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Abstract

We introduce a Locally Optimal Projection operator (LOP) for
surface approximation from point-set data. The operator is parame-
terization free, in the sense that it does not rely on estimating a local
normal, fitting a local plane, or using any other local parametric
representation. Therefore, it can deal with noisy data which clutters
the orientation of the points. The method performs well in cases
of ambiguous orientation, e.g., if two folds of a surface lie near
each other, and other cases of complex geometry in which methods
based upon local plane fitting may fail. Although defined by a
global minimization problem, the method is effectively local, and it
provides a second order approximation to smooth surfaces. Hence
allowing good surface approximation without using any explicit or
implicit approximation space. Furthermore, we show that LOP is
highly robust to noise and outliers and demonstrate its effectiveness
by applying it to raw scanned data of complex shapes.
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1 Introduction

Reconstructing the geometry of a shape from scanned data has been
an important research objective in the last two decades [Hoppe
et al. 1992; Amenta et al. 1998; Levoy et al. 2000; Kazhdan et al.
2006]. Despite the proliferation of surface reconstruction tech-
niques, many aspects of the problem remain open. Two prominent
difficulties in the reconstruction process are shape complexity and
noise. Surface reconstruction methods (e.g., [Hoppe et al. 1992;
Alexa et al. 2001; Carr et al. 2001; Ohtake et al. 2003; Amenta
and Kil 2004; Kazhdan et al. 2006]) work well when the data is
densely sampled and the orientation of the points can be deduced
from the samples themselves. In the case of complex geometry
(e.g., Figure 1) the surface cannot be reasonably approximated by
a simple oriented manifold, that is, it cannot be well parameterized
and approximated over a local plane. Such a scenario, for example,
is manifested in thin parts where two folds of the shape are close
to each other and the noise level is high. Therefore, augmenting
the data points with orientation, either by supplying normals or
off-surface points, is an extremely hard task.

Reconstruction by a projection operator has an important virtue:
It defines a consistent geometry based on the data points, and
provides constructive means to up-sample it. For example, the
MLS projection operator [Levin 2003] has been established as a
powerful surface reconstruction technique. However, the MLS
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Figure 1: (a) A photograph of the scanned comb. (b) Five
registerated scans. (c) LOP reconstruction.

projector assumes that a local plane can well approximate the data
locally. In this context it is desirable to devise a projection operator
which can efficiently deal with complex geometry. In particular,
such an operator should not insist on using local orientation
information such as reference planes or normals.

In this paper, we introduce a parameterization-free local projec-
tion operator (LOP). Apparently, it uses a more primitive projection
mechanism, but since it is not based on a local 2D parameteri-
zation, it is more robust and operates well in complex scenarios.
Furthermore, if the data points are locally sampled from a smooth
surface, the operator provides a second order approximation, lead-
ing to a plausible approximation of the sampled surface. The new
projection operator is introduced via a certain fixed-point iteration,
where the approximated geometry consists of its stationary points.
The origin of the method is Weiszfeld’s algorithm for the solution
of the Fermat-Weber point-location problem, also known as the
multivariate L1 median. This is a statistical tool which is tradition-
ally applied globally to multivariate non-parametric point-samples,
to generate a good representative for a large number of samples in
the presence of noise and outliers. The problem was first known
as the optimal location problem of Weber [1909]. The task was to
find an optimal location for an industrial site that minimizes access
cost. In statistics, the problem is known as L1 median [Brown
1983; Small 1990]. Weiszfeld [1937] suggested a simple iterative
procedure for computing the L1 median. Later, Kuhn [1973]
gave Weiszfeld’s algorithm a rigorous treatment, and also noted
that the problem goes back to Fermat in the early 17th century.
The Fermat-Weber (global) point-location problem is considered
as a spatial median since, if restricted to the univariate case, it
coincides with the univariate median, and it inherits several of its
properties in the multivariate setting. In this work, we apply this
tool locally in a geometric context to constitute a robust mechanism
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Figure 2: Iterative projection of a 2D noisy data taken from two concentric circles of radii 0.7 and 1.0 (a) (illustrated with thin black circles),
using a large influence radius h = 0.7. (b),(c),(d),(e),(f) show the projected set after 1,3,5,10,20 iterations, respectively. Note the few remaining
“floating points”, which can be removed by local analysis, see Section 2. Moreover, note that the expected shrinkage effect is insignificant (f).

