

trajectories of the experiments with load. This is mainly due to a different behavior during

cornering, i.e. the change in orientation during a corner is smaller for the setup with load

than for the setup without load. Except for the difference in the trajectories between the tests

without and with load, the trajectories reproduce very well and are almost independent of
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Figure 7.9: Sketch of the desired trajectory

(the black dots indicate magnets in the floor).
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Figure 7.10: Integrated twist setpoint and in-

tegrated desired twist.

the type of observer (global versus local estimates) and the type of controller (central design

versus minimization of the interconnection forces) that is used.

The fact that the vehicles were maneuvered manually to their initial positions at the start

of each experiment accounts for some of the variations within the ’without load’ and the ’with

load’ cases, and is similar to what we have seen in our earlier experiments [112]. Again we

see that the position estimate of the OLS 1 is consistently 5 cm to the left and 1 cm to the

front with respect to the position estimate of the OLS 2, which is most easily seen at the end

of the experiments. The most likely explanation is that this offset reflects the inaccuracies of

the positions of the magnet rulers with respect to the vehicles and each other.
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Figure 7.11: Realized trajectories for the

eight experiments without load as estimated

by the AGVs’ local position observers.
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Figure 7.12: Realized trajectories for the

eight experiments with load as estimated by

the AGVs’ local position observers.

7.4.3 Integrated twist estimates

Comparing the integrated twist estimates to the data from the AGVs’ position observers pro-

vides information on the accuracy of the twist estimates and the calibration of the odometry.

Three twist estimates are available for the experiments with the centralized observer algo-
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rithm, viz. one local twist estimate for each of the two AGVs and one global twist estimate

that is derived from the two local estimates. Figure 7.13 shows the three estimated twists

and the data from the AGV’s position observers for an experiment without load, and Fig-

ure 7.14 displays the same variables for an experiment with load. Both experiments used the

controller strategy that aims to minimize the interconnection forces between the AGVs and

the load. The integrated twist estimates and the data from the position observers match quite

well for these two experiments. Sometimes the integrated local twist estimate of the OLS 1

is closer to the real position, and sometimes this is true for the local twist estimate of the

OLS 2. There is no apparent difference in the accuracy of the integrated twists between the

experiment without load and the experiment with load. This means that we have introduced

only a small error by adopting the single vehicle odometric parameters for the situation with

the 300 kg load. Interestingly, there is no direct evidence that the global twist estimate is

much more accurate than the local twist estimates. The other control strategy, which aims to

minimize the tire forces, yields very similar results for the integrated local and global twist

estimates. For example, the integrated local twist of the OLS 2 will always have the largest

y-coordinate at the end of the crab section just before the pirouette.

For the experiments where the local observers’ twist estimates are used in the control

law, the global twist estimate is not available. The behavior of the integrated local twist

estimates was independent of observer strategy that was used in the control law. Just like

for the experiments with the central observer strategy, the integrated local twist of the OLS 2

always had the largest y-coordinate at the end of the crab section. Thus we conclude that the

performance of the integrated (local) twist estimates is relatively independent of the observer

and control strategy that is being used.
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Figure 7.13: Position observer data and inte-

grated twist estimates for the global observer

and interconnection controller without load.
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7.4.4 Twist tracking errors

The performance of the two observer and the two controller algorithms is studied by examin-

ing the twist tracking errors T
ℓ,0
ℓ,des − T̂

ℓ,0
ℓ . Note that we took the desired twist T

ℓ,0
ℓ,des, because

our aim was that the AGV responds to setpoints as a first order system and not to minimize
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the quantity T
ℓ,0
ℓ,set − T

ℓ,0
ℓ . For the twist estimate T̂

ℓ,0
ℓ we took the global twist estimate for

the experiments with the centralized observer design, and the local twist estimates for the

experiments with the local observers. Thus for the first observer algorithm we have a single

twist tracking error, and for the second observer strategy we have two twist tracking errors. In

the previous subsections we showed that the realized trajectories and the integrated versions

of the twist estimates reproduced very well when an experiment was repeated with identical

observer and controller settings. This is also true for the twist tracking error(s). Moreover,

for an experiment with an identical load, identical observer settings, but a different control

strategy, the errors were also very similar. Therefore, we restrict ourselves to the study of the

tracking errors for the control strategy that aims to minimize the interconnection forces.

The differences between the desired twists and the twist estimates for the central observer

and the local observer strategies are depicted in Figure 7.15 for one experiment without load

and one experiment with load. Although there are two tracking errors (one for each AGV)

when local controllers are used, at each time instant we plotted only the one with the largest

absolute error to limit the number of signals in the plots. The spike that was present at 70 s

in our earlier experiments [112] was no longer present because we corrected a minor error in

the setpoint as we discussed in subsection 7.4.1.

We see that the tracking errors for the individual twist components for the experiments

with load are roughly a factor two larger than for the experiments without load. Although the

errors for the local observer approach are somewhat noisier than for the centralized observer

approach, the figure shows that they are relatively independent of the chosen observer algo-

rithm. This is confirmed by the cumulative relative frequency polygons of the twist tracking

errors that are displayed in Figure 7.16. Noticeably, Figure 7.15 shows that the tracking er-

rors do not substantially diminish during the sections where the interconnected system travels

at a constant speed. Therefore, we conclude that the inertial properties of the load were de-

termined quite well, and that the error is largely due to another physical phenomenon. One

explanation is that the (Coulomb) friction in the wheels and the drive system has increased

for the experiments with load due to the increased weight. For a straight ahead motion the

controller gain for each AGV is m
2×τ

= 200
2×0.4

= 250 N·(m/s)−1 per wheel for the cases with-

out load, and m
2×τ

= 350
2×0.4

= 438 N·(m/s)−1 per wheel for the cases with load. The tracking

errors in the longitudinal velocity uℓ during straight ahead motion are approximately 0.02 m/s

for the cases without load, and 0.05 m/s for the cases with load. This would correspond to

unmodeled friction forces of respectively 250×0.02 = 5 N and 438×0.05 = 22 N per wheel

for the ‘without load’ and the ‘with load’ situations. Because the Coulomb friction forces for

the individual wheels ranged from 18 to 25 N, see Table 7.1, these values seem realistic.

Another reason for additional forces could be that the wheels are counteracting each oth-

ers actions. The longitudinal tire force component that is related to the lateral wheel slip

equals approximately C
wi

lat α
2
wi

. Therefore, we find that a force of 5 N corresponds to a slip

angle αwi
of approximately

√
F fric

wi
/C

wi

lat =
√

5
100,000

× 180
π

= 0.4 deg. However, during the

calibration experiments we encountered errors of the same magnitude as for the tests with the

interconnected setup without load. We know that the wheels did not counteract each other’s

lateral control actions in calibration experiments, as an individual OLS vehicle has only two

actuated wheels. Because the magnitude of the longitudinal velocity errors for the experi-

ments with the interconnected system matches that of the calibration tests with the individual
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vehicles, this suggests that the additional wheel forces do not stem from counter steering

wheels.
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Figure 7.15: Twist tracking errors for the controller that aims to minimize the interconnection

forces.
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troller that aims to minimize the interconnection forces.

