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Abstract
Implicit solvent models are popular for their high computational efficiency and simplicity over
explicit solvent models and are extensively used for computing molecular solvation properties.
The accuracy of implicit solvent models depends on the geometric description of the solute-
solvent interface and the solvent dielectric profile that is defined near the surface of the solute
molecule. Typically, it is assumed that the dielectric profile is spatially homogeneous in the bulk
solvent medium and varies sharply across the solute-solvent interface. However, the specific form
of this profile is often described by ad hoc geometric models rather than physical solute-solvent
interactions. Hence, it is of significant interest to improve the accuracy of these implicit solvent
models by more realistically defining the solute-solvent boundary within a continuum setting.
Recently, a differential geometry-based geometric flow solvation model was developed, in which
the polar and nonpolar free energies are coupled through a characteristic function that describes a
smooth dielectric interface profile across the solvent–solute boundary in a thermodynamically
self-consistent fashion. The main parameters of the model are the solute/solvent dielectric
coefficients, solvent pressure on the solute, microscopic surface tension, solvent density, and
molecular force-field parameters. In this work, we investigate how changes in the pressure, surface
tension, solute dielectric coefficient, and choice of different force-field charge and radii
parameters affect the prediction accuracy for hydration free energies of 17 small organic
molecules based on the geometric flow solvation model. The results of our study provide insights
on the parameterization, accuracy, and predictive power of this new implicit solvent model.

Introduction
Electrostatic interactions are ubiquitous and play a crucial role in polar or charged molecules
such as water, aqueous ions, and biomolecules (proteins, nucleic acids, lipid bilayers, etc.)
because of their long-range characteristics [1–4]. Since nearly all biomolecular interactions
occur in aqueous environments, electrostatics are of central importance in understanding the
biomolecular solvation which can, in turn, influence its structure, dynamics, and function.
Several different levels of solvent detail are used in molecular simulations [4, 5]. Explicit
solvent models treat the solvent in molecular or atomic detail but require extensive sampling
to obtain thermodynamic or kinetic properties of interest. On the other hand, implicit solvent
models simplify the solvent as a dielectric medium, which resolves the sampling problem at
the cost of molecular detail and some accuracy. While each level of description has its
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strengths and weaknesses, implicit solvent models have become very popular and valuable
for many biophysical studies due to their lower computational costs and reasonable accuracy
for many calculated properties.

In implicit solvent models, the solvation energy is often assumed to consist of ‘decoupled’
polar and nonpolar contributions. However, recent computational studies on the solvation of
organic molecules revealed the importance of coupling hydrophobic, dispersive, and
electrostatic contributions to the solvation energy [6–8]. Dzubiella et al. [7, 8] proposed a
theoretical formulation based on the minimization of the Gibbs solvation free energy with
respect to a solvent volume exclusion function. Generally, in implicit solvent models, a
biomolecule of interest and surrounding environments are separated by an arbitrary
dielectric boundary which can be the molecular surface [9], the van der Waals surface [10],
or other smoother surfaces [11, 12]; the solvation energy is very sensitive to the particular
dielectric boundary of choice. However, unlike most implicit solvent models, the solvent-
solute boundary is an output of Dzubiella et al. model to provide a more realistic interface
and a self-consistent model for solvation. More recently, Chen et al. [6, 13] introduced a
differential geometry based implicit solvation model in which a smooth solute-solvent
boundary profile can be constructed by a generalized (“potential-driven”) geometric flow
equation. This model shares some similarities with the Dzubiella approach but includes a
more detailed and accurate description of the nonpolar solvation free energy and a different
treatment of the solute-solvent boundary.

The solute atom parameters can be obtained from empirical or ab initio based molecular
force-fields. Other parameters may be obtained directly from experimental measurements.
Typically, when applying implicit solvent models for computing solvation free energies of
small molecules, it is often found necessary to optimize some of the parameter values to
minimize the error between the computed (ΔGcalc) and experimental (ΔGexpt) solvation free
energies [14]. Therefore, it is important to use appropriate measures of model validation on
a new set of molecules to determine the domain of applicability, goodness-of-fit, robustness
and predictability of the model.