Figure 3: Nearly osculatory cylinders. Left: the input data. Right:
LOP reconstruction.

for geometry reconstruction. Our approach is also related to the
so-called ”running median” method for filtering time series or
images. However, LOP is a projection operator rather than a filter,
and unlike the running median it requires no local parameterization.

LOP operator has two immediate functionalities: Firstly, it
can be used as a preprocess stage for any other higher-order
reconstruction technique (e.g., RBF). LOP can be applied on raw
scanned data to create a clean data-set, as a means of efficiently
reducing noise and outliers, and of simplifying the determination
of a local surface orientation and topology. Secondly, it can be
used to refine a given dataset. In the following, we show the results
of applying LOP operator to a number of raw datasets, where the
complexity of the models is particularly challenging.

2 Locally Optimal Projection - LOP

Given the data point-set P = {p j} j∈J ⊂ R3, LOP projects an

arbitrary point-set X (0) = {x
(0)
i }i∈I ⊂ R3 onto the set P, where I,J

denote the indices sets. We would like to define the set of projected
points Q = {qi}i∈I such that it minimizes the sum of weighted
distances to points of P, with respect to radial weights centered at
the same set of points Q. Furthermore, the points Q should not be
too close to each other. This framework induces the definition of
the desired points Q as the fixed point solution of the equation

Q = G(Q), (1)

where

G(C) = argminX={xi}i∈I
{E1(X ,P,C)+E2(X ,C)},

E1(X ,P,C) = ∑i∈I ∑ j∈J ‖xi − p j‖θ(‖ci − p j‖),

E2(X ,C) = ∑i′∈I λi′ ∑i∈I\{i′} η(‖xi′ − ci‖)θ(‖ci′ − ci‖).

(2)

Here θ(r) is a fast-decreasing smooth weight function with
compact support radius h defining the size of the influence radius,
η(r) is another decreasing function penalizing xi′ which get too
close to other points, and {λi}i∈I are balancing terms, which we
denote by Λ. In a nutshell, the term E1 drives the projected points
Q to approximate the geometry of P, and the term E2 strives at

keeping the distribution of the points Q fair. In the following,
we explain each of the two terms, and then we show that proper
values Λ can guarantee second order approximation power of LOP
operator given that the data is sampled from a C2 surface.

L1 median. The first cost function E1 is closely related to the
multivariate median, also referred to as the L1 median. Given a
data set P, the L1 median is defined as the point q, minimizing the
sum of Euclidean distances to the data points:

q = argmin
x

{

∑
j∈J

‖p j − x‖

}

. (3)

It is known that, unlike the usual (mean) average, the “L1” median
is not sensitive to the presence of outliers in the data. E1 can be
seen as a localized version of the cost function in (3) which aims
to obtain from P local approximations to the underlying geometry:
Instead of looking for one point q representing all the data points P,
we look for set of points Q = {qi}i∈I which represent the geometry.
We localize the cost function using a fast-decaying weight function
θ with the finite support radius h (we used the approximation

θ(r) = e−r2/(h/4)2

). The solution of

Q = argmin
X

E1(X ,P,Q) (4)

can be interpreted as being the set Q of local ‘distribution centers’.

Regularization. The solution of (4) produces good approx-
imations to points on the surface, but the resulting points Q
have an irregular spatial distribution and tend to accumulate in
clusters. The second cost function E2(X ,Q) regularizes the points
in Q by incorporating local repulsion forces. We generally use
the repulsion functions of the form η(r) = 1/3r3. As in other
minimization problems involving the sum of two cost functions, it
is important to set appropriate values to the parameters Λ in (2).
Small values of Λ enforce good approximation at the expense of
poor distribution. On the other hand, large values of Λ gives weight
to a data independent term, which only strives for a fair distribution
of the points. As we will show next, there is a choice of Λ which
guarantees LOP having an O(h2) approximation order, where h is
the support size of the weight function θ .