7.5 Concluding remarks and discussion

In this chapter we presented experimental results for transporting a load of 300 kg paving

stones by two AGVs using distributed observer and controller implementations. We tested
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two observer algorithms in combination with two controller algorithms, and compared the

results with the situation that the AGVs were rigidly interconnected but did not transport a

load.

The realized trajectories were very reproducible and relatively independent of the types of

observers and controllers that were used. There was a clear difference between the trajectories

of the experiments where the load was present and where it was not. We believe that this

difference is caused by the increased friction forces in the wheels under influence of the

heavy load. We also studied the integrated versions of the local and global twist estimates.

They corresponded well to the estimates of the AGVs’ local position observers, which were

based on integration of the local twist estimates in combination with updates from the magnet

ruler that detects the magnets in the floor. There was no substantial difference between the

approach where each vehicle uses only local odometric data to estimate its twist with respect

to the floor, and the approach where the local estimates were exchanged to arrive at one global

estimate that exploits the odometric measurements of all the vehicles.

The tracking errors for the test with load were roughly a factor two larger than for the

experiments without load. Because the errors are also present during constant velocity ma-

neuvers and when the vehicles are physically separated, we believe that they are caused by

inaccurate modeling of the friction phenomena. The most logical step to improve the perfor-

mance with load is therefore to increase the coefficients for the Coulomb friction compensa-

tion. The twist tracking errors were a little bit noisier for the local observer strategy than for

the centralized observer strategy, but the order of magnitude was comparable. Although the

performance of the setup with load can be improved by optimizing the controller settings, it

still was within acceptable limits.

The aim of the second control strategy was to minimize the interconnection forces be-

tween the AGVs and the load. A shortcoming of this study is that we have not measured

these forces, which means that we do not know whether this goal was achieved. Because the

load was partially carried by the vehicles, the model of the interconnection forces was inaccu-

rate and somewhat artificial. In addition, the model takes not into account the vertical forces

at the interconnections, which will be typically an order of magnitude higher than the hori-

zontal forces due to gravity. Since the part of the strategy that computes the net wrench that

should be exerted on the complete setup is independent of the model of the interconnection

forces, the setup is still able to achieve the desired behavior on the velocity level. Therefore,

the model of the interconnection forces should be merely seen as a method for distributing

the net wrench among the individual wheels.

From the experiments we conclude that both control strategies perform satisfactory, and

that there were no substantial drawbacks when the centralized observer algorithm was re-

placed by local observers that are based on local odometric measurements. The most logical

step to improve the performance for the setup with load is to apply different settings for the

Coulomb friction compensation.

To achieve fully automatic operation, the algorithms that have been evaluated in this

chapter have to be extended with an additional feedback loop that estimates and controls

the positions of the AGVs and the load such that they can follow a pre-defined path. A brief

inspection of the AGV’s position observers showed that the state corrections at the magnet

measurements were quite small, which again confirms that the integrated local twist estimates

are quite accurate. We can therefore start by directly adopting the AGV’s original position
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observers, which uses only the AGV’s own magnet ruler, for our test setup. It is worth to see

how the setup performs when the AGV’s local position controllers are activated. If we use

a proportional controller in combination with a relatively low gain to prevent force fighting,

then it should be possible to achieve control on the position level by providing the AGVs with

identical path setpoints .

Finally, we remark that the AGVs were relatively close to one another in our experimen-

tal setup. When the vehicles are further apart, then it becomes more difficult to accurately

estimate the motion of the coordinate system 9ℓ as the distance to the sensed wheels will

become larger. In those situations it may be more advantageous to use the central observer

approach than the local observers. Furthermore, the AGVs were very rigidly coupled, both

in hardware by the rectangular aluminum frame as well as in software by the synchronization

of the control cycles that was based on the sync message. For future research it is interesting

to investigate how the performance is affected when a more flexible load is used and when

the controller cycles are not synchronized anymore.
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8

Conclusion and recommendations

8.1 Concluding remarks

For several practical control engineering applications it is desirable that multiple systems

can operate independently as well as in cooperation with each other. Especially when the

transition between individual and cooperative behavior and vice versa can be carried out

easily, this results in flexible and scalable systems. In this thesis we considered one particular

application of multiple systems that can operate independently as well as in concert with each

other, namely the cooperative transportation of a large object by multiple Automated Guided

Vehicles (AGVs). Recently there has been an increasing demand from industry to transport

very large objects such as sewer pipes, rotor blades of wind turbines and pieces of scenery

for theaters, which may reach lengths of over thirty meters. A realistic option is to let several

AGVs operate together to handle these types of loads.

In this thesis we investigated how single AGV controllers can be extended such that mul-

tiple AGVs can transport a common load in cooperation with each other. We focused on

the situation that the load is rigidly or semi-rigidly attached to the vehicles, e.g. by means of

completely rigid interconnections, revolute joints, or slider joints. Furthermore, attention was

restricted to control on the velocity level, which we regard as an intermediate step for achiev-

ing fully automatic operation. In our setup the motion setpoint is provided by an external

host. The load is assumed to be already present on the vehicles. Docking and grasping proce-

dures are not considered. The project is a collaboration between FROG Navigation Systems

(Utrecht, The Netherlands) and the Control Systems group of the Technische Universiteit

Eindhoven. Two omni-directional AGVs and facilities for testing were provided by FROG.

Industrial AGVs are custom made for the transportation tasks at hand and come in a va-

riety of forms. To reduce development times it is desirable to follow a model-based control

design approach as this allows generalization to a broad class of vehicles. We have adopted

rigid body modeling techniques from the field of robotic manipulators to derive the equations

of motion for the AGVs, the load, and the interconnected system in a systematic way. These

models are based on physical considerations such as Newton’s second law and the positions

and dimensions of the wheels, sensors and actuators. Special emphasis was put on the mod-

eling of the wheel-floor interaction, for which we adopted tire models that stem from the

field of vehicle dynamics. The resulting models have a clear physical interpretation and are

capable to describe a large class of vehicles with arbitrary wheel configurations. This ensures

us that the controllers, which are based on these models, are also applicable to broad class of

vehicles.

An important prerequisite for achieving smooth cooperative behavior it that the individual

AGVs operate at the required accuracy. The performance of an individual AGV is directly
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related to the precision of the estimates for the odometric parameters, i.e. the effective wheel

diameters and the offsets of the encoders that measure the steering angles of the wheels.

Cooperative transportation applications will typically require AGVs that are highly maneu-

verable, which means that all the wheels of an individual AGV should be able to steer. Since

there will be more than one steering angle encoder, the identification of the odometric pa-

rameters is substantially more difficult for these omni-directional AGVs than for the mobile

wheeled robots that are commonly seen in literature and laboratory settings. We presented

a novel three-steps procedure for simultaneously estimating effective wheel diameters and

steering angle encoder offsets for a vehicle that is equipped with a measurement system that

can detect magnets that are placed in the floor. The first step is the experimental part. In this

step, the setpoints for the vehicle’s steering systems are set to constants and the vehicle is

instructed to drive a certain distance at a constant, low speed. Ideally, this results in a pure

circular motion. In the second step, we assume that the realized motion was indeed a pure

circle segment, and we subsequently use a nonlinear least-squares estimator to estimate the

realized circular trajectory. In the third and last step, it is assumed that there was no wheel

slip during the experiment, which allows us to translate the identified trajectory to the steering

encoder offsets and the effective wheel diameters. The validity of the tuning procedure was

confirmed by experiments with the two omni-directional test vehicles with varying loads. A

surprising result was that the effective wheel diameters of the rubber wheels of our AGVs

increase with increasing load.

