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Abstract

In this paper we describe a parameterisation of lip movements

which maintains the dynamic structure inherent in the task of

producing speech sounds. A stereo capture system is used to

reconstruct 3D models of a speaker producing sentences from

the TIMIT corpus. This data is mapped into a space which

maintains the relationships between samples and their tempo-

ral derivatives. By incorporating dynamic information within

the parameterisation of lip movements we can model the cycli-

cal structure, as well as the causal nature of speech movements

as described by an underlying visual speech manifold. It is be-

lieved that such a structure will be appropriate to various areas

of speech modeling, in particular the synthesis of speech lip

movements.

Index Terms: speech synthesis

1. Introduction

Synthetic talking heads are becoming increasingly popular

across a wide range of applications: from entertainment (e.g.

Computer Games/TV/Films) through to natural user interfaces

and speech therapy. Increasingly the techniques used in syn-

thesis are data-driven, a trend related to the increasing number

of techniques which facilitate the capture of articulatory move-

ments (e.g. motion-capture, stereo-photogrammetry etc.) In

this paper we present a method for parameterising lip move-

ments captured using a dynamic stereo-capture system, and dis-

cuss the properties of the underlying visual speech manifold and

how these can aid the application of speech synthesis.

When trying to understand the process of speech produc-

tion it is useful to project captured data, whichever form that

may take (e.g. 3D markers, 2D contours, lip aperture/protrusion

etc.), into a lower dimensional space which provides greater fi-

delity in the underlying structure of this task. This projection

fulfils two main roles: firstly, to identify several latent param-

eters which better describe the underlying processes; and sec-

ondly to remove the components of the original signal which

can be regarded as insignificant or as noise.

The most common method for parametrising speech data

(and motion data in general), has been Principal Component

Analysis (PCA.) This method forms an orthogonal basis by

calculating the eigenvectors (principal components) of the co-

variance matrix. The eigenvalues corresponding to these basis

eigenvectors hold the variance that each vector accounts for, and

thus a reduced set of vectors can be retained holding the major-

ity of the variance in the original data. PCA has been used as

an underlying parameterisation for many applications, princi-

pally tracking/image synthesis [1, 2] and data-driven animation

[3]. Similar techniques applied to the symmetric distance ma-

trix are termed Multi-Dimensional Scaling (MDS), or Principal

Coordinate Analysis (PCO, [4].)

Another linear method, particularly popular in source sep-

aration, is Independent Component Analysis (ICA.) This tech-

nique applies the concept of statistical independence to recov-

ering an underlying parameterisation. This is a stronger as-

sumption than that of PCA, but does not produce an orthogonal

basis. ICA has been applied to recovering a basis for speech

movements, and for identifying and separating speech-task and

emotion-task parameters. In [5] ICA is employed to separate

emotional parameters from speech control parameters, which

are later recombined in a synthesis framework. The success of

such techniques is arguable. Problematically, ICA decomposi-

tions tend to produce non-smooth trajectories which are gener-

ally inappropriate for tasks such as synthesis.

More recently a host of non-linear methods have come to

the fore, e.g. [6, 7]. These methods mostly unwrap the data

according to an approximation of geodesic distances across an

underlying manifold structure. The main problem with PCA is

that where non-linear relationships are evident in the underly-

ing data, e.g. when projecting onto a pair of basis vectors a

curve is plotted 1, this curve may be better described by a sin-

gle non-linear vector recovered using a method such as Isomap.

Unfortunately, many non-linear methods are not generative (i.e.

you can project into the latent space, but not back to the data

domain), and those which are often cannot deal with very large

datasets. Furthermore, it is only worthwhile performing a non-

linear parameterisation if the recovered space is more descrip-

tive of the underlying data than simpler linear methods.

In [8] Gaussian-Process Latent Variable Models (GPLVM),

a non-linear and generative dimensionality reduction technique

is used to form a low dimensional manifold for motion data.

Trajectories in the manifold can then be fitted to real data, such

as video. This technique demonstrates one of the main problems

with non-linear methods, as in some cases the optimisation of

the projective space leads to discontinuities in motion trajec-

tories. Gaussian Process Dynamic Models (GPDM) [9] have

been designed to remove discontinuities in the generated pro-

jection from GPLVM. However, even in cases where dynamics

or back-constraints have been used to maintain the contiguity

of the projected trajectory, we may have cases where identi-

cal frames are projected to different locations in the nonlinear

space.

