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1.  INTRODUCTION

As the aquaculture industry seeks to achieve sus-
tainable expansion (World Bank 2013, Scotland Food
& Drink 2017), it also seeks to minimise its environ-
mental impacts (Niklitschek et al. 2013, Tett et al.
2018). Modelling can assist operators in meeting reg-
ulatory requirements and assessing operational risks,
ensuring aquaculture sites are not placed in areas
where they will have adverse (or extensive) environ-

mental impacts (SEPA 2019b). It can also provide a
basis on which regulators can make a balanced as -
sessment of existing operations (Gentry et al. 2017),
helping to inform regional management objectives
(Salama & Rabe 2013, Adams et al. 2016, Sandvik et
al. 2016).

A specific challenge facing the industry is the fate
of particulate matter released either as waste feed or
as faeces of the farmed animals. These contain or -
ganic matter, which can enrich the seabed environ-
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ment (Pearson & Rosenberg 1978, Kalantzi &
Karakassis 2006, Hargrave et al. 2008), and chemical
compounds used to treat fish against parasites, which
can have impacts on non-target organisms (Veld-
hoen et al. 2012, Bloodworth et al. 2019). Waste feed
and faeces differ in carbon content and chemical pro-
file as well as in their characteristic size, shape and
density. Once released from a fish farm cage, waste
particles are initially transported in suspension, car-
ried by the movement of water currents and turbu-
lent processes. Once they reach the seabed, several
things may occur. If flow rate is sufficiently high (and
seabed shear stress is correspondingly high), parti-
cles placed on the seabed may be eroded and re-
enter the water column (Amos et al. 1992a, Droppo et
al. 2007, Law et al. 2016, Law & Hill 2019). If particles
remain on the seabed for a sufficiently long time,
their constituents consolidate on the seabed (Bahr et
al. 2001), a biofilm may develop (Droppo et al. 2007)
or sediment characteristics may become altered by
benthic organisms (Rhoads & Boyer 1982). Further
layers of sediment placed on top have the effect of
consolidating underlying layers, increasing the criti-
cal level of seabed shear stress required to erode this
matter (Masaló et al. 2008) while also potentially cov-
ering it. In high-flow locations, waste matter is trans-
ported further during the initial settlement phase.
However, where seabed shear stress at peak tidal
flow exceeds the critical level for erosion, resuspen-
sion can potentially account for a large component of
the total distance that waste matter is transported
from farm cages (Giles et al. 2009).

Many models suitable for the simulation of the fate
of waste feed and faeces have been developed over
the last 2 decades. A key example is DEPOMOD
(AutoDEPOMOD and NewDEPOMOD; Cromey et
al. 2002a, Cromey & Black 2005, NewDEPOMOD
Development Team 2019), which has been adapted
and used extensively by the global aquaculture
industry to study and regulate waste material pro-
duction in a diverse range of settings and produc-
tion organisms (Weise et al. 2009, Cromey et al.
2012, Keeley et al. 2013, Chang et al. 2014). Sedi-
ment transport can also be implemented within
regional hydrodynamic models (Lee et al. 2015, Ban-
nister et al. 2016, Broch et al. 2017). In either case, it
is essential to accurately describe and model parti-
cle−bed interactions and re suspension processes.
However, in spite of a wealth of studies on sediment
erosion over the last 60 yr (e.g. Ariathurai & Arulan -
andan 1978, Mehta & Partheniades 1979, Thorn &
Parsons 1980, Villaret & Paulic 1986, Lavelle & Mof-
jeld 1987, Houwing 1999, Amos et al. 2004, Thompson

et al. 2011, Law et al. 2016, Carvajalino-Fernández
et al. 2020), there is no means of predicting from
first principles the critical entrainment stress (or bed
erosion rate) for sediments such as cohesive muds or
organic-rich fish waste (Sutherland et al. 1998b), for
which the classical Shields diagram (Shields 1936)
may not apply. On a practical level, this means these
parameters must therefore be measured.

Benthic flumes are marine instruments designed
specifically to measure the surface erosion character-
istics of bottom sediments directly in situ (Amos et al.
1992b, 1996, Black & Cramp 1995, Black & Paterson
1997, Thompson et al. 2011). We used 2 such devices
to make in situ measurements of the bed erosion
properties of undisturbed, organically impacted sed-
iments beneath and around active fish farm pens.
Flumes measure the benthic vertical flux aspect of
suspended sediment transport, which is relevant to
understanding potential far-field (FF) transport and
possible environmental impacts of the organic waste
of concern to the regulator. Highly pelleted waste
mounds can move via saltation and bed load (Suther-
land et al. 2006), but such transport does not impact
FF areas and thus is not relevant here.

FF experiments were carried out using a full-size
flume, and near-field (NF, cage edge) measurements
were made using a smaller device. A combined an -
alysis of these observations provides a robust empir-
ical basis for updating the parameterisation and
configuration of resuspension processes in models
simulating waste dispersion. We discuss these re -
commendations in the context of the redevelopment
of the NewDEPOMOD software.