A crucial aspect in all control designs is the reconstruction of the to-be-controlled vari-

ables from measurement data. Our to-be-controlled variables are the planar motion of the

load and the degrees of freedom between the AGVs on the load. These have to be recon-

structed from the odometric sensor information, which consists of the drive encoder and

steering encoder readings. We analyzed the observability of an individual AGV and proved

that it is theoretically possible to reconstruct its complete motion from the odometric mea-

surements. Due to practical considerations, we pursued a more pragmatic least-squares based

observer design. We show that the least-squares based motion estimate is independent of the

coordinate system that is being used. The motion estimator was subsequently analyzed in a

stochastic setting. The relation between the motion estimator and the estimated velocity of

an arbitrary point on the vehicle was explored. We derived how the covariance of the ve-

locity estimate of an arbitrary point on the vehicle is related to the covariance of the motion

estimate. We proved that there is one unique point on the vehicle for which the covariance

of the estimated velocity is minimal. Next, we investigated how the local motion estimates

of the individual AGVs can be combined to yield one global estimate for the load’s motion.

We assumed that the position of the load with respect to the AGVs was known, but we did

not require velocity measurements of the load with respect to the vehicle. We propose that

each AGV estimates its own planar motion using local sensor information and subsequently

broadcasts the result and their corresponding information matrices. With this information,

each AGV is able to compute the global estimate that corresponds to the centralized observer

design. Finally, we showed that there are some special situations where the information ma-

trices remain constant during operation. For our test vehicles, this is the case when the load

is either completely rigidly attached to the vehicles, or by means of a revolute joint that is

mounted in the middle of the two actuated wheel units.

The key issue in the control design for cooperative transportation tasks is that the various
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AGVs must not counteract each others’ actions. The decentralized controller that we derived

makes the AGVs track an externally provided planar motion setpoint while minimizing the

interconnection forces between the load and the vehicles. Although the control design is ap-

plicable to cooperative transportation by multiple AGVs with arbitrary semi-rigid AGV-load

interconnections, it is noteworthy that a particularly elegant solution arises when all inter-

connections are completely rigid. Then the derived local controllers have the same structure

as the controllers that are normally used for individual operation. As a result, changing a

few parameter settings and providing the AGVs with identical setpoints is all that is required

to achieve cooperative behavior on the velocity level. The decentralized control design for

the rigid situation was successfully implemented on the two test vehicles. The experimen-

tal results were reproducible and illustrated the practical validity of the designed observers

and controller. Interestingly, for our setup there was no noticeable difference in performance

when the AGVs used only local sensor information to estimate the twist the interconnected

system.

8.2 Recommendations

The wheel-floor contact is currently modelled by means of a linear, static tire model. Al-

though there is a lot of knowledge and data available on the pneumatic tires that are seen in

passenger cars and busses, there is almost no literature that deals with the cornering proper-

ties of the solid rubber wheels that are commonly used in AGV applications. In particular,

the cornering stiffnesses that were used in the experiments of Chapter 7 are only very rough

estimates, and it could well be that they are a factor ten too large. It would be interesting

to investigate the relation between the side slip angle of a solid rubber wheel and the cor-

responding lateral force, and how this relation is affected by varying vertical wheel loads.

Since omni-directional AGVs will often perform tight turns with a small turning radius, there

will be a difference in speed between the inside and the outside of the wheel’s contact patch.

This so-called turn-slip will result in an additional moment that is exerted by the floor on the

wheel, and it would be interesting to investigate the magnitude of this phenomenon.

A shortcoming of the three-step tuning procedure that we proposed is that we had to

assume that there was no wheel slip during the experiment to reconstruct the steering encoder

offsets and effective wheel diameters from the realized circular trajectory. For vehicles with

at most two actuated wheels, such as our test vehicles, this is not a limitation since there

will be almost no lateral wheel slip when the experiments are carried out at low speeds. For

vehicles with multiple steerable wheels, however, conflicting lateral forces will occur when

the steering encoder offsets are not properly calibrated. We therefore may first minimize the

conflicting forces heuristically by experimentally varying the steering encoder offsets. For a

vehicle with three steerable wheels, this means that we have to adjust one steering encoder

offset. When the encoder offset is changed in the right direction, then the conflicting forces

will diminish, and the vehicle speed will increase. Subsequently, we can use the proposed

three-steps tuning procedure, although the identified steering encoder offsets will be less

accurate than for vehicles with two steerable wheels such as our test vehicles.

In the distributed cooperative transportation observer and controller that we presented in

this thesis, we focused on the velocity level. To achieve fully automatic operation, the pre-
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sented algorithms have to be extended with an additional feedback loop that estimates and

controls the positions of the AGVs and the load such that they can follow a pre-defined path.

When absolute position measurements are not available, e.g. in between magnet detections

for a magnet measurement system, the position observer has to rely on integration of the es-

timated planar velocities. Therefore, the accuracy of the position estimates is directly related

to the performance of the velocity observer that we proposed. In the cooperative transporta-

tion experiments that were presented in Chapter 7, the position observer of the individual

AGVs remained operational. The experiments showed that the position updates at the mag-

net detections were quite small, which means that the designed velocity observer performed

quite well as integration of the velocity estimates led to only small errors. We can therefore

directly adopt the AGV’s original position observers for the test setup with our two rigidly

interconnected vehicles. In case that the vehicles are semi-rigidly attached to the load, e.g.

by means of revolute joints, then we have to make some adjustments to estimate the degrees

of freedom between the AGVs and the load.

Because the estimates from the position observers were reasonably accurate during our

experiments, we expect that the original, local position controllers will already perform quite

well when we provide identical path setpoints to both vehicles. Since the local vehicle clocks

are not perfectly synchronized, special measures have to be taken to guarantee that the path

is executed at the same times for both vehicles. One interesting result of our experiments was

that the position estimates of the two vehicles were consistently five centimeters apart. This is

likely caused by inaccuracies in the positions of the magnet rulers of the two vehicles. There

will always be a difference in the estimated positions when using local position observers

that are based on the measurements from the local magnet ruler only. This means that it is

physically not possible to make the position tracking errors for both vehicles identical to zero.

Force-fighting of the multiple local controllers can be prevented by avoiding integral actions

in the control algorithms. A first logical step is to see how the setup performs when using

proportional position controllers with relatively low gains.

