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A B S T R A C T

In this study, a hybrid sequential data assimilation and probabilistic collocation (HSDAPC) approach is proposed for an-

alyzing uncertainty propagation and parameter sensitivity of hydrologic models. In HSDAPC, the posterior probability

distributions of model parameters are first estimated through a particle filter method based on streamflow discharge data.

A probabilistic collocation method (PCM) is further employed to show uncertainty propagation from model parameters

to model outputs. The temporal dynamics of parameter sensitivities are then generated based on the polynomial chaos

expansion (PCE) generated by PCM, which can reveal the dominant model components for different catchment condi-

tions. The maximal information coefficient (MIC) is finally employed to characterize the correlation/association between

model parameter sensitivity and catchment precipitation, potential evapotranspiration and observed discharge. The pro-

posed method is applied to the Xiangxi River located in the Three Gorges Reservoir area. The results show that: (i) the

proposed HSDAPC approach can generate effective 2nd and 3rd PCE models which provide accuracy predictions; (ii)

2
nd

-order PCE, which can run nearly ten time faster than the hydrologic model, can capably represent the original hydro-

logical model to show the uncertainty propagation in a hydrologic simulation; (iii) the slow (Rs) and quick flows (Rq) in

Hymod show significant sensitivities during the simulation periods but the distribution factor (α) shows a least sensitivity

to model performance; (iv) the model parameter sensitivities show significant correlation with the catchment hydro-mete-

orological conditions, especially during the rainy period with MIC values larger than 0.5. Overall, the results in this paper

indicate that uncertainty propagation and temporal sensitivities of parameters can be effectively characterized through the

proposed HSDAPC approach.

© 2016 Published by Elsevier Ltd.
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1. Introduction

Hydrologic models are simplified, conceptual representations of

a part of the hydrologic cycle, which use relatively simple mathe-

matical equations to conceptualize and aggregate the complex, spa-

tially distributed, and highly interrelated water, energy, and vegeta-

tion processes in a watershed (Vrugt et al., 2005). Hydrologic mod-

els are increasingly used in real world applications due to the growing

availability of both computing power and hydrological data observed

at fine spatial and temporal scales (Montanari and Brath, 2004). How-

ever, significant uncertainties are associated with rainfall-runoff sim-

ulation resulting from uncertainties in model parameters, structures

and inputs. Due to the inherent complexities (e.g. Space-time vari-

ability of climatic inputs, Heterogeneity of the land surface condition

etc.) in the rainfall-runoff process, uncertainties in the hydrological

model are inevitable. In addition, the uncertainty can be divided into

epistemic and aleatory uncertainty, in which the aleatory uncertainty
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cannot be reduced (Parrish et al., 2012; Gong et al., 2013). Conse-

quently, probabilistic approaches are desired to characterize the uncer-

tainty and provide reliable hydrologic forecasts for estimating desig-

nated variables in engineering practice, mitigating hydrological risks

and improving water resource management policies (Fan et al., 2012;

Sikorska et al., 2014; DeChant and Moradkhani, 2014; Yan et al.,

2015; Fan et al., 2015b,c; Kong et al., 2015; Rakovec et al., 2015).

Previously, numerous approaches have been proposed for quanti-

fying the uncertainty in hydrologic predictions (Parrish et al., 2012;

DeChant and Moradkhani, 2014; Madadgar and Moradkhani, 2014).

Among these uncertainty quantification approaches, data assimila-

tion methods, especially sequential data assimilation techniques, have

been developed for explicitly dealing with various uncertainties and

for optimally merging observations into uncertain model predictions

(Reichle et al., 2002; Moradkhani et al., 2005a; Clark et al., 2008;

Xie and Zhang, 2013; Pathiraja et al., 2016a,b). Sequential data as-

similation methods continuously update the states and parameters in

a model when new measurements become available to improve the

model forecast and evaluate the forecast accuracy (Vrugt et al., 2005).

Particle filter (PF) method, as the most common example of sequen-

tial Monte Carlo (SMC) methods, has been widely used for

http://dx.doi.org/10.1016/j.envsoft.2016.09.012

1364-8152/© 2016 Published by Elsevier Ltd.
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quantifying uncertainties in hydrologic simulation (Moradkhani et al.,

2005b; Weerts and EI Serafy, 2006; Zhang et al., 2012a,b; Zhang and

Yang, 2013, 2014; Noh et al., 2014). PF evolves a sample of the state

space forward using the SMC method to approximate the predictive

distribution (Liu et al., 2012). The most significant advantage of PF

is that it relaxes the Gaussian distribution in state-space model er-

rors, which is required for the ensemble Kalman filter method. Fur-

thermore, the PF method performs updating on the particle weights

instead of the state variables, which can reduce numerical instabil-

ity especially in physically-based or process-based models (Liu et al.,

2012). The initial implementation of PF was based on sequential im-

portance sampling, which led to severe deterioration for particles (i.e.

only several or even one particle would be available). Consequently,

sampling importance resampling (SIR) was proposed to mitigate the

above problem (Moradkhani et al., 2005b). Previous studies in other

fields concluded that the PF method usually requires more samples

than other filtering methods and the sample size would increase ex-

ponentially with the number of state variables (Liu and Chen, 1998;

Fearnhead and Clifford, 2003; Snyder et al., 2008). Specifically, hun-

dreds or thousands of ensemble members may be needed for reliable

characterization of the posterior PDFs even for small problems with

only a few unknown states and parameters (Liu et al., 2012). Some

studies found that, for conceptual hydrologic models, PF would per-

form better than ensemble Kalman filter (EnKF) method when the

sample size is more than a hundred, and EnKF performance was found

to be suboptimal due to high non-linear non-Gaussian hydrologic sys-

tem (Weerts and EI Serafy, 2006; DeChant and Moradkhani, 2012).

However, the number requirement of particles for physically-based

distributed hydrologic models may limit operational applications of

PF (Liu et al., 2012). A recent improvement for PF is to combine

the strengths of sequential Monte Carlo sampling and Markov chain

Monte Carlo simulation (Moradkhani et al., 2012; Vrugt et al., 2013),

which can allow a more complete representation of the posterior dis-

tribution, reduce the chance of sample impoverishment (i.e. decrease

in the diversity of the particles or even a single particle available af-

ter resampling steps) and lead to a more accurate streamflow forecast

with small, manageable ensemble sizes (Moradkhani et al., 2012).

The PF approach can sequentially merge observations into un-

certain model predictions and quantify the posterior probabilities of

model parameters through a set of random samples. Further character-

ization for uncertainty propagation from model parameters to model

outputs are desired (Beven, 2006; Samaniego et al., 2013; Westra

et al., 2014; Chaney et al., 2015). For instance, Samaniego et al.

(2013) evaluated the implications of parameter uncertainty on soil

moisture drought analysis in Germany. Results of this study em-

phasize the importance of accounting for the parametric uncertainty

for identifying benchmark drought events in Germany. Chaney et al.

(2015) analyzed the role of model parameter uncertainty in flood

and drought monitoring, which parameter uncertainty remains an im-

portant concern for predicting extreme events even after applying

monthly and annual constraints to the ensemble. Consequently, previ-

ous studies demonstrate that parameter uncertainties always pose sig-

nificant impacts on hydrological prediction and need to be addressed

clearly. However, most of previous methods are based on Monte Carlo

simulation, which may not explicitly present the uncertainty evolu-

tion in model simulation. In such a MC simulation process, model

parameters would be sampled from known distributions, and each

sample of model parameters would be entered into the hydrologic

model to obtain statistics or density estimates of the model predic-

tions. However, with complex hydrologic models such as distrib

uted hydrologic models, this sampling approach is computationally in-

tensive (Herman et al., 2013; Fan et al., 2015d). In addition, the un-

certainty propagation from model parameters to model outputs can

hardly be explicit since no expressions exist in MC process to show

how parameter uncertainties influence the variations of model outputs.