In this paper we address the problem of finding a represen-

tation of speech lip movements captured using 3D stereo cap-

ture technology. It is often considered that the only role of this

stage is to take high-dimensional data and map it into a low-

dimensional space, i.e. the simplification of the task space is

the end in itself. However, depending upon the end application

there may be other qualities which define how good an embed-

1Recovered nonlinearities in PCA are often referred to as the ”horse-
shoe problem”.
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ded space is. For the purposes of our work (i.e. synthesis) we

can define several factors which are important:

• minimal - as with all dimensionality reduction tech-

niques we aim for a greatly reduced set of variables.

• interpretable - the variables should have a logical inter-

pretation when relating back to the physical process of

speech production.

• smooth - projected speech trajectories should be smooth,

i.e. there is some geometric continuity to movement

through the task space. Smooth trajectories are more eas-

ily synthesised than those with random fluctuations.

• generative - at least for the task of synthesis, it is impor-

tant that trajectories within our simpler task space can be

projected back to the original data domain.

In the following sections we introduce our technique for

constructing a low-dimensional task space which satisfies the

properties described above. In Section 3 the construction of the

task space and the associated geometric properties of the em-

bedded speech manifold are described. In Section 4 we describe

techniques for synthesising trajectories and recovering the map-

ping back to the original data domain. In Section 5 we briefly

discuss clustering of phonetic classes on the generated speech

manifold. Finally, in Section 6 we describe directions of future

work and the application of our techniques to the problem of

speech synthesis.

2. Data Capture

The data used in this paper consists of 8 minutes of 3D geome-

try captured using a commercial stereo face capture system (see

[10].) Facial geometry is recovered using 2 camera stereo pairs

(left/right); an infra-red speckle pattern is projected onto the

face and stereo-photogrammetry is used to recover the 3D sur-

face. A further two colour cameras also capture the appearance

of the subject’s face. The cameras we use operate at 60Hz, and

audio is also captured synchronously. The raw data from this

system is initially unregistered, i.e. given a point on the surface

of the face in the initial frame we do not know the correspond-

ing point in any of the following frames. To solve this corre-

spondence issue, blue markers (both point and contour markers

are used) are painted on the subjects face and tracked frame-to-

frame in the colour images, these markers are used as the basis

of a dense registration of all points in the geometry across all

frames in the sequence (details are described in [11].) Because

the colour appearance frames contain the blue markers, the pro-

cessing described in the rest of this paper is performed on the

recovered geometry alone.

C
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p 72 b 79 m 99 ch 31

jh 34 s 313 z 109 sh 41

zh 20 f 69 v 58 th 28

dh 81 k 133 g 39 t 241

d 187 r 136 w 68 n 254

ng 28 hh 29 l 170 y 62

V
o

w
el

s

aa 24 ae 85 ah 48 ao 49

aw 23 ay 57 ax 299 ea 26

eh 73 ey 65 ia 22 ih 198

iy 126 oh 62 ow 47 oy 24

ua 23 uh 30

Table 1: Frequency of English phonemes in the captured data.
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(a) First two principal components of the PCA space
→

X , blue indicates
minimum displacement from the mean, red is maximum.
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(b) Residual variance with increasing numbers of com-

ponents: blue shows residual for
→

X; red shows residual

for
→

Y .

Figure 1: Constructing a model of speech lip movement; the

basis
→

X is an initial PCA projection of the original data,
→

Y is

the reduced speech task space.

The 8 minutes of data consists of a single native British

English subject speaking sentences selected from the TIMIT

corpus. Sentences were selected to get a good sampling of all

phonemes, see table 1. Unfortunately, due to data storage and

processing issues it was not possible to get a good sampling

of phonemes across all possible contexts. However, it is consid-

ered that the data does provide a good sampling of lip dynamics,

the description of which is the purpose of this paper.

