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Abstract
Uijlenhoet, R., 1999. Parameterization of rainfall microstructure for radar meteoro-

logy and hydrology. Doctoral thesis, Wageningen University, The Netherlands. 279 pp.

A comprehensive general framework for the description and analysis of the microstruc-
ture of rainfall is presented. The microstructure of rainfall is parameterized in terms
of the raindrop size distribution, which determines both the macroscopic physical
properties of rainfall relevant for radar meteorology and hydrology and their relation-
ships.

To demonstrate that the definitions of rainfall related variables naturally lead to
power law relationships, a rainfall parameterization based on the exponential rain-
drop size distribution is presented. The importance of the distinction between the
properties of raindrops present in a volume of air and those of raindrops arriving at
a surface is emphasized.

A general formulation for the raindrop size distribution as a scaling law is derived,
based on the ubiquitous power law relationships between rainfall related variables.
The scaling law formulation is independent of any a priori assumption regarding the
functional form of the raindrop size distribution and unifies all previously published
parameterizations. It allows a separation of the effects of changes in the shape of the
raindrop size distribution from those of changes in the rain rate. The values of the
scaling exponents indicate whether it is the raindrop concentration or the character-
istic raindrop size which controls the variability of the raindrop size distribution. The
gap between the scaling law and traditional parameterizations is bridged by providing
explicit expressions for the scaling law for all analytical distributions proposed in the
literature.

The scaling law formulation is verified experimentally using mean raindrop size
distributions for various climatic settings (based on two classical parameterizations)
and raw raindrop size distributions from The Netherlands. For the mean distributions
the scaling procedure yields excellent results, for the raw distributions a residual
amount of scatter about the mean curves remains, indicating that rain rate alone
cannot explain all observed variability.

As an example of the application of the scaling law, a new method for establishing
power law radar reflectivity–rain rate relationships is derived. The method is applied
to the mentioned mean and raw distributions. The large inter-event variability of the
coefficients indicates that climatological radar reflectivity–rain rate relationships will
be of little practical use.

The Poisson homogeneity hypothesis, a fundamental assumption in radar meteoro-
logy, is tested on an extraordinary stationary time series of raindrop size distributions.
The arrival rate fluctuations of the raindrops which contribute most to rain rate and
radar reflectivity are found to behave according to Poisson statistics.

Finally, perspectives for future research are presented.

Additional index words: raindrop size distribution, scaling law, remote sensing, radar
meteorology, hydrology.





Voorwoord

Hoewel universitaire bestuurders en politici daar nog wel eens anders over willen
denken, valt wetenschappelijk onderzoek in het algemeen lastig te plannen. In dat
verband is het illustratief de titel van een proefschrift eens met de titel van het
oorspronkelijke onderzoeksvoorstel te vergelijken. In mijn geval luidde dat laatste:
‘Toepassing van verschillende typen weerradar voor het schatten van neerslag over een
verstedelijkt gebied ten behoeve van het waterbeheer’. Het zal duidelijk zijn dat dit
proefschrift een enigszins afwijkend onderwerp behandelt. De aandacht is verschoven
van de toepassing naar aspecten van de achterliggende theorie. Hetgeen overigens
niet wegneemt dat de motivatie voor dit werk altijd de hydrologische toepassing is
gebleven. Dat is ook de reden geweest waarom de EU dit onderzoek het afgelopen
decennium heeft willen financieren. Uit experimenten uitgevoerd gedurende de eerste
jaren van het project bleek echter dat we niet in staat waren om bevredigende ver-
klaringen te vinden voor de discrepanties tussen wat weerradars waarnemen en wat
de traditionele regenmeters meten. Daarom is de nadruk van het onderzoek in de
loop der jaren meer komen te liggen op het beter begrijpen van de manier waarop
de verschillende instrumenten regen meten en daarmee samenhangend het beter be-
grijpen van de structuur van regen zelf. Dit proefschrift behandelt enkele recente
ontwikkelingen op dit laatste gebied. Met deze nieuwe inzichten kunnen we nu terug
naar de radarmetingen om een poging te wagen de radarhydrologie vlot te trekken.

De eerste die ik op deze plaats moet bedanken is mijn directe begeleider, Han
Stricker. Hij heeft het onderzoek naar de hydrologische toepassing van weerradar
in Wageningen eind jaren tachtig een krachtige impuls gegeven door samenwerking
met de radardeskundigen van de Technische Universiteit Delft te zoeken. De regen
die voor telecommunicatieonderzoekers ‘ruis’ is, is voor hydrologen immers ‘signaal’.
Deze gezamenlijke interesse heeft de basis gelegd voor mijn promotieonderzoek en dit
proefschrift is hiervan het uiteindelijke resultaat. Han heeft de inhoudelijke keuzes
die ik de afgelopen jaren heb gemaakt altijd gesteund, ook toen het accent van het
onderzoek verschoof van toegepast naar meer theoretisch. Hij omschreef dit proces
eens als ‘van de regen in de drup’. Aannemende dat hij dit in de letterlijke zin van
het woord bedoelde, kan de essentie van dit proefschrift inderdaad niet kernachtiger
worden omschreven.

Herman Russchenberg is vanaf het begin actief bij het onderzoek betrokken ge-
weest. Mede door zijn toedoen is de ‘signaal/ruis verhouding’ van het Delftse radaron-
derzoek de laatste jaren aanzienlijk toegenomen. Regen en wolken zijn van alleen
storende factoren een zelfstandig object van studie geworden aan het IRCTR. Dat



is de samenwerking met Wageningse en andere onderzoekers vanzelfsprekend alleen
maar ten goede gekomen. De interesse van Herman voor mijn werk gedurende de
afsluitende fase van het onderzoek heb ik als zeer motiverend ervaren.

Mijn promotoren, Prof. Feddes en Prof. Ligthart, bedank ik voor het in mij
gestelde vertrouwen. Hoewel ik vrees beiden meer dan eens tot wanhoop gedreven
te hebben, zowel door de duur van het onderzoek op zich als door de stortvloed aan
leeswerk in de laatste fase, hoop ik dat dit proefschrift toch het begin kan vormen van
een hernieuwde Wagenings-Delftse samenwerking op het gebied van de radar remote
sensing van neerslag.

Een speciaal woord van dank komt toe aan Herman Wessels. Niet alleen stelde
hij ten behoeve van dit onderzoek de unieke druppelgroottemetingen beschikbaar
die hij eind jaren zestig samen met zijn collega’s van het KNMI verrichtte (en die in
Hoofdstukken 5 en 6 geanalyseerd worden), hij las ook grote delen van het manuscript
van dit proefschrift kritisch door. De discussies die we naar aanleiding daarvan hadden
waren voor mij zeer leerzaam. Wat betreft de toekomstige samenwerking met het
KNMI hoop ik dat ook de gegevens van de nieuwe dopplerradars hun weg zullen
vinden naar het hydrologisch onderzoek.

I have spent the last two and a half years working as a research fellow at the Labo-
ratoire d’étude des Transferts en Hydrologie et Environnement in Grenoble, France.
First and foremost, I need to thank Dominique Creutin for providing me with the
perfect environment to carry out my research and to develop myself as an indepen-
dent researcher. His guidance, both in matters of science and project management,
has been extremely helpful. Secondly, I thank Guy Delrieu, with whom I shared an
office. The many discussions we had have been very stimulating and have helped
me to set my research priorities for the future. I also acknowledge the support of
Michel Vauclin, director of LTHE, for having welcomed me as a researcher in ‘his’
laboratory. My colleagues, both of the Equipe Hydrométéorologie and of the other
research groups, have made me feel at home during my stay at LTHE. Merci à tous!

A particular acknowledgment goes to my Catalan colleagues and friends Pep Porrà
and Daniel Sempere Torres. The many discussions we had have truly shaped my mind.
My shorter and longer visits to Barcelona over the past couple of years have been
unforgettable.

The optical disdrometer data analyzed in Chapter 7 of this thesis have been col-
lected as part of the NERC Special Topic HYREX. They have been kindly provided
to me by Bob Moore of the Institute of Hydrology in Wallingford, United Kingdom.

Tenslotte bedank ik Marjan en Sander voor de afleiding die ze me (soms ongewild)
bezorgd hebben. In ieder geval weet ik na de voltooiing van dit proefschrift nu
tenminste ook wat ‘een zware bevalling’ precies inhoudt.

Remko Uijlenhoet
Wageningen, november 1999
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Qt,o Optical extinction cross-section L2 cm2

R Rain rate LT−1 mmh−1

S Optical extinction coefficient L−1 km−1
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Symbol Meaning Dimension Unit
Se Self-consistency of exponent – –
Sp Self-consistency of prefactor – –
U Kinetic energy flux density MT−3 Wm−2

V Raindrop volume L3 mm3

Var Variance operator – –
W Liquid rainwater content ML−3 mgm−3

Z Radar reflectivity factor L3 mm6m−3

α, β, β ′ Scaling exponents, R as reference variable – –
αΨ, βΨ, β

′
Ψ Scaling exponents, Ψ as reference variable – –

γ Exponent of power law v(D) relationship – –
γR Exponent of power law R–Z relationship – –
γX Exponent of power law X–Ψ relationship – –
γZ Exponent of power law Z–R relationship – –
γω Exponent of power law ω–D relationship – –
δ Proportionality factor – –
ǫ Complex dielectric constant of water – –
κ Parameter of g(x) and h(x) – –
λ Radar wavelength L cm

Prefactor of power law Λ–R relationship L−(1−β)T−β mm−1×
(mmh−1)β

µ Parameter of gamma and lognormal
raindrop size distributions – –

µx Mean of x – –
µ′
x,r Moment of order r of x – –

ν Parameter of generalized gamma
raindrop size distribution – –

ρA Mean raindrop arrival rate L−2T−1 m−2 s−1

ρV Mean raindrop concentration L−3 m−3

ρw Density of water ML−3 kgm−3

ρ2 Theoretical coefficient of determination – –
σ Parameter of lognormal

raindrop size distribution – –
σx Standard deviation of x – –
ω Raindrop property – –
Λ Parameter of gamma

raindrop size distribution L−1 mm−1

Γ (·) Gamma function – –
Γ (·, ·) Incomplete gamma function – –
Φ Rainfall integral variable – –
Ψ Reference variable – –
Ω, Ωm Rainfall related variable proportional to

moment of raindrop size distribution – –
ΩA Rainfall flux variable – –
ΩV Rainfall state variable – –
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Chapter 1

Introduction

1.1 Rationale

This thesis deals with raindrops. Anyone who has ever heard rain ticking on an
umbrella or watched rain splashing in a pool knows very well that rain actually
consists of individual raindrops which occur in varying numbers and have different
positions, sizes and fall speeds. In other words, rainfall is a discrete process.

Nevertheless, hydrologists and to a lesser extent meteorologists have traditionally
considered rainfall to be a continuous process. They have typically concentrated on
the average properties of rainfall over sufficiently large volumes and time intervals.
Knowledge of the exact positions, sizes and fall speeds of the individual raindrops
is then no longer necessary. Consequently, the highly stochastic, discrete nature of
rainfall at smaller spatial and temporal scales is treated only in a statistical sense.
The true small scale variability of rainfall is represented by means of the statistical
distributions of the numbers, positions, sizes and fall speeds of the raindrops within
a reference volume or time interval. In other words, the microstructure of rainfall is
not explicitly resolved at the larger scale, but only taken into account via a statistical
model. Modeling small scale variability which is not resolved explicitly at a larger
scale is called parameterization.

Hydrologists and meteorologists often make an additional simplification. They
focus their attention entirely on only one aspect of the averaged rainfall process:
the rain rate. This quantity is traditionally denoted as R and expressed in units of
mmh−1. It represents the average mass flux density over a certain surface area and
a certain time interval. Hence, it is a macroscopic property, related to the numbers,
positions, sizes and fall speeds of the individual raindrops in a statistical manner1.

In summary, in hydrology and meteorology the enormous complexity of the rain-
fall process tends to be reduced to a continuous field which describes the spatial and
temporal variations of just one quantity: the rain rate. There are two main problems
associated with this simplified representation of reality. The first is that R is just one

1In this sense, there is a clear analogy between rainfall and statistical mechanics. The rain rate R
is related to the numbers, positions, sizes and speeds of the individual raindrops in much the same
way as the macroscopic thermodynamic quantities (such as pressure) are related to the numbers,
positions and speeds of the individual molecules (e.g. van Kampen, 1992).

9
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of a whole range of possible quantities which could be used to characterize rainfall.
It merely represents the average mass flux density at each point of the rainfall field2.
Although this may be an appropriate quantity for many applications, it is not neces-
sarily the most suitable for others. However, all macroscopic rainfall quantities and
the relationships between them depend on the structure of rainfall on a microscopic
scale. Therefore, if other quantities than R are needed for a particular application, or
perhaps the relationships of those quantities with R, then a more detailed description
of rainfall is required, one in which its discrete nature is taken into account, either
explicitly or implicitly.

The second problem associated with the traditional description of rainfall as a
continuous field is that at smaller and smaller spatial and temporal scales, the field
approximation breaks down. The ‘continuous’ flux of water then becomes the highly
intermittent, discrete process one observes in reality (Rodriguez-Iturbe et al., 1984;
Fabry, 1996). To be able to account for this transition from a continuous to a discrete
process, the continuum hypothesis has to be abandoned in favor of a more detailed
description of the microstructure of rainfall.

The main reason why hydrologists have generally disregarded the microstructure
of rainfall is because the spatial and temporal scales associated with it are thought
to be insignificant as compared to the characteristic scales of typical hydrological
processes such as rainfall-runoff transformations. There are two relatively recent
developments which are stimulating the interest of the hydrological community in
the microstructure of rainfall: (1) the increased use of weather radar for estimating
the spatial and temporal distribution of rainfall (e.g. Collier, 1986a,b; Collier and
Knowles, 1986; Krajewski, 1987; Creutin et al., 1988; Delrieu et al., 1988; Azimi-
Zonooz et al., 1989; Seo et al., 1990a,b; Seo and Smith, 1991a,b; Smith, 1993b;
Uijlenhoet et al., 1994, 1995, 1997, 1999a; Smith et al., 1996a,b; Andrieu et al.,
1997; Creutin et al., 1997; Sempere Torres et al., 1999a); (2) the increased interest
for processes at the land surface, such as rainfall interception by vegetation canopies
(Calder, 1986; Dolman and Gregory, 1992; Eltahir and Bras, 1993; Hall and Calder,
1993; Calder, 1996a,b; Calder et al., 1996; Hall et al., 1996), soil detachment and
erosion by raindrop impact (WMO, 1983; Rosewell, 1986; Sempere Torres et al.,
1992; Sharma et al., 1993; Agassi et al., 1994), infiltration of rain water into the soil
and surface runoff.

Knowledge of the microstructure of rainfall is indispensable for the hydrological
application of weather radar because the relationship between measured radar re-
flectivity and surface rainfall (both macroscopic quantities) depends strongly on the
microscopic structure of rainfall. For a proper understanding of the mentioned land
surface processes knowledge of the microstructure of rainfall is required because these
are in general highly nonlinear processes to which literally every single raindrop can
make a significant contribution. Major hydroclimatological research programs where

2Classical examples of hydrometeorological models of the space and/or time structure of (con-
tinuous) rainfall fields are those due to Le Cam (1961), Waymire and Gupta (1981a,b,c), Smith
and Karr (1983), Rodriguez-Iturbe et al. (1984), Waymire et al. (1984), Smith and Karr (1985),
Rodriguez-Iturbe (1986), Rodriguez-Iturbe et al. (1986), Rodriguez-Iturbe and Eagleson (1987),
Rodriguez-Iturbe et al. (1987), Smith (1987) and Rodriguez-Iturbe et al. (1988).
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radar remote sensing of rainfall and land surface processes play a prominent role in-
clude NASA’s Tropical Rainfall Measuring Mission (TRMM) (Simpson et al., 1988;
Meneghini et al., 1999), the Global Energy and Water Cycle Experiment (GEWEX)
(Chahine, 1992) and the Next Generation Weather Radar system (NEXRAD) (Hud-
low et al., 1991). Two other disciplines where the microstructure of rainfall plays an
important role are: (1) meteorology, e.g. radar meteorology (e.g. Doviak and Zrnić,
1993), cloud and precipitation physics (Rogers and Yau, 1996) and aerosol scaveng-
ing (e.g. Pruppacher and Klett, 1978); (2) telecommunications, e.g. the study of the
distortion of radio signals on earth and space-based communication links (e.g. Crane,
1971; Olsen et al., 1978).

The subject of this thesis lies at the intersection of stochastic rainfall modeling and
radar remote sensing of precipitation. At Wageningen University exists a tradition of
doctoral theses dealing with (stochastic) rainfall modeling (e.g. van Montfort, 1966;
Buishand, 1977; Witter, 1984; de Lima, 1998). In a similar manner, several thesis
research projects carried out at Delft University of Technology have dealt with radar
remote sensing of precipitation (e.g. Klaassen, 1989; Russchenberg, 1992). This thesis
in a sense bridges the gap between these traditions.

1.2 Rainfall microstructure

1.2.1 A static picture of rainfall

An example of a more detailed description of the microstructure of rainfall is provided
by Fig. 1.1. Although it is merely a schematic representation of reality, it serves to
show some of the features of the microstructure of rainfall which are relevant to this
thesis. First of all, although the raindrops are distributed homogeneously in space on
the average, their local concentration is not everywhere the same. For a volume of a
given size, the numbers of raindrops it contains will therefore fluctuate in space and
in time. On the average, 1 m3 of air typically contains of the order of 103 raindrops.
Closely related to the numbers of raindrops in a volume of air are the distances
between them. Again, these will be subject to statistical fluctuations, but a typical
mean distance would be of the order of 10 cm. A third and very prominent feature
is that raindrops have different sizes. Their diameters range typically from 0.1 to 6
mm. Although Fig. 1.1 does not show this very clearly, in reality there are many more
small raindrops than large ones. The majority of the raindrops encountered in nature
are smaller than 3 mm (e.g. Rogers and Yau, 1996).

A fundamental property of rainfall in this respect is its so-called raindrop size
distribution N(D). In its traditional definition, the quantity N(D)dD represents the
expected (mean) number of raindrops with diameters between D and D+dD present
per unit volume of air. The dimensions of the function N(D) are therefore L−4,
where L stands for length. With D expressed in mm and volume in m3, the units
of N(D) become mm−1m−3. According to this definition, the notion of a raindrop
size distribution is a mixture of two different concepts, namely that of the spatial
distribution of raindrops in a volume of air (which governs the raindrop concentration)
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Figure 1.1: Schematic representation of the subject of this thesis: the spatial distribution
of raindrops in a volume of air and the distribution of their sizes (Courtesy of J. M. Porrà).

and that of the probability distribution of their sizes. A fundamental but seldom
explicitly mentioned hypothesis with regard to the existence of the function N(D) is
that it is independent of the size of the reference volume under consideration. This
assumes a certain amount of spatial homogeneity and temporal stationarity of the
rainfall process. See Porrà et al. (1998) for a review of the hypotheses on which
N(D) is based.

A comparison of the definition of the raindrop size distribution N(D) with Fig. 1.1
shows that N(D) is in fact a parameterization of the actual microstructure of rainfall
within the reference volume. Its definition neglects the exact numbers, positions and
sizes of the individual raindrops in the reference volume and merely provides an idea of
the average conditions. The minimum spatial scale for which N(D) can be considered
an accurate representation of the instantaneous conditions is the scale for which the
field approximation of rainfall breaks down. This representative elementary volume
would roughly be a few tens of cubic meters3.

3According to Orlanski’s (1975) rational subdivision of scales for atmospheric processes, this
corresponds to the micro-γ scale.
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With regard to the shapes of raindrops, those in the figure are perfect spheres.
This is a very good approximation to their true shapes. Only raindrops larger than
2 mm deviate significantly (i.e. more than 10%) from the perfect spherical shape. In
contrast to common belief, these larger raindrops do not have ‘teardrop’ shapes, but
more closely resemble oblate spheroids (Pruppacher and Pitter, 1971; Pruppacher and
Klett, 1978; Beard and Chuang, 1987). Therefore, the raindrop diameter D actually
represents an equivalent spherical raindrop diameter, i.e. the diameter of a sphere
with the same volume as that of the raindrop under consideration. In this thesis,
raindrops will be assumed perfect spheres. This has the additional advantage that
the influence of wind and turbulence on the orientation of raindrops (‘canting’) (e.g.
Brussaard, 1974; 1976) does not have to be considered.

1.2.2 A dynamic picture of rainfall

Fig. 1.1 provides a rather static picture of rainfall, in the sense that it suggests that
the raindrops are not moving. However, nothing is less true. In still air, raindrops
have terminal fall speeds which range from about 0.1 m s−1 for the smallest raindrops
to more than 9 m s−1 for the largest raindrops. At altitudes well above sea level, the
fall speeds tend to be somewhat higher (e.g. Foote and du Toit, 1969; Beard, 1976).
However, in practical situations this effect of air density is likely to be small compared
to the influence of wind (updrafts, downdrafts), turbulence and raindrop collisions.

Consider the flux of raindrops through part of the bottom of the reference volume
indicated in Fig. 1.1. If the corresponding rain rates would be calculated on the
basis of the volumes of the raindrops which pass that surface during subsequent time
intervals of one second, then the resulting time series of rain rates might look like
that provided by Fig. 1.2. This is actually a time series of rain rates with a temporal
resolution of 1 s collected using a capacitor type raingauge with a surface area of
730 cm2 (Semplak and Turrin, 1969). For reference, a line corresponding to the 20
s moving average has been indicated in the figure. It will be clear that at least part
of the fluctuations in the 1 s observations about the 20 s moving average must have
been caused by purely random fluctuations in the numbers and sizes of the raindrops
arriving at the raingauge. Note that there are rain rate differences from one second
to the next of close to 100 mmh−1. The arrival of only one 6 mm raindrop at the
raingauge during a 1 s time interval would already produce a mean rain rate of 5.6
mmh−1. Hence, the arrival of only a few large raindrops is able to cause the extreme
rain rate differences observed at this time scale.

This is an example of a time scale for which the field approximation of rainfall
breaks down. As a result, the observed rain rate fluctuations must be due ‘both
to statistical sampling errors and to real fine-scale physical variations which are not
readily separable from the statistical ones’ (Gertzman and Atlas, 1977). The termi-
nology generally adopted for these two types of fluctuations is sampling fluctuations
and natural variability, respectively. In this case, the 20 s moving average may be
considered a first rough estimate of the natural variability for the considered time
series and the deviations from this moving average consequently as an estimate of the
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Figure 1.2: Thin line indicates 200 s time series of 1 s mean rain rates collected with a 730
cm2 capacitor type raingauge at Bell Laboratories, New Jersey on July 21st, 1967 (Semplak
and Turrin, 1969). Bold line indicates 20 s moving average.

sampling variability4.

1.3 Radar meteorology and hydrology

1.3.1 The rainfall measurement problem

Accurate measurement and prediction of the spatial and temporal distribution of
rainfall is a basic problem in hydrology because rainfall constitutes the main source
of water for the terrestrial hydrological processes. As a result of the gradual de-
velopment of radar technology over the past 50 years, ground-based weather radar
is now finally becoming a tool for quantitative rainfall measurement. The advan-
tages of ground-based weather radar over the traditionally used raingauge networks
are: (1) they cover extended areas while measuring from a single point; (2) they
allow rapid access for real-time hydrological applications; (3) their spatial and tem-
poral resolution is generally high. Formerly, such results could only be achieved by
very dense and therefore impractical raingauge networks. Potential areas of applica-
tion of ground-based weather radar systems in operational hydrology include storm
hazard assessment and flood forecasting, warning and control (Collier, 1989). The

4Results of applications of (multi)fractal analysis techniques to study the fluctuations in rain rate
time series with comparable resolutions (e.g. Rodriguez-Iturbe et al., 1989; Rodriguez-Iturbe, 1991;
Georgakakos et al., 1994) should therefore be interpreted with care.
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current attention for the role of land surface hydrological processes in the climate
system has stimulated research into the spatial and temporal variability of rainfall as
well. A potential area of application of ground-based weather radar in this context is
the validation and verification of sub-grid rainfall parameterizations for atmospheric
mesoscale models and general circulation models (Collier, 1993).

A fundamental problem before radar derived rainfall amounts can be used for
hydrological purposes is to make sure that they provide accurate and robust esti-
mates of the spatially and temporally distributed rainfall amounts. The branch of
hydrology dealing with this problem is now starting to be known as radar hydrology.
The fundamental conversion associated with radar remote sensing of rainfall is that
from the radar reflectivities measured aloft to rain rates at the ground. This so-called
observer’s problem is generally tackled in two main steps (e.g. Smith and Krajewski,
1993): (1) conversion of the reflectivity measured in the atmosphere to surface reflec-
tivity; (2) conversion of surface reflectivity to rain rate. The exact manner in which
these conversions are carried out will obviously affect the precision of the obtained
radar rainfall estimates. Various aspects of the associated assumptions, errors and un-
certainties are discussed among others by Battan (1973), Wilson and Brandes (1979),
Sauvageot (1982), Doviak (1983), Zawadzki (1984), Clift (1985), Austin (1987), Joss
and Waldvogel (1990), Jameson (1991), Andrieu et al. (1997) and Creutin et al.
(1997).

1.3.2 The principle of weather radar

RADAR is the acronym for “RAdio Detection And Ranging”. According to Battan
(1973), radar can be defined as ‘the art of detecting by means of radio echoes the
presence of objects, determining their direction and range5, recognizing their character
and employing the data thus obtained’. The principle of radar remote sensing is based
upon the transmission of a coded radio signal, the reception of a backscattered signal
from the volume of interest and inferring the properties of the objects contained
in that volume by comparing the transmitted and received signals. In the case of
radar meteorology, the objects in the scattering volume are in principle hydrometeors
(precipitation particles), although occasionally the ground surface may be detected
as well. Hydrometeors can be raindrops, but snow flakes and ice crystals as well. The
main interest in this thesis lies obviously in the raindrops.

The weather radar equation describes the relationship between the received power,
the properties of the radar (transmitted power, wavelength/frequency, beamwidth,
range resolution), the properties of the targets (sizes and composition) and the dis-
tance between the radar and the targets. The simplest form of the weather radar equa-
tion corresponds to the situation where a weather radar operating at a non-attenuated
wavelength is observing a region which is homogeneously filled with raindrops. The
weather radar equation then becomes (e.g. Battan, 1973)

P r = C
|K|2
r2

Z, (1.1)

5range = distance.
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where P r (W) is the mean power received from raindrops at range r (km), C is the
radar constant, |K|2 (–) is a coefficient related to the dielectric constant of water
(≈ 0.93) and Z (mm6m−3) is the radar reflectivity factor. All radar properties are
contained in C, all raindrop properties in |K|2 and Z. In the Rayleigh limit (which
holds for non-attenuated wavelengths) Z is defined as (e.g. Battan, 1973)

Z =
∫ ∞

0
D6N(D) dD. (1.2)

This definition shows that the radar reflectivity factor Z, notwithstanding its con-
fusing name, is a purely meteorological quantity which is independent of any radar
property. Z has been expressed here as an integral over the raindrop size distribution
instead of a summation over all individual raindrops present in the sample volume
at the moment of measurement. This is allowed since the radar sample volume is
typically 1 km3, corresponding to an enormous number of raindrops (of the order of
1012).

