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Abstract. In this paper, we propose a new method for parameterizing
a contractible domain (called the computational domain) which is de-
fined by its boundary. Using a sequence of harmonic maps, we first build
a mapping from the computational domain to the parameter domain,
i.e., the unit square or unit cube. Then we parameterize the original
domain by spline approximation of the inverse mapping. Numerical sim-
ulations of our method were performed with several shapes in 2D and
3D to demonstrate that our method is suitable for various shapes. The
method is particular useful for isogeometric analysis because it provides
an extension from a boundary representation of a model to a volume
representation.

1 Introduction

Parameterization is one of the classical topics and attracts a lot of research in
computer graphics and geometric modeling because it plays a central role in
various applications such as texture mapping or morphing, to name a few. Even
though there are many powerful methods to deal with this problem for surfaces,
only few results have been achieved for volumes. In fact, due to computational
complexity, volume parameterization is considered a big challenge. In general,
methods proposed for this problem exploit information about representation and
topology of volumes such as tetrahedral mesh volumes or swept volumes. Our
work investigates more general problems in which objects are given in boundary
representation.

Assume that we are given a contractible domain defined by its boundary. We
also assume that we are able to divide the boundary into several patches, i.e.,
four curves in plane or six surfaces in three-dimensional space. Our goal is to
construct a spline representation for the domain. To achieve that, our method
creates a mapping from the domain to the unit square or unit cube, see Figure 1.
The mapping should be regular or injective. We attain this by solving several
variational problems. Finally, the spline approximation for the inverse of the
mapping is found by least squares fitting.

2 Related Work

Isogeometric Analysis (IGA for short) was invented by Hughes et al. [12]
in 2005 as a promising approach to bridge the gap between numerical simu-
lation and computer aided design (CAD). Immediately, it attracted a lot of
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Fig. 1: Mapping from a planar domain to the unit square: the same style curves should
be mapped to each other.

research interest from both numerical analysis and geometric modeling commu-
nities because of some important advantages. The first advantage of IGA is that
the computational domains are solid objects which are represented by tensor
product B-splines or NURBS. It is superior to classical finite element methods
which work on approximate domains represented by discrete meshes. The sec-
ond advantage of IGA is that the discretization space is spanned by B-splines
or NURBS basis and therefore it provides refinement possibilities as proposed in
[12]. So, refinement does not require interaction with the original CAD model as
finite element methods, but only requires simple operators such as knot inser-
tion or degree elevation. Due to these properties, the authors called the method
isogeometric analysis, i.e., geometry is preserved at all levels of refinement.

Nevertheless, there are some difficulties arising when one wants to use IGA to
solve a particular problem. One of the problems is that IGA requires solid models
represented by tensor product NURBS, i.e, a NURBS mapping from a parametric
domain to a physical domain should cover the entire domain. However, CAD
systems usually only provide information on the boundary, i.e, mappings from
the parametric domains to the boundary of the models [3]. This observation
motivates our research to find a spline representation of the solid models which
are only defined by their boundary representation.

Ad hoc parameterization. The problem of parameterizing a domain defined
by boundary curves (or surfaces) can be traced back to the well known work
by Gordon and Coons [11]. This method uses blending functions to define a
Boolean sum operator interpolating boundary curves. It provides reasonable
parameterization for quadrilateral patches with nice shapes. Inspired by this
direction, there is a later work by Farin on discrete Coons patches [7]. However,
because of its simplicity this method may not be suitable for singular cases and
complicated shapes. Recently, Xu et al. have used the discrete Coons method
combined with shape optimization method to find optimal parameterizations as
a prerequisite of IGA for planar shapes [18].

In volume parameterization motivated by IGA, to the best of our knowledge,
there are only two remarkable results. The first is the paper by Martin et al.
[15] where the authors proposed a parameterization method for a generalized
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cylinder-type volume defined by a tetrahedral mesh. This method bases on dis-
crete volumetric harmonic functions and solves several Laplace equations. After
remeshing the tetrahedral mesh to the hexahedral mesh, a trivariate B-spline
for the solid model is generated by an iterative fitting method. The second is
the paper by Aigner et al. [1] where the authors proposed a parameterization
method for swept volumes which cover many free-form shapes in CAD system
like blades or propellers. In this method, a spline approximation for a solid model
can be found by solving a minimization problem with several penalty terms cor-
responding to particular features of the shape.