3. Parameterising Speech Lip Movements

3.1. Constructing a Task Space Embedding for Speech

In constructing a task space for the data described in the previ-

ous section, the registered geometry alone is used. The data

consists of a sequence of frames, F , where the ith frame

Fi = {x0, y0, z0, . . . , xi, yi, zi, . . . , xn, yn, zn}. A noise re-

duction step employing standard PCA directly on F is used to

filter out low variance modes. By applying PCA we get a set

of basis vectors,
→

X . The EM method for computing principal

components [12] is used here due to the size of the data matrix,

F , which holds 28, 833 frames × 12, 784 xyz coordinates. The

first 100 basis vectors are computed, with the first 30 holding

over 99% of the recovered variance. The percentage of the total
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variance accounted for will be lower, but the scree-graph shows

that the important features of F are compressed in only a few

dominant components (i.e. ∼ 95% in the first 10 components

shown in fig. 1(b), and ∼ 99% in the first 30 components indi-

cating a flattening of the scree-graph.)

F can be projected onto the basis
→

X to produce the param-

eterisation F x, i.e. Fi×
→

X→ F x
i . Broadly, the 1st component

of
→

X can be described as jaw opening, the 2nd is lip round-

ing/protrusion, and the 3rd raises/lowers the upper lip. Lower

variance components are not as easily contextualised in terms

of observed lip-shape qualities. Figure 1(a) shows the first two

principal components of
→

X .

A further projection of the data is performed to maintain the

relative dynamic properties of lip movements during speech, i.e.

in contrast to the formation of
→

X which only takes into account

static lip shapes. The first derivative for each frame is approx-

imated as F x
i
′ = F x

i − F x
i−1 (the parametric displacement of

the lips in 1/60th of a second.) Each pair {F x
i , F x

i
′} describes

a distinct state in the physical space of lip movement. As the

first derivative is at a different scale the parameters need to be

normalised such that F x
i does not dominate over F x

i
′. Thus,

a matrix G = {α(F x
i − µ), β(F x

i
′ − µ′)}, where µ and µ′

are the respective means of F x and F x′, is constructed where

all parameters are scaled to the range F x
i , F x

i
′ ∈ [−1, 1]. This

matrix is now processed in a manner similar to MDS/PCO2.

A symmetric distance matrix D is formed where each ele-

ment Dij is the euclidean distance between Gi and Gj , i.e.

Dij =
√

(Gi − Gj)2. The matrix D is then decomposed us-

ing another iteration of PCA forming a basis
→

Y , so for each of

the initial frames Fi we have a corresponding projection into

the task space F y
i . The first three dimensions of

→

Y account for

∼ 93% of the recovered variance in D. Figure 1(b) shows that

the eigenvalues corresponding to
→

Y are more tightly clustered

in the first several components than those of
→

X . Note that the

F y describe the relative position of the Gi, but there is no direct

transformation from a point in
→

Y back into
→

X (i.e. because F y

is a relative embedding.)

It can be seen in fig. 2(a) that the first 3 dimensions of

the projected F y form a manifold M embedded within the task

space
→

Y descriptive of lip movements during speech produc-

tion. Some useful properties of M and speech trajectories in

this space are described in the following sections.

3.2. The Structure of the Speech Manifold

As can be seen from fig. 2(a), the manifold, M, constructed

as described in the previous section, forms a paraboloid-type

structure in 3D (the first 3 dimensions of
→

Y .) M is symmet-

ric about a plane which coincides with zero-velocity, and either

side of this plane we have the opening and closing halves of a

speech cycle. In the opening half of the cycle lips move from

closed states towards more open states, and in the closing half

the lips move from more open states towards more closed states.

The vector orthogonal to the zero-velocity plane corresponds to

maximum change in velocity (i.e. maximum acceleration) and

parallel to the zero-velocity plane we find a vector which corre-

2Classical metric-MDS, PCO and Isomap will all produce related
parametric spaces to the one described here. The techniques described
in this paper are general enough that they could be used with any of
these choices of projection.

sponds to maximum change in shape (i.e. lip shape transitions

from closed → open, see fig. 2(c).) We can define non-linear

vectors which globally describe maximum change in lip shape,

S, and maximum change in lip velocity, V . Of course the ev-

ident non-linear structure of the speech manifold means that it

is more appropriate to define a local tangent space for each F y
i ,

with si defining a local shape-like vector, and vi defining a local

velocity-like vector, with si × vi defining the local orientation

of the manifold (i.e. direction of thickness.)

Traces of speech movements will produce elliptical paths

on M. This is natural as S is effectively an ordering of lip

shapes according to lip opening (the first component of
→

X ,

which will dominate over other components in F x when com-

puting the distance matrix D.) The same is true of V , i.e. the

first component of F x′ will dominate over components with

smaller variance, leading to an ordering of V according to that

first component.