In the absence of wind (notably updrafts and downdrafts), turbulence and rain-
drop interaction the (stationary) rain rate R (mmh−1) can be defined in terms of the
raindrop size distribution N(D) (mm−1m−3) according to

R = 6π × 10−4
∫ ∞

0
D3v(D)N(D) dD, (1.3)

where v(D) represents the relationship between the raindrop terminal fall speed in
still air v (m s−1) and the equivalent spherical raindrop diameter D (mm). Again, it is
allowed to express the rain rateR as an integral because the number of raindrops in the
sample volume is huge. A comparison of Eq. (1.3) with Eq. (1.2) demonstrates that
it is the raindrop size distribution N(D) (and to a lesser extent the v(D) relationship
as well) which ties Z and R together.

On the basis of measurements of raindrop size distributions (at the ground or in
the air) and an assumption about the functional form of the v(D) relationship, it
is possible to derive so-called Z–R relationships (e.g. via regression analysis). Such
relationships are generally found to follow power law relationships of the form

Z = CZR
γZ , (1.4)

where CZ and γZ are coefficients which may vary from one location to another and
from season to the next, but which are independent of the rain rate R itself. Experi-
ence has learned that an appropriate average relationship in many situations is

Z = 200R1.6 (1.5)

(Marshall et al., 1955). In general, the coefficients CZ and γZ will in some sense reflect
the climatological character of a particular location or season, or more specifically
the type of rainfall (e.g. stratiform, convective, orographic) for which they have been
derived. If it would be possible to characterize such differences in rainfall regimes in
terms of a limited number of parameters and associate with these parameters different
Z–R relationships then ultimately this may lead to improved rainfall estimates using
weather radar. Clearly, a parameterization of the microstructure of rainfall may
provide a means of identifying such parameters.
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1.4 Outline of this thesis

It has been demonstrated that it is the microstructure of rainfall and in particular the
concept of the raindrop size distribution which ties all physical (i.e. mechanical and
electromagnetic) properties of rainfall together. Moreover, it has been shown that it
is the raindrop size distribution which, at least partly, determines the signature of
rainfall once its field approximation is abandoned. Although many individual con-
tributions have been made since “modern” scientific research in this domain started
about a century ago (see Best, 1950b and references therein), a general framework for
the treatment of raindrop size distributions and related rainfall properties has been
lacking until now. It is the aim of this thesis to provide such a coherent framework
for the description of the microstructure of rainfall.

The concrete objective of this thesis is to develop a parameterization of the mi-
crostructure of rainfall for applications in radar meteorology and hydrology. The term
parameterization in this context means that the most important aspects of the mi-
crostructure of rainfall will be captured in a limited number of parameters, such as the
raindrop concentration and characteristic raindrop sizes. The spatial and temporal
variabilities of these parameters then determine those of any derived rainfall property
and, moreover, determine the nature of the relationships between such properties.
This may provide an improved understanding of the problems and opportunities as-
sociated with radar remote sensing of rainfall and rainfall-land surface interactions
and may ultimately lead to improved estimates of the processes involved.

Chapter 2 is an introductory chapter. It re-introduces the concept of the raindrop
size distribution and treats in detail the definitions of the rainfall microstructure and
rainfall quantities which will be used extensively in the remainder of the thesis. As an
example, it shows for the particular case of the classical exponential parameterization
for the raindrop size distribution how the definitions of several hydrologically relevant
rainfall quantities in terms of the raindrop size distribution naturally lead to the well
known power law relationships between these quantities.

Chapter 3 forms the core of this thesis. It introduces a new parameterization for
the raindrop size distribution and its properties. This parameterization is indepen-
dent of any a priori assumption regarding the functional form of the raindrop size
distribution. It contains the exponential parameterization presented in Chapter 2 as
a special case. In this general framework the formulation for the raindrop size distri-
bution takes the form of a scaling law. This scaling law formulation shows that it is
possible to normalize experimental raindrop size distributions in such a way that the
effects of changes in the shape of raindrop size distributions are separated from those
of changes in the rain rate (or any other macroscopic quantity). Its parameters have
a clear physical interpretation in terms of different types of rainfall.

Chapters 4 and 5 present two extensive experimental verifications of the scaling law
formulation of the raindrop size distribution introduced in Chapter 3. In Chapter 4 the
scaling law formulation is experimentally verified on the basis of mean raindrop size
distributions collected in various climatic settings all over the world. In Chapter 5 it is
experimentally verified using measurements of raw raindrop size distributions carried
out at the Royal Netherlands Meteorological Institute in De Bilt, The Netherlands.
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In Chapter 6 a new method for deriving radar reflectivity–rain rate relationships is
presented, based on the scaling law formulation of Chapter 3. The method is applied
to the experimental datasets presented in Chapters 4 and 5. Both the climatological
variability and the inter-event variability of the coefficients of Z–R relationships is
investigated and is related to different rainfall regimes. For the raw raindrop size dis-
tributions collected in The Netherlands, the new method is compared to the classical
regression approach.

Both the theory of radar measurement of rainfall and the concept of the raindrop
size distribution treated extensively in Chapters 2–6 are implicitly based on the Pois-
son homogeneity hypothesis. However, due to the strong natural variability of the
rainfall process on many scales, this hypothesis is very difficult to verify experimen-
tally. Chapter 7 presents such an experimental verification, based on an extraordinary
stationary time series of raindrop size distributions.

Finally, in Chapter 8 the summary and conclusions of this thesis are presented.



Chapter 2

A consistent rainfall
parameterization based on the
exponential raindrop size
distribution1

2.1 Introduction

2.1.1 Background

The existence of power law relationships between various rainfall related variables
is experimentally well established in different fields of scientific research. They are
probably most abundant in the field of radar meteorology, where the relationship
between the radar reflectivity factor Z (mm6m−3) and rain rate R (mmh−1) is of
fundamental importance to the conversion of measured radar reflectivity factors to
surface rain rates. Battan (1973) quotes a list of 69 empirical power law Z–R rela-
tionships collected in different climatic settings in various parts of the world. Since
then, dozens of other Z–R relationships have been proposed.

However, Z is not the only rainfall related variable which has been related to R
via a power law. Battan (1973) also gives examples of various power law relationships
between the liquid rainwater content W (mgm−3) and R and between a character-
istic raindrop size, the so-called median-volume diameter D0 (mm) and R. The use
of a power law D0–R relationship has originally been proposed by Laws and Parsons
(1943). Best (1950b) presents Z–R, W–R and D0–R relationships for climatologi-
cally different locations in various parts of the world. Alternative Z–R, W–R and
D0–R relationships have been presented by Sekhon and Srivastava (1971), among
others. D0–R relationships have recently received increased attention in the hydro-
logic literature because of their useful application in rainfall interception modelling
(e.g. Brandt, 1989; Calder, 1996a,b; Calder et al., 1996; Hall et al., 1996).

1Adapted version of Uijlenhoet, R. and Stricker, J. N. M. (1999). A consistent rainfall parame-
terization based on the exponential raindrop size distribution. J. Hydrol., 218:101–127.

19
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Examples of yet other variables which have been related to rain rate via power laws
are the optical extinction coefficient in rainfall S (km−1) (Atlas, 1953), the specific
microwave attenuation coefficient k in rainfall (dBkm−1) (e.g. Atlas and Ulbrich,
1974; Delrieu et al., 1991) and the kinetic energy flux density (or rainfall power) U
(Wm−2) (Sempere Torres et al., 1992; Smith and De Veaux, 1992). Although this
overview is far from complete, it serves to show that there exists a large body of
experimental evidence for the existence of power law relationships between rainfall
related variables. Many of these are of direct hydrological interest.

2.1.2 Objectives

The purpose of this chapter is to explain that the power law dependence between
rainfall related variables is not a coincidence, but a direct consequence of the fact
that rainfall is not a continuous process, as is often assumed, but a discrete process
consisting of individual raindrops with different sizes and fall speeds. A fundamental
property of rainfall in this respect is its raindrop size distribution. Therefore, this
chapter will start with a review of the measurement and parameterization of raindrop
size distributions (Section 2.2). Subsequently, a second form of the raindrop size
distribution will be introduced, which is important for a proper understanding of
rainfall in terms of raindrop processes (Section 2.3). Next, it will be made clear in what
manner the various hydrologically relevant rainfall related variables are related to
both this new and the traditional form of the raindrop size distribution (Sections 2.4–
2.6). In Section 2.7 it will be explained how the coefficients of power law relationships
between these rainfall related variables are determined by the parameters of both
forms of the raindrop size distribution. Section 2.8 will finally present the summary
and conclusions of this chapter.

Three groups of rainfall related variables will be considered, namely properties
of individual raindrops (size, speed, volume, mass, momentum and kinetic energy;
Section 2.4), rainfall integral variables (raindrop concentration, raindrop arrival rate,
liquid rainwater content, rain rate, rainfall pressure, rainfall power and radar reflec-
tivity factor; Section 2.5) and characteristic sizes (median-volume diameter, volume-
weighted mean diameter and mean-volume diameter; Section 2.6). Six different sets
of power law relationships between these rainfall related variables on the one hand
and rain rate on the other will be presented (Section 2.7). These will be based on
different assumptions regarding the rain rate dependence of the parameters of the
raindrop size distribution. Special attention will be paid to the internal consistency
of the different sets of power law relationships.

In 1948, Marshall and Palmer have published their by now classical article (a
technical note of barely more than one page) in which they introduce the exponen-
tial raindrop size distribution. Over the past five decades, this has become the most
widely cited article in the field of radar meteorology (Rogers, 1997). Although several
alternative parameterizations for the raindrop size distribution have been proposed
over the years, the exponential parameterization has been found to realistically de-
scribe averaged raindrop size distributions in many parts of the world (e.g. Joss and
Gori, 1978; Ulbrich and Atlas, 1998). Hence, the exponential raindrop size distribu-
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tion will serve as the reference parameterization in the derivations to be presented in
this chapter2.

2.2 The measurement and parameterization of rain-

drop size distributions: a review

2.2.1 Measurement

There exist two types of instruments to estimate the raindrop size distribution, namely
volume integrating devices and time integrating devices. The former provides direct
estimates of N(D) via instantaneous measurements of the numbers and sizes of rain-
drops present in a particular sample volume. Examples of such devices are the rain-
drop camera (Cataneo and Stout, 1968; Jones, 1992) and the optical array probe
(Knollenberg, 1970). Although they lack the ability to resolve individual raindrops,
vertically pointing Doppler radars belong to this class as well (e.g. Sekhon and Srivas-
tava, 1971; Atlas et al., 1973; Hauser and Amayenc, 1981; Russchenberg, 1993). Time
integrating devices provide indirect estimates of N(D) via measurements of the num-
bers and sizes of raindrops arriving at a surface (generally at ground level) during a
particular sample interval. Such measurements can be converted to the numbers and
sizes of raindrops in a volume of air (and hence can be used to estimate N(D)), pro-
vided the terminal fall speeds of the raindrops are known (see Section 2.3). Formerly,
such measurements used to be carried out using either the flour method (e.g. Laws
and Parsons, 1943) or the filter paper method3 (e.g. Marshall et al., 1947; Wessels,
1967). Nowadays, electromechanical disdrometers (Joss and Waldvogel, 1967) and
optical spectrometers (e.g. Bradley and Stow, 1974a; Wang et al., 1979; Donnadieu,
1980; Hauser et al., 1984; Illingworth and Stevens, 1987; Salles et al., 1998) are the
most widely used instruments.

Note that the measured shapes of raindrop size distributions in general differ from
their actual shapes due to instrumental effects associated for instance with uncertain-
ties in raindrop sizing (e.g. Illingworth and Stevens, 1987), raindrop splashing (e.g.
Salles et al., 1998), sampling fluctuations associated with limited sample areas, sam-
ple volumes and integration times (e.g. Cornford, 1967, 1968; Joss and Waldvogel,
1969; Gertzman and Atlas, 1978) and instrument exposure to wind and turbulence
(e.g. Folland, 1988; Salles et al., 1998). An additional source of uncertainty may
come, depending on the type of instrument used for measuring raindrop size distribu-
tions, from the conversion of raindrop flux density to concentration (e.g. Illingworth
and Stevens, 1987; Smith, 1993).

2The exponential raindrop size distribution is used as an example in this introductory chapter. A
more general approach, independent of any a priori assumption regarding the exact functional form
of the raindrop size distribution, will be presented in Chapter 3.

3The principle of the flour method is explained in Chapter 4 (Section 4.3) (in discussing Laws
and Parsons’ (1943) raindrop size data), that of the filter paper method is explained in Chapter 5
(Section 5.2) (in discussing Wessels’ (1972) raindrop size data).
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2.2.2 Parameterization

The actual shape of the raindrop size distribution is determined by the relative mag-
nitude of the competing microphysical processes which lead to growth (coalescence,
condensation) or decay (breakup, evaporation) of the raindrops as they fall to the
ground (e.g. Pruppacher and Klett, 1978; Rogers and Yau, 1996). Their spatial
and temporal variability then reflects variations in the relative importance of these
processes, which in turn may be related to differences in the underlying precipitation
generating mechanisms (e.g. stratiform, convective).

After almost a century of raindrop size distribution measurements, with differ-
ent types of instruments and in different climatic settings in various parts of the
world (e.g. Best, 1950b and references therein), it is by now experimentally well
established that on average the mentioned microphysical processes tend to produce
roughly unimodal, positively skewed raindrop size distributions. More recently, labo-
ratory experiments of raindrop interactions, analytical calculations on the basis of the
governing integro-differential equation (the so-called stochastic collection equation)
and computer simulations of the temporal evolution of raindrop size distributions in
zero-dimensional (box) and one-dimensional (shaft) models have given this observa-
tion a sound theoretical basis (e.g. Brazier-Smith et al., 1972; Srivastava, 1978, 1982;
List et al., 1987; List and McFarquhar, 1990; Levin et al., 1991; Hu and Srivastava,
1995).

This has lead researchers to suggest that, instead of using the entire array of num-
bers describing the raindrop concentrations in all available size intervals, temporally
averaged raindrop size distributions can be conveniently parameterized using only a
few (up to three) parameters. A typical set of such parameters then consists of the
raindrop concentration and the mean (as a measure of location) and the variance (as
a measure of dispersion) of the raindrop diameters. These parameters correspond to
the zeroth, first and second moment of the raindrop size distribution, respectively.

The most widely used analytical forms for the parameterization of observed rain-
drop size distributions are the exponential distribution (e.g. Marshall and Palmer,
1948; Sekhon and Srivastava, 1971; Atlas et al., 1973; Atlas and Ulbrich, 1974; Wald-
vogel, 1974; Joss and Gori, 1978; Ulbrich and Atlas, 1978; Uijlenhoet and Stricker,
1999a), the gamma distribution (e.g. Ulbrich, 1983; Willis, 1984; Delrieu et al.,
1991; Russchenberg, 1993; Ulbrich and Atlas, 1998), the lognormal distribution (e.g.
Bradley and Stow, 1974b; Markowitz, 1976; Feingold and Levin, 1986; Smith, 1993;
Smith and De Veaux, 1994; Sauvageot and Lacaux, 1995) and the generalized gamma
distribution (which comprises the Weibull distribution as a special case) (Best, 1950b;
Wessels, 1972).

Fig. 2.1 provides a graphical representation of some members of Marshall and
Palmer’s classical family of exponential raindrop size distributions. The fact that only
the slope of the raindrop size distribution on a semi-logarithmic plot is a function of
rain rate (the intercept remains constant), is a characteristic property of Marshall
and Palmer’s parameterization.

The parameters of the functional forms used for the description of the raindrop size
distribution (such as raindrop concentration and mean and variance of the raindrop
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Figure 2.1: Experimental size distributions (circles, crosses) of raindrops present in a volume
of air and fitted exponential parameterization NV(D) = N0 exp (−ΛD) mm−1m−3 (solid
lines) with N0 = 8.0 × 103 mm−1m−3 and Λ = 4.1R−0.21 mm−1 for different rain rates
R (A: 1.0 mmh−1; B: 2.8 mmh−1; C: 6.3 mmh−1; D: 23.0 mmh−1) (after Marshall and
Palmer, 1948).

diameter) are found not to fluctuate freely and independently in nature. Rather,
some of them may be practically constant while others may depend more or less
strongly on each other, the amount of dependence being a function of the type of
rainfall (stratiform, convective) or the climatic setting (e.g. Smith and De Veaux,
1994). The result is that the effective number of free parameters of the raindrop
size distribution is generally not two or three, but actually closer to one. If this
were not the case, one rainfall related variable (e.g. Z) would never contain enough
information about the raindrop size distribution to provide useful estimates of another
(such as R). In other words, it is the fact that raindrop size distributions are often
found to behave effectively as one-parameter distributions which renders power law
relationships between rainfall related variables (such as Z–R relationships) of practical
use. This point was made perfectly clear for the special case of the exponential
raindrop size distribution by Ulbrich and Atlas (1978) by means of their so-called
rain parameter diagram4. In a much more general fashion (i.e. independent of any

4Historically, in radar meteorology there is no clear distinction between “parameters” and “vari-
ables”. This can be explained by the fact that the parameters of analytical parameterizations for
the raindrop size distribution themselves are in general functions of rainfall related variables (such
as R). The general framework to be presented in Chapter 3 considers this dependence explicitly and
therefore renders the distinction between parameters and variables more clear.
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assumption with regard to the exact functional form of the raindrop size distribution)
this forms the basis of the general formulation for the raindrop size distribution in
terms of a scaling law recently proposed and experimentally verified by Sempere
Torres et al. (1994, 1998) and of its extensions to be presented in Chapter 3.

2.3 Two forms of the raindrop size distribution

2.3.1 Basic definitions

Recalling the definition given in Chapter 1, the quantity N(D)dD (m−3) has tradi-
tionally been defined as the expected (mean) number of raindrops with diameters
between D and D+dD (mm) present per unit volume of air. The units of N(D) are
therefore mm−1m−3. For a proper understanding of the various rainfall related vari-
ables (and their relationships) to be discussed in this thesis, however, it is important
to recognize that there exists a second form of the raindrop size distribution. In this
case, N(D)dD represents the expected number of raindrops with diameters between
D and D+dD arriving at a surface per unit area and per unit time. The dimensions of
this form of N(D) are therefore L−3T−1 (where L stands for length and T for time).
With D expressed in mm, area in m2 and time in s, the units of this distribution
N(D) become mm−1m−2 s−1. To distinguish between these two different forms of
the raindrop size distribution, the former will be denoted by NV(D) (the subscript V
standing for volume) and the latter by NA(D) (the subscript A standing for area),
respectively. Using the terminology of Smith (1993a), NV(D) is the raindrop size
distribution pertaining to the sample volume process and NA(D) that pertaining to
the raindrop arrival process.

If the effects of wind, turbulence and raindrop interaction are neglected, the rela-
tionship between NV(D) and NA(D) in stationary rainfall is (e.g. Austin, 1987; Hall
and Calder, 1993) {

NA(D) = v(D)NV(D)

NV(D) = v(D)−1NA(D)
, (2.1)

where v(D) denotes the relationship between the terminal fall speed v (m s−1) of a
raindrop in still air and its diameter D (mm). The fact that these two forms of the
raindrop size distribution are fundamentally different was recognized decades ago,
e.g. by Marshall et al. (1947) and Best (1950b), but has only recently been given a
more formal basis (Smith, 1993a).

Although it may seem merely a matter of taste which form of the raindrop size dis-
tribution should be considered as most fundamental, an argument in favor ofNV(D) is
the fact that it only involves the static properties of the raindrop population (namely
its concentration and size distribution). In addition to these static properties, NA(D)
involves the dynamic properties of the raindrop population as well (namely its velocity
distribution). Hence, from the point of view of separating the dynamic from the static
properties of the population, NA(D) may be argued to be less fundamental. Both
forms of the raindrop size distribution, however, implicitly assume that the rainfall
process is stationary, at least over some minimum space and time scale. In any case,
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meteorologists and telecommunications researchers (being more concerned with the
rainfall processes in the atmosphere) have generally preferred NV(D), whereas hy-
drologists (being more concerned with the rainfall fluxes at the earth’s surface) may
prefer NA(D). This is also reflected in the types of instruments these two communi-
ties have traditionally used to probe the rainfall process: weather radars versus rain
gages. It should be noted, however, that since the study of raindrop size distributions
has for the most part been the work of meteorologists, almost all publications on
this subject deal with the parameterization of NV(D) instead of NA(D), even though
NA(D) is the distribution which is actually measured in most cases. See the work of
the hydrologists Laws and Parsons (1943) and Horton (1948) for notable exceptions.

2.3.2 The raindrop size distribution in a volume

Marshall and Palmer (1948) have proposed a simple negative exponential parameter-
ization for the raindrop size distribution NV(D) as a fit to filter paper measurements
of raindrop size spectra for rain rates between 1 and 23 mmh−1,

NV(D) = N0 exp (−ΛD) , (2.2)

where N0 (mm−1m−3) is a shorthand notation for NV (0) and Λ (mm−1) is the slope of
the NV(D)-curve on a semi-logarithmic plot or equivalently, as will be demonstrated
later (Eq. (2.8)), the inverse of the mean diameter of raindrops in a volume of air.
They have found that N0 is approximately constant for any rain rate,

N0 = 8.0× 103, (2.3)

and that Λ decreases with increasing rain rate R (mmh−1) according to the power
law

Λ = 4.1R−0.21. (2.4)

Fig. 2.1 compares this parameterization with the filter paper raindrop size mea-
surements to which it was adjusted. Although these measurements correspond to
rain rates not exceeding 23 mmh−1, the Marshall-Palmer parameterization has been
found to remain a realistic representation of averaged raindrop size distributions for
much higher rain rates (e.g. Hall and Calder, 1993). A more detailed description of
the measurements is given by Marshall et al. (1947).

Note that since Marshall and Palmer’s data are largely restricted to raindrop
diameters in excess of 1 mm, their exponential fits (with the corresponding constant
value for N0) are extrapolations in the interval D < 1 mm. Indeed, it has been
argued that exponential parameterizations for the raindrop size distribution tend to
overestimate the numbers of small drops. This argument has been used to promote
the use of gamma parameterizations (Ulbrich, 1983). However, gamma raindrop size
distributions require an extra (third) parameter for their characterization. They will
not be considered in this chapter. Moreover, as has been mentioned in Section 2.1,
with sufficient temporal (or spatial) averaging, many raindrop size distributions tend
to become approximately exponential (Joss and Gori, 1978; Ulbrich and Atlas, 1998).
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Figure 2.2: Probability density functions of equivalent spherical diameter D of raindrops
(a) present per unit volume of air and (b) arriving at a surface per unit area and per unit
time for different rain rates (solid line: 1 mmh−1; dashed line: 10 mmh−1; dash-dotted
line: 100 mmh−1).
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It should also be noted that the form of the raindrop size distribution which is
actually estimated with filter paper measurements is NA(D) (a parameterization of
this form of the raindrop size distribution will be derived later, see Eq. (2.11)). Indeed,
Marshall et al. (1947) explain that they used the second equation in (2.1) to convert
their measured NA(D) to the desired NV(D).

Since NV(D) can be interpreted as the distribution of the total raindrop con-
centration over all raindrop sizes, integration of NV(D) with respect to D yields an
expression for the raindrop concentration ρV (m−3),

ρV =
∫ ∞

0
NV(D) dD =

N0

Λ
. (2.5)

Here, as in the sequel, the raindrop diameter integration limits are assumed to be
0 and ∞, respectively. In other words, the effects of truncation of the raindrop size
distribution are not considered in this work. This is both common and convenient.
Truncation of the raindrop size distribution can both be an instrumental artefact and
a natural phenomenon. Ulbrich (1985) and Feingold and Levin (1986) discuss some of
the errors involved in disregarding the effects of truncation for gamma and lognormal
raindrop size distributions, respectively. Both studies conclude that the effects of
truncation at the small diameter end of the raindrop size distribution will mostly
affect its low order moments, whereas truncation at the large diameter end will mostly
affect its high order moments, as would be expected. Ulbrich also demonstrates that
the exponents of power law relationships between rainfall related variables will not be
affected by truncation. Truncation effects are entirely contained in the prefactors of
such relationships.

A probabilistic interpretation of NV(D) is that it is the product of the expected
(mean) raindrop concentration ρV (m−3) and the probability density function fDV

(D)
(mm−1) of the stochastic diameter5 DV (mm) of raindrops in a volume of air, i.e.6

{
NV(D) = ρVfDV

(D)
fDV

(D) = ρ−1
V NV(D)

. (2.6)

This implies in the case of the exponential parameterization for NV(D) (Eq. (2.2))

fDV
(D) = Λ exp (−ΛD) ; Λ > 0; D ≥ 0, (2.7)

which is the probability density function of an exponential distribution (Mood et al.,
1974) with mean µDV

(or expectation E[DV], where E[·] is the expectation operator)
and standard deviation σDV

(all in mm)

µDV
= E [DV] = σDV

=
1

Λ
. (2.8)

5Random variables are written as underlined quantities.
6This interpretation ofNV(D) shows that the term raindrop size distribution is in fact ambiguous.

Although it may be true that NV(D) represents the distribution, in an informal sense, of the raindrop
concentration (i.e. numbers) over all raindrop sizes, statistically speaking it represents a probability
density function, not a (cumulative) probability distribution function. Nevertheless, in accordance
with the accepted usage, the term raindrop size distribution will be used here to denote NV(D) (or
NA(D)).
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The median of this distribution, i.e. the diameter chosen such that the probability of
a randomly selected diameter being smaller (or larger) is 1/2, is (in mm)

medianDV
=

ln 2

Λ
. (2.9)

The mode of the exponential distribution, i.e. the raindrop diameter for which it
attains its maximum probability density, is always equal to zero.

Fig. 2.2(a) shows examples of this probability density function for rain rates of
1, 10 and 100 mmh−1. Note that for increasing rain rates, the proportion of large
raindrops increases and consequently that of small drops decreases. The power law
Λ–R relationship used in this and the subsequent figures is not exactly Eq. (2.4), but
a slightly adapted (more consistent) relationship (Λ = 4.23R−0.214) which will be
derived later (Eq. (2.63)).

Substitution of Eqs. (2.3) and (2.4) into the expressions for ρV, µDV
, medianDV

and
σDV

shows that for Marshall and Palmer’s raindrop size parameterization both the
raindrop concentration and the mean, median and standard deviation of the raindrop
diameters in a volume increase with rain rate according to simple power laws.