Furthermore, due to the temporal-spatial variations in rainfall-runoff

processes, the parameter sensitivity may be time-variant. Conse-

quently, characterization of temporal dynamics of parameter sensitiv-

ity is also desired to indicate the dominant model component under

different hydro-meteorological conditions. Therefore, this work pro-

poses a hybrid sequential data assimilation and probabilistic colloca-

tion (HSDAPC) method to explicitly show uncertainty propagation in

hydrologic simulation and further identify the temporal dynamics of

parameter sensitivity. The HSDAPC approach will approximate the

posterior probabilities of hydrologic model parameters through the use

of PF and then facilitate uncertainty propagation from model parame-

ters to model predictions through a probabilistic collocation method

(PCM). The PCM-based temporal dynamics of parameter sensitivity

will be derived to identify the dominant model components that im-

pact model predictions under different hydro-meteorological condi-

tions. The association between parameter sensitivity and catchment

conditions will be finally revealed through the maximal information

coefficient. The proposed approach is applied to the Xiangxi River

basin based on a conceptual rainfall-runoff model. This application

can help demonstrate the strength and applicability of the proposed

methodology.

2. Methodology

2.1. Sequential data assimilation through the use of a particle filter

2.1.1. Bayesian filtering

In a sequential data assimilation process, the evolution of the sim-

ulated system states can be represented as follows:

where the subscript t denotes the time step; f is a nonlinear function

expressing the system transition from time t - 1 to t; xt denote the

state variables, and θ are the model parameters; ωt−1 is considered as

process noise (i.e. model error).

When new observations are available, the forecasted states can be

corrected through assimilating the observations into the model, result-

ing in the updating process described by:

where h is the nonlinear function producing forecasted observations;

vt is the observation noise.

The essence of the state estimation problem in the Bayesian filter-

ing framework is to construct the posterior probability density func-

tion (PDF) p(xk|y1:k) of a state based on all of the available informa-

tion (Gordon et al., 1993). The posterior PDF can be calculated in

two steps theoretically: prediction and update, in which the state PDF

from the previous state would be integrated through the system model,

and the update operation modifies the prediction PDF making use of

the latest observations (Han and Li, 2008). The prediction step aims

to obtain the prior based on the fact that the transition

and the posterior at time step t-1 are known,

which can be expressed as:

(1)

(2)
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where the transition is the probabilistic model of the system described

by Equation (1). When new observations at time t are available, the

prior can be corrected according to Bayes' rule, formulated as follows:

where represents the prior information; is the

likelihood.

The optimal Bayesian solution (i.e. Equations (3) and (4)) is dif-

ficult to determine since the evaluation of the integrals may be in-

tractable (Plaza Guingla et al., 2013). Consequently, approximation

methods are applied to address the above issues. Ensemble Kalman fil-

ter (EnKF) and PF approaches are the two most widely used methods.

The central idea of EnKF and PF is to represent the state probability

density function (pdf) as a set of random samples and the difference

between these two methods lies in the way of recursively generating

an approximation to the state PDF (Weerts and EI Serafy, 2006).

2.1.2. Particle filter method

The PF approach is a sequential Monte Carlo method that calcu-

lates the posterior distributions of states and parameters by a set of ran-

dom samples. The advantage of PF, in comparison with EnKF, is that

it relaxes the assumption of a Gaussian error structure, which allows

the PF to more accurately predict the posterior distribution in the pres-

ence of skewed distributions (Moradkhani et al., 2005b; DeChant and

Moradkhani, 2012). Moreover, in hydrologic simulation, PF can pre-

serve the water balance while EnKF may not achieve it (Moradkhani

et al., 2012; Yan et al., 2015). In detail, consider ne independent and

identically distributed random variables for i = 1, 2,

…, ne, the posterior density based on the sequential importance sam-

pling (SIS) method can be approximated as a discrete function:

where wt,i are the normalized weight of the ith particle drawn from the

proposal distribution; δ is the Dirac delta function. Assuming the sys-

tem state to be a Markov process, and applying the Bayesian recursive

expression to the filtering problem, the updating expression for the im-

portance weights (non-normalized) is expressed as:

Equation (6) provides the mechanism to sequentially update the

importance weights, given an appropriate choice of the proposal dis-

tribution . Consequently, the expression of the pro

posal distribution will significantly affect the efficiency and complex-

ity of the PF method. An appropriate choice for the proposal den-

sity function is expressed as follows (Doucet et al., 2000; Doucet and

Johansen, 2011):

When the transition prior is chosen as the proposal distribution,

the importance weights depend on their past values and the likelihood

p(yt|xt,i), which is expressed as:

For the likelihood p(yt|xt,i), a common choice of the likelihood den-

sity function is the Gaussian distribution that describes the differences

between the observation predictions and the observations, scaled by

the (usually defined a priori) observation errors (Plaza Guingla et al.,

2013).

For the PF through SIS, a serious limitation is the depletion of

the particle set, which means that, after a few iterations (time steps),

all the particles except one are discarded because their importance

weights are insignificant (Doucet et al., 2000). To address the above

issue, a resampling step is usually adopted in PF to eliminate the parti-

cles with small importance weights and replace them by particles with

large importance weights. Various resampling methods have been de-

veloped, and the most commonly used ones include multinomial re-

sampling, systematic resampling, stratified resampling, and residual

resampling methods (Bi et al., ). In this study, the multinomial resam-

pling scheme is employed.

2.2. Probabilistic collocation method (PCM)

The polynomial chaos expansion (PCE), first introduced by

Wiener (1938), is typically applied to express the evolution of uncer-

tainty in a dynamical system with random inputs, in which the model

stochastic process is decomposed by Hermite polynomials in terms

of Gaussian random variables. For non-Gaussian random input vari-

ables (e.g. Gamma and uniform), the convergence of Hermite polyno-

mial expansion is not optimal (Xiu and Karniadakis, 2003). Xiu and

Karniadakis (2002) proposed generalized polynomial chaos expan-

sions for non-Gaussian distributions. The general polynomial chaos

expansion can be written in the form:

where Y is the output and are the pth order poly-

nomials in terms of the multi-dimensional random variables .

For standard normal variables, the Hermite polynomial will be used,

which is expressed as:

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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where (ζζ is the vector form) are the standard normal

random variables (SNVs). Consequently, Equation (9) is often written

in a simple formulation as:

where ai are the unknown expansion coefficients.

Previous studies have demonstrated that accurate approximations

can be obtained through a truncated PCE with only low order terms

(Lucas and Prinn, 2005; Li and Zhang, 2007; Shi et al., 2009; Zheng

et al., 2011; Fan et al., 2015a,d; Xiao et al., 2015; El Mocayd et al.,

2016). Therefore, if the degree of a truncated PCE is predefined as the

highest order (denoted as p) of the involved Hermite polynomials, the

truncated PCE for M dimensional random variables can be expressed

as:

where n = (M + p)!/M!p!.

The basic premise of the probabilistic collocation method is to

let the polynomial chaos expansion(PCE) in terms of random inputs

be the same as the model simulation results at selected collocation

points. Collocation points can be specified by various algorithms. In

this study, the algorithm proposed by Webster et al. (1996) is adopted,

in which the collocation points are selected so that each SNV takes

zero or one of the roots for the higher-order Hermite polynomial

(Huang et al., 2007; Li and Zhang, 2007). For example, for the 2
nd

-or-

der polynomial chaos expansion, the collocation points are combina-

tions the values of- , 0 and , which are the roots of the 3
rd

-order

Hermite polynomial . For the 3
rd

-order polynomial

chaos expansion, the collocation points are chosen from zero and the

roots of the 4-order Hermite polynomial (i.e.

).

A Probabilistic collocation method (PCM) can be implemented

through approximating a model output with a polynomial chaos ex-

pansion (PCE) in terms of random inputs (Zheng et al., 2011). The

unknown coefficients contained in the expansion can be determined

based on model simulations at selected collocation points (each col-

location point is a realization of the random inputs). The number of

collocation points is much larger than the number of unknown coef-

ficients, leading to two main methods for estimating these unknown

coefficients: linear equations and regression-based methods (Huang

et al., 2007; Fan et al., 2015a,d). In this study, the regression-based

method is employed in which all collocation points are used to form an

over-determined equation system, and further generate the unknown

coefficients through linear regression method.