This local and global structure of M leads to several re-

sults. Firstly it is impossible to travel on the zero-velocity plane.

This is obvious seeing as this would imply changing lip shape

with zero velocity! Thus, when moving between the opening

and closing halves of a speech cycle the trajectory will cross

the plane of symmetry at right angles. Furthermore, at all other

positions on the manifold, except on the plane of symmetry, the

trajectory cannot travel parallel to vi. This follows as to travel in

the local tangential direction vi implies maximum acceleration

and minimum change in shape. In fact the trajectory can be de-

scribed using the local tangent space described above, {si, vi}.

If you construct an offset between two consecutive frames,

zi = (F y
i − F y

i+1), then zi.si and zi.vi will categorise each

frame into four different classes: opening/acceleration, open-

ing/deceleration, closing acceleration, and closing/deceleration.

These properties show that the speech manifold is highly struc-

tured, and potentially this structure can aid applications such as

visual speech synthesis.

3.3. Distances on the Speech Manifold

Euclidean distances between pairs of points in the first sev-

eral dimensions of
→

Y approximate euclidean distances between

pairs of points in G. However, the recovered structure of M in-

dicates that a direct line between two non-consecutive states F y
i

and F y
i+n does not give a good measure as to the time it would

take to travel between them. In fact even a standard geodesic

computation does not perform well because the manifold itself

is directed, i.e. there is a temporal ordering of states, and thus

distances are asymmetric. The natural way of understanding

this is that given the lips are in a state F y
i with velocity F y

i

′

, the

number of possible following states will be constrained by the

physical properties of the lips (e.g. muscle properties, inertia

etc.)

This evident asymmetry in distances can be accounted for

using a modified geodesic computation. The F y are initially

grouped into states using K-means. A transition matrix, A, is

then constructed with Ajk = 1 iff there is a transition from a

member of state j to a member of state k, otherwise Ajk = 0.

From this adjacency structure Dijkstra’s algorithm can be used

to calculate the minimum distance (i.e. minimum number of

transitions ≈ minimum time in frames) between two states.

Also, minimum distance paths between states can be calcu-

lated by propagating across the graph structure. There is no

upper bound on the distance between two states as infinite cy-

cles could occur in-between.
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(a) The structure ofM embedded in the task space
→

Y . Colour indicates density in each projection, from most
dense(red) to least dense (blue.) The global shape, S, global velocity, V , local shape, si, and local velocity, vi, are
shown. The zero velocity plane is shown as a dotted line. Black arrows show and example trajectory onM.

(b) Directed geodesic distances from points onM: colour indicates geodesic similarity, from most similar (red) to
least similar (blue); arrows indicate the direction of possible future events; dashed line delineates past and future
events; dotted line shows the zero velocity plane. Images show the three possible states of the system: opening, zero
velocity, and closing. Note that when the current state has zero velocity the future states are ambiguous, i.e. future
states could be further opening or closing of the lips.

(c) Lip shapes indexed by increasing S, the lip shape vector.

Figure 2: Properties of the visual speech manifold M.

By examining minimum distance plots on M, see fig. 2(b),

the causal nature of the visual speech manifold becomes appar-

ent. It can be clearly seen that given a current state F y
i the pos-

sible set of future states is a subset of F y , i.e. those for which

dist(F y
i , F y

p ) = 1, F y
p ∈ F y . A hemisphere of possible future

events is evident at each point on the manifold, and likewise if

the adjacency matrix is constructed using links between current

and previous states (i.e. Ajk = 1 iff there is a transition from

a member of state k to a member of state j) a hemisphere of

possible past events can be seen. This indicates that a tempo-

ral ordering exists at each point on M pointing in the general

direction of future events in the speech cycle. For states with

zero-velocity, there are two directions of possible future states,

this is due to the fact that with the lips in a state with zero veloc-

ity the lips can proceed into a further opening or closing cycle

equally. Also, for states closer to the boundary of M the set of

possible next states is much reduced.

4. Trajectory Synthesis

The speech manifold, M, as discussed in the previous section,

is useful in visualising what is happening in terms of the dy-

namics of speech production for the lips. However, interesting

applications can be tackled if the inverse problem can be solved,

i.e. can trajectories be derived directly from the structure of M.