2.3.3 The raindrop size distribution at a surface

To derive the raindrop size distribution NA(D) per unit area and per unit time corre-
sponding to Marshall and Palmer’s NV(D) parameterization (using the first equation
in (2.1)), a particular v(D) relationship needs to be assumed. Measurements of the
terminal fall speeds of raindrops and water drops in still air have been reported by
Laws (1941), Gunn and Kinzer (1949) and Foote and du Toit (1969), among others.
Parameterizations of varying complexity have been proposed to mimic such measure-
ments (e.g. Best, 1950a; Doherty, 1964; Atlas et al., 1973; Beard, 1976; Uplinger,
1981; Lhermitte, 1990; Rogers et al., 1993).

It will be demonstrated in Chapter 3 (Section 3.3.2) that in order to be able to
derive a consistent set of power law relationships between rainfall related variables, the
assumed relationship between raindrop terminal fall speed in still air v and raindrop
diameter D should (at least effectively) be a power law as well, i.e.

v(D) = cDγ. (2.10)

Formulas of this type, with various values for the coefficients, have been in use for al-
most five decades now. Spilhaus (1948) proposes the coefficients c = 4.49 m s−1mm−γ

and γ = 0.5. Sekhon and Srivastava (1971) cite the values c = 3.352 m s−1 mm−γ and
γ = 0.8, due to Liu and Orville (1968). An intermediate form is that proposed by At-
las and Ulbrich (1977). They demonstrate that Eq. (2.10) with c = 3.778 m s−1mm−γ

and γ = 0.67 provides a close fit to the data of Gunn and Kinzer (1949) in the range
0.5 ≤ D ≤ 5.0 mm (the diameter interval contributing most to rain rate). This has
become the most widely used power law relationship nowadays and is the form which
will be used throughout this thesis (Fig. 3.1(a), p. 68). Note that the effects of wind
(updrafts, downdrafts), turbulence and raindrop interactions will cause a significant
uncertainty in the coefficients of equations such as Eq. (2.10).
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Substituting Eqs. (2.2) and (2.10) into the first equation in (2.1) leads to an ex-
pression for the raindrop size distribution per unit area and per unit time,

NA(D) = cN0D
γ exp (−ΛD) . (2.11)

This must have been approximately the form of the raindrop size distribution mea-
sured by Marshall et al. (1947), providing the basis for the Marshall and Palmer
(1948) parameterization.

Since NA(D) can be interpreted as the distribution of the total raindrop arrival
rate over all raindrop sizes, integration of NA(D) with respect to D yields an expres-
sion for the raindrop arrival rate ρA (m−2 s−1),

ρA =
∫ ∞

0
NA(D) dD = cN0

Γ(1 + γ)

Λ1+γ
, (2.12)

where Γ(·) denotes the (complete) gamma function (Γ(1 + γ) = 0.9033 for γ = 0.67)
(e.g. Abramowitz and Stegun, 1972).

The probabilistic interpretation of NA(D) is that it is the product of the expected
(mean) raindrop arrival rate ρA (m−2 s−1) and the probability density function fDA

(D)
(mm−1) of the stochastic diameter DA (mm) of raindrops arriving at a surface per
unit area and per unit time, i.e.

{
NA(D) = ρAfDA

(D)
fDA

(D) = ρ−1
A NA(D)

. (2.13)

This implies in the case of the exponential parameterization for NV(D) (Eq. (2.2))

fDA
(D) =

Λ1+γ

Γ(1 + γ)
Dγ exp (−ΛD) ; γ,Λ > 0; D ≥ 0, (2.14)

which is the probability density function of a gamma distribution (Mood et al., 1974)
with (all in mm) mean (or expectation)

µDA
= E [DA] =

1 + γ

Λ
, (2.15)

median (in an approximation which was demonstrated by Ulbrich (1983) to be accu-
rate to within 0.5% for raindrop diameter integration limits of 0 and ∞)

medianDA
=

0.67 + γ

Λ
, (2.16)

mode

modeDA
=

γ

Λ
(2.17)

and standard deviation

σDA
=

(1 + γ)1/2

Λ
. (2.18)
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The fact that the original exponential distribution for raindrop diameters in a volume
of air changes to a non-exponential gamma distribution for diameters at a surface was
noted by Smith (1993) as well. Clearly, Eq. (2.14) reduces to Eq. (2.7) for γ = 0.

Fig. 2.2(b) shows examples of this probability density function for rain rates of
1, 10 and 100 mmh−1. The raindrop size distribution at a surface is clearly shifted
towards larger raindrop diameters with respect to that in a volume (at the same rain
rate): its mean, median and mode are all larger than that of the original exponen-
tial distribution. The relative dispersion of raindrop diameters (as measured by its
coefficient of variation σ/µ, the relative root mean square deviation from the mean),

however, is reduced (namely (1 + γ)−1/2 = 0.77 for γ = 0.67 versus 1 for the original
exponential distribution).

Substitution of Eqs. (2.3) and (2.4) into the expressions for ρA, µDA
, medianDA

,
modeDA

and σDA
shows that for Marshall and Palmer’s raindrop size parameterization

the raindrop concentration and the mean, median, mode and standard deviation of
the raindrop diameters at a surface increase with rain rate according to simple power
laws7.

2.4 Other properties of individual raindrops

2.4.1 Relationships with raindrop diameter

General observations

Table 2.1: Mechanical properties of individual raindrops ω written as power law relation-
ships ω = cωD

γω of the equivalent spherical raindrop diameter D (mm) (ρw = 1000 kgm−3

is the density of water).

Property ω Symbol Unit Relation cω γω
Diameter D mm D 1 1
Fall speed v ms−1 cDγ c γ
Volume V mm3 (π/6)D3 π/6 3
Mass m mg 10−3ρwV 10−3 (π/6) ρw 3
Momentum M kgm s−1 10−6mv 10−9 (π/6) ρwc 3 + γ
Kinetic energy E J 10−6mv2/2 10−9 (π/12) ρwc

2 3 + 2γ

Apart from their diameter D (mm), Table 2.1 lists various other hydrologically
relevant (mechanical) properties of individual raindrops, namely their terminal fall
speed v (m s−1), volume V (mm3), massm (mg), momentumM (kgm s−1) and kinetic
energy E (J). This table shows that each of these properties ω can be written as a

7Table 3.5 on p. 85 compares the statistical properties derived in this section and those to be de-
rived in Section 2.6 for the exponential distribution with the corresponding properties of the gamma
and lognormal raindrop size distributions (both in a volume of air and at a surface).
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Table 2.2: Electromagnetic properties of individual raindrops ω written as power law rela-
tionships ω = cωD

γω of the equivalent spherical raindrop diameter D (mm) (λ (cm) is the
radar wavelength; K = (ǫ− 1)/(ǫ+2) (–), where ǫ (–) is the complex dielectric constant of
water; Im(·) denotes ‘imaginary part of’ and | · | ‘modulus of’; |K|2 ≈ 0.93 for water at mi-
crowave frequencies, largely independent of temperature and wavelength, whereas Im(−K)
is strongly temperature and wavelength dependent (Gunn and East, 1954)).

Property ω Symbol Unit cω γω
Geometrical
cross-section A cm2 10−2 (π/4) 2

Optical extinction
cross-section Qt,o = 2A cm2 10−2 (π/2) 2

Microwave extinction
cross-section Qt cm2 10−3 (π2/λ) Im (−K) 3

Radar backscattering

cross-section Qb cm2 10−6 (π5/λ4) |K|2 6

power of the raindrop diameter D according to

ω = cωD
γω , (2.19)

provided the relationship between the terminal fall speed of a raindrop in still air and
its diameter obeys the power law Eq. (2.10). If, in accordance with Atlas and Ulbrich
(1977), γ is assumed to be equal to 0.67, then v, V , m, M and E become proportional
to the powers of orders 0.67, 3, 3, 3.67 and 4.34 of the raindrop diameter D. In other
words, given Eq. (2.10), several powers of the raindrop diameter have direct physical
interpretations in terms of raindrop properties.

For the sake of completeness, Table 2.2 lists some additional (electromagnetic)
properties of individual raindrops which can be written as powers of the raindrop
diameter. These so-called extinction and scattering cross-sections represent the areas
which, when multiplied by the incident intensity, give the total absorbed or scattered
power (Gunn and East, 1954). Although perhaps less directly relevant to hydrology,
they are basic ingredients for studies regarding remote sensing of rainfall, both in the
optical and in the microwave range of the electromagnetic spectrum.

In Section 2.3, it has been shown that the diameters of raindrops present in a
volume of air and those of raindrops arriving at a surface are in fact random variables
(denoted by DV and DA, respectively) which follow particular (interrelated) proba-
bility distributions. Therefore, the derived raindrop properties presented in Table 2.1
(and in Table 2.2) become random variables as well and the method of derived distri-
butions can be invoked to derive their probability density functions (AppendixA).

Some remarks concerning the electromagnetic properties

The optical extinction cross-section Qt,o has been defined in accordance with Atlas
(1953). This definition is strictly only valid if (1) D/λ, the ratio of the raindrop
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diameter to the wavelength of the incident radiation, tends to infinity (i.e. in the
high frequency limit) and (2) ‘the observation is made at a very great distance, i.e.
far beyond the zone where a shadow can be distinguished’ (van de Hulst, 1981)8.

The microwave extinction and backscattering cross-sections Qt and Qb have been
defined in accordance with Gunn and East (1954). These definitions are strictly only
valid in the other limiting case, i.e. as D/λ approaches zero, known as the Rayleigh
(i.e. low frequency) limit (Rayleigh, 1892). As a matter of fact, the definition of Qt as
given in Table 2.2 only takes extinction of microwaves due to absorption into account
and neglects scattering altogether. It may be shown that for the backscattering cross-
section, the Rayleigh approximation gives excellent results at S-band (λ ≈ 10 cm) and
remains reasonably accurate at C- and X-band (λ ≈ 5 and 3 cm, respectively). For
the extinction cross-section however, the Rayleigh approximation is essentially useless
in rainfall at the typical wavelengths employed by meteorological radars (although for
cloud droplets it still works satisfactorily) (Gunn and East, 1954; Battan, 1973; Ulaby
et al., 1981). Hence, the rigorous scattering theory for spheres of arbitrary size (Mie
theory) should be invoked (Mie, 1908; van de Hulst, 1981), which implies a departure
from the perfect power law behavior as given by Eq. (2.19).

Log-log plots of the specific attenuation coefficient k (dBkm−1) versus the rain
rate R (mmh−1) (see Section 2.5 for the definitions of these rainfall integral vari-
ables) based on empirical raindrop size distributions and Mie scattering computations
demonstrate that the resulting statistical k–R relationships still exhibit quite closely
the theoretical power law behavior (e.g. Crane, 1971). Atlas and Ulbrich (1974)
argue that ‘power law regression equations between microwave attenuation [k] and
rainfall rate R [...] also imply an “effective” power law dependence of the attenuation
cross-section Qt on drop diameter D’. The coefficients of such effective power law
relationships then become functions of the temperature, the wavelength and the un-
derlying family of raindrop size distributions (e.g. Olsen et al., 1978). Jameson (1991)
shows that even the dependence of the extinction and backscattering cross-sections
of non-spherical raindrops on their equivalent spherical diameter may effectively be
described by power laws.

All this serves to show that some important electromagnetic properties of individ-
ual raindrops also obey the power law behavior given by Eq. (2.19) (albeit sometimes
only effectively) and that, as a consequence, they fit into the general framework
presented in this chapter. Since the main concern here is with the more directly hy-
drologically relevant properties however, the main focus of this chapter will remain
on those listed in Table 2.1.

8The intuitively controversial fact that Qt,o equals twice the geometrical cross-section A is known
as the ‘extinction paradox’ (e.g. van de Hulst, 1981; Stephens, 1994). It is caused by the fact that
the total extinction in the high frequency limit is not only due to the simple geometrical effect of
blocking, but to more subtle effects associated with diffraction of light around the particle’s edge
as well. The extinction of light by raindrops is but one aspect of a very complex and beautiful
phenomenon. In his famous book on light scattering by small particles, van de Hulst (1981) devotes
an entire chapter to the optics of a raindrop.
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2.4.2 Probability density functions in a volume

As was the case for the raindrop diameters themselves, one should once again dis-
tinguish between the properties of raindrops present in a volume of air and those of
raindrops arriving at a surface. For the former, the method of derived distributions
(AppendixA) gives the general relationship

fωV
(ω) =

1

cωγω

(
ω

cω

)1/γω−1

fDV

[(
ω

cω

)1/γω
]
; cω, γω > 0; ω ≥ 0. (2.20)

Substitution of Eq. (2.7) implies

fωV
(ω) =

Λ

cωγω

(
ω

cω

)1/γω−1

exp

[
−Λ

(
ω

cω

)1/γω
]
; cω, γω,Λ > 0; ω ≥ 0, (2.21)

which can be recognized as the probability density function of a Weibull distribution
(Mood et al., 1974) with (all in the units indicated in Table 2.1) mean (or expectation)

µωV
= E [ωV] =

cωΓ(1 + γω)

Λγω
, (2.22)

median (directly from Eq. (2.9))

medianωV
= cω

(
ln 2

Λ

)γω

, (2.23)

mode

modeωV
=

{
cω
(
1−γω
Λ

)γω
; 0 < γω ≤ 1

0 ; γω > 1
(2.24)

and standard deviation

σωV
=

cω [Γ(1 + 2γω)− Γ2(1 + γω)]
1/2

Λγω
. (2.25)

Clearly, if cω = γω = 1 then ωV = DV and Eq. (2.21) reduces to Eq. (2.7).
Fig. 2.3(a), (c) and (e) shows the probability density functions in a volume of air

of three of the raindrop properties mentioned in Table 2.1, namely its terminal fall
speed, volume and kinetic energy (for rain rates of 1, 10 and 100 mmh−1). Note that
the probability density function of raindrop mass (in mg) would be numerically equal
to that of raindrop volume (in mm3) because the density of water is 1000 kgm−3,
which equals 1 mgmm−3. For raindrop volume and kinetic energy (both γω > 1), the
probability density functions have an extreme reverse J-shape (their probability den-
sities tend to infinity for values approaching zero). The probability density function
of raindrop terminal fall speed (γω < 1) has a classical unimodal, positively skewed
shape. The corresponding (cumulative) probability distribution functions are shown
in Fig. 2.4(a), (c) and (e). These functions confirm that large fractions of the prob-
ability mass of both raindrop volume and kinetic energy correspond to small values,
particularly for low rain rates.
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Figure 2.3: Probability density functions of raindrop terminal fall speed in still air v (a, b),
raindrop volume V (c, d) and raindrop kinetic energy E (e, f) for different rain rates (solid
line: 1 mmh−1; dashed line: 10 mmh−1; dash-dotted line: 100 mmh−1). (a), (c) and (e)
Pertain to properties of raindrops present in a volume of air and (b), (d) and (f) to those
of raindrops arriving at a surface.
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Figure 2.4: Probability distribution functions of raindrop terminal fall speed in still air v
(a, b), raindrop volume V (c, d) and raindrop kinetic energy E (e, f) for different rain rates
(solid line: 1 mmh−1; dashed line: 10 mmh−1; dash-dotted line: 100 mmh−1). (a), (c)
and (e) Pertain to properties of raindrops present in a volume of air and (b), (d) and (f) to
those of raindrops arriving at a surface.
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2.4.3 Probability density functions at a surface

For the probability density functions of the properties of raindrops arriving at a
surface, the method of derived distributions gives the general relationship

fωA
(ω) =

1

cωγω

(
ω

cω

)1/γω−1

fDA

[(
ω

cω

)1/γω
]
; cω, γω > 0; ω ≥ 0. (2.26)

Substitution of Eq. (2.14) implies

fωA
(ω) =

Λ1+γ

cωγωΓ(1 + γ)

(
ω

cω

)(1+γ)/γω−1

exp

[
−Λ

(
ω

cω

)1/γω
]
;

cω, γω, γ,Λ > 0; ω ≥ 0, (2.27)

which can be recognized as the probability density function of a so-called generalized
gamma distribution (Stacy, 1962; Ashkar et al., 1988) with (all in the units indicated
in Table 2.1) mean (or expectation)

µωA
= E [ωA] =

cωΓ(1 + γ + γω)

ΛγωΓ(1 + γ)
, (2.28)

median (directly from Eq. (2.16))

medianωA
= cω

(
0.67 + γ

Λ

)γω

, (2.29)

mode

modeωA
=

{
cω
(
1+γ−γω

Λ

)γω
; 0 < γω ≤ 1 + γ

0 ; γω > 1 + γ
(2.30)

and standard deviation

σωA
=

cω
Λγω

[
Γ(1 + γ + 2γω)

Γ(1 + γ)
− Γ2(1 + γ + γω)

Γ2(1 + γ)

]1/2
. (2.31)

Again, if cω = γω = 1 then ωA = DA and Eq. (2.27) reduces to Eq. (2.14). Moreover,
if γ = 0 then Eq. (2.27) reduces to Eq. (2.21). For the special case of the raindrop
terminal fall speed, it is possible to obtain general relations between the moments of
the distributions of vA and vV without making assumptions regarding the functional
forms of the raindrop size distribution and the v(D) relationship (AppendixB).

Fig. 2.3(b), (d) and (f) shows the probability density functions and Fig. 2.4(b),
(d) and (f) the corresponding (cumulative) distribution functions of the terminal fall
speed, volume and kinetic energy of raindrops arriving at a surface (for rain rates of 1,
10 and 100 mmh−1). Although the general shapes of the densities and distributions
remain the same, the dominant raindrop properties at a surface are clearly shifted
towards larger values with respect to those in a volume (at the same rain rate): their
mean, median and mode are all increased. Their relative dispersions (as measured by
their coefficients of variation σ/µ), however, are reduced.
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2.5 Rainfall integral variables

2.5.1 Relationship with raindrop size distribution and rain-
drop properties

Using the raindrop properties ω presented in the previous section (Table 2.1), various
hydrologically relevant rainfall integral variables Ω can be defined. These variables,
as is suggested by their name, are characterized by the fact that they are integrals
over the raindrop size distribution (either that in a volume or that at a surface). For
each rainfall integral variable, a specific raindrop property is used as a weight in the
integration, i.e.

Ω =
∫ ∞

0
ω(D)N(D) dD. (2.32)

It was demonstrated in Section 2.4 that if the terminal fall speed v of a raindrop
is related to its diameter D via a power law, then any of the mentioned raindrop
properties will be a power of this diameter as well. A consequence of this is that the
corresponding rainfall integral variables Ω will become proportional to the moments
of the raindrop size distribution, i.e.

Ω = cω

∫ ∞

0
DγωN(D) dD. (2.33)

Two types of rainfall integral variables can be distinguished, namely state variables
and flux (or rate) variables. The former describes the amount of a certain raindrop
property (such as mass) present per unit volume of air (i.e. they are concentrations),
the latter describes the amount of a certain raindrop property (such as volume, mo-
mentum or kinetic energy) arriving at a surface per unit area and per unit time (i.e.
they are flux densities or rates). State variables are scalar quantities, i.e. they do not
have directions, whereas flux variables are vector quantities, i.e. they have directions
(namely vertically downward in the absence of wind and turbulence). A consequence
of their definitions is that state variables are directly related to the size distribution
NV(D) of raindrops present in a volume of air and flux variables are directly related to
the size distribution NA(D) of raindrops arriving at a surface. If, in accordance with
the notation used for these raindrop size distributions, state variables are denoted by
ΩV and flux variables by ΩA, one can define

{
ΩV = cω

∫∞
0 DγωNV(D) dD

ΩA = cω
∫∞
0 DγωNA(D) dD

. (2.34)

The two most fundamental state and flux variables have already been encountered
in Section 2.3, namely the raindrop concentration ρV (Eq. (2.5)) and the raindrop ar-
rival rate ρA (Eq. (2.12)). Tables 2.3 and 2.4 mention these and various other hydro-
logically relevant state and flux variables. If the definitions of the rainfall integral
variables Ω presented in these tables are compared with the definitions of the corre-
sponding raindrop properties ω given in Tables 2.1 and 2.2, the relationships between
them (as defined by Eq. (2.34)) should become clear.
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Using the conversion relationships between NV(D) and NA(D) (Eq. (2.1)) and the
power law relationship between v and D (Eq. (2.10)), ΩV can also be expressed in
terms of NA(D) and ΩA in terms of NV(D) according to

{
ΩV = cωc

−1
∫∞
0 Dγω−γNA(D) dD

ΩA = cωc
∫∞
0 Dγω+γNV(D) dD

. (2.35)

If, in accordance with Atlas and Ulbrich (1977), γ is assumed to be equal to 0.67, then
raindrop concentration ρV, raindrop arrival rate ρA, liquid rainwater content W , rain
rate R, rainfall pressure P , rainfall power U and radar reflectivity factor Z become
proportional to the moments of orders 0, 0.67, 3, 3.67, 4.34, 5.01 and 6 of the raindrop
size distribution NV(D) in a volume. The corresponding moments of the raindrop size
distribution NA(D) at a surface are −0.67, 0, 2.33, 3, 3.67, 4.34 and 5.33, respectively.
In other words, given a plausible assumption regarding the dependence of raindrop
terminal fall speed on diameter, several moments of the raindrop size distributions
in a volume and at a surface have direct physical interpretations in terms of rainfall
integral variables.

2.5.2 State variables

Since NV(D) can be regarded as the product of raindrop concentration ρV and the
probability density function fDV

(D) of the raindrop diameters in a volume (according
to the first equation in (2.6)), the integral definition of the rainfall state variables (as
given by the first equation in (2.34)) can be rewritten as

ΩV = ρVE [ωV] , (2.36)

where

E [ωV] = cωE [Dγω
V ] = cω

∫ ∞

0
Dγω fDV

(D) dD (2.37)

is the expectation of the property ωV = cωD
γω
V of raindrops present in a volume of

air. In other words, ΩV can simply be interpreted as the product of the mean number
of raindrops present per unit volume of air times the mean of a particular property of
those raindrops (as demonstrated in Table 2.3 for raindrop concentration ρV, optical
extinction coefficient S, liquid rainwater content W , specific attenuation coefficient k
and radar reflectivity factor9 Z).

9In general, the so-called effective or equivalent radar reflectivity factor Ze is defined as (with Ze

in mm6 m−3, λ in cm, Qb in cm2 and NV(D)dD in m−3)

Ze =
106λ4

π5 |K|2
∫

∞

0

Qb(D)NV(D) dD

=
106λ4

π5 |K|2
ρVE

[
Q

b

]

(e.g. Battan, 1973). If the Rayleigh approximation for Qb(D) (Table 2.2) is substituted in this
expression then Ze reduces to Z, the radar reflectivity factor defined in Table 2.3.
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Table 2.3: Rainfall state variables ΩV written as moments cω
∫∞
0 DγωNV(D)dD of the

raindrop size distribution NV(D) (mm−1 m−3) in a volume or equivalently as moments
cωc

−1
∫∞
0 Dγω−γNA(D)dD of the raindrop size distribution NA(D) (mm−1m−2 s−1) at a

surface. S and k are both one-way extinction coefficients and k and Z are Rayleigh ap-
proximations (ρw = 1000 kgm−3 is the density of water; c (m s−1mm−γ) and γ (–) are
the coefficients of the power law relationship v(D) = cDγ ; λ (cm) is the radar wavelength;
Im(K) and |K|2 are functions of the complex refractive index of water, see Table 2.2).

State variable ΩV Symbol Unit Relation cω γω
Raindrop
concentration ρV m−3 ρV 1 0

Optical extinction

coefficient S km−1 10−1ρVE
[
Q

t,o

]
10−3 (π/2) 2

Liquid rainwater
content W mgm−3 ρVE[mV] 10−3 (π/6) ρw 3

Specific attenuation

coefficient k dBkm−1 ρVE[Q
t
]

ln 10
10−3 π

2Im(−K)
λ ln 10

3
Radar

reflectivity factor Z mm6m−3 ρVE
[
D6

V

]
1 6

The expression for ΩV corresponding to the exponential raindrop size distribution
NV(D) in a volume (Eq. (2.2)) can now be obtained by substituting Eq. (2.5) for ρV
and Eq. (2.22) for E[ωV] in Eq. (2.36). This yields

ΩV =
cωN0Γ(1 + γω)

Λ1+γω
. (2.38)

For various applications (notably the study of sampling fluctuations) it is of inter-
est to have an idea of the relative contribution of each infinitesimal raindrop diameter
interval [D,D + dD] to a rainfall state variable and to compare the results for differ-
ent state variables. A normalized measure (in the sense that it has unit area) for this
is the ratio fΩV

(D) (mm−1) of the integrand in the definition of ΩV (the first equa-
tion in (2.34)) to ΩV itself. Using Eqs. (2.2) and (2.38) this gives for the exponential
raindrop size distribution NV(D) in a volume

fΩV
(D) =

Λ1+γω

Γ(1 + γω)
Dγω exp (−ΛD) ; γω,Λ > 0; D ≥ 0, (2.39)

which, as can also be seen when compared with Eq. (2.14), is equivalent to the prob-
ability density function of a gamma distribution (Mood et al., 1974) with (all in mm)
mean

µΩV
=

1 + γω
Λ

, (2.40)

median (using the Ulbrich, 1983 approximation)

medianΩV
=

0.67 + γω
Λ

, (2.41)
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mode

modeΩV
=

γω
Λ

(2.42)

and standard deviation

σΩV
=

(1 + γω)
1/2

Λ
. (2.43)

Note that although the notation in Eqs. (2.39)–(2.43) is similar to that in Eqs. (2.14)–
(2.18), the subscripts ΩV are not underlined here. As such, these quantities do not
represent the properties of a random variable5 ΩV.

If one compares Eq. (2.40) with Eq. (2.42), it follows that for exponential raindrop
size distributions NV(D), the mean of the distribution of the γωth moment of NV(D)
over all raindrop sizes apparently corresponds to the mode of the distribution of the
(γω + 1)th moment of NV(D) over all raindrop sizes. This property was noted by
Joss and Gori (1978) as well.