In Voruganti et al. [17], a method is proposed to build a bijective map between
a genus-zero domain in three-dimensional space and the unit sphere, which par-
tially inspired our approach. The authors first choose a point inside the domain,
called “shape center“, and compute a potential function by solving the Laplace
equation with Dirichlet boundary conditions which are zero at the shape center
and one on the boundary. Then, streamlines, which are the curves joining each
boundary point to the shape center, are build so that they intersect the level
sets of the computed function orthogonally. This results in a parameterization
of the unit sphere by means of spherical coordinates.

3 Harmonic Maps

Recently, there has been much research interest in harmonic maps and their
applications in computer graphics [2, 5, 8]. Harmonic maps are used to find
mappings between two manifolds due to their beautiful properties. It is well-
known that any conformal mapping between 2-dimensional manifolds is har-
monic. Moreover, if we consider the mappings between a surface in R

3 and a
fixed boundary domain in R

2, harmonic and conformal mappings are the same
[10]. A map u between Riemannian manifolds (M, g) and (N,h) is called p-
harmonic if it is a critical point of the p-harmonic energy

Ep(u) =

∫

M

||∇Mu||pdvolM

where ||∇Mu|| is the length of the differential in M . If p = 2, we call it simply
harmonic map. Results concerning existence and regularity of the solution of
the above problem are described by Jost [13]. In particular, we are interested in
the maximum principle of the solution in the case that M has a boundary and
N = R. Then if u is a harmonic map, it attains maxima or minima values on the
boundary. So, we see that the level sets of u on M are contractible hypersurfaces.
In our method, we use the following particular cases of manifolds M and N :

1. M = M̄0 and M0 is an open subset of R
n (n = 2 or 3) and N ⊆ R (both M

and N with Euclidean metrics): In this case, the harmonic energy has the
form

E2(u) =

∫

M

||∇u||2dx
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where ∇ is the gradient operator and integration has the usual meaning in
R

n.

2. M is a Riemannian manifold in R
n (n = 2 or 3) which is given by the ze-

roAdditional integrals over the boundary are used to achieve a good approx-
imation level set of some functions, and N ⊆ R: In this case, the harmonic
energy has the form

E2(u) =

∫

M

||∇Mu||2dvolM

Here, ∇Mu is the covariant derivative of u with respect to M which is simply
the projection of gradient of u in R

n on the tangent space of M [2].

4 Our Framework

For the sake of simplicity, we describe our framework only for the planar case. It
can be naturally extended to the three-dimensional case by similar ideas. Recall
that we are given a contractible computational domain Ω defined by a closed
piece-wise smooth curve. Assume that we are able to divide the curve into 4
curves. In fact, this can be done simply by picking 4 points on the curve. Our
framework consists of 2 main steps.

4.1 Step 1: Finding a Mapping F : Ω → [0, 1]2

The mapping F should map the boundary of Ω to the boundary of the unit
square and might provide constant parametric speed along boundary. In coor-
dinates, F can be written as F = (f, g)T . In order to use the mapping F in
step 2, F should be regular or injective. In other words, the determinant of the
Jacobian of F should not vanish in Ω or equivalently, ∇f and ∇g should be
linearly independent on Ω. In order to achieve this goal, we propose a 2-step
method, namely, we first find f then use f to find g.

Step 1.1 The scalar function f : Ω → [0, 1] can be found by minimizing its
Dirichlet energy

E2(f) =

∫

Ω

||∇f ||2dx → min
f

(1)

subject to the boundary conditions

f(x, y) = 0 on Γ1

f(x, y) = 1 on Γ3

f(x, y) = s(x, y) on Γ2 and Γ4

(2)

where s(x, y) is any function that maps points on the curves Γ2 or Γ4 to [0, 1]
and is strictly increasing in the direction from Γ1 to Γ3. In our computations,
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Fig. 2: Covariant gradient of g on a level set of f

s(x, y) restricted to a curve is the arc-length function scaled to [0, 1]. On the
other hand, we can choose Neumann boundary conditions, i.e., we can set <

∇f, n >= 0 on Γ2 or Γ4 where n is the normal vector at corresponding point.
However, we observed in our computations that this boundary conditions lead
to unsatisfactory solutions.

Step 1.2 Once f is found, the scalar function g is generated such that g minimizes
the harmonic energy on the level sets of f . More precisely, we define M =
f−1(c)∩Ω for some constant c and we aim at solving the following minimization
problem

E2(g) =

∫

M

||∇Mg||2dvolM → min
g

subject to the boundary conditions

g(x, y) = 0 if (x, y) ∈ Γ4

g(x, y) = 1 if (x, y) ∈ Γ2.