In this work, we develop systematic parameterization of the geometric flow implicit solvent
model with respect to changes in pressure, surface tension, solute dielectric coefficient, and
the choice of force-field charges and radii. Recently, Nicholls et al. applied the Zap
OpenEye implementation [14] of the Poisson-Boltzmann model to predict the hydration free
energies of a set of 17 drug-like molecules (SAMPL0 data set) using AM1-BCC v1 charges
and ZAP-9 radii parameterization. The ZAP-9 radii were derived by optimization of Bondi
radii [15] for several different atom types to improve agreement between Zap Poisson-
Boltzmann hydration free energy predictions and experimental values. In this work, we have
used the same 17 molecule data set to optimize solvation hydration free energies from the
geometric flow implicit solvent model with respect to changes in pressure and surface
tension. It is well-known that the sensitivity/accuracy of implicit solvent models depends on
the values selected for the force-field parameters. Therefore, we investigate the effect of
different force-fields (AM1BCCv1/ZAP-9, AM1-BCCv1/Bondi, and OPLS-AA) on the
optimal prediction of hydration energies. It should be noted that we only focus on
parameters of the implicit solvent model (surface tension, dielectric coefficient, solvent
pressure, etc.) and do not optimize the force-field charge or Lennard-Jones parameters.

Method
Problem formulation and governing equations

We consider a solute–solvent system, where the solute is an organic molecule and the
solvent is water. We keep the atomic structure of the solute molecule fixed in the
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calculations and represent the solvent as a dielectric continuum. The solute-solvent interface
region, ΩI, is defined as the region enclosed by the van der Waals surface of each solute
atom and the solvent-accessible surface (SAS) of the solute molecule.

The differential geometry-based geometric flow implicit solvent model of Chen et al. takes
into account both the polar and nonpolar contributions to the solvation free energy of
molecules [6]. In this model, the total free energy functional (G) is written as the sum of the
polar free energy functional (Gp) and a nonpolar free energy functional (Gnp); i.e., G = Gp +
Gnp. In the absence of mobile ions, the polar free energy functional for the solute-solvent
system is given by the equation,

(1)

where S represents a characteristic function that takes the value 1 in the solute region and
the value 0 in the solvent region over the problem domain Ω. In the solute-solvent interface
region, S values vary smoothly from 1 at the solute van der Waals surface to 0 in the bulk
solvent. ρm is the charge distribution of the fixed solute molecule that is composed of M

atoms and is defined as , where Qi is the partial charge of atom i, located at
the center of the atom. xi denotes the position vector of the center of atom i, and r is the
position vector of any point in the solute-solvent system. εm and εs are the dielectric
coefficients of the solute and solvent, respectively, and φ is the electrostatic potential at
point r.

The nonpolar free energy functional is given by,

(2)

where ΩS is the solvent portion of the problem domain, γ is the microscopic surface tension,
A is the surface area of the solute molecule, p is the hydrodynamic pressure, V is the volume
of the solute molecule, ρ0 is the solvent bulk density, and Uatt is the attractive potential of
the van der Waals dispersion interaction between the solute and the solvent.

Chen et al. [6] expressed A, V, and Uatt in terms of the characteristic function, S, as shown
below:

(3)

(4)

(5)

The polar and the nonpolar free energy functionals (Eqs. (1) and (2)) are coupled via the
characteristic function S.
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The attractive potential, Uatt, is given by the attractive part of the 12-6 L-J interaction

potential ( ) between a solute atom at position ri and a point r in the solvent domain. The
general form of the L-J potential can be written as:

(6)

Depending on how Ais and Bis are defined, the L-J potential can be expressed in different
forms. For example, substituting for Ais = 4εisσis

12 and Bis = 4εisσis
6 in Eq. (6), will yield

the following expression for :

(7)

εis is the depth of the attractive well at . Eq. (7) is used in the OPLS-AA
force-field to model the van der Waals interactions between the solvent molecules and solute
atoms. In the OPLS-AA force-field, , where σi and σs are the radii of the solute
atom and the solvent molecule, respectively. , where εi and εs are the well depth
parameters of the L-J potential between two solute atoms and between two solvent
molecules, respectively.