2.3. Uncertainty quantification for the hydrological model based on a

hybrid sequential data assimilation and probabilistic collocation

method

Based on data assimilation through PF, the posterior probability

distributions of model parameters can be quantified through a set of

random samples. Consequently, these obtained posterior distributions

can hardly be quantified through some specific probability distribu-

tions (e.g. Gaussian, Gamma etc.). In comparison, the PCE model can

merely be established to reflect uncertainty propagation in a dynamic

system in terms of some specific distributions. For example, for the

stochastic process decomposed by Hermite polynomials, the random

inputs should be first expressed as standard normal random variables

(SNVs). Consequently, if the PCE model is to be employed to explic-

itly express uncertainty evolution from the posterior distributions ob-

tained by PF to the hydrologic outputs, those obtained posterior distri-

butions would be firstly transformed to SNVs. Several methods have

been developed to transform the non-Gaussian random variables to

Gaussian random variables such as Box-Cox transformation (Box and

Cox, 1964), Gaussian anamorphosis (GA) (Simon and Bertino, 2009),

and log-sinh transformation (Wang et al., 2012). In this study, the GA

method is adopted since it can directly transform any random variable

into a SNV (see Appendix).

The process of the HSDAPC method involves two main compo-

nents: parameter estimation through PF and uncertainty quantifica-

tion through PCM. The detailed process includes the following steps

(Fig. 1):

Step (1). Model state initialization: Initialize Nx-dimensional model

state variables and parameters for ne samples: x
-
t,i, i = 1, 2, …, ne,

;θt,i, .

Step (2). Sample weight assignment: Assign the particle weights

uniformly: wt,1 = 1/ne.

Step (3). Model state forecast step: Propagate the ne state variables

and model parameters forward in time using model operator f:

where xt + 1,i is the forecasted value for particle i at time t + 1, xt,i and

θt,i are the values of state variables and parameters at time t.

Step (4). Observation simulation: Use the observation operator h to

propagate the model state forecast:

Step (5). Estimate the likelihood for the selected particles:

(11)

(12)
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Fig. 1. The flowchart of the proposed SDAPC method.
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Step (6). Obtain the updated weightwt + 1,i for the analyzed ensem-

ble values:

Step (7). Resampling: Apply the resampling procedure proposed

by Moradkhani et al. (2005b) for all states and parameters, and store

the resulting particles as:θt + 1−resamp,i,xt + 1−resamp,i.

Step (8). Parameter perturbation: Take the parameter evolution to

the next stage by adding small stochastic errors around the sample:

where η is a hyper-parameter which determines the radius around each

sample being explored, which is set to be 0.15 in this study. Also, the

hyper-parameter can be adjusted through variance multiplier approach

(Leisenring and Moradkhani, 2012). S(θt + 1,i) is the standard deviation

of the analyzed particle values.

Step (9). Set wt + 1,i = 1/ne.

Step (10). Convert the parameter θ into standard Gaussian vari-

ables through GA.

Step (11). Approximate the outputs of interest using the polyno-

mial chaos expansion in terms of the standard Gaussian variables.

Step (12). Select the collocation points according to the dimensions

of the stochastic vector and the order of the applied polynomial chaos

expansion.

Step (13). Determine the unknown coefficients in the polynomial

expansion through a statistical regression technique.

Step (14). Check the stopping criterion: if measurement data is still

available in the next stage, t = t + 1 and return to step 2; otherwise,

continue to the next step.

Step (15). Evaluate the inherent statistical properties of the outputs

stemming from the uncertainty of the parameters through the obtained

PCE.

2.4. PCE-based temporal dynamics of parameter sensitivity

Sensitivity analysis (SA) evaluates the impact of model parame-

ters on the model outputs, and is therefore a convenient tool to as-

sess model behavior and particularly the importance of certain para-

meterizations within the model (Reusser et al., 2011). Generally, SA is

widely adopted in the model calibration process and attempts to iden-

tify the most important parameters for hydrologic model calibration

and the unimportant parameters which can be prefixed as a constant

value. Some objective functions are adopted for sensitivity analysis in

hydrology, such as RMSE and NSE. In contrast to classical sensitivity

analysis, the temporal dynamics of parameter sensitivity (TEDPAS)

analyze the model output variables (such as discharge, groundwater

level or snow water equivalent) to quantify which model components

dominate the catchment response and can be considered as dominant

indicators for functioning of the model (Reusser et al., 2011). Many

SA methods as Sobol's method can be adopted for both classic SA and

TEDPAS processes (Guse et al., 2014; Song et al., 2015). The main

difference between these two processes is that SA is performed for

each time step individually in TEDPAS, while classic SA is conducted

only once over the simulation period.

In this study, Sobol's method is employed for the temporal dynam-

ics of parameter sensitivity. Sobol's method is a global SA method de-

rived from variance decomposition, attempting to quantify the contri-

bution to the total variance of the model output by both an individual

parameter and its interactions with other parameters (Dai et al., 2014).

In Sobol's method, a variance decomposition from the random vari-

able y can be formulated as (Zheng et al., 2011):

where Vi is the variance attributed to the single effect of input xi and

Vi = V(E(y | xi)); Vij is the variance attributed to the interaction ef-

fect of xi and xj, and Vij = V(E(y | xi, xj)) - V(E(y | xi)) - V(E(y | xj));

higher-order variances have similar expressions (Zheng et al., 2011;

Wu et al., 2014). The Sobol's sensitivity indices are defined as the ra-

tios of partial variances to the total variance, indicating the contribu-

tion of each individual parameter and its interactions to the total un-

certainty (Dai et al., 2014):

The total sensitivity index is defined as the sum of all partial sensi-

tivity indices for a parameter and provides the total effect of the para-

meter, including the interactions (Dai et al., 2014):

The Sobol's indices are mathematically rigorous but time-consum-

ing (Zheng et al., 2011). Consequently, Zheng et al. (2011) integrated

PCE into Sobel's variance-decomposition and derived the total vari-

ance V(y) as:

where pij! is the order of jth univariate Hermite polynomial (UHP). An

example for the PCE-based sensitivity analysis indices are provided in

Appendix.

2.5. Temporal association between model sensitivity and catchment

conditions

TEDPAS calculates the parameter sensitivity of the model output

(discharge) for each time step, with the goal to determine the dom-

inance of different model components for different periods (Reusser

et al., 2011; Guse et al., 2014). Moreover, values of TEDPAS will

(13)

(14)

(15)

(16)

(17)

(18)



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

Environmental Modelling and Software xxx (2016) xxx-xxx 7

change over time since the dominant hydrologic process may vary

temporally, e.g. between wet and dry periods (Wagener et al., 2003;

Reusser et al., 2011; Guse et al., 2014; Rahmani and Zarghami, 2015).

Consequently, the values of TEDPAS may be highly correlated with

the catchment conditions (e.g. precipitation, discharge). Such correla-

tion may be nonlinear due to the nonlinear behavior of hydrologic sys-

tems.

To identify the correlation between model sensitivity and catch-

ment conditions, the maximal information coefficient (MIC) proposed

by Reshef et al. (2011) will be adopted. MIC captures a wide range

of associations both functional and non-functional, and for linear rela-

tionships it provides a score that approximately equals the coefficient

of determination (R
2
) (Reshef et al., 2011). The expression of MIC can

be formulated as (Zhang et al., 2014):

where

nxny < B(n) and B(n) = n
0.6

Based on MIC, the nonlinearity between two variables x and y can

be defined by MIC – Rxy
2

(Reshef et al., 2011), where Rxy is the Pear-

son's r value between x and y. Through MIC values, the associations

between a parameter's sensitivity and catchment conditions is identi-

fied, which can answer (i) which factor (e.g. precipitation, potential

evapotranspiration) poses the most significant impact on parameter

sensitivity, and (ii) does the association between parameter sensitivity

and the catchment factor change under different hydro-meteorological

conditions (e.g. wet and dry periods for precipitation)?