The two vehicles were relatively close together in the cooperative transportation experi-

ments that we presented. Moreover, they were both attached to the load by means of fully

rigid interconnections, and the load was very rigid. More experiments are needed to see

how the designed observers and controllers will perform when longer objects are transported,

when the load exhibits more flexibility, and when semi-rigid interconnections such as rev-

olute joints are considered. It would also be interesting to evaluate the forces between the

load and the AGVs. Furthermore, in our experiments the control cycles of the two vehicles

were synchronized very tightly by means of communication over the CAN bus. It would be

interesting to evaluate the performance of the controller under less synchronized conditions,

for example when the communication over the CAN bus is replaced by communication using

wireless LAN.

Although a commercial application requires several additional modifications such as in-

stalling safety measures, emergency stops, automatic load handling devices, etc., the experi-

ments in this thesis show that the proposed tuning, observer and control algorithms certainly

have the potential to evolve into meaningful, industrial cooperative transportation applica-

tions.
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Minimization of the nonlinear least-squares

tuning criterion

A.1 Introduction

In section 4.4 we introduced a nonlinear least-squares estimator for the intermediate param-

eters θ = (a, b, Rv, βv, cwi
, owi

) that describe the circular trajectory of an AGV during the

experimental part of our tuning procedure. Here (a, b) is the position of the steering pole with

respect to the floor coordinate system 90, (Rv, βv) is the position of the steering pole with

respect to the vehicle coordinate system 9v as parameterized by the signed motion radius Rv

and the side slip angle βv , and cwi
and owi

represent the relation between the path variable

Sv and the drive encoder reading ϑwi
for wheel wi .

From equation (4.22) of subsection 4.4.3 we recall that the nonlinear least-squares esti-

mator θ̂ was given by

θ̂ = arg min
θ

(
m∑

k=1

ξr (θ, k)2 +
n∑

i=1

m∑

k=1

ξti (θ, k)2

)
, (A.1)

where m is the number of detected magnets, n is the number of wheels, ξr (θ, k) are the radial

residuals, and ξti (θ, k) are the tangential residuals for wheel wi . In equations (4.20)-(4.21)

we saw that the residuals satisfy

ξr (θ, k) = RM (k)− RG(k) (A.2)

ξti (θ, k) = cwi
ϑwi

(k)+ owi
+ |Rv|γv(k)− |Rv|αv(k), i ∈ {1, . . . , n}, (A.3)

where RM (k), RG(k), γv(k) and αv(k) are auxiliary variables that are defined in section 4.4.

They all depend on θ . A closer inspection shows that the radial residual depends on the

four variables (a, b, Rv, βv) only, i.e. ξr (θ, k) = ξr (a, b, Rv, βv, k). Moreover, in our ex-

periments we have selected the planar velocity setpoints such that the side slip angle βv is

small and the motion radius |Rv| is large. In particular, βv was typically smaller than 1.5 deg

and |Rv| was larger than 10 m. For these parameter values, the radial residuals ξr (θ, k) are

almost independent of βv . Furthermore, the influence of (a, b, Rv) on the tangential resid-

uals ξti (θ, k) is very small for large motion radii |Rv|. Hence, for large motion radii the
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nonlinear-least squares estimator (A.1) can be approximated by

θ̂r = arg min
θr

m∑

k=1

ξr (θr , βv, k)2 (A.4)

θ̂t = arg min
θt

n∑

i=1

m∑

k=1

ξti (θr , θt , k)2, (A.5)

where

θr = (a, b, Rv) (A.6)

θt = (βv, cw1
, ow1

, . . . , cwn , own ). (A.7)

A.2 Iterative procedure

We will use an iterative procedure that is based on two alternating Gauss-Newton algorithms

to solve (A:V1)-(A.5), because this method was successfully used by Gander et al. [43] to

find circles and ellipses for which the sum of the squares of the geometric distances to a given

set of points was minimal. The procedure consists of the following steps

1. Establish initial estimates for θr and βv;

2. Iterative algorithm for estimating θr and θt :

(a) Gauss-Newton method to estimate θr for given βv;

(b) Establish initial estimates for θt ;

(c) Gauss-Newton method to estimate θt for given θr ;

(d) Repeat steps (a)-(c) until θr and θt have converged.

The next sections discuss these steps in more detail. In practice, there is a very fast conver-

gence rate, and steps (a)-(c) only have to be executed one or two times. In our experiments

we set the number of repetitions equal to ten.

A.2.1 Establish initial estimates for θr and βv

We take the side slip angle βv that corresponds to the planar velocity setpoint for the vehicle

during the tuning experiment as an initial estimate for βv . For our experiments this means

that the initial estimate for βv equals zero. We establish initial estimates for θr = (a, b, Rv)

by fitting a circle through the k = 1, . . . ,m a-priori estimated floor coordinates M 0
a-priori(k)

that where defined in equation (4.1). Several well documented procedures are available for

fitting a circle through a given set of data points. These procedures typically return the radius

r > 0 and the coordinates of the center (a, b) of the circle. We will use Gander et al.’s Matlab

routine ‘algcircle.’ The underlying method plus the source code of this routine are described

in detail in [43].
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Although the a and b from the ‘algcircle’ routine can be used directly as initial estimates

for the center of orientation, we still have to determine the sign of Rv since ‘algcircle’ al-

ways returns a positive radius r = |Rv|. The sign of Rv depends on whether 9v is moving

‘forwards’ or ‘backwards,’ and whether the circle is travelled in clockwise or in counter-

clockwise direction. 9v is said to move forwards when uv > 0, and to move backwards

when uv < 0. The velocity observer that is running on the AGV already estimates uv , so it is

natural to use this estimate to find 9v’s direction of travel. Whether the motion is clockwise

or counterclockwise can be determined by examining the angles ψi between the horizontal

floor axis and the lines from the steering pole C0 to the a-priori magnet positions Ma-priori(k),

k = 1, . . . ,m. Figure A.1 shows that the angle ψi satisfies

ψk = arctan2
(

M0
a-priori,y(k)− b,M0

a-priori,x (k)− a
)
. (A.8)

The sequence of angles ψ1, . . . , ψm is ‘unwrapped’ by changing absolute jumps greater than

π to their 2π complement, for example with the Matlab routine ‘unwrap.’ If ψm,unwrapped <

ψ1, then the circle is travelled in clockwise direction. Conversely, ψm,unwrapped > ψ1 means

that the circle is travelled in counterclockwise direction. The relation between sign(Rv),

the forwards/backwards motion of 9v , and the clockwise/counterclockwise direction of the

motion of 9v is summarized in Table A.1.

forwards backwards

clockwise direction − +
counterclockwise direction + −

Table A.1: sign(Rv) as a function of the forwards/backwards and clockwise/counter-

clockwise motion of 9v . Rv > 0 corresponds to a left hand turn, and Rv < 0 corresponds to

a right hand turn.

C0 = (a, b)90

ψ1

ψ2ψm
M0

a-priori
(1)

M0
a-priori

(2)

M0
a-priori

(m)

Figure A.1: Definition of ψk .