2.  MATERIALS AND METHODS

2.1.  Field survey programme

Two field campaigns were carried out, both on the
west coast of Scotland. This is a key salmon produc-
tion region which plays host to around 200 farm sites,
primarily located within sheltered fjordic areas or
close to islands. The study area was slightly to
the south of mid-latitude within the broader produc-
tion area. The surveys were carried out at different
times due to vessel availability and presence of suit-
able conditions for deployments. All survey loca-
tions are shown in Fig. 1. Meteorological conditions
were generally very calm throughout the surveys,
and only 1 deployment (1_FIU2 during the FF sur-
vey) had to be aborted (and repeated) due to vessel
movement.
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An FF survey of farm sites took place in August
2013 aboard the SEPA RV ‘Sir John Murray’, using
the Voyager II flume. Flume deployments were car-
ried out as close to the fish farm infrastructure as was
safe to do so with a large vessel, but generally suffi-
ciently close as to be impacted by the farm (ranging
between 100 and 500 m from the cage edge). Alto-
gether, 27 successful scientific deployments (31 in -
cluding trials and unsuccessful deployments) were
made (see Supplement 1 at www.int-res.com/articles/
suppl/q012p401_supp1.xlsx). During this survey, 2
flume deployments and a single grab sample were
made at each point sampled.

An NF survey took place in May 2014 using a
smaller vessel, the Scottish Association for Marine Sci-
ence (SAMS) RV ‘Seol Mara’, directly moored to fish
farm cage groups, and used the smaller Voyager I
flume. This consequently facilitated testing of nomi-
nally highly impacted sediments close to the central
depositional zone of sites. Seabed sediments tested
were impacted by feed and fish waste material to a
greater degree compared to the previous (FF) survey.
A total of 13 successful deployments (19 deployments
including trials and those where sediment/bathymetry
were unsuitable) were carried out (Supplement 1).

2.2.  Grab samples

Grab samples were collected to assess seabed sedi-
ment composition at the survey sites. Samples were

frozen after collection. For analysis, the
samples were defrosted, slices were
taken at the surface (0−1 and 1−2 cm)
and the slices were combined and ho-
mogenised; 10 ml samples were weighed,
dried for 24 h at 60°C and reweighed.
Dry bulk density was calculated as dry
wt vol−1 (kg m−3). To determine loss on
ignition (LOI), 0.5 g of dried, ground and
sieved sediment was ashed (250°C for
16 h). When cooled, the crucibles were
reweighed. Sediments were then heated
to 500°C (Loh 2005) for 16 h and weighed
again when cool. Organic matter per-
centage was computed from data pro-
vided within the LOI methodology
(Mudroch & Azcue 1995).

2.3.  Erosion experiments

2.3.1.  Benthic flumes

Benthic flumes are a method by which the erosion
potential of marine sediments may be studied in situ.
They operate by enclosing a volume of water at the
seabed and then generating a controlled flow stress
across the sediment surface. Their use spans nearly 3
decades, since the seminal early work of Amos et al.
(1992b). In this study, 2 different benthic annular
flumes were used to investigate the effect of shear
stresses on a range of seabed substrates: the Voyager
I and Voyager II systems (Thompson et al. 2011).
Key specifications and features of the 2 flumes are
detailed in Table 1. Both flume instruments were
deployed in the same way: the flume was slowly
lowered to the bed and then left still on the seabed
for 5 to 10 min. Fluid motion was induced by the rota-
tion of internal paddles; paddle rotation was then in -
creased in a stepwise manner through a series of
acceleration ramps with the purpose of sequentially
exposing the sediment surface to higher stresses
(Amos et al. 1992b, 2004, Sutherland et al. 1998a,b).
Once the end velocity was reached, the paddles were
stopped immediately, allowing for sediment depo -
sition to occur. Time series of turbidity (via optical
backscatter sensors [OBSs] flush-mounted in the
flume wall) and paddle rotation frequency were re -
corded by both flumes. Additionally, flow velocity was
recorded within Voyager II.

Voyager I is a compact mini-flume. An advantage
of this flume is that it can be deployed using a small
vessel, which can accordingly be moored directly

Fig. 1. Study sites, showing site codes (full names detailed in Table 2)

https://www.int-res.com/articles/suppl/q012p401_supp1.xlsx
https://www.int-res.com/articles/suppl/q012p401_supp1.xlsx
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alongside farm cages to collect data at the cage edge
during the NF survey (an environment rather difficult
to access otherwise) (Fig. 2a). Voyager II (Thompson
et al. 2011) is a larger version of the mini-flume and
works on the same principles; however, it is more
sophisticated (Fig. 2b). Its size requires deployment
from a larger vessel, which must anchor away from
farm infrastructure. It is therefore best suited to mak-
ing observations some distance away from cages and
was used during the FF survey.

Details on the calibration of the bed shear stress
calculations for both flumes are detailed in Supple-
ment 2 at www.int-res.com/ articles/ suppl/ q012 p401 _
supp2.pdf. A detailed de scription of the Voyager II/
Sea Carousel flume designs is given by Amos et
al. (1992b).

2.3.2.  Turbidity sensor calibrations

The on-board OBSs record raw data as a voltage;
this requires conversion into scientific units (mg l−1)
of sediment concentration (turbidity).
A series of calibrations were under-
taken using surface scrapes (upper
1 cm) from bottom sediment samples
collected at each site using a van
Veen grab. Samples were collected,
bagged and frozen during both sur-
veys (photographs of each grab were
taken). For each calibration concen-
tration, reference standards were
made by mixing a known dry mass
of sediment into a known volume of
seawater. Eight standards were made

up for each site, from zero to many times the con-
centration, corresponding to critical erosion. The
OBS was sequentially exposed to these suspensions
and least-squares regression analysis used to gen-
erate an equation relating sensor voltage to sedi-
ment concentration (see Supplement 2).

2.3.3.  Data analysis

The suspended sediment (S) time series for both
surveys (and flume types) were initially inspected
visually for quality, and any obvious outliers were
removed and stored in a quality control log. Any
background (pre-existing, i.e. generated by flume
touchdown) turbidity was subtracted. For all time
series, the data were time averaged every 20 s to
eliminate high-frequency short-term variability in
the record (Widdows et al. 2007).