Since the functions fΩV
(D) have unit area and are non-negative on the entire

interval D ≥ 0, they are by definition probability density functions. However, they do
not in general represent probability density functions of any diameter with a physical
interpretation in terms of raindrops. Rather, they describe the normalized (unit area)
distribution of the γωth moment of the raindrop size distribution NV(D) in a volume
over all raindrop sizes. In distribution theory, a branch of statistics, such functions
are known as the moment distributions of the probability density functions fDV

(D)
(Kendall and Stuart, 1977). Only if γω = 0, fΩV

(D) reduces to the probability density
function of a diameter which can be interpreted physically in terms of raindrops. It
then namely represents the normalized distribution of the raindrop concentration
over all raindrop sizes, which is by definition equal to the probability density function
fDV

(D) of the diameters of the raindrops present in a volume of air (Eq. (2.7)).
Fig. 2.5(a), (c) and (f) shows the density functions and Fig. 2.6(a), (c) and (f) the

corresponding (cumulative) distribution functions with respect to raindrop diameter
of the raindrop concentration ρV, the liquid rainwater content W and the radar re-
flectivity factor Z (for rain rates of 1, 10 and 100 mmh−1). Note that Fig. 2.5(a)
equals Fig. 2.2(a). These figures clearly show that the higher order moments of the
raindrop size distribution put more weight on the larger raindrop diameters than the
lower order moments, as would be expected. This has important implications for
the estimation of such high order moments (such as Z) from observed raindrop size
distributions. Since the number of large raindrops in a sample will generally be much
more sensitive to sampling fluctuations than the number of small raindrops (because
there are fewer of them on the average), from a statistical point of view the estimation
of high order moments will be much more uncertain than that of low order moments
(Joss and Waldvogel, 1969; Gertzman and Atlas, 1977)). A general framework for
the treatment of such sampling fluctuations will be presented in Chapter 7. From a
practical point of view, however, the estimation of low order moments poses serious
problems as well. This is due to their sensitivity to the instrumental effects associated
with the measurement of small raindrops. These are close to the detection limit of
many raindrop sampling devices and, moreover, they are more sensitive to the effects
of wind, turbulence and splash than large raindrops (e.g. Salles et al., 1998).
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Figure 2.5: Density functions with respect to raindrop diameter D of raindrop concentration
ρV (a), raindrop arrival rate ρA (b), liquid rainwater content W (c), rain rate R (d), rainfall
power U (e) and radar reflectivity factor Z (f) for different rain rates (solid line: 1 mmh−1;
dashed line: 10 mmh−1; dash-dotted line: 100 mmh−1).
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Figure 2.6: Distribution functions with respect to raindrop diameter D of raindrop concen-
tration ρV (a), raindrop arrival rate ρA (b), liquid rainwater content W (c), rain rate R (d),
rainfall power U (e) and radar reflectivity factor Z (f) for different rain rates (solid line: 1
mmh−1; dashed line: 10 mmh−1; dash-dotted line: 100 mmh−1).
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Figs. 2.5(f) and 2.6(f) also reveal a fundamental physical limitation of the (non-
truncated) exponential raindrop size parameterization NV(D). Namely, that accord-
ing to this raindrop size distribution, a significant fraction (about 20%, see Fig. 2.6(f))
of the radar reflectivity factor Z can be attributed to raindrops with diameters larger
than 6 mm at a rain rate R of 100 mmh−1. Although this corresponds to only a
very small fraction of the total raindrop concentration (see Fig. 2.6(a)), raindrops of
this size are very rare in nature (Pruppacher and Klett, 1978) and therefore it seems
questionable whether such raindrops would indeed contribute 20% to Z at R = 100
mmh−1 in reality. Hence, for combinations of such high rain rates and high order
moments of the raindrop size distribution (Z is the 6th moment of NV(D)), the non-
truncated exponential distribution (and probably any non-truncated distribution) is
not a suitable raindrop size parameterization.

2.5.3 Flux (rate) variables

Due to their similarity in definition (Eq. (2.34)), the treatment of the flux variables
largely follows that of the state variables. In this case, NA(D) is the product of
raindrop arrival rate ρA and the probability density function fDA

(D) of the raindrop
diameters at a surface (according to the first equation in (2.13)). This suggests that
the integral definition of the rainfall flux variables (as given by the second equation
in (2.34)) can be rewritten as

ΩA = ρAE [ωA] , (2.44)

where
E [ωA] = cωE [Dγω

A ] = cω

∫ ∞

0
Dγω fDA

(D) dD (2.45)

is the expectation of the property ωA = cωD
γω
A of raindrops arriving at a surface.

Therefore, ΩA can be regarded as the product of the mean number of raindrops
arriving at a surface per unit area and per unit time and the mean of a particular
property of those raindrops. This is shown in Table 2.4 for raindrop arrival rate ρA,
rain rate R, rainfall pressure P and rainfall power U .

Table 2.4: Rainfall flux variables ΩA written as moments cω
∫∞
0 DγωNA(D)dD of the rain-

drop size distribution NA(D) (mm−1m−2 s−1) at a surface or equivalently as moments
cωc

∫∞
0 Dγω+γNV(D)dD of the raindrop size distribution NV(D) (mm−1m−3) in a volume

(ρw = 1000 kgm−3 is the density of water; c (m s−1 mm−γ) and γ (–) are the coefficients of
the power law relationship v(D) = cDγ).

Flux variable ΩA Symbol Unit Relation cω γω
Raindrop
arrival rate ρA m−2 s−1 ρA 1 0

Rain rate R mmh−1 3.6× 10−3× 6π × 10−4 3
ρAE[V A]

Rainfall pressure P Pa ρAE[MA] 10−9 (π/6) ρwc 3 + γ
Rainfall power U Wm−2 ρAE[EA] 10−9 (π/12) ρwc

2 3 + 2γ
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The expression for ΩA corresponding to the exponential raindrop size distribu-
tion NV(D) in a volume can now be obtained by substituting Eq. (2.12) for ρA and
Eq. (2.28) for E[ωA] in Eq. (2.44). This yields

ΩA = cωcN0
Γ(1 + γω + γ)

Λ1+γω+γ
. (2.46)

This result could have been obtained as well by noting that ΩA is cωc times the mo-
ment of order γω+γ of the raindrop size distribution NV(D) in a volume (according to
the second equation in (2.35)). This then leads directly from Eq. (2.38) to Eq. (2.46).

The density function fΩA
(D) (mm−1) of the flux variables ΩA with respect to

raindrop diameter is the same as that of the state variables ΩV (Eq. (2.39)), with γω
replaced by γω + γ, i.e.

fΩA
(D) =

Λ1+γω+γ

Γ(1 + γω + γ)
Dγω+γ exp (−ΛD) ; γω, γ,Λ > 0; D ≥ 0. (2.47)

This is the probability density function of a gamma distribution (Mood et al., 1974)
with (all in mm) mean

µΩA
=

1 + γω + γ

Λ
, (2.48)

median (using the Ulbrich, 1983 approximation)

medianΩA
=

0.67 + γω + γ

Λ
, (2.49)

mode

modeΩA
=

γω + γ

Λ
(2.50)

and standard deviation

σΩA
=

(1 + γω + γ)1/2

Λ
(2.51)

(note again that these quantities do not represent the properties of a random variable
ΩA). If γω = 0, fΩA

(D) represents the normalized distribution of the raindrop arrival
rate over all raindrop sizes, which is by definition equal to the probability density
function fDA

(D) of the diameters of the raindrops arriving at a surface (Eq. (2.14)).

Fig. 2.5(b), (d) and (e) shows the density functions and Fig. 2.6(b), (d) and (e) the
corresponding (cumulative) distribution functions with respect to raindrop diameter
of the raindrop arrival rate ρA, the rain rate R and the rainfall power U (for rain rates
of 1, 10 and 100 mmh−1). Note that Fig. 2.5(b) equals Fig. 2.2(b). With respect to the
raindrop size distributions in a volume NV(D) and at a surface NA(D), Figs. 2.5(a)–
(f) and 2.6(a)–(f) correspond to sequences of moments of increasing orders (0, 0.67,
3, 3.67, 5.01, 6 and −0.67, 0, 2.33, 3, 4.34, 5.33, respectively). As mentioned before,
in statistics the curves in Fig. 2.6(a)–(f) are known as the moment distributions of the
probability density functions fDV

(D) and fDA
(D) (Kendall and Stuart, 1977).
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2.6 Characteristic raindrop sizes

2.6.1 Relationship with raindrop size distribution and rain-
fall integral variables

For several reasons it may be useful to have an idea of characteristic raindrop sizes
corresponding to raindrop size distributions. For instance, they may be used to char-
acterize the shape and scale of experimental (Joss and Gori, 1978) or theoretical
(Ulbrich, 1983; Ulbrich and Atlas, 1998) raindrop size distributions. Another appli-
cation is in stochastic rainfall models, where it is not always feasible to take into
account the entire raindrop size distribution and it is sometimes assumed that all
raindrops have the same (characteristic) size (such that the raindrop size distribution
is a Dirac δ function concentrated at that particular size). An example of such a
model is the Calder (1996a,b) two layer stochastic model of rainfall interception, in
which the so-called median-volume raindrop diameter (to be discussed later) is used
as the characteristic raindrop size (see Uijlenhoet and Stricker, 1999b for a comment
on this approach).

Depending on the application, there are different ways to define characteristic
raindrop sizes. As a matter of fact, the parameters of the raindrop size distributions
in a volume and at a surface given in Section 2.3 (Eqs. (2.8), (2.9) and (2.15)–(2.18))
and those of the density functions of the rainfall state and flux variables presented in
the previous section (Eqs. (2.40)–(2.43) and (2.48)–(2.51)) are all characteristic sizes.
Selecting a suitable candidate for a specific application, however, cannot be done
objectively. Here, a well-established approach is followed by restricting the treatment
to characteristic sizes which are related to the third moments of either NV(D) or
NA(D). Not only do these moments correspond to rainfall integral variables of direct
hydrological interest (namely liquid rainwater content and rain rate), they are also
central in the range of moments (0–6) which have been discussed in the previous
section.

2.6.2 Median-volume diameter

A first class of characteristic sizes treated here is that of the median diameters, defined
as those diameters which divide the distributions of the rainfall integral variables over
all raindrop sizes into two equal parts. These have already been encountered in the
previous section as medianΩV

(Eq. (2.41)) and medianΩA
(Eq. (2.49)). Their general

definition is ∫ medianΩ

0
DγωN(D) dD =

∫ ∞

medianΩ
DγωN(D) dD, (2.52)

where N(D) can either be NV(D) or NA(D). Note that this equation could have been
written just as well in terms of fDV

(D) and fDA
(D). The most widely used among

the medianΩ is undoubtedly medianΩV
for γω = 3 (Eq. (2.41)). This is the median-

volume diameter, traditionally written as D0, and defined as ‘that drop diameter
which divides the drop [size] distribution in such a fashion that half [the liquid] water
content is contained in drops greater than D0’ (Battan, 1973). In other words, D0
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divides the liquid rainwater content W into two equal parts. Defined in this way,
D0 was introduced by Atlas (1953) as an alternative to Marshall and Palmer’s Λ for
the (scale) characterization of exponential raindrop size distributions. Ulbrich (1983)
later generalized its range of applications to the gamma raindrop size distribution
(which includes the exponential distribution as a special case).

A slightly different version of the median-volume diameter, however, was already
proposed by Laws and Parsons (1943). They defined D0 as ‘the raindrop diameter
dividing the drops of larger and smaller diameter into groups of equal volume’. This
may seem to be the same definition as that given by Battan. However, Laws and
Parsons were not concerned with the raindrop size distribution NV(D) in a volume
(as Atlas and Battan were), but with that at a surface, NA(D). Therefore, Laws
and Parsons’ definition of D0 does not divide the liquid rainwater content W into two
equal parts, but the rain rate R. In other words, their D0 corresponds to medianΩA

for
γω = 3 (Eq. (2.49)). This latter definition was also used recently by Calder (1996a,b)
in his stochastic model of rainfall interception.

Using the framework developed in the previous sections, it is easy to distinguish
between the two definitions of D0. Battan’s D0 can be obtained from Eq. (2.41),
whereas Laws and Parsons’ D0 can be obtained from Eq. (2.49) (both for γω = 3).
If the former is denoted by D0,V (since it is defined with respect to NV(D)) and the
latter by D0,A (since it is defined with respect to NA(D)), the definitions become
(both in mm)

D0,V =
3.67

Λ
(2.53)

and

D0,A =
3.67 + γ

Λ
. (2.54)

2.6.3 Volume-weighted mean diameter

A second class of characteristic sizes that has found wide application is that of the
weighted mean diameters. These are defined as the ratios of the (γω + 1)th moment
to the γωth moment of the raindrop size distribution (e.g. Joss and Gori, 1978), i.e.

∫∞
0 Dγω+1N(D) dD
∫∞
0 DγωN(D) dD

, (2.55)

where N(D) can either be NV(D) or NA(D) and again this equation could have
been written just as well in terms of fDV

(D) or fDA
(D). Just as in the case of the

median diameters, the weighted mean diameters have already been encountered in
the previous section, namely as µΩV

(Eq. (2.40)) and µΩA
(Eq. (2.48)). They are the

mean raindrop diameters, weighted with respect to the γωth moment of the raindrop
size distribution. Several values of γω have been used in the literature, e.g. γω = 1
(Joss and Gori, 1978), γω = 2 (Cerro et al., 1997), γω = 3 (Ulbrich, 1983; Ulbrich
and Atlas, 1998) and γω = 5 (Joss and Gori, 1978) (all with respect to NV(D)).
Clearly, for γω = 0 the weighted mean raindrop diameters reduce to the ordinary
mean diameters (Eqs. (2.8) and (2.15)).
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Table 2.5: Definitions of the characteristic sizes of raindrops present in a volume of air
(subscript V) and of those arriving at a surface (subscript A) and the resulting values in
case of an exponential raindrop size distribution NV(D) (characteristic sizes in mm if Λ in
mm−1). γ (–) is the power of the relationship v(D) = cDγ , fDV

(D) and fDA
(D) (both in

mm−1) are the probability density functions corresponding to the raindrop size distributions
NV(D) (mm−1m−3) and NA(D) (mm−1m−2 s−1), respectively.

Characteristic diameter Definition Value

Median-volume
∫D0,V

0 D3NV(D)dD = 3.67
Λ∫∞

D0,V
D3NV(D)dD

∫D0,A

0 D3NA(D)dD = 3.67+γ
Λ∫∞

D0,A
D3NA(D)dD

Volume-weighted mean Dm,V =

∫
∞

0
D4NV(D)dD∫

∞

0
D3NV(D)dD

4
Λ

Dm,A =

∫
∞

0
D4NA(D)dD∫

∞

0
D3NA(D)dD

4+γ
Λ

Mean-volume DV,V =
[∫∞

0 D3fDV
(D) dD

]1/3
61/3

Λ

DV,A =
[∫∞

0 D3fDA
(D) dD

]1/3 [(3+γ)(2+γ)(1+γ)]1/3

Λ

For the same reasons as the median-volume diameter was selected above, the
weighted mean diameter corresponding to γω = 3 seems to be the most suitable can-
didate here. This is the volume- (or mass-) weighted mean diameter, usually denoted
as Dm. Again, a distinction will be made between the volume-weighted mean diame-
ter corresponding to NV(D), which will be denoted by Dm,V, and that corresponding
to NA(D), denoted by Dm,A. For the exponential raindrop size distribution NV(D)
in a volume, the former can be obtained from Eq. (2.40) for γω = 3, yielding

Dm,V =
4

Λ
, (2.56)

and the latter from Eq. (2.48) for γω = 3, yielding

Dm,A =
4 + γ

Λ
. (2.57)

These values are slightly larger than that for D0,V and D0,A, respectively. The main
advantage of the volume-weighted mean diameters over the median-volume diameters
lies in the fact that the uncertainty associated with their estimation from measured
raindrop size distributions is less (Joss and Gori, 1978; Ulbrich, 1983; Ulbrich and
Atlas, 1998).

2.6.4 Mean-volume diameter

A third class of characteristic raindrop sizes is defined here not in terms of the rain-
fall integral variables, such as the median diameters and weighted mean diameters
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discussed above, but in terms of the rainfall properties presented in Section 2.4. Par-
ticularly for rainfall simulation purposes (e.g. Calder, 1996a,b), it may be useful to
have an idea of the diameters corresponding to the mean raindrop fall speed, volume,
mass, momentum or kinetic energy, both with respect to NV(D) and with respect to
NA(D). In general, the characteristic diameters defined in this manner correspond to
the γωth root (the (1/γω)th power) of the γωth moment of the raindrop size distribu-
tion, i.e.

E [Dγω ]1/γω =
[∫ ∞

0
Dγω fD(D) dD

]1/γω
, (2.58)

where the expectation can either be with respect to DV or with respect to DA. In
other words, the integration can be over fDV

(D) or over fDA
(D).

For γω = 3, the mean-volume diameter, i.e. the raindrop diameter corresponding
to the mean raindrop volume (or mass), is obtained. This characteristic size will be
denoted as DV,V when defined with respect to NV(D) and as DV,A when defined with
respect to NA(D). For exponential raindrop size distributions NV(D) in a volume,
the former can be obtained from Eq. (2.22) for cω = 1 and γω = 3, yielding

DV,V =
Γ1/3(4)

Λ
=

61/3

Λ
, (2.59)

and the latter from Eq. (2.28) for cω = 1 and γω = 3, yielding

DV,A =
Γ1/3(4 + γ)

ΛΓ1/3(1 + γ)
=

[(3 + γ) (2 + γ) (1 + γ)]1/3

Λ
. (2.60)

These mean-volume diameters are significantly smaller than both the median-volume
diameters and the volume-weighted mean diameters. They have direct physical in-
terpretations in that (π/6)D3

V,V is the mean volume of the raindrops present in a
volume of air (hence W ∼ ρVD

3
V,V) and (π/6)D3

V,A is the mean volume of the rain-
drops arriving at a surface (hence R ∼ ρAD

3
V,A). Table 2.5 provides a summary of the

hydrologically relevant characteristic raindrop diameters discussed in this section.

2.7 Resulting power law relationships

2.7.1 Self-consistency

In the preceding sections, three groups of rainfall related variables have been pre-
sented: 1) the parameters of the probability density functions of raindrop properties
(Sections 2.3 and 2.4); 2) rainfall integral variables and the parameters of their density
functions (Section 2.5); 3) various characteristic raindrop sizes (Section 2.6). These
rainfall related variables have been expressed in terms of four different parameters:
N0 and Λ, the parameters of the exponential size distribution of raindrops in a volume
of air (Eq. (2.2)), and c and γ, the parameters of the power law relationship between
raindrop terminal fall speed and diameter (Eq. (2.10)). The latter two are constants,
without any functional dependence on rainfall related variables. If the remaining two
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parameters, N0 and Λ, were allowed to fluctuate freely and independently, then power
law relationships between rainfall related variables would never be possible. This is
because the existence of power law relationships implies the effective number of free
parameters to be one. Therefore, to be able to derive such power laws, one of the
parameters N0 or Λ should either be constant, or both parameters should be related
to each other via a power law themselves.

An important requirement of sets of power law relationships between rainfall re-
lated variables is that they should be consistent. Self-consistency generally implies
that the number of degrees of freedom of a model (i.e. its number of free parameters)
is constrained. In this case, it means that power law relationships between rainfall
related variables should satisfy the definitions of these variables in terms of the para-
meters of the raindrop size distribution. For example, N0–R and Λ–R relationships
should not, when substituted in the defining expression for R (Eq. (2.61)), lead to con-
tradictions (i.e. they should yield R = R). This so-called self-consistency requirement
has been considered explicitly by Bennett et al. (1984), among others. The result-
ing constraints on the coefficients of power law relationships between rainfall related
variables were treated recently in a much more general fashion by Sempere Torres et
al. (1994), as part of their general formulation for the raindrop size distribution.

Imposing the self-consistency requirement has the advantage that all rainfall re-
lated variables only need to be expressed as functions of one common variable, usually
referred to as the reference variable. The resulting set of power law relationships will
automatically imply all other possible power law relationships. Since its introduction
by Marshall and Palmer (1948), it has become common practice to use rain rate R
as the reference variable (Eqs. (2.2)–(2.4)). This will be done here as well, since rain
rate is the most widely measured rainfall related variable.

2.7.2 Consistency of N0 and Λ with the v(D) relationship

In Marshall and Palmer’s parameterization, N0 is the constant 8.0 × 103 mm−1m−3

(Eq. (2.3)). Given values for c and γ, the only free parameter left is therefore Λ. This
determines a particular Λ–R relationship and consequently an entire set of power
law relationships between rainfall related variables. The Λ–R relationship proposed
by Marshall and Palmer is Λ = 4.1R−0.21 mm−1 (Eq. (2.4)). Does this power law
relationship satisfy the self-consistency requirement? In other words, to what extent
is it consistent with the definition of R in terms of N0 and Λ, and for what values of
the parameters c and γ?

Substituting cω = 6π × 10−4 and γω = 3 (Table 2.4) into Eq. (2.46) yields for
the definition of the rain rate R (mmh−1) in terms of N0 (mm−1m−3), Λ (mm−1), c
(m s−1 mm−γ) and γ (–)

R = 6π × 10−4cN0
Γ(4 + γ)

Λ4+γ
. (2.61)

With a constant N0, this expression can be inverted to yield an expression for Λ
explicitly in terms of R, N0, c and γ,

Λ =
[
6π × 10−4cN0Γ(4 + γ)

]1/(4+γ)
R−1/(4+γ). (2.62)
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Apparently, with a constant N0, the power of the Λ–R relationship is completely
determined by the power γ of the v(D) relationship. Substituting the Marshall and
Palmer value for N0 and the Atlas and Ulbrich (1977) values for c and γ (c = 3.778
m s−1 mm−γ and γ = 0.67) yields

Λ = 4.23R−0.214. (2.63)

This Λ–R relationship differs only a little from that proposed by Marshall and Palmer,
which is surprising given their entirely different methods of derivation. Eq. (2.63) is
the result of an analytical derivation based on a theoretical parameterization for the
raindrop size distribution, whereas Eq. (2.4) is the result of a sort of regression analysis
based on experimentally determined raindrop size distributions.

Although the small difference between Eqs. (2.63) and (2.4) falls entirely within the
limits of uncertainty normally associated with this type of relationship, it shows that
the latter is not fully consistent with the Atlas and Ulbrich (1977) raindrop terminal
fall speed parameterization (at least not for raindrop diameter integration limits of
0 and ∞). The coefficients of the power law v(D) relationship which are consistent
with the Marshall and Palmer raindrop size parameterization (Eqs. (2.2)–(2.4)) can
be obtained by forcing the coefficients of the general Λ–R relationship (Eq. (2.62))
to be 4.1 and −0.21, respectively. Assuming N0 = 8.0 × 103 mm−1m−3, this yields
c = 3.25 m s−1mm−γ and γ = 0.762. These values for c and γ should be regarded
as effective values, however, and should not be confused with values obtained from
actual fits of Eq. (2.10) to measurements of raindrop terminal fall speeds (such as the
values given by Atlas and Ulbrich (1977)).

2.7.3 Consistency of N0 and Λ with the Z–R relationship

The most widely used power law relationship between rainfall related variables is that
between Z, the radar reflectivity factor, and R, rain rate. Such Z–R relationships are
of fundamental importance to the hydrological application of weather radar as they
provide a way of converting measured radar reflectivity factors to surface rain rates.
The most widely used Z–R relationship is (Marshall et al., 1955)10

Z = 200R1.6, (2.64)

with Z in mm6m−3 and R in mmh−1. The popularity of this particular Z–R rela-
tionship merits a verification of its consistency with the definitions of Z and R in
terms of N0, Λ, c and γ.

Substituting the values cω = 1 and γω = 6 (Table 2.3) into Eq. (2.38) yields for the
definition of the radar reflectivity factor Z (mm6m−3) in terms of N0 (mm−1m−3)

10This relationship is generally attributed to Marshall and Palmer (1948). However, in their 1948
article, Marshall and Palmer give Z = 220R1.6, a revision of a relationship published the year before
(Marshall et al., 1947). The famous Z = 200R1.6 is presented only several years later (Marshall et
al., 1955), as a ‘slight revision’ of the 1948 relationship. This revision has perhaps been inspired by
the relationship Z = 199R1.600, derived by Best (1950b) for the data of Marshall and Palmer (1948).
The erroneous reference can be traced back to Battan (1973, Eq. (7.15a), p. 89).
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and Λ (mm−1)

Z =
N0Γ(7)

Λ7
=

720N0

Λ7
. (2.65)

For the Marshall-Palmer raindrop size distribution, with N0 = 8.0 × 103 mm−1m−3

and Λ = 4.1R−0.21 mm−1, this yields Z = 296R1.47, an expression reported by Mar-
shall and Palmer as well. This is significantly different from Eq. (2.64), although
both are based on the same data. Their methods of derivation are very different,
however. Z = 296R1.47 is the result of an analytical derivation based on a theoretical
parameterization for the raindrop size distribution, whereas Eq. (2.64) is the result
of a regression analysis based on experimentally determined raindrop size distribu-
tions. In any case, Eq. (2.64), although it is commonly known as the Marshall-Palmer
Z–R relationship, is not consistent with the Marshall-Palmer raindrop size parame-
terization. It is not consistent with Atlas and Ulbrich’s raindrop terminal fall speed
parameterization, either. A Z–R relationship consistent with that parameterization
can be obtained by substituting Eq. (2.63) into Eq. (2.65). This yields Z = 237R1.50,
a Z–R relationship consistent with N0 = 8.0× 103 mm−1m−3, c = 3.778 m s−1mm−γ

and γ = 0.67.
With a constant N0, Λ can be eliminated from Eq. (2.65) through the substitution

of Eq. (2.62). This gives a general expression for the Z–R relationship in terms of N0,
c and γ,

Z = 720N0

[
6π × 10−4cN0Γ(4 + γ)

]−7/(4+γ)
R7/(4+γ). (2.66)

As was the case for the Λ–R relationship (Eq. (2.62)), with a constant N0, the power
of the Z–R relationship is completely determined by the power γ of the v(D) relation-
ship. The coefficients of the power law v(D) relationship which are consistent with
Eq. (2.64) can be obtained by forcing the coefficients of Eq. (2.66) to be 200 and 1.6,
respectively. Assuming N0 = 8.0 × 103 mm−1m−3, this yields c = 4.15 m s−1mm−γ

and γ = 0.375. These values should again be regarded as effective values. The corre-
sponding Λ–R relationship can be obtained by substituting these values for c and γ
into Eq. (2.62). This yields Λ = 4.34R−0.229.

2.7.4 Consistent sets of power law relationships

On the basis of the N0–R, Λ–R, v(D) and Z–R power law relationships N0 = 8.0×103

mm−1m−3, Λ = 4.1R−0.21 mm−1 (Marshall and Palmer, 1948), v(D) = 3.778D0.67

(Atlas and Ulbrich, 1977) and Z = 200R1.6 (Marshall et al., 1955), a total of six
different consistent sets of power law relationships between rainfall related variables
can be constructed. This is because, as has been shown above, each combination
of two power law relationships out of these four implies the other two. Out of the
four variables N0, Λ, v and Z, six different combinations of two variables can be
selected. Each of these pairs corresponds to a different (consistent) set of power law
relationships.

Table 2.6 gives the basic N0–R, Λ–R, v(D) and Z–R power law relationships for
these six sets. The first three of them have already been encountered. For the last
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Table 2.6: Basic power law relationships with rain rate R (mmh−1) or equivalent spherical
raindrop diameter D (mm) for six different consistent sets of power law relationships be-
tween rainfall related variables. Each set corresponds to a particular pair selected from the
four rainfall related variables N0 (mm−1m−3), Λ (mm−1), v (m s−1) and Z (mm6m−3).