3. Case study

3.1. Study catchment

The Xiangxi River basin, located in the Three Gorges Reservoir

area of China (as shown in Fig. 2), was selected to demonstrate the ap-

plicability of the proposed method. The Xiangxi River is located be-

tween 30.96 and 31.67
0
N and 110.47–111.13

0
E in the Hubei area of

China, Three Gorges Reservoir (TGR) region, which drains an area of

about 3200 km
2
. The Xiangxi River originates in the Shennongjia Na-

ture Reserve, with a main stream length of 94 km and a catchment area

of 3099 km
2
, and is one of the main tributaries of the Yangtze River

(Han et al., 2014; Fan et al., 2015b,c). The watershed experiences a

northern subtropical climate. The annual average temperature in this

region is 15.6 °C and ranges from 12 °C to 20 °C. The historical mea-

surements record a maximum temperature of 43.1 °C and a minimum

temperature of −9.3 °C (Fan et al., 2016). The average frost-free days

at low, middle and high elevations are 272, 215 and 163 days, respec-

tively (Li, 2012). The average annual quantity of solar radiation value

(heat units) is 2.90 × 10
8

kW/m
2
, with values during April to Septem-

ber reaching as high as 1.88 × 10
8

kW/m
2

(Li, 2012; Li et al., 2015).

Annual precipitation is 1100 mm, ranging from 670 to 1700 mm with

considerable spatial and temporal variability. The major rainfall sea-

son is May–September, with a flooding season from July to August.

The precipitation in the north is higher than that in the south, with an

average of sixty-nine percent of the annual precipitation occurring as

rain, resulting in an average streamflow of 40.18 m
3
/s (Li, 2012) in the

Xiangxi River.

The study area consists of a mixed coniferous-deciduous forest

which demonstrates an explicit vertical gradient with elevation. Vege-

tation changes from broadleaf forest (below 800 m) to coniferous for-

est (800–1000 m) and shrub-grassland (above 1800 m) as elevation in-

creases (Li, 2012). The land use is characterized by mixed grain and

cash-crop farming on terraced farmland. Crops include rape, wheat,

maize and rice, nuts, and garden fruits respectively (Li, 2012).

Fig. 2. The location of the studied watershed.

(19)
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3.2. Hydrologic model

Hymod, which is a well-known conceptual hydrologic model, will

be used in this study. Hymod is a non-linear rainfall-runoff concep-

tual model run in any time scale (Moor, 1985). The general concept of

the model is based on a probability distribution of soil moisture mod-

eling proposed by Moore (1985, 2007). In Hymod the catchment is

considered as an infinite amount of points, each of which has a cer-

tain soil moisture capacity denoted as c [L] (Wang et al., 2009). Soil

moisture capacities vary within the catchment due to spatial variabil-

ity such as soil type and depth and a cumulative distribution function

(CDF) is proposed to describe such variability, expressed as (Moor,

1985, 2007):

where Cmax [L] is the maximum soil moisture capacity within the

catchment and bexp [-] is the degree of spatial variability of soil mois-

ture capacities and affects the shape of the CDF.

As shown in Fig. 3, Hymod conceptualizes the rainfall-runoff

process through a nonlinear rainfall excess model connected with

two series of reservoirs (three identical quick-flow tanks represent-

ing the surface flow, in parallel with a slow-flow tank representing

the groundwater flow). The Hymod has five parameters to be cali-

brated: (i) the maximum storage capacity in the catchment Cmax, (ii)

the degree of spatial variability of the soil moisture capacity within the

catchment bexp, (iii) the factor partitioning the flow between the two

series of linear reservoir tanks α, (iv) the residence time of the linear

quick-flow tank Rq, and (v) the residence time of the slow-flow tank

Rs. The model uses two input variables: mean areal precipitation, P

(mm/day), and potential evapotranspiration, ET (mm/day).

3.3. Synthetic experiment setup

A Synthetic experiment is to be proposed to demonstrate the ef-

fectiveness of the proposed HDAPC approach in uncertainty quan-

tification. In this synthetic experiment, the synthetic streamflow data

are generated based on the potential evapotranspiration, ET (mm/day),

and mean areal precipitation, P (mm/day) from the Xiangxi River

basin. In the generation process of the synthetic streamflow, the val-

ues of the five parameters of Hymod would be predefined, as given

in Table 1. These generated streamflow values are considered as the

“true” observations in the updating process of particle filter (PF). In

any data assimilation framework, one must assume error values for

any quantity that contains uncertainties (DeChant and Moradkhani,

2012). In this study, random perturbations would be added to the

precipitation, potential evapotranspiration (ET) and model predictions

to account for their uncertainties. For the potential evapotranspira-

tion, the Gaussian noise is recommended by a number of literature

(e.g. DeChant and Moradkhani, 2012; Moradkhani et al., 2012; Chen

et al., 2013; Rasmussen et al., 2015; Yang et al., 2015; Nourani et al.,

2015). For precipitation, some studies applied Gaussian noise (e.g.

Rasmussen et al., 2015), while other studies concluded that log-nor-

mal noise may perform better (e.g. DeChant and Moradkhani, 2012;

Moradkhani et al., 2012). In this study, the Gaussian noise is adopted

in the synthetic experiment, while log-normal noise is employed in

the real-case study. These random perturbations are assumed to have

their standard errors being proportional to the magnitude of the true

values. The proportional coefficients for precipitation, potential evap-

otranspiration, streamflow observation and model predictions, are set

to be 0.3 in the synthetic experiment. This means that precipitation,

PET, streamflow observation, and model predictions are assumed to

have normal distributions with relative errors of 30%.

3.4. Real-case study

To demonstrate the applicability of the proposed method in quan-

tifying uncertainty for hydrologic models, the daily precipitation, po-

tential evapotranspiration, and streamflow measurements from 1994

to 1996 were applied to evaluate the performance of the proposed al-

gorithm. The uncertainty of model parameters were first characterized

through the PF method.

The sequential data assimilation approach can quantify model pre-

diction errors stemming from various sources such as inputs, model

structures and parameters. To account for actual uncertainties in real

world climatic variables such as precipitation and potential evapotran-

spiration, random perturbations are usually added into real measure-

ments in climatic variables and discharges. Several studies have as-

sumed the standard deviation of the observed errors to be proportional

to the true discharge (Dechant and Moradkhai, 2012; Moradkhani

et al., 2012; Abaza et al., 2014), while some studies set the errors to be

proportional to the log discharge (Clark et al., 2008; McMillan et al.,

2013). In our study, we primarily focus on the capability of the de-

veloped HSDAPC approach to quantify the uncertainty of hydrologic

models. Consequently, the observed errors in measurements are as-

sumed to be independent and set to be proportional to the true values.

In detail, according to the study by Fan et al. (2015d), the precipita-

tion is assumed to be log-normally distributed with a relative error of

20% of the true values. The ET is normally distributed with a relative

error of 20%, respectively. The error in streamflow is assumed to be

normally distributed, with a proportional rate of 20% of the true dis-

charges.

Fig. 3. Description of Hymod.

(20)
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Table 1

The predefined true values and fluctuating ranges for the parameters of Hymod through

PF.

Parameters

Cmax bexp α Rs Rq

True 175.40 1.5 0.46 0.11 0.82

Primary range [120, 250] [0, 2] [0.20, 0.70] [0.05, 0.20] [0.60, 0.99]

4. Result analysis and discussion

4.1. Result analysis of synthetic experiment

4.1.1. Performance of the HSDAPC approach

In the proposed HSDAPC approach, the particle filter method re-

cursively updates the posterior probabilities of model parameters and

state variables through representative samples when new observations

become available; the probabilistic collocation method (PCM) is pro-

posed after each update to explicitly describe uncertainty propagation

from model parameters to model outputs. However, one major chal-

lenge for connecting PF and PCM is that the posterior probabilities

of model parameters obtained by PF are arbitrary, while the PCM re-

quires inputs with specific probability distributions (e.g. standard nor-

mal variable for PCE with Hermite polynomials). Consequently, the

GA approach is employed to convert the posterior distributions into

standard normal variables.

In the synthetic experiment, four sample size scenarios, involv-

ing {50, 100, 200, 500} particles are adopted to evaluate the perfor-

mance of HSDAPC. Under each scenario the synthetic experiment

is tested for 30 trials to ensure the reliability of the proposed ap-

proach. For each sample size, the prior probabilities of model para-

meters are assumed to follow uniform distribution within predefined

intervals, as presented in Table 1. The posterior probabilities of those

five model parameters are estimated through particle filter, and the as-

sociated 2nd and 3
th

-order PCE models are derived to represent the

hydrologic model. The average values of NSE and RMSE for these

30 trials are listed in Table 2. The results suggest that, as the sam-

ple size increases, the performance of particle filter method is im-

proved, leading to improvement for the following PCE models. More-

over, the variations of the NSE, RMSE and PBIAS values for Hy-

mod and the associated 2nd and 3
th

-order PCE models for the 30 trials

are plotted in Fig. 4. This indicates that the performance of HSDAPC

approach is mainly determined by the posteriors estimation through

PF. Once the parameter posterior probabilities are obtained, the differ-

ences between the PCE models and the original hydrologic model can

even be neglected, indicating the accuracy for the 2nd and 3
th

-order

PCE models in representing the original hydrological model. Conse-

quently, the generated PCE models can represent the original hydro

Table 2

Comparison between the performance of Hymod and two and three-order PCEs under

different sample size scenarios of data assimilation process.