Another form of the L-J potential can be written as,

(8)

where, Ais = εisσis
12, Bis = 2εisσis

6 and σis = σi + σis.

In general, the L-J potential can be decomposed into attractive and repulsive parts following
Weeks-Chandler-Andersen (WCA) theory [16] as shown below:

(9)

(10)

Following previous work [17–19], we have used Eq. (9) to describe the attractive potential

for van der Waals dispersion interaction, i.e., .

The solutions for the electrostatic potential (φ) and the characteristic function (S) are
obtained by minimizing the free energy functional and solving the equations, δG/δφ = 0 and
δG/δS = 0. In the absence of mobile ions, the equation δG/δφ = 0 gives rise to a generalized
form of the Poisson equation for computing the electrostatic potential:
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(11)

where ε(S) is the dielectric profile of the solute-solvent system, represented in terms of the
characteristic function, S, as

(12)

Based on this definition, the dielectric function takes the value εm in the solute region (S =
1) and the value εs (S = 0) in the solvent region (S = 0). For Eulerian formulations of the
geometric flow problem [6], S varies smoothly across the solute-solvent interfaces.
However, the problem can also be formulated in a Lagrangian manner [13] such that S has a
step-like discontinuity at the solute-solvent boundary. The current results are obtained using
the Eulerian form of the problem.

The equation δG/δS = 0 is applied for the solute-solvent interface region and it gives rise to
a nonlinear partial differential equation for the characteristic function, S, shown below:

(13)

Chen et al. [6] have shown that the solution to Eq. (13) can be obtained by solving the
following parabolic partial differential equation,

(14)

where V is the generalized flow “potential”, written as,

(15)

Eq. (14) is called the generalized geometric flow equation (GGFE) and it is coupled with the
Poisson equation (Eq. (11)) via the characteristic function S.

Molecular structure parameterization
The geometric flow implicit solvent model, similar to other implicit solvent approaches,
needs the coordinates, radii, partial charges, and L-J parameters of the solute atoms. This
information for all the 17 molecules were taken from SAMPL0 dataset provided in the paper
of Nichols et al. [14]. The atomic radii, charges, and well depth parameters for the L-J
potential depend on the force-fields used: AM1-BCCv1/ZAP-9, AM1-BCCv1/Bondi, and
OPLS-AA. These parameters are given in the Supporting Information. Note that, when
specific atomic charges and radii were unavailable for a test molecule, we approximated
those values as described in the Supporting Information.

We used single conformations for each test molecule. The importance of multiple
conformations in implicit solvent model solvation free energy prediction has been the
subject of debate. Past work by Mobley et al [20] has shown that implicit solvent energies
can vary significantly with specific solute conformation. On the other hand, recent work by
Nicholls et al [21, 22] suggest that the inclusion of multiple conformations does not
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significantly influence the agreement between calculated and experimental solvation free
energies. This paper focuses on influence of continuum model parameters (solute dielectric
coefficient, solvent pressure, and surface tension); future work will focus on the impact of
conformational heterogeneity on the model accuracy.

Calculation procedure
We computed the solvation free energies of the 17 molecules of SAMPL0 molecule set for a
wide range of pressure and surface tension values at various solute dielectric coefficients
using atomic partial charges and radii derived from 3 different force-fields. The force-fields
are (1) AM1-BCCv1 charges with ZAP-9 radii (AM1-BCCv1/ZAP-9), (2) AM1-BCCv1
charges with Bondi radii (AM1-BCCv1/Bondi), and (3) OPLS-AA [23].

For each force-field and solute dielectric coefficient value, we calculated the root mean
square error (χ) between the experimental (ΔGexpt) and calculated (ΔGcalc) solvation free
energies for the entire 17 molecule set in the pressure-surface tension (p-γ) parameter space.
A grid-based parameter optimization was performed over a range that generally included p
values from 10−4 to approximately 0.1 kcal/(mol·Å3) and γ values from 10−5 to
approximately 0.1 kcal/(mol·Å2). The exact ranges of values and search increments used to
explore the p-γ parameter space for each force-field are summarized in Supplementary
Information Table S1 for εs = 1. We denote the minimum value of χ in the p-γ parameter
space as χmin. Therefore, the (p,γ) point at which χ = χmin, corresponds to the optimal
values of pressure, popt, and surface tension, γopt.