Set N0 × 10−3 Λ v Z
N0,Λ 8.00 4.10R−0.210 3.25D0.762 296R1.47

N0, v 8.00 4.23R−0.214 3.78D0.670 237R1.50

N0, Z 8.00 4.34R−0.229 4.15D0.375 200R1.60

Λ, v 6.91R0.019 4.10R−0.210 3.78D0.670 255R1.49

Λ, Z 5.41R0.130 4.10R−0.210 4.71D0.143 200R1.60

v, Z 11.3R−0.203 4.55R−0.258 3.78D0.670 200R1.60

three sets, it is necessary to drop the Marshall and Palmer (1948) assumption of a
constant N0. In those cases, N0 becomes a power of the rain rate, too. Although not
widely used, the possibility of such power law N0–R relationships has been suggested
already a long time ago (e.g. Sekhon and Srivastava, 1971). In principle, it is possible
to construct even more consistent sets of power law relationships by selecting yet other
pairs of rainfall related variables. The methodology for obtaining these sets, however,
is similar to that used for obtaining the current six. The treatment here is restricted
to these six as they contain the most widely used power law relationships between
rainfall related variables.

AppendixC provides power law relationships with rain rate of the most impor-
tant rainfall related variables presented in the previous sections for the six different
consistent sets. It is difficult to make general statements about differences in quality
between these six sets. The reliability of a particular set depends on the plausibility
of the corresponding raindrop size parameterization. Perhaps the sets which are con-
sistent with the raindrop terminal fall speed parameterization of Atlas and Ulbrich
(1977) should be given a slight preference, as they seem to be most physically realis-
tic. Fig. 2.7 compares the raindrop size parameterizations for these three sets with the
Marshall and Palmer (1948) data. Although the differences between the coefficients
of the power law relationships for these sets seem to be significant, they all provide
reasonable fits to the data.

2.8 Summary and conclusions

There exists an impressive body of experimental evidence confirming the existence of
power law relationships between various rainfall related variables. Many of these vari-
ables (such as rain rate, radar reflectivity factor and kinetic energy flux density) have
a direct relevance for hydrology and related disciplines (hydrometeorology, rainfall in-
terception by vegetation canopies, soil erosion, infiltration). There is one fundamental
property of rainfall which ties all these variables together, namely the raindrop size
distribution. In this introductory chapter, the classical exponential raindrop size dis-
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Figure 2.7: Experimental size distributions (circles, crosses) of raindrops present in a volume
of air (after Marshall and Palmer, 1948) and fitted exponential parameterizations NV (D) =
N0 exp (−ΛD) mm−1m−3 with N0 = 8.00 × 103 mm−1m−3 and Λ = 4.23R−0.214 mm−1

(solid lines), N0 = 6.91 × 103R0.019 mm−1m−3 and Λ = 4.10R−0.210 mm−1 (dashed lines)
and N0 = 1.13 × 104R−0.203 mm−1m−3 and Λ = 4.55R−0.258 mm−1 (dashed-dotted lines)
for different rain rates R (A: 1.0 mmh−1; B: 2.8 mmh−1; C: 6.3 mmh−1; D: 23.0 mmh−1).

tribution has been used as an example of a family of raindrop size distributions. First
of all, it has been explained that there exist two fundamentally different forms of
the raindrop size distribution, namely that per unit volume of air and that per unit
surface area and per unit time.

Subsequently, it has been shown how various hydrologically relevant rainfall vari-
ables are related to both these forms of the raindrop size distribution. Three groups
of rainfall related variables have been considered, namely properties of individual
raindrops (size, speed, volume, mass, momentum and kinetic energy), rainfall inte-
gral variables (raindrop concentration, raindrop arrival rate, liquid rainwater content,
rain rate, rainfall pressure, rainfall power and radar reflectivity factor) and char-
acteristic raindrop sizes (median-volume diameter, volume-weighted mean diameter
and mean-volume diameter). In the treatment of these variables, the importance of
the distinction between the properties of raindrops present in a volume of air and
those of raindrops arriving at a surface has been emphasized. For the rainfall in-
tegral variables, this has lead to a distinction between state variables, representing
concentrations, and flux (or rate) variables, representing flux densities.

Finally, it has been demonstrated how the coefficients of power law relationships
between such rainfall variables are determined by the parameters of both forms of
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the raindrop size distribution, i.e. by the parameters N0 and Λ of the exponential
raindrop size distribution and the coefficients c and γ of the power law relationship
between raindrop terminal fall speed and equivalent spherical diameter. Six different
consistent sets of power law relationships between the rainfall related variables and
rain rate have been derived, based on different assumptions regarding the rain rate
dependence of N0 and Λ. Special attention has been paid to the internal consistency
of the different sets of power law relationships.



Chapter 3

A general framework for the
analysis of raindrop size
distributions and their properties1

3.1 Introduction

3.1.1 Background

It has been shown in Chapter 2 (Section 2.2) that it is an experimentally well estab-
lished fact that the microstructure of rainfall exhibits two interrelated characteristics:
(1) raindrop size distributions can often be conveniently parameterized using only a
few (in general dependent) parameters, typically the raindrop concentration and the
mean and the variance of the raindrop diameters; (2) rainfall related variables (i.e.
variables defined in terms of the raindrop size distribution) are on average related to
each other via power laws.

Despite the plethora of power law relationships which have been proposed over
the years, it is an empirical fact that log-log plots of rainfall related variables against
each other generally exhibit significant scatter around some mean relationship. This
suggests that any power law relationship between two such rainfall related variables
is in fact merely a statistical relationship, representing the regression (i.e. condi-
tional mean) of one variable with respect to another (Haddad and Rosenfeld, 1997).
However, it has been common practice for over 50 years now to regard power law rela-
tionships as being deterministic relationships, i.e. without any uncertainty attached
to them. If one assumes that this is indeed the case, then the immediate implication
is that all raindrop size distributions must effectively behave as functions with only
one free (rainfall related) parameter. It is then the spatial and temporal variability
of this single parameter which governs the corresponding variabilities of the shape
of the raindrop size distribution. Moreover, the functional form of the distribution
must then be such as to yield power law relationships between all possible rainfall

1Adapted version of Uijlenhoet, R., Creutin, J.-D., and Stricker, J. N. M. (1999). Physical
interpretation of a scaling law for the raindrop size distribution. Q. J. R. Meteorol. Soc. (submitted).
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variables which can be calculated from it. Or, in the words of Ulbrich and Atlas
(1978): ‘The assumption of a specific dependence of one rainfall parameter on an-
other automatically implies all the possible relationships between all other pairs of
rainfall parameters’.

The result of all this is that of the three previously mentioned typical raindrop
size distribution parameters (raindrop concentration and mean and variance of the
raindrop diameters) either two must be constant, or one must be constant (typically
the variance) with the other two related to each other via a power law. For the special
case of exponential raindrop size distributions, for which the variance is uniquely
related to the mean (their coefficient of variation by definition equals one), this point
has been made perfectly clear by Ulbrich and Atlas (1978) by means of their so-
called rain parameter diagram. Sempere Torres et al. (1994, 1998) have recently
recognized that this has indeed been the basic premise of all parameterizations for the
raindrop size distribution which have been proposed over the years, regardless of their
exact functional form. They present and experimentally verify a general formulation
for the raindrop size distribution in terms of a scaling law. Their formulation is
independent of any a priori assumption regarding the functional form of the raindrop
size distribution and is consistent with the ubiquitous power law relationships between
rainfall related variables. In the scaling law formulation, the role of the remaining
free parameter of the raindrop size distribution is played by what is called a reference
variable. This variable therefore reflects the spatial and temporal variability of the
raindrop size distribution. The reference variable can in principle be any rainfall
related variable, although it is typically the rain rate.

3.1.2 Objectives

The main objective of this chapter is to present a comprehensive general framework
for the treatment of raindrop size distributions and their properties. The ultimate
aim of this framework is to facilitate the extraction of physically relevant information
from (typically large amounts of) empirical raindrop size distributions. A careful in-
terpretation of such information may ultimately lead to an improved understanding of
the physical processes which shape the spatial and temporal variability of rainfall on
both weather and climate scales. As a result, the proposed framework may find appli-
cation in meteorological, hydrological and telecommunications research. The scaling
law formulation for the raindrop size distribution introduced by Sempere Torres et
al. (1994, 1998) will serve as the starting point for the developments of this chapter.

The extension and generalization of the scaling law formulation proposed in this
chapter covers the following aspects: (1) a new method for the identification of the
scaling exponents is presented, using the weighted mean raindrop diameters rather
than the moments of the raindrop size distribution; (2) a physical interpretation of
the scaling exponents is proposed; (3) the physical interpretation of the general rain-
drop size distribution function g(x) is clarified; (4) a new function h(x) is introduced,
the general rain rate density function, which in contrast to g(x) has the advantage of
behaving as a probability density function; (5) an objective method for the identifica-
tion of the parameters of the general functions g(x) and h(x) is presented, employing
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the moments of the empirical rain rate density function; (6) explicit expressions for
the general functions g(x) and h(x) and associated quantities are provided for all
analytical forms of the raindrop size distribution which have been proposed in the
literature over the years (exponential, gamma, generalized gamma, Best and lognor-
mal), thus bridging the gap between the scaling law formulation and the traditional
analytical parameterizations.

In Section 3.2 the empirical and theoretical basis of the general formulation for
the raindrop size distribution as a scaling law will first be thoroughly reviewed and
clarified where necessary. Subsequently, several aspects of the scaling law formulation
which may evoke discussion will be put in perspective (Section 3.3). Then, in an effort
to bridge the gap with the traditional analytical parameterizations for the raindrop
size distribution and at the same time provide a more coherent way for the identi-
fication of its parameters, the scaling law formulation will be significantly extended
and generalized (Section 3.4). To demonstrate the power of the proposed general
framework as a convenient summary of previously published parameterizations, two
examples of such parameterizations will be discussed in the light of the new develop-
ments (Section 3.5). Section 3.6 will finally present the summary and conclusions of
this chapter.

3.2 Empirical and theoretical basis of the scaling

law formulation

3.2.1 Derivation of the scaling law

In its traditional definition, the concept of a raindrop size distribution is in fact a
mixture of two different notions, namely that of the spatial distribution of raindrops in
the air (governing the raindrop concentration) and that of the probability distribution
of raindrop sizes in the air. Hence

NV(D) = ρVfDV
(D) , (3.1)

where NV(D) [L−4] is the raindrop size distribution in a volume of air (defined such
that NV(D)dD represents the mean number of raindrops with equivalent spherical
diameters between D and D+dD [L] present per unit volume of air [L3]), ρV [L−3]
the expected (mean) raindrop concentration (which can be obtained from NV(D) via
integration with respect to D) and fDV

(D) [L−1] the probability density function of
raindrop diameters in the air (the total integral of which, by definition, equals one).

There are several rather fundamental but seldom explicitly mentioned hypotheses
(see Porrà et al. (1998) for a notable exception) which form the basis of the con-
cept of the raindrop size distribution as defined by Eq. (3.1): (1) that the numbers
of raindrops in the representative elementary volume to which NV(D) pertains are
independent of their sizes; (2) that ρV, or indeed any other rainfall state variable (i.e.
rainfall related variable expressed as a concentration, e.g. W or Z), does not depend
on the size of the sample volume (implying that raindrops are uniformly distributed
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in space); (3) that it is not necessary to know the (multivariate) statistical properties
(e.g. size, speed and position) of the entire raindrop population in the sample volume
exactly (including the interdrop dependencies), but sufficient to have an idea of the
average raindrop size properties, as expressed by the (univariate) probability density
function of raindrop sizes fDV

(D). An additional hypothesis for the application of
Eq. (3.1) in radar meteorology is that the moments of fDV

(D), at least up to order
six, exist and are finite. These hypotheses imply that the concept of the raindrop
size distribution, at least in its traditional interpretation, is incompatible with the
recently proposed (multi-)fractal descriptions of rainfall, which allow for non-uniform
spatial distributions of raindrops and so-called fat-tailed (power law) probability dis-
tributions of rain rate, with the associated divergence of moments (e.g. Lovejoy and
Schertzer, 1990)2.

A crucial step in the derivation of the scaling law is to recognize that the probabil-
ity density function fDV

(D) can be rendered dimensionless using its first moment (i.e.
the mean raindrop diameter), or in general any other rainfall related variable obtained
from fDV

(D) with dimensions [L] (Sempere Torres et al., 1998). Such variables rep-
resent in fact characteristic raindrop sizes, the existence of which has implicitly been
assumed in all parameterizations for the raindrop size distribution that have been
proposed over the years (Porrà et al., 1998). If DC [L] denotes such a characteristic
diameter, then Eq. (3.1) can be rewritten in terms of the physical parameters ρV and
DC as

NV(D) =
ρV
DC

fDC

(
D

DC

)
, (3.2)

where fDC
(·) is now a dimensionless function. This is a general result, based purely

on dimensional considerations and valid for any parameterization for the raindrop
size distribution3.

In addition to the two scale parameters that have been identified (ρV and DC),
NV(D) (hence fDC

(·)) may depend on one or more dimensionless shape parameters.
An example of the latter is the coefficient of variation of the raindrop diameters, i.e.
the ratio of their standard deviation to their mean. However, it has been argued in
Section 1 that for Eq. (3.2) to give rise to unique power law relationships between all
pairs of rainfall related variables, (1) it must effectively behave as a function with
only one free parameter and (2) its functional form must be such as to yield power
law relationships. Although this has not been proved rigorously, two necessary (and
sufficient) conditions for this to hold seem to be (1) that any dimensionless shape

2These (multi-)fractal descriptions of rainfall are also known as scaling theories, a term which
should not be confused with the use of the word ‘scaling’ in the present context, i.e. with regard
to the general description of raindrop size distributions. The same holds for the use of the term
power laws, in (multi-)fractal contexts generally pertaining to the shape of the tails of probability
distributions, here merely to indicate the type of functional dependence between two rainfall related
variables (an exception is the microscopic cloud model of Provata and Nicolis (1994), which indeed
gives rise to power law (cloud) drop size distributions).

3In collision-coalescence theory, this similarity transformation for raindrop size distributions is
known as the so-called self-preserving distribution (Pruppacher and Klett, 1978, p. 402). It represents
an asymptotic solution to the stochastic collection equation, i.e. the integro-differential equation
governing the temporal evolution of raindrop size distributions.
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parameter on which NV(D) and fDC
(·) may depend is a constant (i.e. is independent

of any rainfall related variable) and (2) that the two remaining parameters (ρV and
DC) depend in a power law fashion on some reference variable Ψ (and hence on each
other), i.e.

ρV = CρVΨ
γρV and DC = CDC

ΨγDC . (3.3)

Substitution of these two power law relationships in Eq. (3.2) finally yields

NV(D,Ψ) = ΨαΨgΨ
(
Ψ−βΨD

)
, (3.4)

where
αΨ = γρV − γDC

(3.5)

and
βΨ = γDC

(3.6)

are (dimensionless) scaling exponents. The prefactors CρV and CDC
(whose dimen-

sions depend on those of ρV, DC and Ψ and on the values of the exponents γρV and
γDC

) have been assimilated in the so-called general raindrop size distribution function
gΨ(x), where x is a scaled raindrop diameter defined as

x = Ψ−βΨD. (3.7)

It follows that gΨ(x), as opposed to fDC
(·), is no longer a dimensionless function. As

a matter of fact, its dimensions will depend on those of Ψ and NV(D,Ψ) and on the
values of the scaling exponents4. Also note that the values of αΨ and βΨ and the form
and dimensions of gΨ(x) depend on the choice of the reference variable Ψ, but do not
bear any functional dependence on its value. Eq. (3.4) represents the scaling law for
the raindrop size distribution, as introduced and experimentally verified by Sempere
Torres et al. (1994, 1998). The hypotheses made in the course of its derivation are not
specific to the scaling law, however, but have (although often implicitly) formed the
basis of most previously proposed parameterizations for the raindrop size distribution.

3.2.2 Functional form of the scaling law

The notation NV(D,Ψ) for the raindrop size distribution (instead of NV(D)), orig-
inally introduced by List et al. (1987) and List (1988), has been used to explicitly
account for the dependence of the shape of the raindrop size distribution on Ψ. In
fact, the latter represents the one remaining free parameter of the raindrop size distri-
bution. Due to the basic assumption of deterministic dependence between all rainfall
related variables, its role can in principle be played by any such variable. Since first
proposed by Marshall and Palmer (1948), however, the rain rate R (mmh−1) has
found the widest application.

It will be shown in Section 3.2.3 that Eq. (3.4) is in fact the most general formu-
lation for the raindrop size distribution which gives rise to the ubiquitous power law

4To indicate its dependence on the choice of Ψ, the notation gΨ(x) for the general distribution
function is prefered here to the notation g(x) used by Sempere Torres et al. (1994). This also renders
the notation for the general distribution function consistent with that for the scaling exponents.
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relationships between rainfall related variables. Its functional form is that of a scal-
ing law, well known from different applications in physics and chemistry. As noted
by Sempere Torres et al. (1994), ‘the peculiarity here is that the scaling variable Ψ
is an integral function of NV(D,Ψ)’. As a result, this ‘peculiarity’ will give rise to
self-consistency constraints on the general raindrop size distribution function and the
corresponding scaling exponents. These will be extensively discussed in Section 3.2.3.
In any case, rather than representing any formal theory of the evolution of raindrop
size distributions (in the sense of that advanced for instance by Srivastava, 1988),
the scaling law description is used here in a heuristic manner, i.e. as a convenient
summary describing all previously published parameterizations for the raindrop size
distribution.

Two particularly interesting special cases of the scaling law may be obtained when
Ψ is taken to be either a characteristic diameter DC or the raindrop concentration
ρV. In the first case, substituting Ψ = DC in Eq. (3.3) implies that CDC

= γDC
= 1.

This is what is called a self-consistency constraint. Substituting γDC
= 1 in Eqs. (3.5)

and (3.6) yields for the scaling exponents

αDC
= γρV − 1andβDC

= 1. (3.8)

Substituting these finally in Eq. (3.4) yields an alternative form of the scaling law,
namely

NV(D,DC) = D
αDC
C gDC

(
D

DC

)
, (3.9)

where the only free scaling exponent is now αDC
= γρV − 1. Recall that the general

raindrop size distribution function gDC
(·) is a non-dimensionless function. As noted

by Sempere Torres et al. (1994), this particular form of the scaling law implies that
NV(D,DC) must be a homogeneous function, i.e. a function satisfying

NV(δD, δDC) = δαDCNV(D,DC) , (3.10)

which is a classical way of formulating a scaling law.
The second special case of the scaling law, not explicitly treated by Sempere

Torres et al. (1994), can be obtained when the raindrop concentration ρV is used as
reference variable Ψ. In this case, substitution of Ψ = ρV in Eq. (3.3) implies that
CρV = γρV = 1, a new self-consistency constraint. Substituting γρV = 1 in Eqs. (3.5)
and (3.6) yields for the scaling exponents

αρV = 1− γDC
andβρV = γDC

. (3.11)

The corresponding form of the scaling law (Eq. (3.4)) now becomes

NV(D, ρV) = ρ
αρV
V gρV

(
ρ
−βρV
V D

)
, (3.12)

with apparently αρV +βρV = 1. In other words, as was the case when DC was used as
reference variable, there is actually only one free scaling exponent. In Section 3.2.3 it
will be demonstrated that DC and ρV are really only two special cases of the reference
variable Ψ. The fact that there is only one free scaling exponent is a general property
of the scaling law, valid for any choice of the reference variable. It is a consequence
of the imposed self-consistency, implied by Eq. (3.3).
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3.2.3 Constraints on the general raindrop size distribution

function and scaling exponents

As the raindrop size distribution NV(D,Ψ) depends on a reference variable Ψ which
itself is a function of the raindrop size distribution, it seems obvious that the form of
gΨ(x) and the values of αΨ and βΨ cannot be chosen freely, but should somehow be
constrained. In a particular but fairly general case the corresponding self-consistency
constraint can be obtained explicitly.

Assume Φ to be a rainfall integral variable, i.e. a rainfall related variable defined
as a weighted integral over the raindrop size distribution,

Φ =
∫ ∞

0
wΦ(D)NV(D,Ψ)dD, (3.13)

where wΦ(D) is some weighting function of the raindrop diameter specific to the
particular rainfall integral variable Φ. A large class of rainfall related variables can
be written in this manner. Substituting the scaling law (Eq. (3.4)) in the right-hand
side of Eq. (3.13) yields

Φ = ΨαΨ

∫ ∞

0
wΦ(D) gΨ

(
Ψ−βΨD

)
dD. (3.14)

A change of variable in Eq. (3.14) from D to x = Ψ−βΨD gives

Φ = ΨαΨ+βΨ

∫ ∞

0
wΦ

(
ΨβΨx

)
gΨ(x) dx. (3.15)

This is a general expression for the relation between any rainfall integral variable Φ
and any reference variable Ψ. Clearly, a power law relationship between Φ and Ψ
starts to emerge. A perfect power law however, i.e. a power law with coefficients
which do not functionally depend on the value of Ψ, can only be obtained if wΦ(D)
has a particular functional form, namely if it follows a power law itself (Sempere
Torres et al., 1994).

Now consider the special case of Eq. (3.15) which can be obtained when the ref-
erence variable Ψ is assumed to be equal to the rainfall integral variable Φ. Then
Eq. (3.15) takes the form

Φ = ΦαΦ+βΦ

∫ ∞

0
wΦ

(
ΦβΦx

)
gΦ(x) dx. (3.16)

Hence, self-consistency requires that

ΦαΦ+βΦ−1
∫ ∞

0
wΦ

(
ΦβΦx

)
gΦ(x) dx = 1, (3.17)

independent of the value of Φ. This is a general self-consistency constraint implied by
the scaling law, which any rainfall integral variable Φ should obey. It puts constraints
on the scaling exponents αΦ and βΦ, on the general raindrop size distribution function
gΦ(x) and on the form of the function wΦ(D). Although this has not been proved
rigorously, it seems clear that for Eq. (3.17) to hold independently of the value of Φ,
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wΦ(D) should necessarily follow a power law (or be a constant, i.e. follow a power
law with exponent zero).

The simplest example of a rainfall integral variable Φ has already been encountered
in Section 3.2.2, namely the raindrop concentration ρV. By definition wρV(D) = 1.
Hence, the self-consistency requirement for ρV (Eq. (3.17)) leads to two constraints,
one on the general raindrop size distribution function gρV(x), namely

∫∞
0 gρV(x)dx =

1, and another on the corresponding scaling exponents, namely αρV + βρV = 1 (con-
firming the result obtained in Section 3.2.2). In the next three subsections, the self-
consistency constraints for three important types of rainfall integral variables will be
discussed.

Case 1: the reference variable is proportional to a moment of the raindrop
size distribution

It has been shown in Chapter 2 (Section 2.5) that many (hydro)meteorologically rel-
evant rainfall related variables are proportional to moments of the raindrop size dis-
tribution. This implies that such variables can be written as

Ωm = cΩm

∫ ∞

0
DmNV(D,Ψ)dD, (3.18)

where cΩm is a proportionality constant which takes into account, among others, the
necessary unit conversions and m is the order of the moment (which lies typically
in the range 0–6, although it is not necessarily an integer). Note that this is a
general expression, valid for any Ψ. It is a special case of Eq. (3.13), obtained when
wΩm(D) = cΩmD

m. The particular reference variable of interest here will be specified
only later.

Substituting the scaling law (Eq. (3.4)) in the right-hand side of Eq. (3.18) yields
the power law

Ωm = CΩmΨ
γΩm , (3.19)

with prefactor

CΩm = cΩm

∫ ∞

0
xmgΨ(x) dx (3.20)

(where x = Ψ−βΨD is the scaled raindrop diameter) and exponent

γΩm = αΨ + (m+ 1)βΨ. (3.21)

Hence, the scaling law implies (1) a power law relationship between Ωm and Ψ and
(2) a linear relationship between the exponent of the power law and the order of the
moment. The functional forms of these two relationships do not depend on that of
gΨ(x), only the prefactor CΩm depends on it (Sempere Torres et al., 1994). This means
that for given values of the scaling exponents αΨ and βΨ (i.e. for a given type of rainfall
or a given climatic setting), the exponent γΩm of any power law Ωm–Ψ relationship
will be independent of the shape of the raindrop size distribution, only the prefactor
CΩm will depend on it. This implies for instance that possible effects of truncation
of the raindrop size distribution must be entirely contained in the prefactor of such
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power law relationships, the exponent remaining unaffected (something which Ulbrich
(1985) demonstrates for the particular case of gamma raindrop size distributions).

If Ψ is now assumed to be proportional to a moment of NV(D,Ψ) then the number
of degrees of freedom in Eqs. (3.20) and (3.21) can be reduced with 2 if the self-
consistency requirement that CΩm = γΩm = 1 when Ψ = Ωm is imposed. This yields
the constraints ∫ ∞

0
xmgΩm(x) dx = c−1

Ωm
(3.22)

and
αΩm = 1− (m+ 1)βΩm . (3.23)

Hence, the mth order moment of gΩm(x) is fixed and, more importantly, there re-
mains only one free scaling exponent (say βΩm , for reasons which will become clear
in Chapter 5, Section 5.4). The resulting form of the scaling law is

NV(D,Ωm) = ΩαΩm
m gΩm

(
Ω−βΩm

m D
)
, (3.24)

where gΩm(x) has to satisfy Eq. (3.22) and αΩm and βΩm are related via Eq. (3.23).
The particular functional form of the scaling law which is obtained when Ωm is taken
to be the raindrop concentration ρV (which is by definition Ω0 with cΩm = 1) is given
by Eq. (3.12). For m = 0, Eq. (3.22) implies

∫∞
0 gρV(x)dx = 1 and Eq. (3.23) implies

αρV + βρV = 1, as has been demonstrated above.

Case 2: the reference variable is a weighted mean raindrop diameter

Another group of widely used rainfall related variables, important in the characteriza-
tion of raindrop size distributions, are the weighted mean raindrop diameters, defined
as

Dm =
Ωm

Ωm−1
(3.25)

with cm = cm−1 (see Chapter 2, Section 2.6). It follows directly from Eqs. (3.19)–(3.21)
that the scaling law implies that Dm is related to Ψ via the power law

Dm = CDm
Ψγ

Dm , (3.26)

with prefactor

CDm
=

CΩm

CΩm−1

=

∫∞
0 xmgΨ(x) dx∫∞

0 xm−1gΨ(x) dx
(3.27)

and exponent
γDm

= γΩm − γΩm−1 = βΨ. (3.28)

Hence, the exponent is now a constant, independent of αΨ and m. The fact that
all characteristic raindrop diameters are related to Ψ via a power law with exponent
βΨ has been one of the basic assumptions in the derivation of the scaling law (see
Eq. (3.6)) and should therefore not be surprising. The self-consistency requirement
now yields the constraints

∫ ∞

0
xmgDm

(x) dx =
∫ ∞

0
xm−1gDm

(x) dx (3.29)



64 CHAPTER 3. A GENERAL FRAMEWORK

and
βDm

= 1. (3.30)

The resulting form of the scaling law therefore is

NV

(
D,Dm

)
= D

α
Dm

m gDm

(
D

Dm

)
, (3.31)

where gDm
(x) has to satisfy Eq. (3.29). Obviously, Eq. (3.31) has the same functional

form as the scaling law for any other characteristic diameter DC (Eqs. (3.9) and
(3.10)).