Note that there are only 2 points in the boundary conditions which are the
intersections of M with 2 curves Γ2 and Γ4. The covariant gradient of g on M is
the projection of the gradient of g onto the tangent line with the normal vector
∇f , see Figure 2. Its length can be calculated by

||∇Mg||2 = ||∇g − 〈∇g,∇f〉
∇f

||∇f ||2
||2.

Hence, we can rewrite the harmonic energy as

E2(g) =

∫

M

||∇g − 〈∇g,∇f〉
∇f

||∇f ||2
||2dvolM

=

∫

Ω

||∇g − 〈∇g,∇f〉
∇f

||∇f ||2
||2δ(f − c)||∇f ||dx (3)
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where δ(.) is the Dirac delta function in the sense of distributions. In the last
equality, we use the formula

∫

M

RdvolM =

∫

Ω

Rδ(f − c)||∇f ||dx

where R is some function. Next, by means of minimizing simultaneously the
harmonic energy for all level sets of f contained in Ω, we can eliminate the
Dirac delta function in the Eq. (3) and formulate our minimization problem as

∫

Ω

||∇g − 〈∇g,∇f〉
∇f

||∇f ||2
||2||∇f ||dx → min

g
(4)

subject to the boundary conditions

g(x, y) = 0 if (x, y) ∈ Γ4

g(x, y) = 1 if (x, y) ∈ Γ2.

Note that we do not need to specify any boundary condition on the two curves
Γ1 and Γ3.

4.2 Step 2: Finding a Spline Approximation S of F −1

We use least squares fitting to find the mapping S that maps the unit square to
R

2. We write S in the tensor product B-spline form as

S(u, v) =
∑

i∈I

∑

j∈J

Mi,U (u)Mj,V(v)dij = B(u, v) · D, (u, v) ∈ [0, 1]2,

where D = (dij) is the vector of control points and B(u, v) = Mi,U (u)Mj,V(v)
is the vector of tensor product B-splines. We denote by U and V two given
knot vectors with degree-fold boundary knots 0 and 1. The index sets I and J
are determined by the knot sequences and degrees of the B-splines. Then, we
formulate the problem to find S ≈ F−1 as the following least squares problem

∫

Ω

||S ◦ F − id||2 + Rf → min
D

(5)

where Rf is the fairness term

Rf = ω1

∫

[0,1]2
(S2

u + S2
v)dudv + ω2

∫

[0,1]2
(S2

uu + 2S2
uv + S2

vv)dudv

and ω1 and ω2 are weights. The least squares problem is a quadratic minimization
problem with respect to D. Therefore, it is relatively simple to find the solution
by solving a linear system.
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5 Injectivity

Before going to the details of the implementation, we discuss the injectivity of
the mapping F . The argument for three dimensional case is similar. We will
consider each coordinate function of F separately.

The first coordinate function f minimizes the harmonic energy over the whole
domain Ω. The Euler-Lagrange equation associated with (1) is the Laplace equa-
tion ∆f = 0. In fact, if f is a solution of (1), f is a weak harmonic function. By
the maximum principle, we conclude that each level set of f is a simple curve
segment in Ω.

For the second coordinate function g, the Euler-Lagrange equation corre-
sponding to the problem (4) is

1

||∇f ||
∇ ·

((

∇g − 〈∇g,∇f〉
∇f

||∇f ||2

)

||∇f ||

)

= 0 (6)

So, if g is a solution of (4), then g is a weak solution of (6). Conversely, if g is a
weak solution of (6), then the weak form of (6) also is satisfied on the manifold
M = f−1(c) ∩ Ω where c is some constant. Therefore, g is a weak harmonic
function on the manifold M and g satisfies the maximum principle on M .

Proposition 1 If f is the solution of (1) and g is the solution of (4), then the

mapping F = (f, g)T from Ω to the unit square is injective.

Proof. We assume that there are 2 points P1 and P2 on Ω such that F (P1) =
F (P2). So, P1 and P2 must lie on a level set of f . By the assumption, we have
that g(P1) = g(P2). Since each level set of f is a simple curve segment, and g is
continuous on that level set and has no local maxima or minima, we conclude that
P1 and P2 must lie on the boundary of that level set of f or more precisely on the
intersection of that level set of f with boundary of Ω. However, the intersection
set consists of only 2 points. Since g satisfies the boundary conditions, the values
of g on those points are different. This is a contradiction. �

However, because we must solve the variational problems numerically, the
discretization error may potentially destroy the injectivity. It depends on how
well we can approximate the exact solutions. This will be described in the next
section.