Approximation order of LOP. An important property of
LOP operator is the ability to approximate surfaces without any
local orientation information nor a local manifold assumption. An
important parameter which plays a major role in the application of
LOP is h, the support size of the weight function θ . The following
theorem guarantees an O(h2) approximation order, which is
asymptotic as h → 0. As a by-product of the approximation order
analysis, we shall also derive the proper choice of balancing
parameters Λ in the computational LOP procedure.



Theorem 2.1. If the data set P is sampled from a C2-smooth
surface S, LOP operator has an O(h2) approximation order to S ,
provided that Λ is carefully chosen.

Proof. In letting h tend to zero we assume that the
number of projected points, I, is fixed, while the num-
ber of input points, J, may grow. G(C), as defined in
(2), satisfies ∇X |X=G(C)

(E1(X ,P,C)+E2(X ,C)) = 0. There-

fore, the points Q = {qi}i∈I defined by Eq. (1) satisfying
∇X |X=Q

(E1(X ,P,Q)+E2(X ,Q)) = 0, which leads to the relation:

∑
j∈J

(qi′ − p j)α
i′

j −λi′ ∑
i∈I\{i′}

(qi′ −qi)β
i′

i = 0 , i′ ∈ I, (5)

where α i′

j =
θ(‖qi′−p j‖)
‖qi′−p j‖

, j ∈ J and β i′

i =
θ(‖qi′−qi‖)
‖qi′−qi‖

∣

∣

∣

∂η(‖qi′−qi‖)
∂ r

∣

∣

∣
,

i ∈ I \ {i′}. Note that we have used the fact that η is decreasing,
that is, its derivative is always negative. After rearranging and

setting λi′ = µ
∑ j∈J α i′

j

∑i∈I\{i′} β i′
i

, µ > 0, we get

(1−µ)qi′ +µ ∑
i∈I\{i′}

qi

β i′

i

∑i∈I\{i′} β i′

i

= ∑
j∈J

p j

α i′

j

∑ j∈J α i′

j

, i′ ∈ I. (6)

Viewing (6) as a system of equations for Q,

AQ = R, (7)

Note that both A and R are also depending on Q, yet, by analyzing
A−1 and R we show below that Q = A−1R are points at distance
O(h2) from the surface S. The proof is by showing that each qi′ is an
average of nearby points, on the surface or near it. We shall use the
observation that an affine average of points on a plane is also on that
plane, and that the surface can be locally approximated by a plane,
with an approximation error of O(h2). The sum on the r.h.s. of (6)
represents a local convex combination of points within a distance h
from qi′ . We may assume that this sum is not empty. Otherwise, by
(6) it follows that qi′ is at, or near, the origin, and such points will
be discarded. Thus, using the local plane reconstruction property of
affine combinations, we have that the r.h.s. equals F +O(h2), where
F = { fi′}i′∈I are points on S. Also, due to the finite support of θ , we

further have | fi −qi| ≤ h+O(h2). Next, we have AQ = F +O(h2).
If we take µ ∈ [0,1/2), then A is strictly diagonally dominant

and therefore we can bound ‖A−1‖∞ ≤ 1
1−µ ∑

∞
k=0(

µ
1−µ )k = 1

1−2µ .

Now, since the rows of A sum up to one, so do the rows of

A−1. Furthermore, we note that |(A−1)ℓ,m| ≤ a1(
µ

1−µ )k when the

distance between qℓ and qm is greater or equal to kh; that is, the
influence of distant points decays exponentially with distance.
The above implies that Q = A−1F + O(h2), and each element

(A−1F)i′ is an affine average of fi on the surface, with weights
exponentially decaying with the distance ‖ fi′ − fi‖. Let T be
the tangent plane to S at fi′ , and let fi = ti + ri where ti is the
projection of fi on T . It can be shown that ‖ri‖ < a2‖ fi − fi′‖

2.

Then (A−1F)i′ = ∑i∈I A−1
i′,i (ti + ri) = ∑i∈I A−1

i′,i ti + ∑i∈I A−1
i′,i ri.