While the pressure and microscopic surface tension are associated with repulsive
interactions in nonpolar free energy functional, the van der Waals (vdW) dispersion
interaction between solute and solvent is attractive, which may change χmin, popt, and γopt.
To determine the effect of the van der Waals dispersion on the values of χmin, popt, and γopt,
we performed calculations with and without the inclusion of the vdW term (Eq. (5)) for each
force-field. We computed the vdW dispersion term in AM1-BCCv1/ZAP-9 and AM1-
BCCv1/Bondi calculations based on the L-J potential, defined by Eq. (8), where the well-
depth parameter value was calculated based on the formula given by Chen et al. [6], i.e.,

. To compute the vdW dispersion term in OPLS-AA
calculations, we used the L-J potential defined by Eq. (7), where the well-depth parameter
between the two oxygen water molecules (based on SPC water model [24]), εs = 0.1554
kcal/mol. The corresponding solvent radius used for these calculations was σs = 1.5828 Å,
which is different from the much smaller solvent radius value (0.65 Å) used by Chen et al.
[6]. Chen et al. noted that it is necessary to increase the atomic radii to get better agreement
with experiment results. Specifically, they rescaled all the atomic radii values of the ZAP-9
parameters by an arbitrary multiplicative factor of 1.1. In our calculations, we do not rescale
the atomic radii; our goal in this work is not to optimize the solute radii parameters but to
determine how the optimal solvent model parameters (the χmin, popt and γopt values) vary
depending on the choice of different force-field parameter sets at different values of the
solute dielectric coefficient.

For all of the calculations, we fixed the solvent bulk density ρ0 at 0.0334 Å−3. The closest
distance between the box boundary (along each axis) and the surface of each molecule was
defined as Ro, and set at 3.8 Å. The equations were solved using the second-order central
finite difference scheme discussed in Chen et al.’s paper [6]. The grid spacing for the solver,
h, was set at 0.25 Å. The time-stepping value used to solve Eq. (14) was calculated using the
formula, h2/4.5. Our sensitivity studies on Ro and h, based on AM1-BCCv1/ZAP-9,
demonstrated that higher-resolution calculations (e.g., a three-fold increase in Ro and a 40%
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decrease in h) only change the results less than 3–5%, which ensures both setting values are
reasonable. We chose the solvent dielectric value εs as 80 and varied the solute dielectric
value εm from 1 to 4. As expected and shown in Figure 1, the sensitivity of the results to the
internal dielectric εm is high.

In addition to calculating the χmin, popt, and γopt values for each force-field and εm value,
we applied the F-test method [25] to compute the 95% joint confidence intervals around the
optimal point (popt, γopt) in the p-γ parameter space. The F-test method is applied as
follows: If W(p,γ) represents the sum of the square of the error between the calculated and
experimental free energies of over n molecules as a function of p and γ, then the confidence
region, based on the F-distribution at 100(1-α)% confidence level, is given by the set of all
(p,γ) points satisfying the condition:

(16)

In equation (16), d denotes the number of parameters to be optimized. In this work, n = 17, d

= 2, and α = 0.05. Therefore, from the F-distribution, we have  [26].

Results
We calculated the root-mean-squared hydration energy error χ for a range of solute
dielectric coefficient, pressure, and microscopic surface tension values using each force field
parameter set, with and without the inclusion of the vdW term in the equations. A detailed
analysis of each force field at selected values of solute dielectric coefficient is presented in
Supporting Information. The χmin, popt, and γopt values for all the force-fields at the
different solute dielectric coefficient values are summarized in Table 1. Figure 1 shows the
dependence of χmin on dielectric value. Among the 3 force-fields, AM1-BCCv1/ZAP-9 and
OPLS-AA (with vdW) give the lowest χmin values (1.82 and 1.89 kcal/mol, respectively),
while the lowest χmin value of AM1-BCCv1/Bondi force-field is 2.25 kcal/mol. Contour
plots of χ values in the 95% confidence region of the optimal pressure and surface tension
values are given in the Supporting Information figures S7–10.