6 Implementation and Examples

In this section, we present how to solve the problems (1), (4) and (5). Then we
present some experiments with our method.

6.1 Solving Variational Problems

To solve the variational problems (1) and (4) in the previous section, we employ
a least squares meshless method using B-splines which is inspired by web-splines
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[9]. We want to find approximate solutions f̂ ≈ f and ĝ ≈ g in the finite
dimensional space spanned by B-splines. The reason to use this space is that
B-spline functions are locally piecewise polynomial with rectangular supports
and provide possibilities for refinement. Moreover, we can obtain a very good
approximation while having only to use a few basis functions. So, once we obtain
the solution f̂ , we can evaluate its values very fast. This is important because in
the next variational problem for g, fast evaluation of f̂ and its gradient speeds
up the time for computing g.

For finding an approximate solution f̂ , we write

f̂ =
∑

(i,j)∈I′

Ni,X (x)Nj,Y(y)cij

where cij are real coefficients. The basis functions Ni,X and Nj,Y are B-splines of
degree d1 and d2 with respect to knot sequences X and Y which are determined
by the projections to the axes of the edges of the bounding box B of Ω. In our
implementation, we use uniform knot vectors in x and y direction and consider
only those tensor-product basis functions whose supports overlap the domain.
By using the penalty method to enforce the boundary conditions, we arrive at
the following least squares problem

λ

∫

∂Ω

(f̂ − fD)2ds +

∫

Ω

||∇f̂ ||2dx → min
cij

(7)

where λ is a large weight, e.g, 103 and fD is the function defined by Dirichlet
boundary conditions of f on the boundary of Ω. The above minimization problem
is quadratic with respect to cij , so it can be solved by solving a linear system.
Note that we have to evaluate the second integral on the domain Ω which is
unknown except for its boundary. At this point, an approximate implicitization
algorithm, such as [14] or [6], comes to play its role. So, the boundary of Ω can
be represented by the zero level set of an auxiliary function. The domain inside
the boundary curve corresponds to the points on which the function possesses
non-positive values. In other words, we can construct a characteristic function
χ of the domain Ω. The second term in (7) can be rewritten as

∫

B

||∇f̂ ||2χ(Ω)dx

The linear system may be singular when the supports of some B-splines basis
functions lie outside the domain Ω. Also, it may have a high condition number,
if the supports have only a small intersections with the domain. In the web-
spline method [9], this issue is dealt with by coupling some functions along the
boundary. Instead of implementing the full web-spline method, we use a simpler
approach. We simply set the value of χ to 1 on Ω and to a small value, e.g. 10−3,
outside Ω. We evaluate the integral by Gauss quadrature. The first integral term
in (7) is evaluated by taking a weighted sum of finitely many points.
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For finding the approximate solution ĝ, we use a similar method as above.
The least squares problem is

λ

∫

Γ2∪Γ4

(ĝ − gD)2ds +

∫

Ω

||∇ĝ − 〈∇ĝ,∇f̂〉
∇f̂

||∇f̂ ||2
||2||∇f̂ ||dx → min

c′
ij

(8)

where gD is the function defined by Dirichlet boundary conditions of g on the
two curves Γ2 and Γ4. We denote c′ij the new variables to indicate that we can
use a different discretization space but the domain is the same. Analogously,
the integral over Ω can be transformed to the integral over B by using the
characteristic function. Again, this is a quadratic minimization problem with
respect to the coefficients of ĝ.

6.2 Spline Approximation of the Inverse Mapping

Here we want to describe in detail how to solve the problem (5). The first integral
term in (5) can be written as

∫∫

R2

||B(f(x, y), g(x, y)) · D − (x, y)T ||2χΩ(x, y)dxdy

where the characteristic function χΩ(x, y) is already known from approximate
implicitization but now it is set to 0 outside Ω. We evaluate the integral by
numerical quadrature, i.e, taking uniform grid of points on the bounding box B
of Ω. In order to obtain a good approximation for the boundary of Ω, we add
more terms that are integrals over the boundary of Ω as

ω0

(

∫

Γ1

||B(0, g(p)) · D − p||2dp +

∫

Γ3

||B(1, g(p)) · D − p||2dp

+

∫

Γ2

||B(f(p), 1) · D − p||2dp +

∫

Γ4

||B(f(p), 0) · D − p||2dp

)

where ω0 is a large weight to indicate that we want to achieve a better approxi-
mation on the boundary. Once we have found the spline approximation, we use
the L∞ norm to estimate the error on the boundary of the domain. If the accu-
racy is not sufficient, then one may increase the numbers of degrees of freedom
via knot insertion.