For Voyager II, the time series of S concentration
(mg l−1) and flow velocity u were recorded during
each experiment. The S time series was then trans-
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                                      Voyager I                                                                   Voyager II

Survey                           Near-field                                                                  Far-field

Diameter                       0.245 m                                                                      2.2 m

Exposed bed area        0.139 m2                                                                                                       0.966 m2

Channel                        Single annular channel, 0.12 m (W)                        Single aluminium channel; 0.3 m (H), 0.15 m (W)

Structure                       External frame with skirt (limiting depth frame    Skirt around outer channel wall, sink to 0.045 m
                                      sinks into bed)                                                           into bed; flushing of water via 8 lid sections

Paddles                         4, mounted at cardinal points on rotating lid         8, equidistantly spaced on chain drive, 210 mm
                                                                                                                         above nominal bed level

OBS                               1 (50 mm above nominal bed level)                        3 (85, 145 and 200 mm above nominal bed level)

Velocimeter                  –                                                                                  Along-channel, across-channel and vertical
                                                                                                                         directions, 0.15 m above the nominal bed level

Additional features      –                                                                                  Automated syringe sampling system (for OBS 
                                                                                                                         calibration; not used); video recorder, two 24 V 
                                                                                                                         light-emitting diode lamps (not used)

Table 1. Specification and features of the 2 benthic flumes used in the study. W: width; H: height; OBS: optical backscatter sensor

Fig. 2. Benthic flumes used in the study. (a) Voyager I mini-flume; (b) plan view 
of the Voyager II benthic flume

https://www.int-res.com/articles/suppl/q012p401_supp2.pdf
https://www.int-res.com/articles/suppl/q012p401_supp2.pdf
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formed into SI units (kg m−3). Details of the conver-
sion of flow velocity into equivalent bed stress (τ0,
N m−2) are provided in Table S1 in Supplement 2
(Amos et al. 1992b, Black et al. 2016). Voyager I does
not record flow velocity within the annulus in situ,

and bed stress is derived from paddle rotation
rate/flow data using the method presented in Sup-
plement 2. For both devices, an algorithm is applied
to the stress time series to account for stress reduc-
tion at high S values.

From these data, metrics characterising seabed sta-
bility were derived, including (1) eroded mass (EM,
kg), using the flume volume V; (2) instantaneous ero-
sion rate (kg m−2 s−1) over the first minute following a
ramp in bed stress, using the values for flume area
and the time interval between successive data points;
(3) cumulative EM (kg), from which a record of the
total mass of sediment eroded (EMmax) per time step
(∆t) was made; and (4) erosion depth (z) estimation
defined by z = EM/ρsA (values for ρs were taken from
measurements of surface dry bulk density recorded
from samples collected at each site; A is footprint
area of flume in m2). A record was kept of the maxi-
mum depth of erosion (zmax) per time step, ∆t.

2.4.  Analysis

2.4.1.  Computation of critical entrainment stress

Computation of the critical entrainment stress
metric can vary according to the researcher (Suther-
land et al. 1998b provide a useful review of 4 different
approaches). The Voyager I flume has the OBS fixed a
small distance (25 mm) above the sediment−water in-
terface and imposes many more bed stress time steps
per erosion run (twice as many as the Voyager II sys-
tem), starting at 0 N m−2 and incrementing at steps of
0.01 N m−2. The proximity of the OBS and the
higher-resolution erosion profile permits a direct view
of the stress when sediment first appears in suspen-
sion and therefore does not need to involve any statis-
tical (regression) analysis. This approach has been
advocated elsewhere for high-porosity, relatively low
shear strength intertidal mudflat sediments (Widdows
et al. 1998). To provide a consistent basis for compara-
bility of results, we defined τ0,crit as the bed stress
when the concentration of sediments within the annu-
lus was first observed to be 10 mg l−1 over background
(with the requirement that this concentration was ex-
ceeded for a period of 30 s). This, we consider, corre-
sponds to a very small but finite exceedance of the ac-
tual moment of true incipient entrainment.

The configuration of the Voyager II flume, with the
lowermost OBS farther above the sediment bed
(50 mm) and fewer bed stress time steps, does not
allow for this approach to the estimation of τ0,crit to be
followed. Therefore, a regression method based on
the use of erosion depth was found to be the most
robust method (Mehta & Partheniades 1982) for FF
flume deployments. Relative to the method used for
the Voyager I (NF) sites, this approach slightly over-
estimates τ0,crit, but the difference is not judged to be
significant.

2.4.2.  Relationships with sediment characteristics

Comparison was made between critical entrain-
ment stress and particular sediment characteristics
(dry bulk density, median grain size, LOI and organic
matter content) in NF samples, as separate surveys
and with the data grouped together. At each sample
point in the FF survey, 1 grab sample and 2 flume
deployments were made. For plotting and computa-
tion of regressions using FF values, it was assumed
that both flume deployments at each location corre-
sponded to the same grab sample values.

2.4.3.  Computation of equivalent current velocities

Critical erosion stress values were transformed
into equivalent critical mean current velocities 
at 2 m above the bed (the reference velocity height
within AutoDEPOMOD) using 
where , with ρ = 1026.9 kg m−3 (as -
suming a temperature of 10°C and a salinity of
35 PSU). κ = 0.4 is the von Kármán constant, and a
value of z0 = 0.0002 m was assumed, approximating
a smooth muddy seabed (Cromey et al. 2002b).
Black et al. (2016) found that bed roughness lengths
near to the sites varied, with a mean of 0.00003 m
at hydraulically smooth sites (almost all those
here) and 2 transitional rough sites with a mean of
0.054 m. The impact of this variation on resuspen-
sion is considered in Section 4.