A.2.2 Gauss-Newton method to estimate θr for given βv

The objective of this step is to determine

θ̂r = arg min
θr

m∑

k=1

ξr (θr , βv, k)2. (A.9)
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We use a Gauss-Newton method to solve this nonlinear least-squares minimization prob-

lem. This requires the partial derivatives of ξr (θr , βv, k) with respect to the parameters

θr = (a, b, Rv). These are given by

∂ξr (θr ,βv,k)
∂a

= − ∂ RG (k)
∂a

= −1

2
√

(G0
x (k)−a)2+(G0

y(k)−b)2

∂(G0
x (k)−a)2

∂a
= G0

x (k)−a
RG (k)

(A.10)

∂ξr (θr ,βv,k)
∂b

= − ∂ RG (k)
∂b

= −1

2
√

(G0
x (k)−a)2+(G0

y(k)−b)2

∂(G0
y(k)−b)2

∂b
= G0

y(k)−b

RG (k)
(A.11)

∂ξr (θr ,βv,k)
∂ Rv

= ∂ RM (k)
∂ Rv

= 1

2
√

(Mv
x (k)+Rvsβv)2+(Mv

y (k)−Rvcβv)2

∂(Mv
x (k)+Rvsβv)2+(Mv

y (k)−Rvcβv)2

∂ Rv

= 1
2RM (k)

(

2sβv(Mv
x (k)+Rvsβv)−2cβv(Mv

y (k)−Rvcβv)
)

= Rv+Mv
x (k)sβv−Mv

y (k)cβv

RM (k)
. (A.12)

The updated parameters are

θ̂
j+1

r = θ̂
j

r −
(

J
j

r

T
J

j
r

)−1

J
j

r

T
ξr (θ̂

j
r , βv) = θ̂

j
r − h

j
r , (A.13)

with

ξr (θ
j

r , βv) =



ξr (θ

j
r , βv, 1)
...

ξr (θ
j

r , βv,m)


 , J

j
r =




∂ξr (θr ,βv,1)
∂a

∂ξr (θr ,βv ,1)
∂b

∂ξr (θr ,βv,1)
∂ Rv

...
...

...
∂ξr (θr ,βv,m)

∂a
∂ξr (θr ,βv,m)

∂b
∂ξr (θr ,βv,m)

∂ Rv




∣∣∣∣∣∣∣∣
θ̂

j
r

.

(A.14)

J
j

r is the Jacobian corresponding to the j th iteration step. In the current implementation, the

update step is performed until ‖h
j
r ‖2 ≤ 10−8‖θ̂ j

r ‖2. This usually only required two or three

iterations for our experiments.

A.2.3 Establish initial estimates for θt

The Gauss-Newton algorithm for estimating θt that will be discussed in the next subsection

requires an initial estimate θ̂1
t for the first iteration step. We choose to approximate the term

|Rv|γv(k) in the tangential residual (4.19)

ξti (θr , θt , k) = cwi
ϑwi

(k)+ owi
+ |Rv|γv(Rv, θt , k)− |Rv|αv(θr , k) (A.15)

by assuming that |Rv| is large and that βv is small. This yields

|Rv|γv(Rv, θt , k) = Rv arctan

(
Mv

x (k)cβv + Mv
y (k)sβv

Rv + Mv
x (k)sβv − Mv

y (k)cβv

)
≈ Mv

x (k)+ Mv
y (k)βv.

(A.16)

If we substitute this approximation in equation (A.15), then we obtain an affine relation be-

tween the residuals ξti (θr , θt , k) and θt . In particular, for a vehicle with n = 2 two wheels we

obtain
(
ξt1(θr , θt )

ξt2(θr , θt )

)
≈
(

Mv
y ϑw1

0 I 0

Mv
y 0 ϑw2

0 I

)
θt +

(
Mv

x − |Rv|αv(θr )
)

= Atθt − bt , (A.17)
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where the tangential residuals ξti (θr , θt , k), the measurements Mv
x (k) and Mv

y (k) of the mag-

net ruler, the drive encoder readings ϑwi
(k), and the auxiliary angles αv(θr , k) have been

stacked in the respective vectors ξti (θr , θt ), Mv
x , Mv

y , ϑwi
, and αv(θr ). As initial estimate for

θt we take the least-squares solution to the above system of equations:

θ̂1
t = (AT

t At )
−1 AT

t bt . (A.18)

A.2.4 Gauss-Newton method to estimate θt for given θr

The objective of this step is to determine

θ̂t = arg min
θt

n∑

i=1

m∑

k=1

ξti (θr , θt , k)2. (A.19)

We use a Gauss-Newton method to solve this nonlinear least-squares minimization problem.

This requires the partial derivatives of ξrξti (θr , θt , k) with respect to the parameters θt =
(βv, cw1

, ow1
, . . . , cwn , own ). The nonzero partial derivatives satisfy

∂ξti (θr , θt , k)

∂βv

= −Rv

Mv
x (k)

2 + Mv
y (k)

2 + Mv
x (k)Rvsβv − Mv

y (k)Rvcβv

R2
v + Mv

x (k)
2 + Mv

y (k)
2 + 2Mv

x (k)Rvsβv − 2Mv
y (k)Rvcβv

(A.20)

∂ξti (θr , θt , k)

∂cwi

= ϑwi
(k) (A.21)

∂ξti (θr , θt , k)

∂owi

= 1. (A.22)

The parameters are updated according to

θ̂
j+1

t = θ̂
j

t −
(

J
j

t

T
J

j
t

)−1

J
j

t

T
ξt (θr , θ̂

j
t ) = θ̂

j
t − h

j
t , (A.23)

with

ξt (θr , θ̂
j

t ) =
(
ξt1(θr , θ̂

j
t )

ξt2(θr , θ̂
j

t )

)
, J

j
t =




∂ξt1
(θr ,θt )

∂θt

...
∂ξtn (θr ,θt )

∂θt




∣∣∣∣∣∣∣∣∣
θ̂

j
t

. (A.24)

Here J
j

t is the Jacobian corresponding to the j th iteration step. For a vehicle with n = 2

wheels we have for example

J
j

t =




−Rv
Mv

x
2+Mv

y
2+Mv

x Rvsβv−Mv
y Rvcβv

R2
v+Mv

x
2+Mv

y
2+2Mv

x Rvsβv−2Mv
y Rvcβv

ϑw1
0 I 0

−Rv
Mv

x
2+Mv

y
2+Mv

x Rvsβv−Mv
y Rvcβv

R2
v+Mv

x
2+Mv

y
2+2Mv

x Rvsβv−2Mv
y Rvcβv

0 ϑw2
0 I


 . (A.25)

In the current implementation, the update step is performed until ‖h
j
t ‖2 ≤ 10−8‖θ̂ j

t ‖2. This

usually only required two or three iterations for our experiments.
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Additional figures for the medium speed tuning

experiments with various loads
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Figure B.1: Estimated curvature R̂−1
v (top panels) and estimated side slip angles β̂v (bottom

panels) for the OLS 1 (left panels) and the OLS 2 (right panels) during the medium speed

experiments with varying loads. The setpoints for the curvature and the side slip angle were

zero for all medium speed experiments.
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Figure B.2: Box plots of the radial residuals ξr (θ̂ , k) and the tangential residuals ξtF
(θ̂ , k)

and ξtR
(θ̂ , k) for the medium speed experiments with varying loads.
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Nomenclature

C.1 Abbreviations

cϕ = cos(ϕ), sϕ = sin(ϕ), Mv = Mv,v, T
j

i = T
j, j

i , W
j

i = W
j, j

i .