Sample

size NSE RMSE

Hymod

2
th

-order

PCE

3
th

-order

PCE Hymod

2
th

-order

PCE

3
th

-order

PCE

50 0.8564 0.8566 0.8561 12.6264 12.6055 12.6416

100 0.8831 0.8840 0.8829 10.7984 10.7595 10.8041

200 0.8878 0.8875 0.8829 11.0099 11.0180 11.0083

500 0.8903 0.8902 0.8900 10.5155 10.5147 10.5372

logic model for further uncertainty propagation and sensitivity analy-

sis.

4.1.2. Comparison with Monte Caro simulation

To demonstrate the accuracy of the obtained 2nd and 3
rd

-order PCE

models from SDAPC, the inherent probabilistic characteristics of the

predictions from PCEs and Monte Carlo approach are compared. In

detail, the streamflow predictions in six days (i.e. 23,145, 181, 182,

218, 350) are chosen, which cover low, medium and high flow con-

ditions. Their inherent statistical properties and the corresponding his-

tograms are obtained through MC and the 2nd and 3
rd

-order PCE mod-

els. Table 3 lists the mean, standard deviation, kurtosis and skewness

values of uncertainty predictions from MC simulation and the 2nd

and 3
rd

-order PCEs. The results show that the probability functions

generated by the 2nd and 3rd -order PCEs would be similar to those

probability functions generated by MC. Fig. 5 shows the histograms

of the 2nd and 3rd -order PCEs and MC simulation results at the se-

lected time periods. It also indicates that the probability distributions

obtained by the 2nd and 3rd -order PCEs have similar shapes with the

“true” distributions from the MC simulation method.

4.2. Results analysis of real case study

4.2.1. Uncertainty characterization of hydrologic model through

HSDAPC

In the uncertainty quantification process through HSDAPC for the

Xiangxi River, the prior probability of each model parameters are as-

sumed to be uniformly distributed within an interval. The five prede-

fined intervals for Hymod are obtained based on the calibrated para-

meter values through SCE-UA algorithm. The sample size is set to

be 500 in the real case study, based on the results of synthetic ex-

periment. The posterior probabilities of model parameters in the hy-

drologic model are first estimated through the PF approach based on

available observations. The uncertainty of model predictions, stem-

ming from uncertain model parameters, is then characterized through

the probabilistic collocation method. In detail, as presented in Fig. 1,

once the observed discharge is available, the posterior probabilities of

the model parameters are updated, and then the coefficients of the ob-

tained PCE model are changed. In this study, the 2nd and 3
rd

-order

PCE models are employed, and so there are 21 and 56 coefficients for

these two models, as presented in Table 4. For instance, Fig. 6 shows

the variability of posterior probabilities in different temporal periods.

Correspondingly, Table 4 presents the detailed 2nd and 3
rd

-order PCE

models and provides the corresponding coefficients on 100
th

and 200
th

day. The results show that, even though 3
rd

-order PCE model has more

polynomials, the coefficients of its low order polynomials (1st and

2
nd

-order) have similar values with the coefficients of the 2
nd

-order

PCE, while in comparison most coefficients of the 3
rd

-order polyno-

mials are zero. This suggests that, for the Hymod, 2
nd

-order PCE may

be adequate to serve as the proxy. Moreover, the proposed HSDAPC

approach improves upon previous methods where random samples are

drawn directly from the posterior distributions through the inefficient

Monte Carlo method. In comparison, a proxy model of the original hy-

drologic model is established through PCM with respect to the uncer-

tain model parameters. Such a proxy model can explicitly reflect the

uncertainty propagation from uncertain parameters to uncertain out-

puts and thus can be employed to reveal the prediction uncertainty of

the hydrologic model.

Fig. 7 shows the comparison between predictions of the hydro-

logic model, PCEs and observations. The polynomial chaos expan-

sions (PCEs) are the proxy models for the original hydrologic model

obtained by PCM. Fig. 7(a) indicates the comparison between the
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Fig. 4. Performance comparison between hydrologic model and the associated PCE models.

Table 3

Comparison of statistic characteristics among two and three-order PCEs and MC simulation results at specific time periods.

Time (d) Mean Standard deviation Kurtosis Skewness

2-Order

PCE

3-Order

PCE MC

2-Order

PCE

3-Order

PCE MC

2-Order

PCE

3-Order

PCE MC

2-Order

PCE

3-Order

PCE MC

23 1.67 1.66 1.67 0.18 0.20 0.18 3.55 3.87 3.26 0.76 0.74 0.64

145 111.15 110.25 110.95 12.42 13.26 12.46 3.47 3.77 3.31 0.70 0.68 0.62

181 336.92 334.41 336.37 34.27 36.37 34.43 3.43 3.71 3.27 0.67 0.64 0.59

182 289.41 287.68 288.33 19.85 25.10 21.13 3.70 3.98 2.91 0.80 0.72 0.56

218 159.18 158.12 158.72 11.37 13.54 11.84 3.42 3.80 2.91 0.65 0.63 0.49

350 0.01 0.01 0.01 0.0012 0.0014 0.0012 3.73 3.88 3.45 0.71 0.68 0.63

mean predictions of the hydrologic model and observations. Compar-

isons between the mean predictions of 2
nd

-order PCE and observations

and the mean predictions of 3
rd

-order PCE and observations are pre-

sented in Fig. 7(b) and (c). From Fig. 7, the predictions from the orig-

inal hydrologic model and the two and three-order PCEs exhibit no

significant differences. All three approaches can trace the variations in

observed streamflow data while the underestimates or overestimates

in the original hydrologic model will also lead to similar deviations in

the two and three-order PCE models.

To further compare the performance of the hydrologic model and

PCEs in discharge predictions, the indices of RMSE, PBIAS, NSE

were calculated based on the prediction means and observations. The

comparison process between the Monte Carlo method and PCEs was

implemented through: (i) choosing N samples from the standard

Gaussian distribution, (ii) deriving the associated parameter values in

the hydrologic model through the GA approach, (iii) running the PCEs

and hydrologic model respectively, (iv) obtaining the evaluation cri-

teria results. Table 5 shows the results of RMSE, PBIAS, and NSE

values obtained through the Monte Carlo method and 2nd and 3
rd

-or-

der PCEs. These values indicate a satisfactory performance for the hy-

drologic model and its corresponding 2nd and 3
rd

-order PCE models

in tracking the streamflow dynamics in the Xiangxi River. Specifi-

cally, there are no obvious differences in the performance of the Hy-

mod and the 2nd and 3
rd

-order PCEs in predicting the streamflow. Al-

though the two and three-order PCEs are established as proxy mod-

els for the original Hymod, the results in Table 5 suggest the proxy

models based on the two and three-order PCEs can well represent

the original Hymod. The 90% predictive intervals obtained by the

original hydrologic model and the 2nd and 3
rd

-order PCEs are pre-

sented in Fig. 8. These predictive intervals are obtained based on



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

Environmental Modelling and Software xxx (2016) xxx-xxx 11

Fig. 5. The comparison of histograms among MC simulation, 2-order and 3-order PCE results.

the posterior probabilities of model parameters at each time step. This

meaning that the parameters are time-variant. The results indicate the

90% predictive intervals from all three models can bracket most ob-

servations, especially for high flow periods. Moreover, the predictive

intervals obtained by the 2nd and 3
rd

-order PCE models show consis-

tent varying trends with the predictive interval obtained by the original

hydrological model, indicating the accuracy of the 2nd and 3
rd

-order

PCE models in quantifying uncertainty in the hydrologic model.