Figure 2 and Figure 3 show a comparison between the calculated and experimental solvation
free energies of the 17 organic molecules for AM1-BCCv1/ZAP-9, AM1-BCCv1/Bondi and
OPLS-AA at the optimal value of the solute dielectric coefficient (εm = 1.5 for AM1-
BCCv1/ZAP-9 and AM1-BCCv1/Bondi models, 2.0 for OPLS-AA without vdW and 3.0 for
OPLS-AA with vdW). The results for the calculated solvation free energies are tabulated in
the Supporting Information. The effect of vdW dispersion appears negligible for AM1-
BCCv1-based force-fields but becomes appreciable for OPLS-AA. As shown in Table 1 and
Figure 1, the vdW dispersion effects are clearly evident for OPLS-AA; for example at εm =
2.0, the vdW term decreases the χmin value by 0.55 kcal/mol while increasing the γopt value
from 0.00002 to 0.1 kcal/(mol·Å2) and popt value from 0.0001 to 0.015 kcal/(mol·Å2).

Discussion
Comparison of results to previous work

Recently, Nicholls et al. applied the Zap OpenEye implementation [11] of the Poisson-
Boltzmann model, along with a surface area-based nonpolar term, to predict the hydration
free energies of a set of 17 drug-like molecules (SAMPL0 data set) using AM1-BCC v1
charges and ZAP-9 radii parameterization [14]. In their calculations, the nonpolar
contribution to the free energy was defined by the surface area term with a surface tension
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value of 0.0064 kcal/(mol·A2) at εm = 1.0. They found that the root mean square error
between the calculated and experimental free energies based on ZAP-9 radii (χ = 1.87 kcal/
mol) was smaller than that obtained using Bondi radii (χ = 2.57 kcal/mol).

Like the current work, Chen et al. also applied the geometric flow implicit solvent model
described above to compute the hydration free energies of the same 17 molecule set [6]. To
apply the model for computing the solvation free energies of molecules, one needs to know
what values to use for the different parameters in the equations. These parameters are (1) the
partial charge of each solute atom, Qi; (2) solute atom radius, Ri; (3) solute dielectric
coefficient, εm; (4) solvent dielectric coefficient, εs; (5) microscopic surface tension, γ; (6)
solvent pressure, p; (7) the well-depth parameter, εis; (8) solvent radius, σs; and, (9) the
solute atom radius defined in the L-J potential, σi. In their study, Chen et al. used the AM1-
BCCv1 charges and radii values based on the ZAP-9 parameterization for the solute atoms.
They obtained the coordinate, charge and radii parameters of the molecules from the
structure files found in the supplementary information provided by Nicholls et al. [14].
However, for better agreement with experimental results, Chen et al. arbitrarily increased the
ZAP-9 radii values by 10%. Additionally, they considered surface tension, γ, as the only

fitting parameter in their model based on assumption that  and . For the L-J
parameters, they chose 0.65 Å as a good fitting value for solvent radius, σs. For simplicity,

they set the well depth parameter, . And, the solute dielectric
coefficient was fixed at 1.0 in all their calculations. Based on this parameterization scheme,
the χ computed from the AM1-BCCv1/ZAP-9 model was 1.76 kcal/mol and the
corresponding γ value was fitted to be 0.0065 kcal/(mol·Å2).

Our work differs from Chen et al. [6] in several key aspects. First of all, Chen et al. fixed the

ratios for  and . From a physical standpoint, it is more appropriate to fix the bulk solvent
(number) density at 0.0334 Å−3 (equivalent to 1 g/cm3), and consider both pressure and
microscopic surface tension as independent fitting parameters of the model as done in the
present work. Secondly, the fitted parameter values were obtained based on scaling the
solute atomic radii by 10%; therefore, we are comparing distinctly different parameter sets.
Based on our parameterization scheme, the χmin value computed from the AM1-BCCv1/
ZAP-9 model at εm = 1.0 is 2.17 kcal/mol and the corresponding γopt value is 0.02 kcal/
(mol·Å2) with negligible contribution to the free energy from the pressure-volume term (see
Supporting Information).