C.2 Greek symbols

Symbol Description Page

αv Auxiliary angle used in the tuning procedure of Chapter 4 81

αv,t Auxiliary angle used in the tuning procedure of Chapter 4 81

αwi
Side slip angle of wheel wi 57

βv Side slip angle of the motion of 9v with respect to the floor 44

Ŵk
i j Connection coefficients 50

Ŵℓ Matrix representation of the load’s connection coefficients in body

fixed coordinates

65

Ŵv Matrix representation of the vehicle’s connection coefficients in

body fixed coordinates

54

Ŵ∗
vk

Controller setting for the connection coefficient matrix of vehicle

k

154

γv Auxiliary angle used in the tuning procedure of Chapter 4 81

δwi
Steering angle of wheel wi 55

δ̄wi
Kinematic steering angle for wheel wi 61

δencoder
wi

Steering angle encoder measurement for wheel wi 75

δoffset
wi

Steering angle encoder offset for wheel wi 75

δwi ,k Steering angle of wheel wi of vehicle k 124

η Reduced set of coordinates to describe the interconnected system 67

η̂ Estimated motion of the interconnected system, expressed in the

reduced set of coordinates η

130

ηk Velocity coordinates for the lower pair interconnection between

vehicle k and the load

66

θ Intermediate parameters used to characterize the realized circular

trajectory in the tuning procedure

77

θ̇wi
Spin velocity of wheel wi 56

ϑwi
Drive encoder reading (unwrapped) for wheel wi 75
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Symbol Description Page

κwi
Longitudinal slip of wheel wi 57

λ Vector with the local interconnection forces λk for all the vehicle-

load interconnections

150

λk Local interconnection forces that occur at the interconnection be-

tween vehicle k and the load

150

ξ Measurement errors corresponding to z 113

ξαwi
Deviation from the wheel’s side slip angle setpoint αset

wi
from its

true side slip angle αwi

115

ξk Measurement errors corresponding to zk 122

ξr (θ, k) Radial residual corresponding to magnet measurement k 78

ξs(θ, k) Auxiliary residual 82

ξti (θ, k) Tangential residual corresponding to magnet measurement k for

wheel wi

81

ξuwi
Additive error in the longitudinal velocity estimate ûwi

115

ξvwi
Additive error in the lateral velocity estimate v̂wi

115

ξwi
Measurement noise for drive encoder of wheel wi (Chapter 4) 76

ξwi
Measurement errors for wheel wi (Chapter 5) 116

(ξx , ξy) Deviation of the true magnet position with respect to the intended

magnet position

79

ρv Signed curvature of the motion of 9v with respect to the floor 45

6 Covariance matrix of the additive measurement errors ξ 115

6−1 Positive-definite weighting matrix 114

6k Covariance matrix of the additive measurement errors ξk for vehi-

cle k

123

σαwi
Standard deviation of the side slip angle deviation ξαwi

115

σM Standard deviation of the precision at which the magnets are

placed in the floor

79

σuwi
Standard deviation of the relative longitudinal velocity error ξuwi

115

τ Time constant for the desired behavior of the controlled system 165

ϕv Orientation of 9v with respect to 90 38

90 Floor-fixed coordinate system 38

9ℓ Load-fixed coordinate system 65

9v Vehicle-fixed coordinate system 38

9wi
Wheel coordinate system (the xwi

-axis coincides with the wheel

plane)

55

9w̄i
Wheel coordinate system for the simplified model (xwi

-axis coin-

cides with the wheel’s velocity vector)

62

ωℓ Rotational velocity of 9ℓ with respect to the floor

ωv Rotational velocity of 9v with respect to the floor 41
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C.3 Latin symbols

Symbol Description Page

Ai,k Matrix that relates the local interconnection forces λk , which oc-

cur at the interconnection between vehicle k and the load, to the

wrench W i,ℓ
vk

that is exerted by that vehicle on the load

150

AdH l
k

Adjoint matrix corresponding to H l
k 43

(a, b) Position of the steering pole expressed in 90 76

ad
T

k, j
i

Matrix used to compute the time derivative of Ad
H

j
i

68

B Matrix that describes the relation between the twist T v,0
v of the

vehicle with respect to the floor and the longitudinal and lateral

velocities of the wheels (identical to Bv)

59

B̄ Approximation of B based on the kinematic steering angles 64

Bi,k Matrix that describes the relation between the twist T i,0
vk

of ve-

hicle k with respect to the floor and the longitudinal and lateral

velocities of the wheels

122

Bwi ,u Row of B that relates the twist T v,0
v of the vehicle with respect to

the floor to the longitudinal velocity of wheel wi

59

B̄wi ,u Approximation of Bwi ,u 64

Bwi ,v Row of B that relates the twist T v,0
v of the vehicle with respect to

the floor to the lateral velocity of wheel wi

59

B̄wi ,v Approximation of Bwi ,v 64

C Matrix that relates the inputs u to the wheel forces Fw 145

C0 Steering pole expressed in 90 79

Cv Steering pole expressed in 9v 44

Ck Matrix that relates the inputs u of vehicle k to the wheel forces Fw

of vehicle k

155

C
wi

lat Lateral cornering stiffness of wheel wi 56

C
wi

long Longitudinal cornering stiffness of wheel wi 56

cwi
Increase in Sv per drive encoder count ϑwi

of wheel wi 76

Ek Weighting factor that is used in the observer for the twist of vehi-

cle k

165

F fric
bw Backward Coulomb friction compensation for wheel wi 164

F fric
f w Forward Coulomb friction compensation for wheel wi 164

Fw Vector with the longitudinal and lateral wheel forces 145

Fwi ,u Longitudinal tire force (identical to (W
wi ,v
wi

)u) 59

Fwi ,v Lateral tire force (identical to (W
wi ,v
wi

)v) 59

G0 Grid position at which the magnet was intended to be placed ex-

pressed in 90

76

Gi Matrix that relates the vector of interconnection forces λ to the net

wrench W
i,ℓ
V that is exerted by all the vehicles on the load

150
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Symbol Description Page

Gi,k Matrix that relates the vector of interconnection forces λ to the

wrench W i,ℓ
vk

that is exerted by vehicle k on the load

150

G0
t True magnet position expressed in 90 78

g Gravitational acceleration 51

H Matrix that relates the measurements z of the interconnected sys-

tem to the motion T of the interconnected system

128

H0
v Relative position of 9v with respect to 90 38

Iℓ Load’s moment of inertia corresponding to center of gravity

It Moment of inertia of the rigidly interconnected systems corre-

sponding to its center of gravity

53

Iv Vehicle’s moment of inertia corresponding to center of gravity 155

K Gain matrix that specifies the first order desired behavior of the

interconnected system

148

Kk Gain matrix that specifies the first order desired behavior of the

interconnection between the k th vehicle and the load

148

Kℓ Gain matrix that specifies the first order desired behavior of the

load

148

K
wi

long Inverse of the longitudinal stiffness for wheel wi (identical to

(C
wi

long)
−1)