4.2.2. Computational efficiency of the HSDAPC method

The basis of the hybrid sequential data assimilation and probabilis-

tic collocation (HSDAPC) approach for quantifying the uncertainty of

hydrologic models is to estimate the posterior distributions of the hy-

drologic model parameters through a PF method and then reveal the

uncertainty of hydrologic models through the probabilistic collocation

method (PCM). Previously, once the posterior distributions were ob-

tained through PF, the Monte Carlo method was employed to draw

samples and run the hydrologic model again to generate prediction

uncertainty ranges. In the HSDAPC approach, such uncertainty quan-

tification can be conducted through the obtained PCE models of the

hydrologic model. This method has three advantages: (i) the original

samples can be drawn from the standard Gaussian distribution, which

is easily conducted; (ii) the computational efficiency can be highly im-

proved; (iii) the inherent relationship between model parameters and

model outputs can be explicitly expressed by the PCE models.

The first advantage of the HSDAPC approach is straightforward

since the inputs of the PCE models with Hermite polynomials obey

the standard Gaussian distribution. The second advantage is illustrated

through comparison between the traditional Monte Carlo method and

the PCE models. Table 1 shows the computational efficiency and

the associated performance of the Monte Carlo method and PCEs.

In this study, five sample sizes (n = 500, 1,000, 1,500, 2,000, 2500)

are selected to compare the computational efficiency of the hydro-

logic model and PCEs. As shown in Table 5, as the sample size in-

creases, the performance of the hydrologic model and PCEs does not

vary significantly. However, the computational efficiency of PCEs

would be much faster than the Monte Carlo (MC) method. Specif-

ically, the computational efficiency of 2
nd

-order PCE model would

be ten times faster than the original hydrologic model. For exam-

ple, when n = 500, the computational time of MC method would be

60.01 (s), while the computational time of two-order PCE is just

2.85 (s). For the 3
rd

-order PCE, its computational efficiency is also

more efficient than the original hydrologic model. Consequently, the

proposed HSDAPC approach can significantly improve the computa-

tional efficiency for uncertainty quantification of hydrologic models.

In this study, Hymod was applied to demonstrate the efficiency of

the proposed approach. This model is a simple conceptual hydrologic

model, with five parameters to be calibrated. Consequently, the com-

putational requirement for this model is quite low, when compared

with other sophisticated models such as semi-distributed and distrib-

uted hydrologic models. However, as presented in Table 5, the ob-

tained 2nd and 3
rd

-order PCE models are much faster in computational

efficiency when compared with Hymod. Consequently, the computa-

tional efficiency would be improved significantly for more complex

hydrologic models.

4.2.3. Temporal dynamics of parameter sensitivity (TEDPAS)

Based on the HSDAPC approach, the posterior probability distri-

butions of model parameters were obtained based on three years of

measurements for the Xiangxi River. The two and three-order PCE

models were further derived to characterize the uncertainty propa-

gation from model parameters to model forecasts. Even though the

test model is a simple conceptual model having only five parameters,

a temporal diagnostic analysis for Hymod is useful to characterize

which model components control the performance under different hy-

drologic conditions, and to further explore the dominant runoff mech-

anisms under different hydro-meteorological conditions.

As expressed by Equations (A9)–(A11), Sobol's indices can be the-

oretically approximated through the PCE model. Based on the HS-

DAPC approach, the PCE model was generated to serve as a proxy

for the original hydrologic model. The performance of the PCE was

consistent with the original hydrologic model. Consequently, Sobol's

indices can be used to analyze the temporal dynamics of parameter

sensitivity. Figs. 9 and 10 present the temporal dynamics of parameter

sensitivity obtained from the 2
nd

-order and 3
rd

-order PCE respectively,

across the simulation period. The results in Figs. 5 and 6 show a con-

sistent trend between each other due to the accurate approximation of

the two- and three-order PCEs for the original hydrologic model.

From Figs. 9 and 10, the dominant model components can be char-

acterized under different hydro-meteorological conditions. As shown

in Fig. 9, the parameter alpha, in general, posed less influence on

model performance over the simulation period, with its values of less

than 0.2. This means that the distribution factor of water flowing
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Table 4

The coefficients of 2nd and 3
rd

-order PCE model under different periods.

Polynomials 2
nd

-order PCE 3
rd

-order PCE

100 (day) 200 (day) 100 (day) 200 (day)

1 41.64 28.96 41.61 28.96

ξ1 −0.36 −0.09 −0.32 −0.08

ξ2 0.34 0.08 0.32 0.07

ξ3 0.33 0.11 0.29 0.10

ξ4 0.06 0.18 0.06 0.16

ξ5 0.30 −0.82 0.28 −0.77

ξ1
2

- 1 0.00 0.00 0.00 0.00

ξ2
2

- 1 0.01 0.00 0.01 0.00

ξ3
2

- 1 −0.01 0.00 0.00 0.00

ξ4
2

- 1 0.00 −0.01 0.00 −0.01

ξ5
2

- 1 0.00 −0.03 −0.03 0.03

ξ1ξ2 0.00 0.00 0.00 0.00

ξ1ξ3 0.00 0.00 0.00 0.00

ξ1ξ4 0.00 0.00 0.00 0.00

ξ1ξ5 0.00 0.01 0.00 0.00

ξ2ξ3 0.00 0.00 0.00 0.00

ξ2ξ4 0.00 0.00 0.00 0.00

ξ2ξ5 0.00 −0.01 0.00 0.00

ξ3ξ4 0.00 0.00 0.00 0.00

ξ3ξ5 0.00 −0.01 0.00 0.00

ξ4ξ5 0.00 0.00 0.00 0.00

ξ1
3

- 3ξ1 0.01 0.00

ξ2
3

- 3ξ2 −0.01 0.00

ξ3
3

- 3ξ3 0.00 0.00

ξ4
3

- 3ξ4 0.00 0.00

ξ5
3

- 3ξ5 0.00 0.01

ξ1(ξ2
2

– 1) 0.00 0.00

ξ1(ξ3
2

– 1) 0.00 0.00

ξ1(ξ4
2

– 1) 0.00 0.00

ξ1(ξ5
2

– 1) 0.00 0.01

ξ2(ξ1
2

– 1) 0.00 0.00

ξ2(ξ3
2

– 1) 0.00 0.00

ξ2(ξ4
2

– 1) 0.00 −0.01

ξ2(ξ5
2

– 1) 0.00 0.00

ξ3(ξ1
2

– 1) 0.00 −0.01

ξ3(ξ2
2

– 1) 0.00 0.00

ξ3(ξ4
2

– 1) 0.00 0.00

ξ3(ξ5
2

– 1) 0.00 0.00

ξ4(ξ1
2

– 1) 0.00 0.00

ξ4(ξ2
2

– 1) 0.00 0.00

ξ4(ξ3
2

– 1) 0.00 0.00

ξ4(ξ5
2

– 1) 0.00 0.00

ξ5(ξ1
2

– 1) 0.00 0.00

ξ5(ξ2
2

– 1) 0.00 0.00

ξ5(ξ3
2

– 1) 0.00 0.00

ξ5(ξ4
2

– 1) 0.00 0.00

ξ1ξ2ξ3 0.00 0.00

ξ1ξ2ξ4 0.00 0.00

ξ1ξ2ξ5 0.00 0.00

ξ1ξ3ξ4 0.00 0.00

ξ1ξ3ξ5 0.00 0.00

ξ1ξ4ξ5 0.00 0.00

ξ2ξ3ξ4 0.00 0.00

ξ2ξ3ξ5 0.00 0.00

ξ2ξ4ξ5 0.00 0.00

ξ3ξ4ξ5 0.00 0.00

to the quick-flow reservoir would not influence the model perfor-

mance significantly, regardless of the variation in actual hydro-mete-

orological conditions. Conversely, the parameters Rs and Rq exhibit

significant impacts on the model streamflow predictions. Specifically,

the values of Rs and Rq show significant fluctuation, with the min-

imum value being zero and maximum value approaching one. Fur-

thermore, the temporal sensitivity of Rq is generally consistent with

the variation of precipitation, while the value of Rs shows an op

posite trend with the precipitation. This is because Rq indicates the res-

idence time of quick-flow reservoirs, while the Rs represents the res-

idence time of slow-flow reservoirs. For Cmax and bexp, they exhibit

similar variation trends between each other since they are indicators

for soil moisture but in general, Cmax plays a more importance role in

model performance.