Problematic small molecules
Figure S5 in the Supporting Information shows that there are a subset of molecules which
consistently show large errors with all the force-fields at εm = 1.0: N-dimethyl-p-
methoxybenzamide, N,N-4-trimethylbenzamide, glycerol triacetate, and imidazole, as also
seen in Figure S6. As mentioned earlier, Nichols et al. [14] developed the ZAP-9 radii by
adjusting the Bondi radii values of carbon, hydrogen, carbonyl oxygen, secondary/tertiary
nitrogen, sulfur, fluorine, chlorine, and iodine. As part of this optimization, the radii values
for the secondary/tertiary nitrogen were reduced from 1.55 Å (Bondi) to 1.4 Å (ZAP-9).
Nichols et al. noted that, although the ZAP-9 radii parameterization improves the overall
agreement with experimental hydration energies, it can gives rise to larger differences
(errors) between the computed and experimental free energies of specific molecules, such as
the benzamides and esters. They attributed the errors for the benzamides to reduction of the
tertiary nitrogen radius from 1.55 Å (Bondi) to 1.4 Å (ZAP-9). Our results with the
geometric flow implicit solvent model also show large errors for the benzamides and
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imidazole; however with reversed trends. In particular, AM1-BCCv1/ZAP-9 performs better
than AM1-BCCv1/Bondi for the benzamides; however, the error for imidazole is at least 5
times larger with AM1-BCCv1/ZAP-9 and OPLS-AA compared to that with AM1-BCCv1/
Bondi. The differences between our results and those of Nicholls et al. are not surprising and
are likely due to the very different nature of the underlying implicit solvent methodology.

Comparison of Figure 3 and Figure S6 shows that the errors for the benzamides are still
significant at the optimal solute dielectric coefficients determined for each force-field.
However for imidazole, AM1-BCCv1/ZAP-9 performs better than AM1-BCCv1/Bondi and
OPLS-AA at the respective optimal εm value. In particular, the magnitude of the error for
imidazole reduces from 3.58 kcal/mol at εm = 1.0 to 0.05 kcal/mol at εm = 1.5 (optimal
value) for AM1-BCCv1/ZAP-9 force-field while the error increases from 0.62 to 2.04 for
AM1-BCCv1/Bondi force-field.

Our calculations at εm = 1.0 also exhibited large errors for glycerol triacetate, irrespective of
force-field. The study of Nichols et al. [14] showed that esters are often problematic for
implicit solvent hydration free energy prediction because of their strong hydrophilic nature;
glycerol triacetate has three ester groups with a highly asymmetric structure. However, the
errors for glycerol-triacetate are significantly reduced at the optimal value of the solute
dielectric coefficient determined for each force-field, as seen in Figures 2 and 3, and from
the tables given in the Supporting Information.

Assessing the importance of dispersion interactions
In general, the inclusion of attractive contributions to the nonpolar free energy defined by
the van der Waals (vdW) dispersion is expected to improve implicit solvent models [17, 18,
27]. The inclusion of the dispersive term made no difference to the AM1-BCCv1 parameter
systems, most likely because the well-depth parameter used for the L-J potential is not
adequately parameterized for the two force-fields. This represents an area of future research
into further optimization of the AM1-BCCv1 parameter systems. On the other hand, the
inclusion of the dispersive term improved the OPLS-AA results, as expected given the
availability of appropriate L-J well depth information from the force field.

Role of pressure-volume work in small molecule solvation
Table 1 indicates that the pressure-volume contribution to the nonpolar free energy for these
small molecules is negligible compared to the surface area contribution, regardless of the
inclusion of the vdW term for AM1-BCCv1/ZAP-9 and AM1-BCCv1/Bondi models at εm =
1.0. This directly supports the use of SASA (Solvent Accessible Surface Area) only type of
nonpolar solvation models, where the pressure term is assumed to be negligible. However, it
can be noted from Table 1 that the pressure-volume contribution to the non-polar free
energy cannot be generally assumed to be negligible compared to the surface area
contribution for εm values greater than 1.