The observations in Section 3.3 indicate that there is a temporal

ordering of states in M which can potentially aid the generation

of speech trajectories. An obvious application for this is speech

synthesis, supposing that we define a set of states that the lips

must pass through to articulate an utterance - the complete tra-

jectory can be inferred from M. This can be seen as a form of

data-driven interpolation lying between traditional spline-based

techniques (e.g. [13]) and trajectory concatenation (e.g. [14].)

4.1. Calculating Paths Between Pairs of Points

Given two targets on the speech manifold, the graph struc-

ture from Section 3.3 can be used to generate paths pass-

ing across M. If we have a sequence of states Q =
{q1, q2, . . . , qn−1, qn}, we can say that each state is roughly

1/60th3 of a second slice in time, and that the probability of

this sequence of states is

3The same temporal resolution as the original data.

232



0 20 40 60 80 100 120 140 160 180 200
−15

−10

−5

0

5

10

time (frames)

v
a

ri
a

b
le

0 20 40 60 80 100 120 140 160 180 200
−10

−8

−6

−4

−2

0

2

4

6

8

time (frames)

v
a

ri
a

b
le

Figure 3: Generated trajectories in the first two components of
→

Y : black line is the original trajectory; red line is the generated

trajectory; circles indicate phone mid-points.

P (Q) =

n
∏

i=1

P (qi|qi−1)

given that each transition P (qi|qi−1) is conditionally inde-

pendent of previous nodes in the trajectory (i.e. a first-order

Markov process.) In this case each edge in the graph is labelled

with a probability derived from the relative frequency of tran-

sitions between neighbouring graph nodes (i.e. different to the

binary edge costs used in Section 3.3.) The elements of the

transition matrix, A, now become Ajk = P (qj |qk). Thus we

can calculate the probability of any possible path on M. Max-

imum probability paths can be found between pairs of nodes

on M, which are distinct from minimum distance paths as dis-

cussed in section 3.3. However, it is more useful to be able

to compute the maximum probability path between two states

of a predetermined length n frames. If we have a trajectory

defined by some key-frames (e.g. phoneme/viseme mid-point

targets) given timings derived from the phonetic structure of an

utterance, the structure of M can be used to generate the entire

trajectory. A Viterbi-like algorithm is used to calculate these

paths. Given a starting state, F y
start, path probabilities are for-

ward propagated across the graph structure for n frames. The

optimal path from state F y
start → F y

end is then determined by

backtracing to find the path corresponding to maximum prob-

ability in a manner similar to dynamic programming. This is

efficient as, where phone mid-points are used as targets, the dis-

tance in time between targets is rarely greater than 10 frames.

An example of a trajectory generated by interpolating

phone mid-points, for the sentence ”Herb’s birthday occurs fre-

quently on Thanksgiving”, on the speech manifold is shown in

fig. 3. As can be seen, where the phone mid-points strongly

define the trajectory this method produces a good approxima-

tion to the original data. Where the interpolation fails this is

generally due to two reasons: firstly, the discretisation of the

manifold means that the trajectory may not exactly be matched;

secondly, where there are higher frequency components to the

original signal (i.e. far higher frequency than the targets being

interpolated.) The second issue is the more important and im-

plies that the number of required targets may be greater than

the number of phone mid-points in the target utterance. Even so

this form of trajectory synthesis performs far better than a direct

interpolation of phone targets.

4.2. Calculating the Inverse Mapping

It is important to provide a mapping back from the embedded

manifold F y → F x for the parameterisation to be useful for

many applications, particularly for synthesis. There is no di-

rect mapping because
→

Y is constructed from the distance ma-

trix D, and only preserves relative distances between states. In

R
n barycentric coordinates can be defined using a simplex con-

sisting of n + 1 points. Thus, in 3D for any given point in the

embedded space
→

Y , the projection of a point py back into
→

X can

be determined using the bounding tetrahedron ∆y

ijkl. Delaunay

tetrahedralisation can be used to find an appropriate structure

for the speech manifold to provide this mapping, and similar

techniques can be used even when the number of dimensions

exceeds 3.