108

Kv Gain matrix that specifies the first order desired behavior of a con-

trolled single vehicle

143

K ∗
vk

Controller setting for the gain matrix of vehicle k 154

M Inertia tensor of the interconnected system expressed in 9ℓ 69

Mv Relative position of a magnet measurement with respect to 9v 75

Mℓ Load’s inertia tensor expressed in body fixed coordinates 65

Mv Vehicle’s inertia tensor expressed in body fixed coordinates 54

M∗
vk

Controller setting for the mass matrix of vehicle k 154

m Number of detected magnets 75

mℓ Load mass

mt Mass of the rigidly interconnected system 155

mv Vehicle mass 53

N Number of vehicles in the interconnected system

n Number of (actuated) wheels

ov Origin of 9v 44

owi
Path variable Sv corresponding to ϑwi

= 0 76

P Decomposition of the interconnection forces weighting matrix Q

such that P PT = Q

151

Pv Coordinates of the point P expressed in 9v 48

P i
m Unique point on the vehicle, expressed in 9i , where the covari-

ance of the velocity estimate error is minimal

120

P i
m|zk

Unique point on the vehicle, expressed in 9i , where the covari-

ance of the velocity estimate error is minimal when only the mea-

surements zk are used for the velocity estimate

125
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Symbol Description Page

Q Weighting matrix used to define a norm on the interconnection

forces λ

151

Qi Covariance tensor expressed in 9i 117

Qi
k Covariance tensor for vehicle k expressed in 9i 123

qv Relative position of 9v with respect to 90; qv = (ϕv, xv, yv) 39

RG Distance from the intended magnet grid position G0 to the steer-

ing pole C0
79

RM Distance from the magnet measurement Mv to the steering pole

Cv
79

Rv Signed radius of the motion of 9v with respect to the floor 44

Rwi
Signed radius of the motion of wheel wi 85

rwi
Effective rolling radius of wheel wi 56

S Matrix that relates η to T 68

Si,k Full column rank matrix that relates ηk to T i,ℓ
vk

66

Sv Path variable/position of 9v along the circular trajectory 76

T Vector containing the twists of the load and the vehicles of the

interconnected system with respect to the floor expressed in 9ℓ

68

T̂ Estimate for the the twists of the load and the vehicles of the in-

terconnected system with respect to the floor expressed in 9ℓ

130

T
k, j

i Twist of body i with respect to body j expressed in 9k 40

T̂
k, j

i Estimated twist of body i with respect to body j expressed in 9k 114

T̂
k, j

i |z Estimated twist of body i with respect to body j expressed in 9k

that is based on the measurements z only

123

(T i,ℓ
vk
)A Set of allowed twists between vehicle k and the load expressed in

9i

66

t Time

u Inputs 64

uℓ Longitudinal velocity of 9ℓ with respect to the floor

uv Longitudinal velocity of 9v with respect to the floor 41

uwi
Longitudinal velocity of wheel wi (identical to (T

wi ,0
wi

)v) 59

Vv Tangential velocity of the motion of 9v with respect to the floor 44

vℓ Lateral velocity of 9ℓ with respect to the floor

vv Lateral velocity of 9v with respect to the floor 41

vwi
Lateral velocity of wheel wi (identical to (T

wi ,0
wi

)v) 59

W v Net wrench that is exerted on the vehicle expressed in 9v 54

W
k, j

i Wrench exerted by body i on body j expressed in 9k

W ℓ
V Net wrench that is exerted by all the vehicles on the load 65

W v
w Wrench that is exerted by the wheels on the vehicle expressed in

9v

55

(W i,ℓ
vk
)C Set of wrenches that can be transmitted from vehicle k to the load

expressed in 9i

67

W ℓ
vk

Wrench that is exerted by vehicle k on the load expressed in 9ℓ 65
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Symbol Description Page

(xℓ,c, yℓ,c) Coordinates of the load’s center of gravity expressed in 9ℓ

(xt,c, yt,c) Coordinates of the rigidly interconnected system’s center of grav-

ity expressed in 9ℓ

155

(xv, yv) Coordinates of the origin of 9v expressed in 90 39

(xv,c, yv,c) Coordinates of the vehicle’s center of gravity expressed in 9v 53

(xv
wi
, yv

wi
) Coordinates of the center of wheel wi expressed in 9v 59

z Measurements 113

zk Measurements corresponding to vehicle k 122
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Samenvatting

Voor verscheidene praktische regeltechniek toepassingen is het wenselijk dat meerdere sys-

temen onafhankelijk evenals in samenwerking met elkaar kunnen werken. Vooral wanneer

de omschakeling van individueel naar coöperatief gedrag en vice versa eenvoudig te realise-

ren is, resulteert dit in flexibele en eenvoudig uit te breiden systemen. Een subklasse wordt

gevormd door systemen die fysiek gescheiden zijn tijdens individueel bedrijf, en zeer sterk

gekoppeld gedurende handelingen die gezamenlijk worden verricht.

Eén van de vele toepassingen van meervoudige systemen die onafhankelijk en ook in sa-

menwerking met elkaar kunnen opereren is het transporteren van een grote last met behulp

van meerdere Automatisch Geleide Voertuigen (AGV’s). AGV’s worden in de industrie in-

gezet om allerlei goederen te vervoeren, variërend van kleine bakjes met CD’s en DVD’s tot

houten pallets en rollen plaatstaal die meer dan veertig ton kunnen wegen. Huidige toepas-

singen bestaan typisch uit een kleine vloot AGV’s, waarbij de voertuigen de producten op een

individuele basis vervoeren. Op het moment is er een toenemende vraag naar het transport

van zeer grote objecten, zoals rioolpijpen, wieken van windturbines, en decorstukken voor in

het theater. Deze objecten kunnen meer dan dertig meter lang zijn. Een realistische optie is

om meerdere kleinere AGV’s te laten samenwerken om dit soort objecten te vervoeren.

Dit proefschrift beschrijft de ontwikkeling, implementatie, en het testen van gedistribu-

eerde regelstrategieën om met meerdere AGV’s een last in een industriële omgeving te ver-

voeren. Wij hebben ons gericht op de situatie dat de last met behulp van (semi-)rigide inter-

connecties aan de AGV’s is bevestigd. Verder beperkten we ons tot een beschouwing op snel-

heidsniveau, omdat dit in onze visie een belangrijke tussenstap voor het realiseren volledig

geautomatiseerde gedrag is. In onze toepassing levert een externe host het bewegingssetpoint

aan. We veronderstellen dat de last reeds op de voertuigen aanwezig is. Procedures voor het

plaatsen van de last op de voertuigen vallen buiten het kader van dit onderzoek. Dit project is

een samenwerking tussen het bedrijf FROG Navigation Systems B.V. (Utrecht, Nederland),

en de Control Systems groep van de Technische Universiteit Eindhoven. FROG stelde de test

faciliteiten en twee omni-directionele AGV’s om experimenten mee uit te voeren beschikbaar.