Wagoner and Baker [18] have shown that the contribution from both SASA and pressure
terms can provide significantly better agreement between implicit and explicit model
nonpolar solvation forces. However, there are several differences between the Wagoner-
Baker calculations and the present work. First, Wagoner and Baker used a traditional
nonpolar model with a heuristic spline-based surface definition rather than the self-
consistent geometric flow model used here. The current model provides a much improved
definition of the solvent-solute interface that is coupled to thermodynamics of the model.
Second, due to the size of biomolecular system under investigation, Wagoner and Baker
focused on simulated solvation forces rather than experimental solvation energies to
parameterize their model. Therefore, as pointed out in their paper [18], the conclusions are

Thomas et al. Page 9

J Comput Chem. Author manuscript; available in PMC 2014 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



dependent on the energy of the molecular dynamics force fields used for their explicit
solvent simulations.

Relationship between pressure and surface tension
As illustrated in Supporting Information using the results obtained at εm = 1.0, the pressure
appears to be inversely correlated with the microscopic surface tension, especially at high
pressures. Such correlation may be understood by a simple qualitative argument based on
interfacial energy and equation of states. Consider the transfer of a solute molecule (denoted
as the phase ‘1’) from vacuum (denoted as the phase ‘2’) to water (denoted as the phase ‘3’).
Interfacial energy associated with this transfer (ΔE) can be represented by A(γ13 − γ12),
where A is the surface area of the molecule, γ13 is an interfacial tension between the solute
molecule and water, and γ12 is an interfacial tension between the solute molecule and
vacuum. Applying the Dupré equation [28], one obtains:

(16)

where W11 (or W33) is known as the work of cohesion for the phase ‘1’ (or ‘3’), meaning
the work done to separate a unit area from contact to infinity for phase ‘1’ (or ‘3’). W13 is
known as the work of adhesion denoting the work done to separate a unit area of two phases
‘1’ and ‘3’ from contact to infinity. Similarly, one obtains a corresponding relation for γ12.
Recognizing the surface tension as γ13 − γ12 [28], the surface tension can be represented by:

(17)

Note that all Wij are positive owing to attractive van der Waals interactions. Since no energy
involved due to no molecules in the phase ‘2’, Eq. (17) can be simplified as:

(18)

Following the microscopic perspective, W33 is associated with attractive interactions
between water molecules, and W11 is correlated with attractive interactions between the
water molecule and the solute molecule. Eq. (18) implies that an increase in the surface
tension corresponds to an increase in the attractive interaction between water molecules, in
comparison to that between water molecule and the solute. A connection between the
attractive interactions and hydrodynamic pressure (p) in the phase ‘3’ (i.e., aqueous phase)
can be obtained from an equation of state. As the first approximation, one can use the van
der Waals equation of state [29]:

(19)

where V is the molar volume of the phase ‘3’, R is the gas constant, and T is the
temperature. Here, a is a coefficient reflecting the attractive interaction between water
molecules (proportional to the attractive interaction) and b is related to a strong short-range
repulsive interaction between water molecules. Eq. (19) states that hydrodynamic pressure
decreases with increasing a (i.e., attractive interaction between water molecules). Therefore,
it can be understood that increasing hydrodynamic pressure can lead to the decrease in
microscopic surface tension under the equilibrium solvation process, which is generally
shown in our calculations.