Case 3: rain rate is the reference variable

Finally, consider the most widely used rainfall related variable, the rain rate R. For
raindrop diameter integration limits of 0 and ∞, R (mmh−1) is defined as

R = 6π × 10−4
∫ ∞

0
D3v(D)NV(D,Ψ)dD, (3.32)

where v(D) (m s−1) is the terminal fall speed (in still air) of raindrops with equiva-
lent spherical diameters of D (mm) and NV(D,Ψ) is the raindrop size distribution
(mm−1m−3). Substituting the scaling law for NV(D,Ψ) (Eq. (3.4)) in the right-hand
side of Eq. (3.32) yields

R =
[
6π × 10−4

∫ ∞

0
x3v

(
ΨβΨx

)
gΨ(x) dx

]
ΨαΨ+4βΨ. (3.33)

Clearly, this only corresponds to a power law relationship between R and Ψ if R is
proportional to a moment of the raindrop size distribution. This is only true if the
function v(D) is a power law as well. Substitution of Eq. (2.10) (p. 28) in Eq. (3.33)
yields the power law

R = CRΨ
γR , (3.34)

with prefactor

CR = 6π × 10−4c
∫ ∞

0
x3+γgΨ(x) dx (3.35)

and exponent
γR = αΨ + (4 + γ)βΨ. (3.36)

In accordance with Eqs. (3.22) and (3.23), the self-consistency requirement for R (i.e.
Ω3+γ with cΩ3+γ = 6π × 10−4c) leads to the constraints5

∫ ∞

0
x3+γg(x) dx =

104

6πc
(3.37)

and
α = 1− (4 + γ)β. (3.38)

5In case of R, the subscripts of g(x), α and β are omitted for convenience in notation (Sempere
Torres et al., 1994, 1998).
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The resulting form of the scaling law becomes

NV(D,R) = Rαg
(
R−βD

)
, (3.39)

where g(x) has to satisfy Eq. (3.37) and α and β are related via Eq. (3.38). This form
of the scaling law will serve as basis for the applications which will be presented in
Section 3.5 and in Chapters 4–6. Table 3.1 summarizes the self-consistency constraints
for the three types of rainfall integral variables discussed in this section.

Table 3.1: Summary of the implications of the scaling law formulation for three rainfall
integral variables Φ: general moment Ωm, weighted mean raindrop diameter Dm (mm) and
rain rate R (mmh−1) (D in mm, NV(D) in mm−1m−3 and v(D) = cDγ in m s−1). Note
that R equals Ω3+γ with cΩ3+γ = 6π × 10−4c. Properties given for each variable: their
definitions in terms of the raindrop size distribution NV(D,Ψ); the coefficients of their
power law relationships Φ = CΦΨ

γΦ with the reference variable Ψ; the constraints on their
general raindrop size distribution functions gΦ(x) and the associated scaling exponents αΦ

and βΦ; their self-consistent functional forms of the raindrop size distribution NV(D,Φ).

Property Φ = Ωm Φ = Dm Φ = R

definition cΩm

∫∞
0 Dm×

∫
∞

0
DmNV(D,Ψ)dD∫

∞

0
Dm−1NV(D,Ψ)dD

6πc
104

∫∞
0 D3+γ×

NV(D,Ψ)dD NV(D,Ψ)dD

CΦ cΩm

∫∞
0 xmgΨ(x) dx

∫
∞

0
xmgΨ(x)dx∫

∞

0
xm−1gΨ(x)dx

6πc
104

∫∞
0 x3+γgΨ(x) dx

γΦ αΨ + (m+ 1)βΨ βΨ αΨ + (4 + γ) βΨ

gΦ(x)
∫∞
0 xmgΩm(x) dx =

∫∞
0 xmgDm

(x) dx =
∫∞
0 x3+γg(x) dx =

c−1
Ωm

∫∞
0 xm−1gDm

(x) dx 104

6πc

αΦ, βΦ αΩm = βDm
= 1 α = 1− (4 + γ) β

1− (m+ 1) βΩm

NV(D,Φ) Ω
αΩm
m gΩm

(
Ω

−βΩm
m D

)
D

α
Dm

m gDm

(
D
Dm

)
Rαg

(
R−βD

)

Different aspects of these self-consistency requirements have been touched upon
every now and again in the scientific literature on raindrop size distributions (e.g.
Olsen et al., 1978). However, their importance has only been recognized completely
since Bennett et al. (1984) have considered them explicitly for the case of the expo-
nential raindrop size distribution (with rain rate as reference variable).

3.3 The scaling law formulation in perspective

3.3.1 Alternative approaches to scaling raindrop size distri-
butions

A normalization procedure similar to the scaling law approach has already been pro-
posed by Sekhon and Srivastava (1971) and has later been applied by Willis (1984)
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and Willis and Tattelman (1989). With regard to this procedure, Sempere Torres
et al. (1994) remark that ‘this methodology requires setting the shape of the gen-
eral DSD [drop size distribution] before the normalization procedure, and even if the
parameters are fitted in a more robust way the shape is a priori chosen and does not
follow from the data’. However, things are in fact slightly more subtle. Although
in deriving their normalization Sekhon and Srivastava did indeed impose an a pri-
ori functional form for the raindrop size distribution (namely the exponential), their
procedure can be justified for any two-parameter form of the raindrop size distribu-
tion (although it must be admitted that from the way in which they derived their
normalization procedure it is not clear whether they realized this). In fact, the nor-
malization proposed by Sekhon and Srivastava is nothing but a particular case of
Eq. (3.2), obtained when NV(D)DC/ρV is plotted against D/DC. Hence, Sekhon and
Srivastava’s ‘universal’ distribution is intimately related to the dimensionless function
fDC

(·) of Eq. (3.2)6. Their experimental data (22 raindrop size distributions derived
from measurements with a vertically pointing Doppler radar) confirm that a negative
exponential function indeed provides a satisfactory fit to their empirical ‘universal’
distribution. Willis (1984) and Willis and Tattelman (1989) show that this fit may
sometimes be improved upon by using the more versatile gamma distribution7.

In summary, the two main differences between Sekhon and Srivastava’s approach
and that discussed here are (1) that Sekhon and Srivastava require two parameters
to scale their experimental raindrop size distributions (namely the median-volume
diameter D0 and the liquid rainwater content W ), whereas according to the scaling
law formulation this can be achieved using only one parameter (namely Ψ) and (2)
that as a result their approach is not intrinsically consistent with the ubiquitous power
law relationships between rainfall related variables, whereas the scaling law approach
is.

3.3.2 Power law raindrop terminal fall speed – diameter re-

lationships

It follows from Eq. (3.33) that any other functional form for v(D) than a power law
will be inconsistent with deterministic power law relationships between R and Ψ
and hence with the scaling law formulation. Even if not stated explicitly, therefore,
any power law relationship involving R (such as a Z–R relationship) must, at least
effectively, be based on a power law v(D) relationship (as argued by Sempere Torres
et al. (1994))8. The motivation to employ such power law relationships in the present

6Instead of DC/ρV Sekhon and Srivastava (1971) use ρwD
4
0/W and instead of 1/DC they use

1/D0, where ρw [ML−3] is the density of water, D0 [L] is the median-volume raindrop diameter and
W [ML−3] is the liquid rainwater content. However, in both cases the dimensions of the scaling
factors are the same, namely [L4] and [L−1], respectively.

7Incidentally, Willis (1984) himself does not realize the generality of Sekhon and Srivastava’s
normalization either when he states that ‘part of the scatter at small and large sizes is caused by
the distribution not being strictly exponential, as incorrectly assumed in the [Sekhon and Srivastava
(1971)] normalization’.

8In much the same way as power law relationships between the specific microwave attenuation
coefficient k (dB km−1) and rain rate R (mmh−1) imply ‘effective’ power law relationships between
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context is much the same as that of Ulbrich and Atlas (1998), who state that ‘the
assumption of a power-law dependence of raindrop fall speed on diameter is not
intended to be an accurate representation of the actual fall speeds. Rather, it is used
to show that the results found for the coefficients and exponents in the empirical fits
are in agreement with that which is predicted by theory’.

Fig. 3.1(a) compares the Atlas and Ulbrich (1977) power law raindrop terminal
fall speed parameterization (Eq. (2.10)) with the theoretically more accurate formula
proposed by Best (1950a). Clearly, the former starts to deviate significantly from the
latter for equivalent spherical raindrop diameters in excess of 3 mm. Since it is a
monotonously increasing function of D, the power law is not able to cope with the ef-
fects of raindrop deformation, causing larger drops to attain a certain asymptotic fall
speed (Pruppacher and Klett, 1978). However, as these drops contribute relatively
little to rain rate, the differences in rain rate density fR(D) (i.e. the distribution of
the rain rate over all raindrop diameters, normalized to unit area) for both fall speed
parameterizations will be much less pronounced. Fig. 3.1(b) shows the fR(D)-curves
for rain rates of 1, 10 and 100 mmh−1 corresponding to these parameterizations on
the basis of Best’s (1950b) parameterization for the raindrop size distribution (see
Chapter 4). This figure clearly shows that a power law raindrop terminal fall speed
parameterization yields realistic distributions of rain rate over drop size, notwith-
standing its physical shortcomings9. In this case it happens to yield more accurate
results as well. Whereas the areas under the curves in Fig. 3.1(b) should equal one
for reasons of self-consistency, the area under the 100 mmh−1 curve corresponding to
Best’s fall speed parameterization is only 0.89 (versus 0.98 for that corresponding to
the power law fall speed parameterization).

3.3.3 A scaling law for the raindrop size distribution at a

surface

Although the scaling law (Eq. (3.4)) has been derived on the basis of the raindrop
size distribution per unit volume of air NV(D,Ψ) (mm−1m−3), it could have been
derived just as well on the basis of that per unit area and per unit time NA(D,Ψ)
(mm−1m−2 s−1). The two forms of the raindrop size distribution are related via
(Eq. 2.1)

NA(D,Ψ) = v(D)NV(D,Ψ) , (3.40)

the microwave extinction cross-section Qt (cm
2) and raindrop diameter D (mm) (Atlas and Ulbrich,

1974; Olsen et al., 1978) (Chapter 2, Section 2.4).
9That is not to say, however, that a power law v(D) relationship will always provide satisfactory

results. For instance, the well-known effect that the width of the Doppler spectrum as measured by
vertically pointing radars in rainfall tends to decrease at the highest rain rates (e.g. Russchenberg,
1993) can only be explained if the power law v(D) relationship is abandoned in favor of a more
realistic parameterization with an asymptotic terminal fall speed behavior for large raindrops (such
as those of Best (1950b) or Atlas et al. (1973)).
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Figure 3.1: (a) Two parameterizations for the relationship between raindrop terminal fall
speed (at mean sea level) v (m s−1) and equivalent spherical raindrop diameter D (mm):

v(D) = 9.32
{
1− exp

[
− (D/1.77)1.147

]}
(Best, 1950a; bold line) and v(D) = 3.778D0.67

(Atlas and Ulbrich, 1977; thin line). (b) Implied rain rate density functions (those corre-
sponding to Best’s terminal fall speeds in bold) on the basis of Best’s (1950b) parameteri-
zation for the raindrop size distribution (solid lines: 1 mmh−1; dashed lines: 10 mmh−1;
dash-dotted lines: 100 mmh−1).
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where v(D) is the raindrop terminal fall speed v (m s−1) – diameter D (mm) relation-
ship. Substitution of Eqs. (2.10) and (3.4) yields

NA(D,Ψ) = ΨαΨcDγgΨ
(
Ψ−βΨD

)
, (3.41)

which can also be written as

NA(D,Ψ) = ΨαΨ+γβΨc
(
Ψ−βΨD

)γ
gΨ
(
Ψ−βΨD

)
. (3.42)

This shows that a scaling law for the raindrop size distribution at a surface can be
defined as

NA(D,Ψ) = Ψα′

Ψg′Ψ
(
Ψ−βΨD

)
, (3.43)

with
g′Ψ(x) = cxγgΨ(x) (3.44)

and
α′
Ψ = αΨ + γβΨ (3.45)

(where x = Ψ−βΨD is a scaled raindrop diameter). Hence, the general appearance of
the alternative scaling law is the same as that of the original (Eq. (3.4)), but one of
the scaling exponents has changed and so has the general raindrop size distribution
function. The scaling exponent βΨ remains the same because it is the exponent
of the characteristic raindrop diameters, whose dimensions are not affected by the
transformation.

In principle, the entire analysis presented in Section 3.2.3 could now be repeated
on the basis of the new form of the scaling law (Eq. (3.43)). However, the attention
will be restricted here to the rain rate R. The treatment for other choices of the
reference variable will be largely analogous. The definition of R (mmh−1) in terms
of NA(D,Ψ) is

R = 6π × 10−4
∫ ∞

0
D3NA(D,Ψ)dD. (3.46)

Upon substitution of Eq. (3.43) this leads to the power law relationship

R = CRΨ
γR , (3.47)

with prefactor

CR = 6π × 10−4
∫ ∞

0
x3g′Ψ(x) dx (3.48)

and exponent

γR = α′
Ψ + 4βΨ. (3.49)

Substitution of Eqs. (3.44) and (3.45) shows that this prefactor and exponent are equal
to those given by Eqs. (3.35) and (3.36), as would be expected. The self-consistency
requirement in case Ψ = R now yields for the constraint on the general raindrop size
distribution function ∫ ∞

0
x3g′(x) dx =

104

6π
(3.50)
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and for that on the scaling exponents

α′ = 1− 4β, (3.51)

which again are equivalent to the constraints given by Eqs. (3.37) and (3.38). The
resulting form of the scaling law becomes

NA(D,R) = Rα′

g′
(
R−βD

)

= R1−4βg′
(
R−βD

)
, (3.52)

where g′(x) has to satisfy Eq. (3.50).
From a purely theoretical point of view, Eq. (3.52) is a rather interesting form of

the scaling law, because it abandons the hypothesis of a power law v(D) relationship,
necessary for the original form of the scaling law (Eq. (3.39)). As a matter of fact, it is
independent of any assumption regarding the functional form of the v(D) relationship.
This is because, as has been demonstrated in Chapter 2 (Section 2.5), the rain rate R is
a flux (or rate) variable10, a type of rainfall related variable which is intimately related
to NA(D). Since what is actually measured with most ground-based instruments is
NA(D) and not NV(D), Eq. (3.52) also has practical relevance.

3.4 Extension and application of the scaling law

formulation

Up to this point, the scaling law formulation has remained merely a theoretical de-
velopment, providing a convenient summary of the intimate relation between the
ubiquitous power law relationships between rainfall related variables and the general
shape of the raindrop size distribution. The ultimate aim of this formulation and its
extensions to be presented in this section however, is to facilitate the extraction of
physically relevant information from (typically large amounts of) empirical raindrop
size distributions. That would imply a confrontation of the theory with actual data.
A comprehensive application of the scaling law formulation to empirical raindrop size
distributions may in total comprise six main steps:

1. the selection of an appropriate reference variable Ψ;

2. the estimation of the corresponding scaling exponents αΨ and βΨ (Section 3.4.1);

3. the identification of the empirical general raindrop size distribution function
(Sections 3.4.2 and 3.4.3);

4. the adjustment of an analytical parameterization for gΨ(x) to the empirical
general raindrop size distribution function (Section 3.4.4);

10For the calculation of power law relationships between state variables, such as the radar reflec-
tivity factor Z, and R on the basis of Eq. (3.52), the assumption of a power law v(D) function is
still needed.
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5. the interpretation of the values of the scaling exponents and of the parameters
of the analytical gΨ(x) in terms of rainfall physics (Section 3.5);

6. further applications such as the derivation of Z–R relationships (Chapter 6).

The Steps 1–4 are largely methodological and form the core of this chapter. Steps 5
and 6, on the other hand, are important for application in radar meteorology and
hydrology. They will receive ample attention in Chapters 4 and 6.

With regard to Step 1, there can be little discussion. For most meteorological and
hydrological applications, it is appropriate to take the rain rate R as the reference
variable. It is certainly the most widely measured rainfall integral variable and,
moreover, it is proportional to a moment of the raindrop size distribution with an
order (roughly 3.67) which lies central in the range 0–6 of common interest (see
Chapter 2). Indeed, in their discussion of experimental evidence for the scaling law
formulation, Sempere Torres et al. (1998) choose R to be the reference variable.

In the original presentation of their scaling law formulation (which has been re-
derived here in a coherent manner in Section 3.2.1), the main focus of Sempere Torres
et al. (1994) is on the Steps 2 and 3 mentioned above. They propose particular
methodologies to estimate the scaling exponents and to identify the general distribu-
tion function. Hardly any attention is paid to Step 4. In their second article, Sempere
Torres et al. (1998) show some preliminary results of adjustments of analytical ex-
pressions to empirical general raindrop size distribution functions, but the employed
methods seem to be rather “ad hoc”. It is the aim of this section to propose a frame-
work which allows one to perform this in a more systematic manner, thus bridging
the gap with the more traditional analytical parameterization for the raindrop size
distribution.

In this section, after a discussion of the method proposed originally by Sempere
Torres et al. (1994), a new method for the identification of the scaling exponents
will be presented. Subsequently, the physical interpretation of the general raindrop
size distribution function g(x) will be clarified. Then, a new general function h(x)
will be introduced, which in contrast to g(x) has the advantage of behaving as a
probability density function. Finally, explicit expressions for the general functions
g(x) and h(x) and various associated quantities will be provided for all analytical
forms of the raindrop size distribution which have been proposed in the literature
(exponential, gamma, generalized gamma, Best and lognormal).

3.4.1 Estimation of the scaling exponents

It has been demonstrated in Section 3.2.3 that the exponents γΦ of power law relation-
ships between rainfall integral variables Φ and any reference variable Ψ are completely
determined by the values of the scaling exponents αΨ and βΨ. More precisely, the
values of γΦ depend in a linear fashion on those of αΨ and βΨ (Table 3.1). They are
independent of the shape of the general raindrop size distribution function gΨ(x).
This implies that the estimation of the exponents γΦ1 and γΦ2 of empirical power
law relationships between two rainfall integral variables Φ1 and Φ2 and a particular
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reference variable Ψ (via some regression procedure) should in principle be enough to
determine unambiguously the values of the corresponding scaling exponents αΨ and
βΨ.

One could go even one step further and impose the appropriate self-consistency
constraint which theoretically ties the scaling exponents αΨ and βΨ together (Ta-
ble 3.1). In that case, the exponent of only one empirical power law Φ–Ψ relationship
would suffice to determine the value of the remaining free scaling exponent (say βΨ).
For instance, assume that the rainfall integral variable at hand is proportional to the
mth order moment of the raindrop size distribution (i.e. Φ = Ωm) and that the rain
rate plays the role of reference variable (i.e. Ψ = R). The scaling law formulation
then implies that the exponent of the power law Ωm–R relationship is related to the
scaling exponents according to

γΩm = α + (m+ 1)β (3.53)

(from Eq. (3.21)) and that at the same time the two scaling exponents are related to
each other via α = 1− (4 + γ)β (Eq. (3.38)). Substitution of the latter in the former
yields

γΩm = 1 + [m− (3 + γ)] β. (3.54)

Hence, β can be in principle obtained from one single empirically determined γΩm,
which subsequently implies α via the self-consistency constraint on the exponents11.
A similar procedure could be devised for any other choice of the reference variable.

All this leads to the question as to which rainfall integral variable (in Eq. (3.54):
which order of the moment) or which pair of variables should be used to estimate the
scaling exponents. In theory, any choice would yield the same values of the scaling
exponents. In reality, however, different variables will put their principal weight on
different parts of the raindrop size distribution. For instance, low order moments
tend to weight the small diameter end of the raindrop size distribution more heavily,
whereas high order moments tend to put more weight on the tail of the distribution
(see Chapter 2, Section 2.5). Since the statistical uncertainty associated with different
parts of the raindrop size distribution (associated both with natural variability and
with sampling fluctuations) is different, the choice of the variable or pair of variables
will influence the results. In short, the estimated values of the scaling exponents will
depend on the selected rainfall related variable or pair of variables12.

Sempere Torres et al. (1994, 1998) have proposed and successfully applied an
estimation procedure intended to overcome this subjectivity problem. Their claim
is that the estimation of the scaling exponents will be more objective (and hence
more robust) if, instead of only one or two variables, a whole range of rainfall related

11A particularly interesting special case of Eq. (3.54) is obtained for m = 6. Since Ω6 equals the
radar reflectivity factor Z, this implies that the exponent γZ of a power law Z–R relationship is
related to β via γZ = 1+2.33β (if γ = 0.67). This relationship will be used extensively in Chapter 6.

12An example of the mentioned effects of statistical uncertainty associated with rainfall related
variables can be found in empirical power law relationships between such variables (e.g. Chapter 5,
Section 5.4). In practice, these are never the perfect (i.e. deterministic) relationships which form
the fundamental hypothesis of the scaling law.
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variables, covering the entire raindrop size distribution, are employed. Of course,
this leads to an overdetermined problem, having more than two estimators and only
two parameters to estimate. Therefore, the problem must be solved in a regression
framework. The idea is to establish empirical power law relationships between a
whole series of raindrop size distribution moments Ωm of different orders m, typically
in the range 0–6, and some reference variable Ψ, typically the rain rate R (to which
the analysis will be restricted here). The scaling law formulation predicts that the
exponents γΩm of these power law relationships must increase linearly with the order
of the moment m (Eq. (3.53)). More precisely, α must be the intercept and β the slope
of a plot of γΩm versus (m+ 1). However, due to uncertainties associated with the
model, the data and the analysis procedures, in reality the estimated exponents will
never lie exactly on this straight line, i.e. there will be some scatter about it. Hence,
given a number (> 2) of empirically determined power law exponents, a simple linear
regression of γΩm on (m+ 1) will provide estimates of the scaling exponents α and β.

A first remark with regard to this procedure is that Sempere Torres et al. (1994,
1998) restrict their analyses to integer values of the moment order m. However, there
is of course no reason why intermediate values of m could not be taken into account.
This would only increase the objectivity and hence the robustness of the method.
A second remark concerns the procedure itself. It will be clear that the proposed
“method of moments” is but one of a plethora of possible methods to estimate α and
β. Any type of rainfall related variable could in principle be used for that purpose.
The moments of the raindrop size distribution are but one example. For instance, an
alternative method would be to establish empirical power law relationships between
the weighted mean raindrop diameters Dm (Section 3.2.3) of orders m = 1–6 and
R. According to the scaling law formulation the exponents γDm

of these power laws
should all equal β (Eq. (3.28)). A reasonable estimate of β could then be obtained
by simply taking the arithmetic mean of the individual exponents. Self-consistency
may subsequently be imposed to obtain an estimate of α (Eq. (3.38)). This method
would combine the advantage of the method originally proposed by Sempere Torres et
al. (1994), namely that a whole range of rainfall integral variables is employed in the
estimation, with the advantage of the method which employs only one single exponent
(Eq. 3.54), namely that self-consistency is guaranteed13. An additional (numerical)
advantage over the original procedure would be that all weighted mean raindrop
diameters of orders 1–6 are roughly of the same order of magnitude, whereas the
moments of the same orders may cover several orders of magnitude. Experience
has learned that the latter may cause numerical problems due to non-convergence in
iterative nonlinear power law regression procedures. Both methods will be applied
and compared on actual rainfall data in Chapters 4 and 5 (Fig. 4.10 on p. 128 and
Fig. 5.10 on p. 157).

13The advantage of an estimation procedure which takes α as a free parameter is obviously that
it provides a check as to the degree of self-consistency implied by the data themselves. Moreover, if
desired the procedure originally proposed by Sempere Torres et al. (1994) could be adapted so as
to guarantee self-consistency.



74 CHAPTER 3. A GENERAL FRAMEWORK

3.4.2 Identification and interpretation of the general rain-

drop size distribution function

It will be clear from the manner in which the scaling law for the raindrop size distri-
bution (Eq. (3.4)) has been derived (Section 3.2.1) that the function gΨ(x) will not be
dimensionless. As a matter of fact, its dimensions depend on those of the reference
variable Ψ and those of NV(D,Ψ) and also on the values of the corresponding scaling
exponents. Although its dimensionality is a logical consequence of the functional form
of the scaling law, it does not contribute to a clear physical interpretation of gΨ(x).

The identification of gΨ(x) from empirical raindrop size distributions, on the other
hand, is rather straightforward. First, the scaling exponents have to be estimated.
This has been discussed in the previous subsection. It follows from Eq. (3.4) that once
αΨ and βΨ are known, the function gΨ(x) can be identified from experimental data
by scaling the available empirical raindrop size distributions (Ψ−αΨNV(D,Ψ)) and
corresponding raindrop diameters (Ψ−βΨD) and plotting them against each other. If
this is done on log-log paper, then it is seen that the actual scaling consists of vertical
and horizontal displacements of the original raindrop size distributions proportional to
log Ψ (where Ψ is the value of the reference variable for each individual distribution).
The factor of proportionality for the vertical displacements (i.e. those of the raindrop
concentrations) is −αΨ and that for the horizontal displacements (i.e. those of the
diameters) −βΨ. In theory such a displacement procedure, aimed at matching as good
as possible the individual distributions through vertical and horizontal displacements,
could be employed as a graphical procedure for the estimation of the scaling exponents
(Sempere Torres et al., 1994). However, in practice it would be quite a tedious
procedure and moreover not very objective.

Incidentally, this manner of identification also provides a clear physical interpre-
tation of the general raindrop size distribution function gΨ(x). It simply represents
the equivalent raindrop size distribution at Ψ = 1 (e.g. at R = 1 mmh−1 if the rain
rate R would be the reference variable). Indeed, it follows from Eq. (3.4) that

gΨ
(
Ψ−βΨD

)
= Ψ−αΨNV(D,Ψ) , (3.55)

which implies

gΨ(D) = NV(D, 1) . (3.56)

According to this interpretation of gΨ(x), each experimental raindrop size distribution
in a sample can be scaled to an equivalent distribution for Ψ = 1 using the value of Ψ
obtained from that distribution and an a priori knowledge of the scaling exponents αΨ

and βΨ. This approach avoids the common but statistically less robust methodology of
grouping measured raindrop size distributions into classes of Ψ (most often classes of
rain rate) and then computing a mean distribution for each class (Laws and Parsons,
1943; Marshall and Palmer, 1948; Delrieu et al., 1991). Moreover, it allows to identify
the empirical shape of gΨ(x) using all available raindrop size distributions at once,
without having to impose an a priori functional form.
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3.4.3 A new class of general functions

After having estimated the scaling exponents αΨ and βΨ and used them to identify
the empirical general raindrop size distribution function, one can in principle proceed
to Step 4 of the application of the scaling law formulation (p. 70): the adjustment of
an analytical parameterization for gΨ(x) to the empirical general raindrop size dis-
tribution function. The problem with this adjustment is that not just any analytical
function which visually (or according to a more objective numerical goodness-of-fit
criterion) describes the empirical distribution satisfactorily, represents a valid pa-
rameterization for gΨ(x). This is because the self-consistency requirement imposes a
certain constraint on gΨ(x), the specific form of which depends on the choice of the
reference variable (see Table 3.1). Ideally, the procedure used to fit an analytical func-
tion to the empirical general raindrop size distribution function should intrinsically
comprise this constraint. Sempere Torres et al. (1998) give some examples of nega-
tive exponential fits and one example of a gamma fit to empirical general raindrop
size distribution functions from several locations in Europe. They use a nonlinear
least-squares regression procedure which takes the self-consistency requirement auto-
matically into account. In their normalization procedure (described in Section 3.3),
Willis (1984) and Willis and Tattelman (1989) use similar curve-fitting procedures to
fit gamma functions to their normalized empirical raindrop size distributions.