We would first like to show that ‖∑i∈I A−1
i′,i ti − fi′‖ = O(h)

and since ∑i∈I A−1
i′,i ti is on T it will follow that it is an O(h2)

distant from S. Secondly, we will show ∑i∈I A−1
i′,i ri = O(h2).

This will show that (A−1F)i′ and consequently qi′ is O(h2)
distant from S. Then, for a fixed i′ let us denote by Ik the
set of indices of points qi such that ‖qi − qi′‖ ∈ [kh,(k + 1)h).
∥

∥

∥∑i∈I A−1
i′,i ti − fi′

∥

∥

∥
=

∥

∥

∥∑i∈I A−1
i′,i (ti − fi′)

∥

∥

∥
≤

∑k≥0 ∑i∈Ik
a1(

µ
1−µ )k ((k +1)h+O(h)) = O(h). (8)

Next, in the same way, using the observation that
‖ri‖ < a2((k + 1)h + O(h))2, for i ∈ Ik, we conclude that

‖∑i∈I A−1
i′,i ri‖ = O(h2).

Figure 4: Left: A prism point-cloud contaminated with ghost-
geometry noise. Middle: MLS. Right: LOP. In both the point-set is
projected onto itself.

(a) (b)

(c) (d)

Figure 5: The point-cloud in (a) consists of three registered scans.
(b) LOP reconstruction. (c-d) show the quality of the points’
distribution of LOP projection, where 1/16 of the original point
number is used.

The iterative LOP algorithm. The above leads to an iterative
solution to (1) which guarantees an O(h2) approximation order: Fix

a repulsion parameter µ ∈ [0,1/2). Next, define X (1) = {x
(1)
i }i∈I

by

x
(1)
i′ =

∑ j∈J p jθ(‖p j − x
(0)
i′ ‖)

∑ j∈J θ(‖p j − x
(0)
i′ ‖)

, i′ ∈ I.

Then, at each iteration k = 1,2,3, ... define for i′ ∈ I

α i′

j =
θ(‖x

(k)
i′ − p j‖)

‖x
(k)
i′ − p j‖

, β i′

i =
θ(‖x

(k)
i′ − x

(k)
i ‖)

‖x
(k)
i′ − x

(k)
i ‖

∣

∣

∣

∣

∂η

∂ r
(‖x

(k)
i′ − x

(k)
i ‖)

∣

∣

∣

∣

for i ∈ I \ {i′}. Then, by rearranging (6) we derive our fixed point
iterations as

x
(k+1)
i′ = ∑

j∈J

p j

α i′

j

∑ j∈J α i′

j

+ µ ∑
i∈I\{i′}

(

x
(k)
i′ − x

(k)
i

) β i′

i

∑i∈I\{i′} β i′

i

,



for every i′ ∈ I. Upon convergence, the limit satisfies the necessary
condition (5), and by Theorem 2.1 the approximation order is
guaranteed. Figure 2 exhibits a 2D example of the iterative process.
There could be a small number of points which LOP operator
might not project as expected. There are two typical scenarios:
(i) The point’s distance from the surface is larger than the support
size of the influence weight function θ , that is h. (ii) The point is
exactly midway between two attractors; for example, see Figure 2
(f). In both cases these problematic points can easily be detected
via a local points’ distribution analysis, since the weighted density
in the vicinity of such points is smaller than the density of the
points on the surface. In our implementation we detect these points
using a parameter and discard them.

(a) (b) (c) (d)

Figure 6: Up-sample/down-sample example. A planar point-cloud
(a) was projected onto itself using LOP (b). (c) shows projection
of a halved set onto the original data (a) (down-sample). (d) shows
projection of doubled set (up-sample).