2.4.4.  Resuspension rates of impacted bed material

Computation of EM in particle-tracking models
requires the definition of a relationship between bed
erosion rate (ε, kg m−2 s−1) and ambient (or applied)
bed stress (τ0) to resuspend bed material into the
flow. The form of this relationship has been found by

.ucrit

u u z
zz ( )= κ( ) ln*

0

/* 0,u crit= τ ρ
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others to vary according to, among other things, geo-
graphic location, sediment stratification, density and
sediment type (composition). Hypothesised relation-
ships include linear and power law expressions
relating ε to (1) absolute τ0,crit, (2) excess bed stress
where the critical erosion threshold is depth de -
pendent (τ0 − τ0,crit(z)) (Ariathurai & Arulanandan
1978, Mehta & Partheniades 1979, Thorn & Parsons
1980, Kusuda et al. 1985, Villaret & Paulic 1986,
Lavelle & Mofjeld 1987, Houwing 1999, Sanford &
Maa 2001, Amos et al. 2010). Historically, AutoDE-
POMOD has used a linear relationship between ε
and excess bed stress. Amos et al. (2010) investigated
the application of this spectrum of relationships to
data from Venice Lagoon, using R2 as their fit metric.
We followed their ap proach, using data collected
in both the NF and FF surveys, to identify the best-
fitting (highest R2) de scription of benthic flux for our
sites.

3.  RESULTS

3.1.  Sediment classification

Bed types at the survey sites consisted primarily of
a poorly sorted multi- modal mixture of glacigenic/
glacimarine silt and sand, from coarse to very fine
and of high porosity (typically in excess of 70%). At

one site (Ardifuir), 1 sample was of gravel, al though
a number of other sites are also coarse. All sediments
were organically enriched, although FF samples
(Fig. 3a−c) exhibited LOI values mostly less than
10%, contrasting with NF samples (Fig. 4a−c), which
were >10% and commonly >20%. These values are
higher than expected in this locality; at Dunstaffnage
(a relatively sheltered, slow-moving site), LOI 200 m
away from the cages reaches around 2% (data not
shown).

A comparison between the 2 survey time points
was not made, due to the focus on different distances
from the cage locations during each survey. No clear
or consistent spatial patterns were seen between sites
(sites arranged north to south in Figs. 3 [FF] & 4
[NF]), and variation within sites was in some cases
quite high. Complete numerical results of the sedi-
ment sample analysis are contained in Supplement 1.

3.2.  Benthic flumes and erosion experiments

3.2.1.  Erosion of less impacted (FF) sediments

The 2 benthic flumes were successfully deployed.
On occasion, the seabed ground conditions pre-
vented a seal forming, which voids any data col-
lected, and one site was overly coarse and not suited
to use of the technology.
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Fig. 3. Far-field survey data, with data points grouped by survey site (ordered north to south). (a) Organic matter (OM)
percentage; (b) dry bulk density; (c) median grain size (d50); (d) critical entrainment stress (τ0,crit). Site codes defined in Table 2



407Adams et al.: Benthic resuspension of aquaculture waste

An example of the time series of
measured (and derived) parameters at
Durmyon Bay 1_DUB3 on 29 August
2013 from FF survey deployments of
the Voyager II flume is presented in
Fig. 5. As seabed erosion within the
flume annulus occurred, sediments were
entrained into suspension during each
time step (i.e. during each applied
constant voltage/ velocity/ stress). In-
creases in applied voltage resulted in
in creased paddle rotation speed and
the mass of suspended particulate mat-
ter (Fig. 5a). EM broadly increased over
time (Fig. 5b), while instantaneous ero-
sion rate peaked in response to each
increase in applied voltage (Fig. 5c), and
the corresponding eroded depth time
series (Fig. 5d) mirrored the EM time
series effectively. In this specific exam-
ple, increases in flow velocity within the
annulus induce step-wise erosion, and
concentration values rose to a maximum
of ca. 330 mg l−1. Sediment deposition
was evident when the motor is switched
off (not shown here). Peak (instanta-
neous) erosion rates rose systematically
with increases in applied bed shear
stress to ca. 5 × 10−4 kg m−2 s−1, and the
pattern of erosion depicted consistent
Type I (asymptotic) erosion. The maxi-
mum erosion depth was ~0.12 mm.

Fig. 4. Same as Fig. 3 but for near-field survey data

Fig. 5. Durmyon Bay 1_DUB3 (far-field) on 29 August 2013. (a) Applied voltage
and total suspended solids concentration; (b) mass of suspended sediment
eroded; (c) instantaneous erosion rates (computed every 20 s), indicating Type  1

erosion; (d) depth of erosion. SPM: suspended particulate matter
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Table 2 summarises derived critical entrainment
stress values (τ0,crit) for the FF sites; values for partic-
ular samples in FF survey 1 are presented by site
in Fig. 3d and given numerically in Supplement 2.
Five of the FF sample points were classified as hav-
ing no measureable (or very low) critical entrainment
stresses, where the regression line essentially goes
through or very close to the origin; τ0,crit values
ranged from 0 to 0.73 N m−2. The opportunity to
undertake multiple flume deployments at each site
revealed heterogeneity in threshold stresses.