Table 6 presents the sensitivities of the five parameters in low and

high flow periods. In this study, the high flow is characterized as

a flow amount larger than the 95% quantile value of the historical

flow records while the low flow is less than the 5% quantile value

of the historical records. The results in Table 6 mean that the para-

meter Rq pose most significant impact on the model predictions in

high flow period, while the parameter Rs is the dominant impact fac-

tor for model predictions in low flow period. This suggest that the

quick flow process contributes most in high flow periods but the slow

flow process dominates in low flow periods. Particularly, the results in

Table 6 show that there is only slight differences for parameter sensi-

tivities obtained by 2
nd

-order and 3
rd

-order PCE models, indicating the

accuracy for these two models in reflecting uncertainty propagation in

hydrologic simulation.

Furthermore, the differences of parameter sensitivities under pre-

cipitation and non-precipitation conditions are characterized. Table 7

shows the parameter sensitivities under dry and rainy conditions. The

results indicate that the quick flow process (i.e. Rq) contribute most to

the streamflow when precipitation occurs, followed by the maximum

soil storage (i.e. Cmax) and the slow flow (i.e. Rs). Conversely, the

parameter Rs dominates during the dry periods with a parameter sensi-

tivity value more than 0.4. The parameters of Rq and Cmax also pose

apparent impacts on the model predictions with the parameter sensi-

tivities more than 0.3 and 0.1, respectively.

Fig. 11 shows the comparison of the cumulative probability for the

TEDPAS obtained through 2
nd

-order and 3
rd

-order PCEs. The CDFs

for the five parameters obtained by two PCEs show similar trends, in-

dicating the accuracy of the proposed method for quantifying the tem-

poral sensitivities of the hydrologic model. Similar to the results pre-

sented in Figs. 9 and 10, the parameter alpha in Hymod shows the

least sensitivity to the model performance, with the maximum value

less than 0.2, followed by Cmax and bexp, with their values fluctuating

within [0, 0.6] and [0, 0.5]. Rq had a sensitivity higher than 0.4 for

more than 40% of the days, illustrating that it has a high sensitivity for

a considerable period of time. Moreover, Rs also shows high sensitiv-

ity for a considerable period since it exhibits a high sensitivity higher

than 0.4 for nearly 40% of days in the simulation period.

As shown in Figs. 9 and 10, the model parameter sensitivities will

vary over time. One issue to characterize the variation in model pa-

rameter sensitivity is to determine how catchment conditions will in-

fluence the model parameter sensitivity. Fig. 12 shows the correla-

tion between model inputs and outputs (i.e. precipitation, potential

evapotranspiration, and streamflow) and model parameter sensitivi-

ties. The results show that the association between model inputs and

outputs and model parameter sensitivity is not fully clear. Conse-

quently, to further reveal such associations, the MIC will be adopted

which is expressed as Equation (19). Table 8 presents correlation be-

tween precipitation, potential evapotranspiration, observed discharge

and model parameter sensitivities. It can be concluded that, over the

simulation period, the model parameter sensitivities are correlated

with the precipitation, potential evapotranspiration and streamflow

discharge, with most MIC values being larger than 0.1. Moreover, dur-

ing the rainy periods, the correlation between model parameter sensi-

tivities and catchment meteorological conditions is quite significant,

with most MIC values larger than 0.5. Particularly, such correlation/
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Fig. 6. Variability of posterior probabilities under different temporal periods.

Fig. 7. Comparison between the predication means and observations: (a) hydrologic model predictions vs. observations, (b) 2
nd

- order PCE results vs. observations, (c) 3
rd

-order PCE

results vs. observations.



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

14 Environmental Modelling and Software xxx (2016) xxx-xxx

Table 5

Comparison between Monte Carlo method and PCEs.

Sample size 500 1000 1500 2000 2500

Hydrologic

Model

RMSE 33.076 33.119 33.111 33.108 33.111

PBIAS(%) 25.510 25.526 25.521 25.511 25.541

NSE 0.7293 0.7286 0.7287 0.7288 0.7287

Time (s) 60.01 119.39 179.05 239.33 300.40

2
th

-order PCE RMSE 33.055 33.093 33.084 33.084 33.088

PBIAS(%) 25.480 25.491 25.485 25.480 25.510

NSE 0.7296 0.7290 0.7292 0.7291 0.7291

Time (s) 2.85 5.15 7.58 10.17 12.74

3
th

-order PCE RMSE 33.053 33.086 33.078 33.078 33.081

PBIAS(%) 25.497 25.504 25.499 25.495 25.520

NSE 0.7297 0.7291 0.7293 0.7293 0.7292

Time (s) 22.89 45.28 67.95 90.90 114.29

association will mainly increase as the precipitation increases from 0

to 1 mm/day. The increasing trends would not apparent as the pre-

cipitation increases from 1 to 5 mm/day. This may be due to the fact

that the hydrologic model uses saturation excess overland flow mech-

anism in the rainfall-runoff process. Moreover, Table 9 characterizes

the nonlinearity between model parameter sensitivities and observed

precipitation, potential evapotranspiration and streamflow discharge.

The results in Tables 8 and 9 show that the correlation/association

between model parameter sensitivities and catchment conditions (i.e.

precipitation) are mainly nonlinear regardless of precipitation levels.

Moreover, the nonlinearity will increase as the precipitation increases.

For instance, under light (P > 0) and heavy (P > 5) rain days, the non-

linearity between Cmax and Q is about 0.52 and 0.62 respectively.

5. Conclusions

In this study, a hybrid sequential data assimilation and probabilistic

collocation (HSDAPC) approach was developed to quantify the uncer-

tainty of hydrologic models and screen the sensitivities of model pa-

rameters. The proposed HSDAPC method integrates the capability of

sequential data assimilation and the probabilistic collocation method

into its framework, in which the posterior probabilities of hydrologic

model parameters are estimated through the PF method, and the un-

certainty propagation is showed through the probabilistic collocation

method. The temporal dynamics of parameter sensitivity (TEDPAS)

based on Sobol's indices are obtained through the obtained PCE. The

maximal information coefficient (MIC) is then adopted to identify the

association between model parameter sensitivities and catchment con-

ditions.

The developed HSDAPC approach was applied for a small catch-

ment in the Three Gorges Reservoir area, China. The results showed

that, the 2nd and 3
rd

-order polynomial chaos expansion (PCE) mod-

els can well represent the hydrologic model for streamflow forecast-

ing and uncertainty quantification. The performance of the two and

three-order PCE models did not deteriorate when compared with the

original hydrologic model. In this study, the original hydrologic model

produced satisfactory predictions with best NSE value being about

0.73 based on multiple trials. The associated 2nd and 3
rd

-order PCE

models also generated satisfactory predictions with NSE values being

about 0.73. Specifically, the efficiency of the PCEs was considerably

more efficient than the hydrologic model, as the 2
nd

-order PCE model

ran ten times faster than the simplified conceptual model (i.e. Hy-

mod). Moreover, temporal dynamics of parameter sensitivity (TED

Fig. 8. Comparison between the predication intervals and observations: (a) hydrologic model prediction intervals vs. observations, (b) 2
nd

-order PCE predicting intervals vs. observa-

tions, (c) 3
rd

-order PCE predicting intervals vs. observations.
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Fig. 9. Paramter sensitivity analysis through 2
nd

-order PCE.

Table 6

Parameter sensitivity under different streamflow periods.

Period Parameter 2-Order PCE 3-Order PCE

Mean Std Mean Std

High flow Cmax 0.132 0.160 0.128 0.160

bexp 0.045 0.070 0.040 0.063

alpha 0.031 0.050 0.029 0.047

Rs 0.072 0.085 0.073 0.087

Rq 0.721 0.267 0.730 0.263

Low Flow Cmax 0.148 0.124 0.147 0.127

bexp 0.117 0.097 0.105 0.090

alpha 0.036 0.035 0.034 0.033

Rs 0.567 0.348 0.577 0.350

Rq 0.131 0.198 0.138 0.207

Table 7

Parameter sensitivity under different precipitation conditions.