One could question however, whether such curve-fitting procedures will always
yield the most satisfactory results. Classically, the procedure used to adjust analytical
parameterizations to empirical raindrop size distributions is the method of moments,
typically using moments of orders 3–6 (e.g. Ulbrich, 1983; Feingold and Levin, 1986;
Tokay and Short, 1996; Ulbrich and Atlas, 1998). Although the employed method-
ologies are sometimes questionable from a statistical point of view, the motivation for
using the method of moments is clear: the moments represent “remote measurables”,
i.e. quantities which may be determined using (optical or microwave) remote sensing
techniques. Indeed, it has been demonstrated in Chapter 2 (Section 2.5) that various
of such remote measurables are, under certain assumptions, proportional or closely
proportional to moments of the raindrop size distribution.

As shown in Table 3.1, the moments of the general raindrop size distribution func-
tion gΨ(x) have a clear physical interpretation as the prefactors CΩm of power law
relationships between the moments of the raindrop size distribution Ωm and the refer-
ence variable Ψ. How can these be used in a classical statistical framework, where the
sample moments are used to estimate the parameters of probability density functions?
For that purpose, it will be necessary to devise a normalized version of gΨ(x), i.e. a
function with unit area. At the same time, it is desirable to have a function available
which somehow automatically takes into account the self-consistency constraint on
gΨ(x), as explained above.

If the treatment is restricted to the common case where a moment Ωm plays the
role of reference variable Ψ, then the definition of a function with the two required
properties follows directly from the definition of the self-consistency constraint on the
general raindrop size distribution function gΩm(x) (Eq. (3.22)). A function hΩm(x)
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defined as the integrand of that self-consistency constraint, i.e. as

hΩm(x) = cΩmx
mgΩm(x) , (3.57)

will namely by definition satisfy
∫ ∞

0
hΩm(x) dx = 1. (3.58)

Hence, this is the desired function. What is its physical interpretation? If, in accor-
dance with Chapter 2 (Section 2.5), the density function fΩm (D) (mm−1) of a moment
Ωm is defined as the ratio of the integrand in the definition of Ωm (Eq. (3.18)) to Ωm

itself then
fΩm(D,Ωm) = cΩmΩ

−1
m DmNV(D,Ωm) , (3.59)

with Ωm explicitly included as reference variable. Substitution of the corresponding
form of the scaling law (Eq. (3.24)) and of the constraint on the scaling exponents
(Eq. (3.23)) yields

fΩm(D,Ωm) = cΩmΩ
−(m+1)βΩm
m DmgΩm

(
Ω−βΩm

m D
)
. (3.60)

Multiplying both sides with dD yields

fΩm(D,Ωm) dD = cΩmΩ
−(m+1)βΩm
m DmgΩm

(
Ω−βΩm

m D
)
dD, (3.61)

which can also be written as

fΩm(D,Ωm) dD = cΩm

(
Ω−βΩm

m D
)m

gΩm

(
Ω−βΩm

m D
)
d
(
Ω−βΩm

m D
)
. (3.62)

Now, a change of variable from D to x = Ω
−βΩm
m D gives

fΩm(D,Ωm) dD = cΩmx
mgΩm(x) dx, (3.63)

which upon substitution of Eq. (3.57) becomes

fΩm(D,Ωm) dD = hΩm(x) dx. (3.64)

This finally implies

fΩm(D,Ωm) = hΩm(x(D))
dx(D)

dD

= Ω−βΩm
m hΩm

(
Ω−βΩm

m D
)
. (3.65)

Hence, the function hΩm(x) is simply a scaled version of the moment density function
fΩm(D,Ωm). Since it does not bear any functional dependence on the value of Ωm

(it merely depends on the choice of Ωm), it plays the same role for fΩm(D,Ωm) as
gΩm(x) plays for NV(D,Ωm). Therefore, in analogy with the terminology proposed
by Sempere Torres et al. (1994) for gΩm(x), the function hΩm(x) will from now on be
called the general moment density function.



3.4. EXTENSION OF THE SCALING LAW 77

In the common case where Ωm is the rain rate R, the equivalent of hΩm(x)
(Eq. (3.57)) is

h(x) = 6π × 10−4cx3+γg(x) , (3.66)

which will be called the general rain rate density function. Similarly, the equivalent
of the moment density function (Eq. (3.65)) is

fR(D,R) = R−βh
(
R−βD

)
, (3.67)

where fR(D,R) is now the rain rate density function. In accordance with the no-
tation used for g(x), α and β (Section 3.2.3), the subscript R of h(x) is omitted for
convenience in notation. The function fR(D,R) represents the normalized distribu-
tion of the rain rate R over all raindrop sizes. Since R is proportional to the (3 + γ)th
moment of the raindrop size distribution, it lies central in the range of moments (0–6)
of common interest in meteorological, hydrological and telecommunications research
(Chapter 2, Section 2.5). Eq. (3.67) will therefore, together with the corresponding
definition for NV(D,R) in terms of g(x) (Eq. (3.39)), serve as basis for the applica-
tions to be presented in Section 3.5 and in Chapters 4 and 6.

The identification of hΩm(x) from empirical moment density functions (which can
be obtained directly from the empirical raindrop size distributions using Eq. (3.59))
can be performed in a similar manner as that of gΩm(x), namely by means of scal-

ing the available empirical moment densities (Ω
βΩm
m fΩm(D,Ωm)) and corresponding

raindrop diameters (Ω
−βΩm
m D) and plotting them against each other. Since the den-

sities are multiplied by the same amount by which the diameters are divided, it
is clear that the empirical hΩm(x)-curves will have the same area as the empirical
fΩm(D,Ωm)-curves on which they are based (namely unity). If, in analogy with
the general raindrop size distribution function (Section 3.4.2), the scaling is done on
log-log paper, then it is seen that it actually consists of vertical and horizontal dis-
placements of the original moment density functions proportional to log Ωm, with
proportionality factors for the vertical (i.e. those of the moment densities) and for
the horizontal displacements (i.e. those of the diameters) of βΨ and −βΨ, respec-
tively. Correspondingly, hΩm(x) can be interpreted as the equivalent moment density
function for Ωm = 1 (see Eq. (3.56)).

In summary, empirical general moment density functions hΩm(x) will be normal-
ized to unit area, as opposed to the corresponding empirical general raindrop size
distribution functions gΩm(x). This has the advantage that the analytical functions
which may be adjusted to them can in principle be any of the theoretical continuous
probability density functions found in statistical textbooks, provided their domain is
limited to non-negative values (e.g. Kendall and Stuart, 1977). As these have by defi-
nition unit area, the self-consistency requirement will be guaranteed14. Moreover, the
application of the method of moments to estimate the parameters of such theoretical
probability density functions will be straightforward, as will be shown in Chapter 4.

14In practical applications, it is sometimes preferable to work with the (cumulative) distribu-
tion function instead of the corresponding density function (see Chapter 2, Section 2.5). Since the
function hΩm

(x) behaves as a probability density function, such a transformation is particularly
straightforward in this case. A general (cumulative) moment distribution function may be defined
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3.4.4 Analytical parameterizations for the general functions

In order to be able to relate the described general framework for the analysis of
raindrop size distributions and their properties to the traditional analytical param-
eterizations for the raindrop size distribution which have become commonplace over
the past decades, it is necessary to propose explicit expressions for gΩm(x), hΩm(x)
and the related functions NV(D,Ωm) and fΩm(D,Ωm). This is done in the current
section for the common case where Ωm equals the rain rate R, although the expres-
sions which are going to be presented are easily generalized to the case where Ωm is
proportional to any moment of the raindrop size distribution (using the expressions
given in Table 3.1 and Section 3.4.3).

Tables 3.2–3.4 summarize the explicit expressions for g(x), h(x) and the related
functions NV(D,R) and fR(D,R) corresponding to the primary candidates for the
parameterization of the general raindrop size distribution function: the exponen-
tial, gamma, generalized gamma, Best and lognormal distributions15. Except for the
rather special multi-modal distributions introduced for equilibrium rainfall conditions
(Section 3.5.2), these five cases comprise all major analytical parameterizations which
have been proposed to describe raindrop size distributions since the beginning of sci-
entific research in this domain around the turn of the last century16. Besides explicit
expressions for the mentioned quantities, these tables also provide equations for the
moments and the associated (dimensionless) coefficients of variation, skewness and
kurtosis (peakedness) of the general rain rate density function h(x). These will be
employed in Chapter 4, where the method of moments is used to adjust the analytical
functions for h(x) to empirical rain rate density functions.

as

HΩm
(x) =

∫ x

0

hΩm
(ξ) dξ.

In accordance with the (cumulative) probability distribution functions known from statistical theory,
HΩm

(x) will be a non-decreasing function of x, with limiting values HΩm
(0) = 0 and HΩm

(∞) = 1.
A transformation of variable from x to D shows that

HΩm

(
Ω

−βΩm

m D
)

=

∫ D

0

fΩm
(D′,Ωm) dD′

= FΩm
(D,Ωm) ,

where FΩm
(D,Ωm) is the (cumulative) moment distribution function of x. Hence, HΩm

(x) can be

identified by plotting FΩm
(D,Ωm) versus the scaled raindrop diameters Ω

−βΩm

m D.
15In Chapter 4 (Section 4.2) it will be demonstrated that the parameterization Best (1950b) has

proposed for the cumulative distribution of the liquid rainwater content W over raindrop diameter
D corresponds to a raindrop size distribution NV(D,R) which is a special case of the generalized
gamma distribution.

16Power law (fat-tailed, hyperbolic) distributions have to the best of the author’s knowledge never
been proposed to parameterize raindrop size distributions. They have been used, however, for
size distributions of other atmospheric particles, such as aerosol particles (i.c. the so-called Junge
distribution) (e.g. Rogers and Yau, 1996) and cloud droplets (Provata and Nicolis, 1994).
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Table 3.2: General definitions and specific expressions for the exponential case of the self-
consistent forms of the general raindrop size distribution function g(x) and the general
rain rate density function h(x) (where D in mm, NV(D,R) in mm−1m−3, R in mmh−1

and v(D) = cDγ in m s−1), their properties (specifically the moments µ′
x,r of the scaled

raindrop diameter x = R−βD with respect to h(x) and the corresponding mean µx and
coefficients of variation CVx, skewness CSx and kurtosis CKx) and their relationships with
the raindrop size distribution NV(D,R) and the rain rate density function fR(D,R).

Quantity Definition Exponential
g(x) NV(x, 1) κ exp (−λx)

domain 0 ≤ x < ∞ κ, λ > 0

κ solution of 6πc
104

∫∞
0 x3+γg(x)dx = 1 104

6πc
λ4+γ

Γ(4+γ)

h(x) 6πc
104

x3+γg(x) = fR(x, 1)
λ4+γ

Γ(4+γ)
x3+γ exp (−λx)

(
∫∞
0 h(x)dx = 1) (gamma)

µ′
x,r

∫∞
0 xrh(x)dx Γ(4+γ+r)

λrΓ(4+γ)

µx µ′
x,1

4+γ
λ

CVx
µ
1/2
x,2

µx
=

(µ′

x,2−µ2
x)

1/2

µx
=
(

µ′

x,2

µ2
x
− 1

)1/2
1

(4+γ)1/2

CSx
µx,3

µ
3/2
x,2

=
µ′

x,3−3µ′

x,2µx+2µ3
x

(µ′

x,2−µ2
x)

3/2
2

(4+γ)1/2
= 2CVx

CKx
µx,4

µ2
x,2

− 3 =
µ′

x,4−4µ′

x,3µx+6µ′

x,2µ
2
x−3µ4

x

(µ′

x,2−µ2
x)

2 − 3 6
4+γ

= 6CV2
x

NV(D,R) R1−(4+γ)βg
(
R−βD

)
κR1−(4+γ)β exp

(
−λR−βD

)

fR(D,R) 6πc
104

R−1D3+γNV(D,R) = λ4+γ

Γ(4+γ)
R−(4+γ)βD3+γ×

R−βh
(
R−βD

)
exp

(
−λR−βD

)

General properties of the analytical parameterizations

A few remarks concerning the expressions in Tables 3.2–3.4 are in place. First of
all, it is seen that all expressions for the general raindrop size distribution function
g(x) contain a proportionality factor κ. These should not be confused with the free
parameters of the functions g(x), however. The self-consistency requirement when
R is the reference variable (Eq. (3.37)) imposes a constraint on κ which ties it to
the other parameters of g(x). Expressions for κ in terms of these other parameters
are provided in the tables for each of the five distributions types. It follows that
the actual number of free parameters (i.e. the number of degrees of freedom) of the
general functions g(x) and h(x) for the different distribution types is: one for the
exponential distribution (λ); two for the gamma distribution (λ, µ); three for the
generalized gamma distribution (λ, µ, ν); two for the Best distribution (λ, ν); two for
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Table 3.3: Idem for the gamma and generalized gamma cases.

Quantity Gamma Generalized gamma
g(x) κxµ exp (−λx) κxµ exp (−λxν)

domain κ, λ > 0; µ > −1 κ, λ, ν > 0; µ > −1

κ 104

6πc
λ4+γ+µ

Γ(4+γ+µ)
104

6πc
νλ(4+γ+µ)/ν

Γ[(4+γ+µ)/ν]

h(x) λ4+γ+µ

Γ(4+γ+µ)
x3+γ+µ exp (−λx) νλ(4+γ+µ)/ν

Γ[(4+γ+µ)/ν]
x3+γ+µ exp (−λxν)

(gamma) (generalized gamma)

µ′
x,r

Γ(4+γ+µ+r)
λrΓ(4+γ+µ)

Γ[(4+γ+µ+r)/ν]
λr/νΓ[(4+γ+µ)/ν]

µx
4+γ+µ

λ
Γ[(5+γ+µ)/ν]

λ1/νΓ[(4+γ+µ)/ν]

CVx
1

(4+γ+µ)1/2

{
Γ[(6+γ+µ)/ν]Γ[(4+γ+µ)/ν]

Γ2[(5+γ+µ)/ν]
− 1

}1/2

CSx
2

(4+γ+µ)1/2
= 2CVx

µ′

x,3/µ
3
x−3µ′

x,2/µ
2
x+2

CV3
x

CKx
6

4+γ+µ
= 6CV2

x

µ′

x,4/µ
4
x−4µ′

x,3/µ
3
x+6µ′

x,2/µ
2
x−3

CV4
x

− 3

NV(D,R) κR1−(4+γ+µ)βDµ exp
(
−λR−βD

)
κR1−(4+γ+µ)βDµ exp

(
−λR−βνDν

)

fR(D,R) λ4+γ+µ

Γ(4+γ+µ)
R−(4+γ+µ)βD3+γ+µ× νλ(4+γ+µ)/ν

Γ[(4+γ+µ)/ν]
R−(4+γ+µ)βD3+γ+µ×

exp
(
−λR−βD

)
exp

(
−λR−βνDν

)

the lognormal distribution (µ, σ)17. Note that the generalized gamma distribution
contains the exponential (for µ = 0 and ν = 1), gamma (for ν = 1) and Best (for
µ = ν − 4) distributions as special cases18. The functions NV(D,R) and fR(D,R)
have one free parameter more than the corresponding general functions, namely the
scaling exponent β.

Self-consistency requires all these parameters to be functionally independent of
the rain rate R. If not, the general functions would be dependent on R, thereby
ceasing to be general and accordingly provoke a violation of the self-consistency. It
will therefore be a challenge to investigate how these parameters are related to the
type of rainfall or the climatic setting to which the empirical data pertain, to the
type of measurement device used to collect the data and possibly, as suggested by
Sempere Torres et al. (1998), to each other19.

Another point of interest is that in the transformation from g(x) to h(x), the
exponential distribution changes to a gamma distribution. The same obviously holds
for the (related) transformation from NV(D,R) to fR(D,R) (Table 3.2). This effect

17The λs and the µs do not represent the same parameter for each of these distributions.
18The Best distribution is sometimes erroneously referred to as the Weibull distribution. However,

the Weibull distribution is obtained from the generalized gamma distribution for µ = ν − 1 (e.g.
Mood et al., 1974).

19Because the units of the parameter λ depend on the value of the scaling exponent β, however,
there is a risk of spurious correlation (e.g. Haan, 1977) (Chapter 6).
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Table 3.4: Idem for the Best and lognormal cases.

Quantity Best Lognormal

g(x) κxν−4 exp (−λxν) κx−1 exp
[
−1

2

(
lnx−µ

σ

)2]

domain κ, λ > 0; ν > 3 −∞ < µ < ∞; σ > 0

κ 104

6πc
νλ1+γ/ν

Γ(1+γ/ν)
104

6πc

exp[−(3+γ)µ− 1
2
(3+γ)2σ2]

√
2πσ

h(x) νλ1+γ/ν

Γ(1+γ/ν)
xγ+ν−1 exp (−λxν) 1√

2πσx
exp

{
−1

2

[
lnx−(µ+(3+γ)σ2)

σ

]2}

(generalized gamma) (lognormal)

µ′
x,r

Γ[1+(r+γ)/ν]

λr/νΓ(1+γ/ν)
exp

{
rµ+

[
(3 + γ) r + 1

2
r2
]
σ2
}
=

µr
x

(
1 + CV2

x

)r(r−1)/2

µx
Γ[1+(1+γ)/ν]
λ1/νΓ(1+γ/ν)

exp
[
µ+

(
31
2
+ γ

)
σ2
]

CVx

{
Γ[1+(2+γ)/ν]Γ[1+γ/ν]

Γ2[1+(1+γ)/ν]
− 1

}1/2
[exp (σ2)− 1]

1/2

CSx
µ′

x,3/µ
3
x−3µ′

x,2/µ
2
x+2

CV3
x

3CVx+CV3
x

CKx
µ′

x,4/µ
4
x−4µ′

x,3/µ
3
x+6µ′

x,2/µ
2
x−3

CV4
x

− 3 16CV2
x + 15CV4

x + 6CV6
x+CV8

x

NV(D,R) κR1−(γ+ν)βDν−4× κR1−(3+γ)βD−1×

exp
(
−λR−βνDν

)
exp

{
−1

2

[
lnD−(µ+β lnR)

σ

]2}

fR(D,R) νλ1+γ/ν

Γ[1+γ/ν]
R−(γ+ν)βDγ+ν−1× 1√

2πσD
×

exp
(
−λR−βνDν

)
exp

{
−1

2

[
lnD−(µ+(3+γ)σ2+β lnR)

σ

]2}

is comparable to that observed when transforming an exponential raindrop size dis-
tribution in a volume of air (NV(D,R)) to a gamma distribution for that at a surface
(NA(D,R)) (as demonstrated in Chapter 2, Fig. 2.2, p. 26). The gamma, generalized
gamma and lognormal distributions all retain their original general forms, albeit with
changed parameters. It is noteworthy that in case of the lognormal distribution, a
transformation from g(x) to h(x) does not affect the logarithmic standard deviation
σ. Since σ uniquely determines the coefficient of variation of x (CVx) (defined as the
ratio of the standard deviation to the mean, see Table 3.4), this implies that in this
particular case the relative dispersion of g(x) equals that of h(x). In other words,
the transformation from g(x) to h(x) only induces a shift in the logarithmic mean
of the distribution. The same is obviously true for the (related) transformation from
NV(D,R) to fR(D,R) (Table 3.4). The latter has been noted earlier by Feingold and
Levin (1986).
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Relations with the most important traditional analytical parameterizations

The exponential raindrop size distribution The exponential distribution has
for a long time been the most widely used analytical parameterization for the raindrop
size distribution. In its traditional form it is written as

NV(D) = N0 exp (−ΛD) ; N0,Λ > 0; D ≥ 0, (3.68)

where N0 (mm−1m−3) is the intercept of the distribution with the vertical axis
(D = 0) and Λ (mm−1) is the slope of the distribution on a semi-logarithmic plot, or
equivalently the inverse mean raindrop diameter. Chapter 2 (Section 2.3) gives some
additional statistical properties of this distribution.

In the form of Eq. (3.68), the exponential raindrop size distribution has been
introduced originally by Marshall and Palmer (1948), who considered the special case
when N0 is a fixed parameter (Section 3.5.1). It has been generalized, first by Sekhon
and Srivastava (1971) and some years later by Waldvogel (1974). Both consider N0 to
be a variable parameter, the former explicitly related to the rain rateR via a power law
relationship and the latter as a time-varying parameter exhibiting sudden variations
(‘jumps’) during transitions from one mesoscale precipitation area to another.

Eq. (3.68) can be compared directly with the self-consistent functional formNV(D,R)
of the exponential raindrop size distribution as implied by the scaling law formulation
(Table 3.2). This shows that Eq. (3.68) will only be self-consistent if N0 and Λ are
power law functions of the rain rate R. More precisely, they should obey

N0 = κR1−(4+γ)β

=
104

6πc

λ4+γ

Γ (4 + γ)
R1−(4+γ)β (3.69)

and
Λ = λR−β, (3.70)

where D is expressed in mm, NV(D,R) in mm−1m−3, R in mmh−1 and v(D) = cDγ

in m s−1. These expressions allow a verification of the self-consistency of the N0–R
and Λ–R relationships reported in the literature for exponential raindrop size distri-
butions. Although not mentioned explicitly, they have been used in the derivation
of the consistent sets of power law relationships between rainfall related variables
presented in Chapter 2 (Section 2.7).

The gamma raindrop size distribution Since the mid-70s many studies have
indicated that, unless sufficiently averaged in space and/or time, the exponential
raindrop size distribution overestimates both the concentrations of the very small
and the very large raindrops. The magnitude of these effects is found to be more
pronounced the shorter the time periods and the smaller the areas over which the
averaging takes place. To account for these effects, Ulbrich (1983) has re-introduced
the gamma distribution. The particular functional form he proposes is

NV(D) = N0D
µ exp (−ΛD) ; N0,Λ > 0; µ > −1; D ≥ 0, (3.71)
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where N0 (now expressed in the inconvenient units of mm−(1+µ) m−3) is a concentra-
tion parameter, µ (–) is a shape parameter20 and Λ (mm−1) is a scale parameter.
Some statistical properties of this distribution are given in Chapter 2 (Section 2.3).
As a matter of fact, the raindrop size distribution at a surface NA(D) treated in that
section, reduces to the NV(D) of Eq. (3.71) for c = 1 and γ = µ. Note that the
raindrop concentration ρV, the mean raindrop diameter µDV

and the coefficient of
variation of the diameters are only defined for µ > −1. The approximative expres-
sion for medianDV

is only valid if µ > −0.67, although it will yield only accurate
results for µ ≥ 0. The mode of NV(D) obviously becomes zero for µ ≤ 0. By the
same token, the general requirement for the size distribution of raindrops arriving at
a surface (NA(D)) is that µ > − (1 + γ). The approximation for medianDA

is only
valid for µ > − (0.67 + γ) and the mode of NA(D) becomes zero for µ ≤ −γ.

In a similar manner as has been done for the exponential distribution, Eq. (3.71)
can be compared with the self-consistent functional form NV(D,R) of the gamma
raindrop size distribution as implied by the scaling law formulation (Table 3.3). The
result is that Eq. (3.71) will again only be self-consistent if N0 and Λ are power law
functions of the rain rate R. In this case, they must obey

N0 = κR1−(4+γ+µ)β

=
104

6πc

λ4+γ+µ

Γ (4 + γ + µ)
R1−(4+γ+µ)β (3.72)

and
Λ = λR−β. (3.73)

These expressions will be used extensively in Chapter 6, where Z–R relationships
implied by the scaling law formulation for the gamma raindrop size distribution will
be investigated. They also allow a verification of the self-consistency of the N0–R and
Λ–R relationships reported in the literature for gamma raindrop size distributions (for
given values of µ). Clearly, for µ = 0 Eqs. (3.71) and (3.72) reduce to Eqs. (3.68) and
(3.69).

The lognormal raindrop size distribution Feingold and Levin (1986) have re-
vitalized the lognormal raindrop size distribution as an alternative to the gamma
distribution. After the exponential and gamma distributions, it is the third impor-
tant analytical parameterization for the raindrop size distribution. Its traditional
form is (e.g. Mood et al., 1974)

NV(D) =
ρV√

2πσlnDV
D

exp


−1

2

(
lnD − µlnDV

σlnDV

)2

 ;

ρV, σlnDV
> 0; −∞ < µlnDV

< ∞; D ≥ 0, (3.74)

20According to Ulbrich (1983) ‘µ can have any positive or negative value’. However, unless the
gamma distribution is truncated at some minimum diameter Dmin (Ulbrich takes Dmin = 0), the
raindrop concentration ρV (m−3) will diverge if µ ≤ −1. All non-negative moments of the gamma
distribution exist only as long as µ > −1 (e.g. Mood et al., 1974). Note that Ulbrich reports values
for µ as low as −3.42 (see Chapter 6, Section 6.5).
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where ρV (m−3) is the raindrop concentration, µlnDV
(–) is a scale parameter (namely

the mean of the log-transformed raindrop diameters in a volume of air) and σlnDV

(–) is a shape parameter (the standard deviation of the log-transformed raindrop
diameters in a volume of air).

By definition, if the random variable D follows a lognormal distribution, then the
random variable lnD follows a normal distribution. If the Central Limit Theorem
states that the normal (Gaussian) distribution should be the asymptotic distribution
of the sum of many (not necessarily independent) random variables (i.e. the limit of
additive processes), the lognormal distribution should be the asymptotic distribution
of the product of many of such variables (i.e. the limit of multiplicative processes).
The formation of raindrop size distributions can be seen as the outcome of such a
multiplicative stochastic process, involving interactions between raindrops through
collisions and breakup. This type of (informal) reasoning provides some theoretical
justification for the lognormal distribution as a suitable parameterization for raindrop
size distributions (Feingold and Levin, 1986).

Eq. (3.74) can again be compared with the self-consistent functional formNV(D,R)
of the lognormal raindrop size distribution as implied by the scaling law formulation
(Table 3.4). This shows that Eq. (3.74) will only be self-consistent if σlnDV

is a con-
stant equal to σ, i.e.