3.2.2.  Critical entrainment stress of highly impacted
(NF) faeces-rich sediments

Measurements of organic content (LOI) indicated
percentages of up to 26.1% for NF sites (Fig. 4),
indicative of a highly impacted situation. The flume
runs enabled direct measurement of the critical
entrainment stress, and erosion through depth, of
surficial sediments close to the depositional centre of
the fish farm apparatus. Under the definition used
here for the critical entrainment condition (the stress
at which the concentration of sediment within the
flume waters is ≥10 mg l−1 over background), well-
defined critical entrainment conditions were identi-
fied in all (11) successful time series except at 4 sites
where flume leakage issues were encountered.

Results from 2_DFB2 (Dunstaffnage Bay, 29 May
2014) are presented in Fig. 6. This shows an incre-
mental (13-step) stress profile (∆τ0 = 0.011 Nm−2, step
duration 5 min, maximum τ0 = 0.14) applied to the
sediment−water interface. The above critical stress
criterion is met at a stress of 0.04 Nm−2.

Critical stress values derived from the time series
for NF survey sites are summarised in Table 2, with

values for individual samples categorised by site in
Fig. 4d and provided numerically in Supplement 2.
These range from 0.01 to 0.04 N m−2, and there is
notably less heterogeneity in the spread of values for
sites. These stress values give equivalent critical cur-
rent velocities at 2 m above bed ranging from
0.07 to 0.14 m s−1 (modal value 0.10 m s−1).

Where data are available from FF and NF surveys
(Shuna Castle Bay, Bagh Dail Nan Ceann and Port na
Moine), the NF values are an order of magnitude
lower, indicative of a gradient (increase) in stability
away from the farm.

3.2.3.  Relationship with sediment characteristics

The relationship between τ0,crit and the sediment
characteristics is shown in Fig. 7. Considering the
data collected as a whole, critical entrainment stress
was found to depend significantly on dry bulk density
(positively) and organic matter (negatively). No rela-
tionship was found with median grain size, and in the
final multiple regression model, LOI was re moved
due to its high correlation with organic matter per-
centage (dry bulk density parameter = 3.0 × 10−4, p =
0.07; organic matter % parameter = –1.9 × 10−2, p =
3 × 10−4). Erodibility of the sediments appears to be
most strongly linked to organic matter content.

Considering the FF data in isolation yielded no sig-
nificant terms in a multiple regression model, but sig-
nificant relationships were found in each simple lin-
ear regression (dry bulk density: positive, median
size: weakly positive, organic matter: negative). Con-
sidering the NF data in isolation yielded no signifi-
cant relationships in simple linear regressions with
the sediment characteristic variables.

3.2.4.  Resuspension rates of impacted
bed material

Data were drawn together from
both surveys (NF and FF) to investi-
gate relationships between applied
bed stress (τ0) and erosion rate (ε). Al -
though the NF and FF environments
differ in their organic content (Fig. 7d),
both areas are nonetheless impacted
by faecal material, and therefore any
expression represents the condition of
organically enriched seabeds.

Results of this analysis yielded a wide
range of R2 values, from R2 = 0.29 (simple

.ucrit
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Site ID FF τ0,crit (N m−2) NF τ0,crit (N m−2) 
(survey 1; August 2013) (survey 2; May 2014)

Bloody Bay *_BB* 0.12 NA
Fiunary *_FIU* 0.55 NA
Ardifuir *_ARD* 0.31 NA
Durmyon *_DUB* 0.40 NA
Shuna Castle Bay *_SCB* 0.17 0.02
Bagh Dail Nan Ceann *_BDNC* 0.20 0.04
Port na Moine *_PNM* 0.25 0.02
Scallastle *_SCA* NA 0.01
Dunstaffnage *_DFB* NA 0.03
Port na Gille *_PNG* NA 0.02

Table 2. Summary of erosion measurements from far-field (FF) and near-
field (NF) surveys, including critical erosion threshold τ0,crit (N m−2) NA: not 

available
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dependence on bed stress, log ε vs. τ0)
through R2 = 0.52 (ε = 0.009 (τ0 − τ0,crit)0.36)
to R2 = 0.68 (ε = 0.031(τ0 − τ0,crit), a linear
dependence of ε on the excess bed
stress). This latter relationship is shown
in Fig. 8.

4.  DISCUSSION

This work used benthic flumes to
make in situ observations to investi-
gate how the characteristics of sedi-
ments in the proximity of marine
salmon aquaculture farms influence
their resuspension, which in turn
influences how they interact with
water flow to determine transport dis-
tances and timescales. The results
from this study showed that waste sed-
iments, which are rich in organic mat-
ter, are much more easily eroded than
the natural sediments on which they
fall. This means that they must be
parameterised differently in models
describing their transport. Our results
provide guidance on making this
parameterisation. Improving the rep-
resentation of (deposition and) resus-
pension in these models using meas-
ured datasets allows more accurate
predictions of farm footprints to be
made and can therefore inform spatial
management of the industry (SEPA
2019a). The study described here
formed part of the redevelopment of
DEPOMOD (Cromey et al. 2002a), a
key piece of software used in industry
regulation and site planning around
the world. The resuspension module
within the revised NewDEPOMOD is
a compartmentalised model consisting
of erosion, transport, deposition and
consolidation components. The model
uses near-bed current velocity to
determine a shear velocity and bed
shear stress for each time step. Shear
stress then drives a near-bed bound-
ary erosion process in which erosion
events are determined by the magni-
tude of the shear stress above a critical
threshold for erosion (τ0,crit), and bed
erosion rates (ε) are moderated by an