Period Parameter 2-Order PCE 3-Order PCE

Mean Std Mean Std

P > 0 Cmax 0.200 0.161 0.198 0.164

bexp 0.129 0.109 0.116 0.101

alpha 0.036 0.048 0.034 0.045

Rs 0.159 0.244 0.163 0.249

Rq 0.477 0.312 0.489 0.315

P = 0 Cmax 0.136 0.150 0.134 0.152

bexp 0.094 0.106 0.085 0.098

alpha 0.057 0.051 0.053 0.048

Rs 0.412 0.361 0.419 0.364

Rq 0.301 0.323 0.309 0.326

PAS) analysis were then performed to characterize the dominant

model component under different hydro-meteorological conditions.

Sobol's sensitivity indices were employed for the above sensitivity

analysis since they could be well approximated through the coef-

ficients in the obtained PCE models. The results showed that the

slow-flow and quick-flow, in Hymod, would be the dominant model

components, in which slow-flow was most important under dry mete-

orological conditions and quick-flow contributed most when precipita

tion occurred. Soil moisture contributed more to runoff generation

under wet conditions than that under dry conditions. The associa-

tion/correlation between model parameter sensitivities and catchment

conditions was revealed through the maximal information coefficient

(MIC). These results showed that the correlations between model pa-

rameter sensitivity and precipitation, potential evapotranspiration and

streamflow discharge were significant and such correlations mainly

showed nonlinear features. Particularly, these correlations will be

quite significant during rainy periods, with most MIC values being

larger than 0.5. Also, the correlations were dominated by nonlinearity

during the rainy periods.

The developed HSDAPC method integrates the capability of the

PF method and the probabilistic collocation method for quantifying

the uncertainty of hydrologic predictions. This method could also be

applied to other hydrological models (conceptual, semi-distributed,

and distributed hydrologic models). The innovations of this study are

that: (i) after the data assimilation process by PF, the probabilistic col-

location method was further used, other than the classic Monte Carlo

simulation method, to show uncertainty propagation in the hydrologic

model; (ii) the temporal dynamics of parameter sensitivity were de-

rived through the obtained PCE to reveal the dominant components of

the hydrologic model in different simulation conditions; and, (iii) the

correlation between model parameter sensitivities and catchment con-

ditions (i.e. precipitation, potential evapotranspiration, and streamflow

discharge) was identified through the use of the maximal information

coefficient.

In the HSDAPC approach, the resulting PCE model is a proxy

for the original hydrologic model, which means that the accuracy

of the PCE model can hardly perform better than the original hy-

drologic model. Consequently, once the parameters in a hydrologi-

cal model are not well identified in the data assimilation procedure

of HSDAPC, the resulting PCE model would also provide inaccu-

racy predictions. Moreover, the applicability of the proposed method

is demonstrated through a lumped hydrologic model with only 5 pa-

rameters. For other high-dimensional cases, such as distributed hydro-

logic models, the number of polynomials used in PCE will increase

remarkably. For instance, the 3
rd

-order PCE for a hydrological model

with 10 parameters has 286 polynomials. This may lead to difficulties
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Fig 11. Cumulative probability of the temporal sensitivity for all five parameters obtained through 2-order and 3-order PCE.

Fig. 12. Correlation between parameter sensitivity and models inputs.

in coefficients estimation for the PCE model. However, the proposed

HSDAPC can still be applied for high-dimensional cases through

some improvements: (i) as demonstrated in this study, a 2
nd

-order

PCE model can adequately represent the original hydrologic model,

which has less polynomials than the 3
rd

-order PCE (i.e. 66 items

for 10 dimensional cases). Consequently, 2
nd

-order PCE model can

be applicable for some high-dimensional cases. (ii) For high-dimen-

sional cases, some pre-processing approaches can be employed to

identify the low sensitive parameters, and the HSDAPC is then ap-

plied which only consider high sensitive parameters. For instance,

Wang et al. (2015) addressed this issue through introducing fractional

factorial analysis into the probabilistic collocation method to analyze

uncertainty propagation of hydrologic model parameters in a reduced

dimensional space.
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Table 8

The MIC values between model inputs and outputs and model parameter sensitivity.

Precipitation Cmax bexp alpha Rs Rq

All Pre Q 0.1759 0.1924 0.1498 0.2551 0.3083

P 0.1682 0.1552 0.1836 0.2293 0.1946

ET 0.1384 0.1395 0.1574 0.1756 0.1284

P > 0 Q 0.5601 0.5889 0.5281 0.5080 0.5740

P 0.5141 0.4970 0.4877 0.5540 0.5176

ET 0.4599 0.5085 0.5333 0.4257 0.4557

P > 1 Q 0.7254 0.7496 0.6560 0.6322 0.7010

P 0.6288 0.6543 0.6161 0.6600 0.7603

ET 0.5943 0.6507 0.6608 0.6656 0.6920

P > 5 Q 0.7151 0.7713 0.6550 0.6472 0.6962

P 0.6369 0.6578 0.6222 0.6606 0.7603

ET 0.5953 0.6515 0.6633 0.6654 0.6920

Table 9

The nonlinearity between model inputs and outputs and model parameter sensitivity.

Cmax bexp alpha Rs Rq

All Pre Q 0.1721 0.1667 0.1384 0.1969 0.1844

P 0.1653 0.1504 0.1384 0.1712 0.0826

ET 0.1272 0.1258 0.1049 0.1755 0.1265

P > 0 Qt 0.5228 0.4934 0.5268 0.4874 0.4515

Pt 0.4653 0.4455 0.4434 0.5037 0.3342

ET 0.4582 0.4969 0.5319 0.3934 0.3976

P > 1 Qt 0.6354 0.6078 0.6501 0.6236 0.5582

Pt 0.4731 0.5061 0.5846 0.6300 0.5010

ET 0.5918 0.6341 0.6597 0.6566 0.6666

P > 5 Qt 0.6209 0.6259 0.6482 0.6371 0.5559

Pt 0.4747 0.5070 0.5870 0.6232 0.5021

ET 0.5922 0.6343 0.6628 0.6500 0.6668

A1. Gaussian anamorphosis (GA) transformation

For an original random variable x and the transformed random

variable x′ = f(x), the premise of GA is to find a function f to define a

change of variables (anamorphosis) such that the random variable x′

obeys a standard normal distribution. Such a transformation technique

was applied previously for biogeochemical and physical-biogeochem-

ical simulations in ocean (Simon and Bertino, 2009; Béal et al., 2010)

and subsurface hydraulic tomography simulation (Schöniger et al.,

2012).

Consider an arbitrarily distributed variable x and its Gaussian

transform variable z, they can be linked through their cumulative dis-

tribution functions (CDFs) as follows:

where F(y) is the empirical CDF of y, G is the theoretical standard

normal CDF of z. Since G is monotonously increasing, the inverse G
−1

exists. Equation (A1) is called the Gaussian anamorphosis function.

Following the method proposed by Johnson and Wichern (1988),

the empirical CDF of y can be obtained, based on its sample values as

follows:

where j are the ranks of the sample values of x; N is the sample

size of x (rendered as the number of particles in this study). From

Equations (A1) and (A2), the sample values of the Gaussian trans

form variable z can be obtained, which correspond to the sample val-

ues of x. Also, the sample range of z can be determined as follows:

A2. PCE-based sensitivity analysis

For example, consider a truncated two-dimensional 2
th

-order PCE

expressed as:

(A5).

the total variance can be obtained as:

If ζ1 is fixed, the variance would be:

Similarly and (A8).

Consequently, the first and second-order Sobol's sensitivity indices

can be expressed as (Zheng et al., 2011):

Also, the total-effect indices can be obtained as: ,

and .

A3. Evaluation methods

A number of evaluation criteria are proposed to identify the per-

formance of hydrologic forecasting accuracy. In this study, the

root-mean-square error (RMSE) and the Nash-Sutcliffe efficiency

(NSE), are employed to evaluate the performance of HSDAPC ap-

proach. The formulation of the above four indices are presented as:

(A1)

(A2)

(A3)

(A4)

(A6)

(A7)

(A9)

(A10)

(A12)
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where N is the total number of observations (or predictions), Qi is the

observed value, Pi is the estimated value, and is the mean of all ob-

served and estimated values.

Fig. 10. Paramter sensitivity analysis through 3
rd

-order PCE.

(A13)

(A14)
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