Given py is in the tetrahedron ∆y

ijkl then the projected point

px is calculated as a barycentric combination of the surrounding

vertices.

px = F x
i .Bi + F x

j .Bj + F x
k .Bk + F x

l .Bl, p
y ∈ ∆y

ijkl

The barycentric weights, B∗, are defined as the ratio of sub-

volumes within the tetrahedron,

Bi =
V∆(py, F y

j , F y

k , F y

l )

V∆(F y
i , F y

j , F y

k , F y

l )
, Bj =

V∆(py, F y
i , F y

k , F y

l )

V∆(F y
i , F y

j , F y

k , F y

l )
,

Bk =
V∆(py, F y

i , F y
j , F y

l )

V∆(F y
i , F y

j , F y

k , F y

l )
, Bl =

V∆(py, F y
i , F y

j , F y

k )

V∆(F y
i , F y

j , F y

k , F y

l )
,

where V∆ is the volume of a tetrahedron spanning four ver-

tices.

V∆(p0, p1, p2, p3) =
|(p0 − p3).((p1 − p3) × (p2 − p3))|

6

Likewise, the mapping from points in
→

Y back to the space

of the original data F can be constructed by replacing the F x
∗

in the barycentric combination with the original frames F∗.

Combined with the trajectory interpolation described in the

previous section we can now take a set of discrete targets on M,

determine a path interpolating these targets, and map this gener-

ated trajectory back to the data domain F . This accounts for half

of the problem of synthesis, the important missing piece being

how the targets are chosen according to the phonetic structure

of a target utterance.
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Figure 4: Clustering of bilabial consonants centres on the

speech manifold M: /b/ centres are shown in red, /p/ centres are

shown in green, /m/ centres are shown in yellow. Ellipses show

2 s.d. distribution of states, squares show mean state. The /p,b/

clusters are mainly located on the opening half of the speech

cycle, and the nasal /m/ clusters are mainly within the closing

half of the cycle.

5. Phonetic Clustering on the Speech
Manifold

Of further interest is how lip shapes corresponding to phone

mid-points cluster on M. An example of clustering for bil-

abials can be seen in fig. 4. This group demonstrates an ex-

ample of dynamics separating groups which are similar when

only lip-shape is taken into account. The nasal /m/ cluster is

located mostly in the closing half of the speech cycle whereas

the voiced/voiceless /b/ and /p/ clusters are located mostly on

the opening half of the cycle. Spatially all three classes cluster

about narrow/closed lip shapes, but are widely spread across all

velocities - likely a result of the surrounding phonetic context.

This fits with the plosive nature of /p,b/, and the nasal stop de-

scription of /m/. By implication the nasal /m/ group should be

treated separately from the plosive group /p,b/, which closely

overlap, whilst in many cases where dynamics are not taken

into account these are all treated as one group (e.g. in viseme

models.)

The wide variation in the direction of V indicates the vari-

ety of possible trajectories that can produce bilabials. In terms

of synthesis the question now becomes how do we choose states

from phoneme clusters that are appropriate for interpolation

(e.g. by the method described in Section 4.1.) This is the coar-

ticulation problem, the choice of a sequence of states, according

to context, (incorporating both lip shape and velocity) which

describe the articulatory trajectory required to produce a partic-

ular utterance. The investigation of trajectories, how they pass

through phoneme clusters, and grouping according to context

are important future stages in the analysis of the structure of the

visual speech manifold M.

6. Conclusions

In this paper we have presented a novel parameterisation of 3D
lip speech movements. This parameterisation is a constructed

space in which lip movements can be visualised as elliptical

paths on a non-linear manifold. Geodesic distances on the man-

ifold, calculated according to the temporal ordering of the orig-

inal data, allow us to extract an underlying causal structure

to the task space. By exploiting this ordering of data, trajec-

tories between discrete states on the speech manifold can be

generated using a finite-state Markov model. This is a form

of data-driven target interpolation which is not constrained by

a pre-defined mathematical model of speech trajectories (such

as spline-based models), or by the discrete set of pre-captured

fundamental units (such as with concatenative models.) Some

initial results for clustering of phone mid-points have been pre-

sented, which demonstrate the separation of phonetic groups

when dynamics are included within the parameterisation.

The presented techniques are intended to aid the task of

speech synthesis. Given that we can project sets of phone in-

stances onto the speech manifold, and that these cluster, synthe-

sis becomes a matter of selecting key targets from each of the

clusters - between which data-driven interpolation generates the

synthetic trajectory. Naturally this is obfuscated by coarticula-

tion, the rôle of context in the realisation of target extrema. Fur-

thermore, it is evident from captured trajectories that phonetic

centres are not the only key features within speech utterances.

Future work will concentrate upon the identification and selec-

tion of key targets from the speech manifold.
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