11:30 11:45 12:00 12:15 12:30 12:45 13:00
0

100

200

300

400

500

Time (GMT) 29−May−2014

S
P

M
 (
m

g
 l

−
1
)

0

0.05

0.1

B
e
d

 s
h
e
a
r s

tre
s
s
, τ

0  (N
 m

−
2
)

Fig. 6. Suspended particulate matter (SPM) concentration (black) and bed 
shear stress (red) time series for site 2_DFB2 (near field)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
−3

Excess bed shear stress (N m−2) 

S
te

p
−

a
v
e
ra

g
e
d

 e
ro

s
io

n
 r

a
te

  
 (
k
g

 m
−

2
 s

−
1
)

Fig. 8. Excess bed stress (τ0 − τ0,crit) versus erosion rate ε averaged over each
velocity/stress time step on a linear plot
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erodibility constant (M). For the model to function
optimally, it needs to be provided with values for
these parameters.

The magnitude of critical thresholds for resuspen-
sion has been a topic of continuous debate (Cromey
et al. 2002b) and reiterated the importance of using
appropriate information/data to support effective
parameterisation. The continuous debate referred to
is a function principally of the rather unusual proper-
ties of faecal material (which differ substantially from
conventional minerogenic sediments in terms of
size/density/settling velocity characteristics as well
as temporal variation) and the range of tools to meas-
ure their hydraulic (erosion) properties with confi-
dence. This creates problems in terms of generating
robust data for these parameters, as they cannot be
obtained from literature sources (as is the case for
sand, for instance); they must be measured.

Several authors (Droppo et al. 2007, Law et al. 2016,
Carvajalino-Fernández et al. 2020) quote values for
τ0,crit which were developed from laboratory experi-
ments. Laboratory studies are useful approaches,
particularly for manipulative investigations, to ex plore
a range of facets of material erosion and transport
under various highly controlled conditions. However,
the fundamental and unavoidable issues with respect
to laboratory studies are the changes induced to the
material via sampling, preparation and introduction
into the laboratory test device, none of which can be
quantified. That is not to suggest that laboratory-
generated data are not of use; rather, if sediments
can be tested without the necessity of removing them
from the seabed, then there is a preservation of
aspects of the bio-physical matrix (which govern ero-
sion magnitudes and patterns), such as compaction/
incorporation within the underlying seabed, bio -
turbation, biogeochemical gradients, disintegration
processes, winnowing and interaction with seabed
microtopography.

Cromey et al. (2002b) developed a novel approach
to determining a field-based (in situ) estimate of τ0,crit

to support parameterisation of DEPOMOD via a fluo-
rescent UV tracer study. However, this study has
received criticism related to the hydraulic similarity
of the tracer to real fish farm wastes in the calibration
of the resuspension module and for being overly site
specific. Novel technology approaches are, however,
welcome. Benthic flumes are instruments specifically
designed to collect in situ data on bottom boundary
erosion parameters, and thus they are ideal instru-
ments to collect this information in the ocean. They
have been used for around 30 yr and are considered
a mature marine technology, and the wealth of scien-

tific data collected to date using these devices means
that their operational characteristics are very well
understood (Amos et al. 2010). However, their appli-
cation here is, to the authors’ knowledge, a first in
aquaculture.

A significant volume of useful data on bottom
boundary erosion parameters was collected in this
study. In total, 40 successful flume deployments were
made encompassing multiple landings at the same
site, which allows for an assessment of the spatial
variability of parameters. Due to its smaller size, the
Voyager I flume can be deployed from a smaller ves-
sel and hence facilitates measurement of sediment
erosion properties closer to the fish farm depositional
centre at water depths in excess of 40 m. This repre-
sents a logistical achievement on sediments which
are otherwise very difficult to test. The high-resolu-
tion stress profile the flume imparts to bottom sedi-
ments allows for a statistical estimate of τ0,crit. Very
close to the fish farm depositional centre, the bottom
sediments are highly organically enriched, with LOI
percentages commonly in excess of 15%. Values for
τ0,crit ranged from 0.01 to 0.04 N m−2 and are centred
on 0.02 N m−2. There is a notably low degree of vari-
ability between replicate flume drops at a given site
(e.g. at SCB 3 replicate runs provide the same τ0,crit

value), and values were fairly consistent geographi-
cally across and between the farm sites. This wide-
spread similarity indicates that the faecal waste
deposit layer probably completely smothers the sea -
bed, infilling or nearly infilling any antecedent bot-
tom microtopography. This is an as sumption made
within NewDEPOMOD and an inference which is
also supported by observations of highly similar val-
ues for the hydraulic bed roughness (z0) measured
separately across the sites. Law et al. (2016), in a
series of laboratory studies examining topographic
influence on erosion thresholds, found more variabil-
ity in τ0,crit values, further supporting the hypothesis
that substrates in our NF samples were smothered.
This is an important distinction, as has been argued
elsewhere (Carvajalino-Fernández et al. 2020), that
τ0,crit should be parameterised ac cording to substrate
characteristics but would not be appropriate if the
seabed were blanketed by a thick organic layer.