The obtained parametrization is an approximation on the inverse of the con-
structed coordinate functions, hence it does not reproduce the original boundary
curves in general. It is possible to preserve the original boundaries, provided that
the computed parameterization is compatible with the original parameterization
of the boundaries. In this situation, the given control points of the boundary
curves can be used as known coefficients in the fitting process.

The compatibility of the parametrizations can be achieved by composing the
computed parameterization with two monotonic re-parameterizations, one for
each coordinate function. Each of these monotonic re-parameterizations takes



10 Thien Nguyen and Bert Jüttler

constant values 0 and 1 on two of the four boundaries, and it is determined by
the original and the computed parametrizations on the other two boundaries.
It can be extended to the entire domain by simple linear interpolation, which
preserves the monotonicity along the parameter lines.

We did not (yet) implement this approach. We feel that the main advantage
of IGA is that simulation and geometric design are based on the same geometry
representation, and not necessarily in using an already existing CAD description.
This will often be impossible, e.g., for domains possessing more or less than four
B-spline boundary curves.

6.3 Putting Things Together

Now we summarize the implementation step by step. First, a domain defined by
4 curves is given. Next, we have to parameterize the curves Γ2 and Γ4 to [0, 1]
in order to define the boundary conditions (2). This is performed by arc length
parameterization scaled to [0, 1]. Next, we find the bounding box of Ω. It is the
domain for spline approximation of the functions f and g. Then, we generate
the characteristic function for Ω by approximate implicitization. Finally, the two
main steps, variational problems solving and spline approximation as described
above, are performed.

6.4 Examples

Our method is implemented in C++ and uses Gotools [16] for B-splines manip-
ulations. In addition, for solving the various arising sparse linear systems, we
employ the umfpack routine [4]. The results in this paper are visualized using
OpenGL and Qt. All examples in this paper are performed on a 2.8 GHz Intel
Core 2 Duo CPU with 4 GByte Ram.

Example 1. Figure 3 demonstrates our method for a weird planar shape. Three
boundary curves of that shape are line segments and the remain curve is modeled
as quadratic B-splines curve with 7 control points. The picture (3a) shows the
resulting spline approximation S and the level sets of f and g are approximated
to the green curves and blue curves, respectively. The estimate errors in L∞

norm are 0.002, 0.0004, 0.004 and 0.001 with respect to the boundary curve 1 to
4. We check the injectivity of F and S by evaluating its Jacobian at each sample
point inside the domain. Then we plot the Jacobian of S in the picture (3c).

It is also possible to certify the injectivity of the parameterization. For ex-
ample, sufficient conditions for injectivity are presented in the recent paper [18].
However, this method requires additional computational effort.

The construction of the parametrization map is not symmetric. If we swap
the order for constructing f and g, we obtain the result plotted in the picture
(3d). It is not a good parameterization, although F is still injective.

Example 2. The second example in Figure 4 is a shape representing the map of
Austria. The four boundary curves of this shape are quadratic B-spline curves.
The spline which parameterize the shape has 62 × 62 control points.
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(a) The resulting parameteri-
zation

(b) Zoom in
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Fig. 3: Parameterization for a weird planar shape.

Fig. 4: The Austria map.
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Example 3. We shows some results for 3D case in Figure 5. In this situation, the
input data is a closed triangular meshes. To be able to perform our the method,
two preprocessing steps must be done. First, the mesh is segmented into 6 faces
such that each face has exactly 4 incident faces. In other words, we should have
the same topology as the unit cube. Second, we parameterize 4 faces to obtain
boundary data for the variational problems. In order to visualize the quality of
the parametrization, the figures (5b) and (5d) show a cut-off view of the interior
of the solid objects.

(a) The triangular mesh model for a
sphere

(b) The resulting parameterization for
the sphere

(c) The triangular mesh model for a
base of a screwdriver

(d) The resulting parameterization for
the base of the screwdriver

Fig. 5: Volumetric parameterization for two solids represented by closed triangular
meshes.
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7 Conclusion

In this paper, we proposed a framework to compute an injective mapping from
a domain defined by its boundary curves (surfaces) to the unit square (unit
cube). This mapping is defined via solutions of two (three in 3D) variational
problems. The final spline representation for the domain was constructed as an
approximation of the inverse of the computed mapping. We also demonstrated
that our method works efficiently for some complicated domains.
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