Er is een grote verscheidenheid aan industriële AGV’s, en ze worden op maat gemaakt

voor de desbetreffende toepassingen. Om ontwikkeltijden te verkorten is het wenselijk om

een modelgebaseerd regelaarontwerp na te streven. Dit maakt generalisatie tot een brede klas-

se van voertuigen mogelijk. Modelleringtechnieken voor starre lichamen uit het vakgebied

van de robot manipulatoren zijn gebruikt om de bewegingsvergelijkingen voor de AGV’s en

de last op een systematische wijze op te stellen. Deze modellen zijn gebaseerd op fysische

overwegingen zoals de tweede wet van Newton en de posities en de afmetingen van de wie-

len, sensoren, en actuatoren. Er is speciale aandacht geschonken aan de modellering van de

wiel-vloer interactie, waarvoor wij de bandmodellen uit het vakgebied van de voertuigdyna-

mica hebben gebruikt. De resulterende modellen hebben een duidelijke fysische interpretatie

en omvatten een grote klasse van voertuigen met vele wielconfiguraties. Dit verzekert ons

dat de ontworpen regelstrategieën, die op deze modellen gebaseerd zijn, eveneens toepasbaar

zijn op een brede klasse van voertuigen.
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Een belangrijke vereiste voor het realiseren van soepel coöperatief gedrag is dat de indi-

viduele AGV’s met de vereiste nauwkeurigheid kunnen opereren. De prestaties van een indi-

viduele AGV zijn direct gekoppeld aan de precisie van de schattingen van de odometrische

parameters, d.w.z. de effectieve wieldiameters en de offsets van de encoders die de stuurhoe-

ken van de wielen meten. Toepassingen die het gezamenlijk transporteren van een grote last

betreffen zullen typisch AGV’s vereisen die een hoge graad van maneuvreerbaarheid bezit-

ten. Dit betekent dat alle wielen van de individuele AGV’s stuurbaar zullen zijn. Aangezien

een individuele AGV hierdoor meer dan één stuurhoek-encoder zal bezitten, is de identifica-

tie van de odometrische parameters wezenlijk moeilijker voor deze omni-directionele AGV’s

dan voor de meeste mobiele robots die in de literatuur en in laboratoria worden aangetrof-

fen. Dit proefschrift beschrijft een nieuw ontwikkelde procedure om gelijktijdig de effectieve

wieldiameters en de offsets van de stuurhoek-encoders te schatten door verscheidene zuivere

cirkelsegmenten te rijden. De toepasbaarheid van deze procedure is bevestigd aan de hand

van experimenten met de twee omni-directionele testvoertuigen onder invloed van verschil-

lende verticale belastingen. Een verrassend resultaat is dat de effectieve wieldiameters van de

rubberwielen van onze AGV’s toe blijken te nemen bij een toenemende verticale belasting.

Een essentieel aspect in elk regelaarontwerp is het reconstrueren van de te regelen groot-

heden uit de meetgegevens. Onze te regelen grootheden zijn de planaire beweging van de

last en de bewegingen van de AGV’s ten opzichte van de last. Deze dienen gereconstrueerd

te worden uit de odometrische meetgegevens, welke bestaan uit de metingen van de wiel-

encoders en de stuurhoek-encoders. Wij hebben de observeerbaarheid van een individuele

AGV geanalyseerd, en bewezen dat het theoretisch mogelijk is om de volledige planaire be-

weging uit de odometrische meetgegevens te reconstrueren. Uit praktische overwegingen

hebben wij een observer ontwerp op basis van de meer pragmatische kleinste-kwadraten me-

thode uitgevoerd. We toonden aan dat de afgeleide kleinste-kwadraten bewegingsschatter

onafhankelijk is van het gebruikte coördinaatsysteem. De bewegingsschatter is vervolgens

geanalyseerd in een stochastisch kader. De relatie tussen de bewegingsschatter voor de pla-

naire voertuigbeweging en de schatting van de snelheid van een willekeurige punt op het voer-

tuig werd onderzocht. We leidden af hoe de covariantie van de snelheidsschatting van een

willekeurig punt op het voertuig gerelateerd is aan de covariantie van de kleinste-kwadraten

bewegingsschatting. We bewezen dat er één uniek punt is op het voertuig waarvoor de co-

variantie van de geschatte snelheid minimaal is. Vervolgens onderzochten we hoe de lokale

bewegingsschattingen van individuele AGV’s gecombineerd kunnen worden om één globa-

le schatter te bepalen. Wanneer de last volledig star aan de AGV’s is bevestigd, dan is het

voldoende dat iedere AGV zijn lokale bewegingsschatting uitzendt en de schattingen van

de andere AGV’s ontvangt. Wanneer de last op semi-rigide wijze aan de AGV’s bevestigd

is, bijvoorbeeld door middel van een rotatiescharnier of een schuifscharnier, dan dient iede-

re AGV bovendien zijn corresponderende informatiematrix uit te zenden. We toonden aan

dat de informatiematrix constant blijft als de last aan de AGV wordt bevestigd met een ro-

tatiescharnier indien de rotatie-as samenvalt met het eerder genoemde unieke punt waar de

covariantie van de snelheidsschatting minimaal is. Dit betekent dat de desbetreffende AGV

zijn informatiematrix voor deze speciale situatie niet hoeft uit te zenden.

Het belangrijkste punt in het regelaarontwerp voor coöperatief vervoer van een last is

dat de verscheidene AGV’s elkaars acties niet mogen tegenwerken. Het gedecentraliseer-

de regelalgoritme dat wij afleidden zorgt ervoor dat de AGV’s het extern verstrekte planai-
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re bewegingssetpoint volgen, terwijl gelijktijdig de interconnectiekrachten tussen de last en

de voertuigen worden geminimaliseerd. Hoewel het regelaarontwerp van toepassing is op

coöperatief transport met meerdere AGV’s en willekeurige semi-rigide AGV-last intercon-

necties, vonden we op dat de oplossing voor het geval dat alle interconnecties volkomen

rigide zijn bijzonder eenvoudig is. In dat geval hebben de lokale regelalgoritmen dezelfde

structuur als het regelalgoritme dat normaal wordt gebruikt voor individueel AGV bedrijf.

Voor deze speciale situatie volstaat het om een aantal parameterinstellingen te wijzigen en

om de AGV’s van identieke setpoints te voorzien om coöperatief gedrag op snelheidsniveau

te realiseren.

De observer- en regelstrategieën voor een last die volledig star aan de AGV’s is verbonden

zijn met succes geı̈mplementeerd op de twee testvoertuigen. Er zijn experimenten uitgevoerd

zonder en met last, waarbij de last uit een pallet met 300 kg stoeptegels bestond. De resultaten

waren reproduceerbaar en illustreerden de praktische geldigheid van de ontworpen observers

en regelaars. Er traden geen noemenswaardige nadelen op toen de lokale observers slechts

hun lokale sensor informatie gebruikten, wat betekent dat onze opstelling ook bevredigend

presteert wanneer de lokale snelheidsschattingen niet worden uitgewisseld met de andere

AGV’s.
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