Thomas et al. Page 10

J Comput Chem. Author manuscript; available in PMC 2014 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Surface tension value comparisons
At εm = 1.0, the γopt values obtained with AM1-BCCv1/ZAP-9, AM1-BCCv1/Bondi,
OPLS-AA (without vdW dispersion), and OPLS-AA (with vdW dispersion) are 0.02, 0.03,
0.02, and 0.14 kcal/(mol·Å2), respectively. These values obtained without the vdW
dispersion term compare well to the microscopic surface tension (0.025 kcal/(mol·Å2)) for
hydrocarbons in water [30]. Furthermore, these values (obtained with and without vdW
dispersion term), are comparable to popular microscopic surface tension definitions: 0.03–
0.125 kcal/(mol·Å2) [30–33]. However, these values are higher than that used by Sitkoff et
al. [34] (0.005 kcal/(mol Å2), Wagoner and Baker [18] (0.003–0.005 kcal/(mol·Å2)), and
Gallicchio et al. [19] (0.009 kcal/(mol·Å2)), which were all obtained based on heuristic
solute-solvent dielectric interface definitions.

The γopt values obtained with AM1-BCCv1/ZAP-9, AM1-BCCv1/Bondi, OPLS-AA
(without vdW dispersion), and OPLS-AA (with vdW dispersion) at the respective optimal
εm value are 0.0001, 0.01, 0.00002, and 0.08 kcal/(mol·Å2), respectively. These values are
much smaller compared to the values obtained at εm = 1.0. Among these values, the value
obtained using OPLS-AA with vdW dispersion (0.08 kcal/(mol·Å2)) compares better to the
popular microscopic surface tension definitions: 0.03–0.125 kcal/(mol·Å2) [30–33].

Conclusions
In this work, we explored the pressure-surface tension and solute dielectric coefficient
parameter space to determine the optimal values of pressure and surface tension at which the
root mean square error between the calculated and experimental free energies (χ) takes the
minimum value (χmin) for a set of 17 molecules of the SAMPL0 dataset. We performed the
calculations at various solute dielectric coefficients using 3 different force-fields: AM1-
BCCv1/ZAP-9, AM1-BCCv1/Bondi, and OPLS-AA. We showed that the optimal values of
surface tension and pressure and the associated χmin values vary depending on the solute
dielectric coefficient, force-field charge and radii parameters, with AM1-BCCv1/ZAP-9
providing the best overall agreement with experiment.

In order to get better agreement between calculated and experimental hydration free energies
using this model, it will be necessary to further improve the model parameters and behavior.
One possible area of improvement is in the use of more sophisticated charge distributions
which offer atomic polarizability or quantum-based charge distributions. Work by
Schnieders et al. [35] describes ways in which electronic polarizability can be incorporated
into implicit solvent models to provide a more sophisticated description of molecular charge
distributions and dielectric response. Recently, a quantum mechanical density functional
theory has been integrated into the geometric flow implicit solvent model, thus laying the
foundation for more realistic solute charge density modeling [36]. Another possible area of
improvement is through revised Lennard-Jones radii and well depth parameters. As
discussed earlier, the AM1-BCCv1 has the best overall performance but does not benefit
from the inclusion of van der Waals interactions. The current approach could provide a
framework for further refining radii and optimizing well depths in the current geometric
flow model.

An important advance brought forth by the geometric flow approach to implicit solvation
modeling is that it avoids making ad hoc assumptions about the solute-solvent boundary but
rather computes it in a thermodynamically consistent fashion. This reduces the number of
variables and sources of potential error that can be introduced into these types of models.
The results of this work provide useful insights on the parameterization of the geometric
flow model for improving accuracy and predictive power and point to the next steps for
continued improvement of implicit solvent modeling.
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Figure 1.
The minimum root-mean-squared error χmin versus solute dielectric coefficient, εm obtained
from the different force-field calculations: AM1-BCCv1/ZAP-9 (with or without vdw),
AM1-BCCv1/Bondi (with or without vdw), OPLS-AA (without vdw), and OPLS-AA (with
vdw).
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Figure 2.
Comparison of calculated and experimental hydration free energies for the 17 molecules, at
the optimal values of pressure, surface tension and solute dielectric coefficient, obtained
using AM1-BCCv1/ZAP-9, AM1-BCCv1/Bondi, and OPLS-AA.
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Figure 3.
Comparison of errors in the hydration free energies (ΔGcalc − ΔGexpt) of each molecule,
obtained from the different force-field calculations at the optimal values of pressure, surface
tension, and solute dielectric coefficient.
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