Application of LOP. LOP can be used to project an arbitrary

set of points X (0) onto an input point-cloud P. We observe that tak-

ing X (0) with less points than P results in more regular distribution
of projected points, see Figure 6 and 5(c–d). The rationale is that
the input data can be regarded as consisting of multiple observation
of the same data (e.g., multiple registered scans), and LOP operator
generates a concise set of points that represents well the input data.
In a sense, it operates like a multivariate median, which defines a
representative to a set of samples. Then, to up-sample the initial
projection, we enriched the above projected set and performed few
(≈ 3 or 4) iterations of LOP. It is important to note that LOP is

rather independent of the initial guess X (0). See Figure 8 where an
initial crude guess results in a fair and faithful approximation. LOP
algorithm is controlled by two parameters: h and µ . To study their
influence on the properties of the projected set Q, see Figure 12. h
is the local influence size of the operator; it is usually best to start
the iterations with h as large as the expected outliers magnitude
and then refine h as the iterations progress. Similarly, one can start
with a small µ and then increase it. µ reflects the tradeoff between
accuracy (µ ∈ [0.1,0.25]) and regular distribution (µ ∈ [0.3,0.45]).

3 Results and conclusions

Figures 1, 5, 7, 10 show the results of applying LOP to raw
data-sets acquired by a scanner. For each model a number of scans
are registered, forming a noisy and incomplete point-cloud. The
shape of the models that we use are challenging. Figure 3 shows
a synthetic example where the correct topology of two near oscu-
latory cylinders is reconstructed by LOP. Figures 4, 9, 10 and 11
show different comparisons of LOP and MLS. All the examples are
rendered using PointShop3D [Zwicker et al. 2002]. The normals
used for shading are computed with the same local PCA algorithm.
In Figure 10 we used voxel data extracted from multi-view video.

The algorithm requires typically 20 iterations of averaging for
projecting a point-set onto itself. An exception is the example

depicted in Figure 8, where the initial guess X (0) is very crude,

(a) (b) (c)

(d) (e) (f)

Figure 7: Hole-puncher scan which consists of a few registered
scans suffering from bad alignment, noise and outliers. (a) shows an
example of two scans which where registered using ICP. (b),(d-top)
are the whole input data seen from two angles. Note the high noise
and ghost geometry. The corresponding LOP reconstruction is de-
picted in (c),(d-bottom). Note the zoomed-in views in (e) and (f).

(a) (b)

(c) (d)

Figure 8: This example depicts the distribution of point by LOP op-
erator. (a): Starting from a crude initial guess (red points projected
onto the green point-set), the operator iteratively (b–d) distribute
the points regularly while respecting the geometry faithfully.

and the algorithm required several hundred iterations. After
enriching the projected set we performed few iterations only. We
implemented the algorithm in MATLAB with no optimization; it
projects approximately 200 points a second (the timing depends on
h) in the first stage, and 1000 points a second in the up-sampling.

The current notable limitation of LOP reconstruction algorithm
is the use of a local density parameter h. Although such a parameter
exists in many reconstruction techniques, we believe that it is
important to avoid any use of parameters. As we demonstrate in
Figure 2, LOP operator has only little shrinkage effect, if any. This



(a) (b)

(c) (d)

Figure 9: A noisy point-cloud of a surface with three holes (a). The
red points in (b) are projected onto the point-set in (a). The results
of the MLS and LOP projections are shown in (c),(d), respectively.

(a) (b) (c)

(d) (e) (f)

Figure 10: Five low-resolution and noisy voxel multi-view scans
of a dancer are registered (a),(d). (b) and (e) show a projection of a
smaller set using MLS. (c),(f) show the projection of the same set
using LOP.

can be attributed to the fact that the convex averaging effect of E1 is
balanced by the repulsion effect of E2. A challenging future work
is trying to deduce the optimal parameter h from the data itself, and
further analyzing the convergence of the iterative process.
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(a) (b) (c)

Figure 11: A point-cloud of a plane with one-sided 50% noise
(viewed from the side). (a) is the data. (b),(c) shows MLS, LOP
projection of the set onto itself with h = 0.5, respectively.

data µ = 0.25 µ = 0.25 µ = 0.45 µ = 0.45
h = 0.5 h = 0.7 h = 0.5 h = 0.7

Figure 12: A curved surface patch with 50% noise is projected
onto itself with different h,µ values. The two rows show up and
side views. The squares are of dimension [0,1]2.
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