Notwithstanding the issue of artefacts associated
with sampling and experimental design, on a general
level a comparison of our NF field values with others
supports the view that waste faecal material at
fish farms (or at least the surficial layers) is a highly
organic, high-porosity, normally consolidated and
low shear strength (highly erodible) substratum able
to be readily resuspended by even comparatively
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low currents. For some NF sites, no erosion threshold
was measureable, indicating an exceptionally low
strength deposit. Our work suggests a mean value of
0.02 N m−2 for the value of the critical entrainment
stress for NF impacted sediments, and this value
would make a good starting point for models describ-
ing aquaculture waste transport on a range of seabed
types. For comparison, Law et al. (2016) found values
of ca. 0.01 N m−2, Droppo et al. (2007) reported 0.06
to 0.1 N m−2 and Carvajalino-Fernández et al. (2020)
reported values in the range of 0.06 to 0.07 N m−2.
The critical entrainment stress and corresponding
velocities for highly impacted NF sediments, whether
in the field or laboratory situations, are much lower
than thresholds typically found for other organic
marine sediments such as estuarine muds (Amos et
al. 1996, 2010, Houwing 1999, Sanford & Maa 2001).
Law & Hill (2019) found a negative relationship
between organic matter and mass eroded (higher
erosion threshold at more impacted locations and
over time through a production cycle). This may,
however, reflect differences in the nature of the sites
considered: one of their sites experienced much more
wave action than would be expected at those consid-
ered here and had very low organic matter percent-
age in comparison to those in the current study.

Calculated equivalent mean critical current veloci-
ties at 2 m above the seabed were close to the pres-
ent value within the original AutoDEPOMOD for

at 2 m, which is 0.095 m s−1 (Cromey et al.
2002a), and was derived using observations of syn-
thetic fluorescent tracer particles. Tracer particles
are expected to erode more readily than bulk sedi-
ments, which consist of a mixture of natural and
farm-derived material (Cromey & Black 2005), but our
observations of highly enriched sediment matched
well. Applying the mean bed roughness measured
across the study sites by Black et al. (2016) (0.00003 m,
which encompasses the majority of sites here) gives
equivalent critical velocities of 0.08 to 0.17 m s−1,
while using the value found for the less common
transitional rough sites gives lower critical velocities
of 0.03 to 0.06 m s−1.

The larger flume (Voyager II), because it requires a
much larger vessel for deployment, was deployed
some 200 to 500 m from the fish farm centre (FF). Bot-
tom sediments were less organically enriched and
admixed to varying degrees with local surficial min-
eral sediments; nonetheless, the sediments may be
considered impacted by the farm operations. Critical
stress values were all found to be consistently higher
by an order of magnitude, and sites with coarser sed-
iments gave values of τ0,crit up to 0.74 N m−2, indica-

tive of a stability gradient with distance from the
farms (although there were several instances where
no erosion threshold was found, indicating that the
initial step was too dramatic or that sediment had not
settled properly after the device reached the seabed;
Supplement 1). The mean critical erosion stress found
for FF samples at our 3 comparison sites (where both
NF and FF surveys were carried out) was 0.19 N m−2.
While the larger flume used in the FF survey returns
values which may be considered conservative, we
believe the data reflect genuine differences in bot-
tom stability. The FF and NF surveys were conducted
in differing years (a function of project timescales;
August and the following May, respectively). This
difference in timing potentially affects the state of
the seabed (with respect to winter storm action), the
point at which sites are in their production cycle
(which varied between sites, Law & Hill 2019), and
the temperature and salinity of the overlying water
column (which were not collected at the time of the
surveys), which may cause some variability in the
results. However, on balance we feel the increase in
stability with distance from the farm simply reflects a
lower mass fraction of faecal material together with a
dominating influence of the underlying (more stable,
possibly more rough) mineral sediment components.
The laboratory observations of Carvajalino-Fernández
et al. (2020) suggest that where the seabed is coarser,
the resuspension of faeces requires greater bed
stresses, a phenomenon referred to by them as sub-
stratum dependency. Indeed, in their conclusions
they reflect on future efforts to explore linking meas-
ured critical shear stresses for lower-impact situa-
tions to a continuous variable such as the roughness
length (z0) and eventually to incorporate such com-
plexity within particle transport models via detailed
bed feature maps. This is most readily obtained by
direct measurement of flow in the bottom boundary
layer of the water column (NewDEPOMOD Develop-
ment Team 2019). Clearly, consideration of the phys-
ical reality of the seabed in both the NF and FF is
necessary here and should form an important aspect
during the development of particle transport models.
Bottom video or sediment profile imagery (SPI, Ger-
mano et al. 2011), in particular, are useful tools to
bring to bear here and are complementary to the
methods presented here with respect to understand-
ing waste resuspension processes.

A common drive in (cohesive) sediment research is
to correlate the entrainment parameters with more
commonly measured bed compositional parameters,
such as grain size, organic content and bulk density
(Defew et al. 2003). The rationale behind this is to
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explore whether statistically significant relationships
may exist with commonly measured bed parameters
which could then be used as legitimate proxies for
erosion (thereby avoiding the need to measure ero-
sion using benthic flumes) in future studies. We
found significant relationships with bulk density
(negative) and organic matter percentage (positive)
but only when considering data from the 2 surveys
together. However, erosion resistance is a multi-
parametric issue. No single variable accounts for
surface cohesive strength; this is particularly true
for organically enriched sediments where highly
cohesive/ adhesive bacteria thrive, binding sediments
together (Black et al. 2002).

Boundary shear stress is defined as the force per
unit of area that flowing water exerts on the
seabed. Particles at the surface of the seabed
move when the downstream (fluid drag) and
upward (fluid lift) forces overcome the forces keep-
ing a particle in contact with the bed (Wiberg &
Smith 1987). The critical entrainment stress is rele-
vant to the incipient motion of surficial material,
whereas continued seabed erosion above τ0,crit acts
to sequentially excavate sub-surface horizons, the
so-called mass flux. As erosion proceeds in the
benthic flume annulus, the system records the
mass flux for each stress step, and therefore ben-
thic flumes are suited to provide crucial data to
allow modellers to develop bed erosion formula-
tions needed within modules to provide for resus-
pension processes.

Our results suggested the use of a linear relation-
ship between erosion rate and excess bed shear
stress to parameterise benthic flux at the seabed for
impacted seabed areas, with an erodibility constant
M = 0.031 kg m−2 s−1. A broad range of different for-
mulations have been published for this relationship
for normal cohesive (mudflat) sediments (Mehta &
Parchure 2000) in addition to efforts to unify different
erosion types within a single formulation (Sanford &
Maa 2001). An inherent facet of natural biologically
active sediment deposits is high local variability in spe-
cific characteristics, limiting the quality of fit of any
relationship (Amos et al. 2010). Nonetheless, linear
relationships have been found by various previous
studies to adequately parameterise benthic flux for
fine- grained, cohesive sediments (Kandiah 1974,
Ariathurai & Arulanandan 1978, Delo 1988), with
quoted values for M coefficients on the order of 10−4

(Mitchener & Torfs 1996) to 10−3 kg m−2 s−1 (Owen
1975). Our fitted value was 10−2, indicating that the
erosion rate for waste solids increases much more
quickly once past the critical erosion threshold.

5.  CONCLUSIONS

Carvajalino-Fernández et al. (2020) noted only this
year that the ‘current body of literature concerning
remobilisation processes for fish faeces is, unfortu-
nately, very limited’. This study was aimed towards
improving this situation, via the collection of new
field data at a range of geographically disparate sites
on the Scottish west coast. The application here of
benthic flume technology, which is not new in terms
of marine instrumentation but which has hitherto not
been adopted by the aquaculture community or re -
searchers, is a positive step forwards. Flumes are ide-
ally suited to this application. We have demonstrated
how direct measures of the important bottom bound-
ary layer erosion parameters can be collected rela-
tively quickly and simply, even in areas traditionally
difficult to access such as near the depositional centre
of farms, and illustrated how a technology-led
approach can be used to ultimately update particle
transport models for faecal waste. Typically, 3 to
4 flume deployments can be made from a vessel
working 12 h days, enabling collection as here of a
sizeable dataset in a relatively short time frame and
encompassing some level of replication (useful in the
assessment of heterogeneity). Amos et al. (1992b)
published a design for the larger Voyager II flume,
and these principles carried over to Voyager I, which
was made in-house. Flumes are also available com-
mercially (see www.kcdenmark.com). It should,
therefore, be possible for other researchers and the
industry itself to use this particular technology to
continue research into this area.

The application of flume technology has provided
updated estimates of the critical entrainment stress
(τ0,crit) and the erosion rate formulation to New -
DEPOMOD. Cromey et al. (2002b) remains the only
field-based study which provides a value for the crit-
ical shear stress value to the DEPOMOD model. The
value determined here was, interestingly, the same
as Cromey’s. The laboratory studies noted previously
also found values highly similar to this. Collectively,
these findings lend weight to implementation of this
mean value within NewDEPOMOD. The benthic
flux expression provides an updated value for M

(0.031 kg m−2 s−1), derived in this instance from 40
successful flume drops. This, in conjunction with the
linear excess stress formulation, is implemented
within the NewDEPOMOD model.

The main goal of this study was to collect data at
a range of sites rather than to target deployments at,
or onto, specific problems. However, it is relatively
straightforward to address specific areas using the
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flume approach. This work provides new field values
for τ0,crit and the ε−τ0 relationship and represents a
development on previous laboratory datasets. None-
theless, in reality these parameters likely vary tem-
porally, and a constant value status quo as present is
perhaps an oversimplification of the topic. Future
improvement to models through incorporation of
multiple (or time/space varying) erosion parameters
is widely regarded as the next step in the evolution of
particle transport models within aquaculture. Video
surveys in salmon farming sites have shown there
is a time-varying change in faecal material as it
degrades from intact pellets to bottom broken-down
faeces, a function of very near bed turbulent shear-
ing, grazing by benthic organisms, and the cumulative
effect of short-lived resuspension/settling episodes
rather than swelling or thermal or bacterial degrada-
tion (Carvajalino-Fernández et al. 2020). These pro-
cesses will likely impart the critical shear stress re -
quired to resuspend them. Such variability could be
examined, in conjunction with other techniques such
as SPI, through an appropriate survey design and
timing of flume deployments. Similarly, biofilms may
grow on the surface of waste mounds during summer
(Droppo et al. 2007), generating a longer-term signal
in bed stability. Summer vs. winter flume studies
could expose such a signal if biostabilisation pro-
cesses were pronounced. On a related basis, winter
wave effects may erode a mound down to a horizon
which is much less erodible, thereby limiting ongoing
resuspension; again, this could be proven through
the use of flume and related technology and appro-
priate survey planning.

Model algorithms may omit some aspects of reality
while also introducing numerical formulations and
parameters which do not necessarily relate directly
to real processes. As such, these parameters could
also act as candidates for tuning predicted footprints
to observational data (R. J. Weeks et al. unpubl.),
while recent work investigating the time evolution of
sediments and degradation of farm wastes (Bravo &
Grant 2018) gives insight into how some such addi-
tional processes may be accounted for as models are
developed further and adapted to different regula-
tory regimes. Refining transport parameters and
future model validation using the methods applied
here will help increase our understanding and pre-
dictive capacity of waste transport to the FF and help
understand wider environmental impacts.
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