σlnDV
= σ, (3.75)

µlnDV
is linearly related to lnR according to

µlnDV
= µ+ β lnR (3.76)

and ρV is a power law function of R according to

ρV =
√
2πσκR1−(3+γ)β

=
104

6πc
exp

[
− (3 + γ)µ− 1

2
(3 + γ)σ2

]
R1−(3+γ)β. (3.77)

That Eq. (3.76) actually represents a power law as well can be seen as follows. By
analogy with the normal distribution, it follows directly from Eq. (3.74) that µlnDV

represents the natural logarithm of the median of NV(D), i.e. the median raindrop di-
ameter medianDV

. This is the diameter which divides the distribution of the raindrop
concentration ρV over all raindrop diameters into two equal parts21. Hence

medianDV
= exp

(
µlnDV

)
= exp (µ) Rβ. (3.78)

In other words, the scaling law formulation implies that median raindrop diameter
should be a power law function of the rain rate R as well, with an exponent equal to
the scaling exponent β. That any characteristic raindrop diameter is related to R via
a power law with exponent β has of course been one of the basic hypotheses of the
scaling law formulation (Section 3.2.1), so this result should not come as a surprise.

21The median raindrop diameter should not be confused with the median-volume raindrop diam-
eter, which divides the distribution of the liquid rainwater content (or that of rain rate) over all
raindrop diameters into two equal parts (Chapter 2, Section 2.6).
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Incidentally, Eq. (3.78) by definition equals the geometric mean of the raindrop diam-
eters (in a volume of air). That for the lognormal distribution the median equals the
geometric mean is a consequence of the symmetry of the normal distribution, which
has the median equal to the (arithmetic) mean.

Table 3.5: Summary of the statistical properties of the most widely used analytical forms
for the raindrop size distribution per unit volume of air: the exponential, gamma and
lognormal distributions. The top half of the table pertains to raindrops present in a volume
of air (subscripts V), the bottom half to those arriving at a surface (subscripts A). The
listed properties are: raindrop concentration (m−3) / raindrop arrival rate (m−2 s−1), mean
diameter (mm), median diameter (mm), modal diameter (mm), coefficient of variation of the
diameters (–), median-volume diameter (mm) and volume-weighted mean diameter (mm).

Property Exponential Gamma Lognormal

ρV
N0

Λ
N0

Γ(1+µ)
Λ1+µ

104R
6πc

exp
[
− (3 + γ)µlnDV

−1
2
(3 + γ) σ2

lnDV

]

µDV

1
Λ

1+µ
Λ

exp
(
µlnDV

+ 1
2
σ2
lnDV

)

medianDV

ln 2
Λ

0.67+µ
Λ

exp
(
µlnDV

)

modeDV
0 µ

Λ
exp

(
µlnDV

− σ2
lnDV

)

CVDV
1 1

(1+µ)1/2

[
exp

(
σ2
lnDV

)
− 1

]1/2

D0,V
3.67
Λ

3.67+µ
Λ

exp
(
µlnDV

+ 3σ2
lnDV

)

Dm,V
4
Λ

4+µ
Λ

exp
(
µlnDV

+ 31
2
σ2
lnDV

)

ρA cN0
Γ(1+γ)
Λ1+γ cN0

Γ(1+γ+µ)
Λ1+γ+µ cρV exp

(
γµlnDV

+ 1
2
γ2σ2

lnDV

)

µDA

1+γ
Λ

1+γ+µ
Λ

exp
[
µlnDV

+
(
1
2
+ γ

)
σ2
lnDV

]

medianDA

0.67+γ
Λ

0.67+γ+µ
Λ

exp
(
µlnDV

+ γσ2
lnDV

)

modeDA

γ
Λ

γ+µ
Λ

exp
[
µlnDV

− (1− γ) σ2
lnDV

]

CVDA

1

(1+γ)1/2
1

(1+γ+µ)1/2

[
exp

(
σ2
lnDV

)
− 1

]1/2

D0,A
3.67+γ

Λ
3.67+γ+µ

Λ
exp

[
µlnDV

+ (3 + γ) σ2
lnDV

]

Dm,A
4+γ
Λ

4+γ+µ
Λ

exp
[
µlnDV

+
(
31
2
+ γ

)
σ2
lnDV

]

In contrast to what was the case for the exponential and gamma raindrop size
distributions, the statistical properties of the lognormal distribution have not been
treated before in this thesis. Its most important properties will therefore be recalled
here. The moments of the lognormal raindrop size distribution are given by (e.g.
Mood et al., 1974)

E [Dr
V] = exp

(
rµlnDV

+
1

2
r2σ2

lnDV

)
. (3.79)
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Hence, its mean µDV
is

µDV
= E [DV] = exp

(
µlnDV

+
1

2
σ2
lnDV

)
(3.80)

and its coefficient of variation CVDV
follows

CVDV
=
[
exp

(
σ2
lnDV

)
− 1

]1/2
. (3.81)

Using Eqs. (3.80) and (3.81), an alternative general expression for the moments can
be derived as

E [Dr
V] = µr

DV

(
1 + CV2

DV

)r(r−1)/2
. (3.82)

This shows clearly the particular multiplicative form of the lognormal moments. An
expression of this form has been used by Smith and De Veaux (1994) to model rain
rates (which are proportional to the (3 + γ)th moment of the raindrop size distribution
in a volume of air). The median (or geometric mean) of the lognormal distribution
has already been encountered (Eq. (3.78)). In terms of µDV

and CVDV
it can be

rewritten as

medianDV
= exp

(
µlnDV

)

= µDV

(
1 + CV2

DV

)−1/2
. (3.83)

A final parameter of interest here is the mode (peak) of the lognormal distribution,
which can be found by setting the derivative of Eq. (3.74) with respect to D equal to
zero. This yields

modeDV
= exp

(
µlnDV

− σ2
lnDV

)

= µDV

(
1 + CV2

DV

)−3/2
. (3.84)

These results show that for the lognormal raindrop size distribution (as for any uni-
modal, positively skewed distribution), the measures of location follow each other
in reverse alphabetical order: mode < median < mean (Kendall and Stuart, 1977).
Finally, note that self-consistent forms of Eqs. (3.79)–(3.84) can be obtained by sub-
stituting Eq. (3.75) for σlnDV

and Eq. (3.76) for µlnDV
.

This completes the treatment of the three most widely used analytical parame-
terizations for the raindrop size distribution in a volume of air: the exponential, the
gamma and the lognormal distribution. Table 3.5 summarizes the most important
statistical properties of these distributions in terms of their traditional parameters.
Table 3.6 lists the self-consistency constraints on the concentration and scale para-
meters in case the rain rate R is the reference variable. Note that self-consistency
requires the shape parameters of these distributions to be constants (i.e. for a given
type of rainfall or climatic setting), independent of R. The corresponding results
for the Best (1950b) distribution involve more elaborate manipulations and will be
postponed to Chapter 4 (Table 4.1, p. 111). There, this much less widely used but
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Table 3.6: Self-consistency requirements for the concentration and scale parameters of the
traditional forms of the exponential, gamma and lognormal distributions in case the rain
rate R (mmh−1) is the reference variable (N0 in mm−(1+µ) m−3; Λ in mm−1; ρV in m−3;
exp(µlnDV

) in mm).

Distribution Concentration parameter Scale parameter

Exponential N0 =
104

6πc
λ4+γ

Γ(4+γ)
R1−(4+γ)β Λ = λR−β

Gamma N0 =
104

6πc
λ4+γ+µ

Γ(4+γ+µ)
R1−(4+γ+µ)β Λ = λR−β

Lognormal ρV = 104

6πc
exp [− (3 + γ)µ exp

(
µlnDV

)
= exp (µ)Rβ

−1
2
(3 + γ) σ2

]
R1−(3+γ)β

nevertheless interesting distribution will be extensively revisited in the light of the
framework developed in this chapter. Here, the treatment of the exponential, gamma
and lognormal distributions merely serves to show the practical implications of the
adopted systematic approach: the expressions given in Tables 3.2–3.4 allow to bridge
the gap between the presented scaling law formulation for the raindrop size distribu-
tion and its extensions on the one hand and the traditional analytical parameteriza-
tions on the other.

3.5 Three special cases of the scaling law

Extensive experimental verifications of the scaling law formulation will be presented
in Chapters 4 and 5. In this section, the scaling law will be confronted with some
analytical parameterizations for the raindrop size distribution. Three special cases
will be considered: (1) the Marshall-Palmer raindrop size distribution, corresponding
to α = 0 (Section 3.5.1); (2) the equilibrium raindrop size distribution, corresponding
to β = 0 (Section 3.5.2); (3) the case where α + β = 0 (Section 3.5.3).

3.5.1 The Marshall-Palmer raindrop size distribution: α = 0

Formulation in terms of the scaling law and verification of the self-consistency

The most widely used analytical parameterization for the raindrop size distribution
during the past five decades has without any doubt been that proposed by Marshall
and Palmer (1948). It is an exponential distribution of the form of Eq. (3.68), with
a constant value of N0 equal to 8.0 × 103 mm−1m−3 and Λ (mm−1) related to R
(mmh−1) via the power law 4.1R−0.21 (Chapter 2, Eqs. (2.2)–(2.4)). The Marshall-
Palmer distribution is generally believed to be a reasonably accurate representation
of the average raindrop size distribution during stratiform rainfall (e.g. Joss and
Waldvogel, 1969; Battan, 1973). Comparison with Eq. (3.39) and Table 3.2 shows
that the Marshall-Palmer distribution can be recast in a form which is consistent
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with the scaling law, if the general raindrop size distribution function is taken to be

g(x) = 8.0× 103 exp (−4.1x) (3.85)

(i.e. κ = 8.0× 103 and λ = 4.1), with the scaling exponents α = 0 and β = 0.21.
It has already been noted in Chapter 2 (Section 2.7) that the Marshall-Palmer

distribution is not entirely consistent with the raindrop terminal fall speed – diameter
relationship of Atlas and Ulbrich (1977), adopted as the reference relationship in this
thesis. Only an adjustment of the Λ–R relationship proposed by Marshall and Palmer
to Λ = 4.23R−0.214 (Eq. (2.63)) would render their distribution self-consistent in the
sense implied by Eqs. (3.37) and (3.38). This lack of self-consistency of the Marshall-
Palmer distribution has been noted before, e.g. by Bennett et al. (1984) and Zawadzki
and de Agostinho Antonio (1988).

To quantify the extent to which g(x), α and β satisfy (or violate) the self-
consistency constraints posed by Eqs. (3.37) and (3.38), two error coefficients are
introduced. The first coefficient,

Sp = 6π × 10−4c
∫ ∞

0
x3+γg(x) dx, (3.86)

quantifies the self-consistency of the prefactor, and the second,

Se = α + (4 + γ) β, (3.87)

that of the exponent. These coefficients are nothing but the prefactor (Eq. (3.35))
and the exponent (Eq. (3.36)) of a power law relationship between the rain rate R
and a reference variable Ψ (Eq. (3.34)) in case Ψ = R. Hence, if a parameterization
for the raindrop size distribution would be fully self-consistent then both Sp and Se

should equal one. Substituting Eq. (3.85) in Eq. (3.86), with c = 3.778 and γ = 0.67,
yields Sp = 1.16. Substitution of α = 0 and β = 0.21 in Eq. (3.87) (again assuming
γ = 0.67) gives Se = 0.98. In other words, at least for diameter integration limits of 0
and ∞, the Marshall-Palmer distribution is not self-consistent, particularly not with
regard to the prefactor.

Interpretation of the scaling exponents and the general distribution func-
tion

Fig. 3.2(a) shows the location of the self-consistent form (i.e. with β = 0.214) of the
Marshall-Palmer distribution in the parameter space spanned by the scaling expo-
nents α and β. For reference, the theoretical self-consistency relationship between
the scaling exponents, corresponding to Eq. (3.87) for Se = 1 (i.e. β = 1−α

4+γ
), has

been drawn for three different values of the exponent γ of a power law v(D) rela-
tionship: 0.8, 0.67 and 0.5. It is seen that in this region of the parameter space, the
self-consistency relationship between α and β is not very sensitive to such differences
in γ. Fig. 3.2(a) is a generalization of a type of plot originally introduced by Sempere
Torres et al. (1994).

What is the physical interpretation of the particular location of the Marshall-
Palmer distribution on the self-consistency lines of Fig. 3.2? Returning to Section 3.2.1
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(Eqs. (3.2)–(3.6)), it is seen that α = 0 implies that γρV = γDC
, where γρV and γDC

are the exponents of power law relationships between the raindrop concentration
ρV and the rain rate R and between any characteristic raindrop diameter DC and
R, respectively. In other words, the Marshall-Palmer distribution corresponds to the
special case where ρV andDC depend in exactly the same fashion on R, such that their
ratio ρV/DC becomes independent of R, implying that they must be proportional.
For exponential raindrop size distributions ρV equals N0/Λ (Table 3.5), which means
that ρV/DC is in general proportional to N0. In the specific case where DC is the
mean raindrop diameter 1/Λ, ρV/DC exactly equals N0. In the Marshall-Palmer
parameterization N0 is indeed a constant.

This becomes even more clear from Fig. 3.2(b), which shows the location of the
Marshall-Palmer distribution on a plot of β versus α + β. It follows from Eqs. (3.5)
and (3.6) that this is equivalent to a plot of γDC

versus γρV . The self-consistency
relationship between β (γDC

) and α+ β (γρV) now becomes

β =
1− (α + β)

3 + γ
, (3.88)

or

γDC
=

1− γρV
3 + γ

. (3.89)

The particular location of a point on the self-consistency line (e.g. for the Marshall-
Palmer distribution the intersection with γρV = γDC

) now has a clear physical inter-
pretation in terms of the exponents of power law relationships between DC, ρV and
R.

Fig. 3.3(a) and (b) show the general raindrop size distribution function g(x) and
the corresponding general rain rate density function h(x) for the self-consistent form
(i.e. with λ = 4.23) of the Marshall-Palmer raindrop size distribution. Recall that
g(x) and h(x) can be interpreted as the equivalent raindrop size distribution NV(D,R)
and the equivalent rain rate density function fR(D,R) for R = 1 mmh−1, respectively.
Clearly, the exponential functional form for g(x) changes to a gamma form for h(x)
(Table 3.2), with a corresponding shift in the center of gravity towards larger (scaled)
raindrop sizes. This effect has already been observed in Chapter 2 (Fig. 2.5(a) and
(d), p. 41). There however, different curves for different rain rates had to be drawn.
Here, the influence of the rain rate on the appearance of the curves has been filtered
out completely through the applied scaling.

Since the Marshall-Palmer distribution has a scaling exponent α of zero, the ver-
tical axis in Fig. 3.3(a) is effectively not scaled at all. It can therefore simply be
interpreted as the value of the raindrop size distribution NV(D,R) itself. As a matter
of fact, the intercept with the vertical axis (denoted as κ in the exponential parame-
terization for g(x), Table 3.2) in this case equals N0 (8.0×103 mm−1m−3). Then it is
seen that an increase in R for the Marshall-Palmer distribution merely corresponds
to a blow-up of the horizontal (raindrop size) axis. On a semi-logarithmic plot of
NV(D,R) versus D this change of scale would then correspond to a counter-clockwise
rotation of the raindrop size distribution around the pivotal point NV(0, R) = N0 (as
shown in Fig. 2.1, p. 23).
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Figure 3.2: (a) Theoretical self-consistency relationship between the scaling exponents α (–)
and β (–), β = 1−α

4+γ , for three different values of the exponent γ of a power law relationship
between raindrop terminal fall speed and equivalent spherical raindrop diameter (dashed
line: γ = 0.8; dash-dotted line: γ = 0.67; dotted line: γ = 0.5). The cross at the point
with coordinates (α, β) = (−0.27, 0.27) corresponds to raindrop size controlled rainfall,
the plus at the point with coordinates (α, β) = (0, 0.21) to Marshall and Palmer’s (1948)
exponential raindrop size distribution, the circle at the point with coordinates (α, β) = (1, 0)
to equilibrium rainfall (raindrop concentration controlled) conditions. (b) Idem in the
transformed parameter space spanned by the exponents α+ β = γρV and β = γDC

.
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Figure 3.3: (a) General raindrop size distribution functions g(x) corresponding to Marshall
and Palmer’s (1948) exponential raindrop size distribution (dashed line) and List’s (1988)
parameterization for the three-peak equilibrium distribution as the sum of three gamma
distributions (solid line). (b) Corresponding general rain rate density functions h(x).
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3.5.2 The equilibrium raindrop size distribution: β = 0

Verification of the self-consistency and interpretation of the scaling expo-
nents

As a result of compensating effects in the competing microphysical processes shaping
raindrop size distributions, ‘any raindrop distribution will develop with time into an
equilibrium distribution regardless of the initial spectrum’ (List, 1988). On the basis
of the stationary form of the stochastic collection equation (the integro-differential
equation governing the temporal evolution of the raindrop size distribution) List et al.
(1987) show analytically that equilibrium raindrop size distributions are by definition
the product of the rain rate R (or any other rainfall integral variable) and a generic
shape function, i.e. that they are a family of curves defined by

NV(D,R) = Rg(D) . (3.90)

Experimental evidence for such a proportionality in persistent tropical rain is reported
by List et al. (1987) and Zawadzki and de Agostinho Antonio (1988).

Comparison with Eq. (3.39) shows immediately that Eq. (3.90) is in fact a limiting
case of the scaling law, obtained for α = 1 and β = 0. Because these values satisfy
the constraint posed by Eq. (3.38), they form a self-consistent pair. Hence Se = 1
(Eq. (3.87)). Fig. 3.2(a) shows the location of the equilibrium distribution in the
parameter space spanned by the scaling exponents α and β. Because β = 0 in
equilibrium, Eq. (3.38) implies that α = 1, independent of γ. That is why the three
theoretical self-consistency lines indicated in the figure meet in this point.

Eqs. (3.2)–(3.6) (p. 58) show that α = 1 and β = 0 imply γρV = 1 and γDC
= 0. In

other words, the raindrop concentration ρV must depend linearly on the rain rate R
and at the same time any characteristic raindrop diameter must remain constant, un-
affected by changes in R. Apparently, under equilibrium rainfall conditions, all spatial
and temporal variability of the shape of the raindrop size distribution is controlled
by variations in the raindrop concentration ρV. The probability density function of
the raindrop diameters remains constant. For the specific case of the weighted mean
raindrop diameters, this also follows from Eq. (3.28) (γDm

= β = 0). Fig. 3.2(b) shows
the location of the equilibrium distribution in the parameter space spanned by the
exponents γρV and γDC

. Again, the three theoretical self-consistency lines meet in the
equilibrium point.

Substitution of α = 1 and β = 0 in Eq. (3.21) leads to γΩm = 1 (independent ofm),
implying that under equilibrium rainfall conditions any moment of the raindrop size
distribution, not just ρV, must be proportional to R and hence to any other moment.
This confirms one of List’s (1988) main conclusions. In effect, this proportionality
is even a more general property of equilibrium rainfall. Eq. (3.15) shows that when
α = 1 and β = 0 any rainfall integral variable, not necessarily a moment of the
raindrop size distribution, will be proportional to the rain rate R and hence to any
other rainfall integral variable.
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Self-consistency and interpretation of the general distribution function

With regard to the functional form of g(D), computer simulations of the tempo-
ral evolution of raindrop size distributions in both zero-dimensional (box) and one-
dimensional (shaft) models have demonstrated that raindrop size distributions evolve
with time to equilibrium distributions with three peaks, the so-called three-peak equi-
librium distributions (3-PED) (e.g. List et al., 1987; List and McFarquhar, 1990;
Hu and Srivastava, 1995). Various investigations have indeed provided evidence for
such multiple peak behavior in empirical raindrop size distributions (e.g. Steiner and
Waldvogel, 1987; List, 1988; Zawadzki and de Agostinho Antonio, 1988). It has re-
cently become clear however, that all reported peaks have in fact been instrumental
artifacts caused by the signal-processing electronics of the Joss-Waldvogel (1967) dis-
drometers used for the measurements (Sheppard, 1990; McFarquhar and List, 1993;
Sauvageot and Lacaux, 1995). Nevertheless, McFarquhar and List (1993) conclude
that ‘it cannot be categorically stated that raindrop size distributions with multiple
peaks do not exist’. Indeed, using another type of instrument, the (airborne) optical
array probe, multi-modal distributions have been observed in tropical rain (Willis,
1984).

List (1988) presents an approximation to the theoretically predicted equilibrium
form of g (D) (Eq. (3.90)) as the sum of three gamma distributions with the peak
positions modex (mm), peak heights g(modex) (mm−1m−3 (mmh−1)−1) and shape
parameters µ (–) of the component distributions as indicated in Table 3.7. A com-
parison with the gamma parameterization for g(x) proposed earlier (Table 3.3) shows
that the peak position and peak height of each of the component distributions are
related to the parameters κ, λ and µ via

modex =
µ

λ
(3.91)

and consequently

g(modex) = κ
(
µ

λ

)µ

exp (−µ) = κ
(
µ

eλ

)µ

, (3.92)

where e denotes the base of the natural logarithm. From these expressions the para-
meters κ and λ for each of the three component distributions can be obtained from the
given values of modex, g(modex) and µ (Table 3.7). These define a general raindrop
size distribution function g(x) for equilibrium rainfall.

However, substitution of the resulting three-peak form for g(x) in Eq. (3.86) shows
that it does not satisfy the self-consistency constraint (Sp = 0.91). This may be asso-
ciated with the fact that List (1988) does not use a power law relationship for v(D),
as implicitly assumed in Eq. (3.86), but the more accurate (asymptotic) parameteri-
zation due to Best (1950a) (see Fig. 3.1(a), p. 68). As a matter of fact, if α = 1 and
β = 0 it is no longer necessary to impose such a power law relationship for v(D). Eq.
(3.33) demonstrates that any such relationship will then imply linear relationships be-
tween the moments of the raindrop size distribution. Accordingly, under equilibrium
conditions, the constraint of Eq. (3.37) can be relaxed to

∫ ∞

0
x3v(x) g(x) dx =

104

6π
. (3.93)
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Table 3.7: Peak positions modex (mm), peak heights g(modex) (mm−1m−3 (mmh−1)−1)
and shape parameters µ (–) of the three component gamma distributions of an approxima-
tion for the general raindrop size distribution g(x) of the three-peak equilibrium distribution
(3-PED) (List, 1988). The last two rows are the corresponding values of λ and κ.

Parameter Distribution 1 Distribution 2 Distribution 3
modex 0.259 0.766 1.671

g(modex) 269 36.1 11.8
µ 10 13 19
λ 38.6 17.0 11.4
κ 4.36× 1012 5.11× 108 1.22× 105

Nevertheless, substitution of the obtained three-peak form for g(x) and the Best
(1950a) raindrop terminal fall speed parameterization in this expression still yields
a violation of the self-consistency, albeit less pronounced (Sp = 0.95). It has been
preferred here to stay with the power law relationship for v(D) and adjust the values
of κ for the three component distributions (through division by Sp) so as to impose
self-consistency. In any case, the difference will be small (see Fig. 3.1(b), p. 68).

Fig. 3.3(a) and (b) show the general raindrop size distribution function g(x) and
the corresponding general rain rate density function h(x) for this self-consistent form
of the three-peak equilibrium distribution. Since α = 1 and β = 0, the horizontal axis
in both cases directly represents the (unaffected) raindrop diameter D (mm). This
is a reflection of the fact that in equilibrium rainfall the characteristic raindrop sizes
are constants. The vertical axis of Fig. 3.3(a) is simply the raindrop size distribution
divided by the rain rate R (mmh−1). This is a reflection of the proportionality
between the rainfall integral parameters and indicates that the effect of an increase
in R is simply a proportional scaling of NV(D,R). This is exactly the opposite of
that found for the Marshall-Palmer distribution, where only the horizontal axis was
affected and not the vertical.

Regarding the general rain rate density function h(x) (Fig. 3.3(b)), the fact that
β = 0 implies that it is completely independent of rain rate, something which List
(1988) notes as well. Fig. 3.3(b) shows that the first two relatively pronounced peaks
in g(x) have almost entirely disappeared. The resulting form of h(x) is approximately
unimodal, the majority of the contribution coming from the third peak in g(x) (about
90% according to List (1988)). This indicates that although the existence of peaks in
raindrop size distributions is undoubtedly important for a proper understanding of
(warm) rain microphysics, it is much less relevant to applications in radar meteorology,
hydrology and telecommunications, where the interest lies typically in the higher
order moments of the raindrop size distribution (as discussed in Chapter 2). The
main interest of the equilibrium raindrop size distribution here is the fact that it
represents a very particular case of the scaling law.

A final remark concerns the Z–R relationship in equilibrium rainfall. List (1988)
demonstrates that, for his approximation to the three-peak equilibrium distribution
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Table 3.8: Three special cases of variability of the raindrop size distribution: (1) raindrop
size controlled; (2) intermediate case (Marshall-Palmer rainfall); (3) raindrop concentration
controlled (equilibrium rainfall). Scaling exponents α and β and the associated values of
the exponents of power law relationships between ρV, DC and Ωm on the one hand and R
on the other (all dimensionless).

Case γρV , γDC
α = γρV − γDC

β = γDC
γΩm = α+ (m+ 1)β

(α = 1− (4 + γ) β) (= 1 + [m− (3 + γ)] β)

ρV = cst. γρV = 0 − 1
3+γ

1
3+γ

m
3+γ

ρV/DC = cst. γρV = γDC
0 1

4+γ
m+1
4+γ

DC = cst. γDC
= 0 1 0 1

(Table 3.7), the radar reflectivity factor Z (mm6 m−3) will exhibit a linear dependence
on R according to

Z = 742R. (3.94)

It has been demonstrated that this proportionality is a direct consequence of the
values of the scaling exponents (α = 1, β = 0). List speculated that the 742
mm6m−3 (mmh)−1 is ‘a universal constant for steady tropical rain’. Since by def-
inition Z equals Ω6 with cΩ6 = 1 (Eq. (3.18)), evaluation of Eq. (3.20) shows that

CZ =
∫ ∞

0
x6g(x) dx, (3.95)

i.e. that this ‘universal constant’ must simply be the 6th moment of the three-peak
general raindrop size distribution function. Evaluation of Eq. (3.95) using the self-
consistent form for g(x) derived on the basis of the power law v(D) relationship gives
CZ = 753, reasonably close. Using the self-consistent form derived on the basis of
the Best (1950a) v(D) relationship, the one presumably used by List (1988), yields
CZ = 724 and not 742, as would be expected22. In any case, Eq. (3.95) will be used
extensively when the implications of the scaling law for Z–R relationships will be
discussed (Chapter 6).

3.5.3 A third special case: α+ β = 0

In Sections 3.5.1 and 3.5.2 two special cases of the scaling law have been treated. The
Marshall-Palmer distribution corresponds to the case where the spatial and temporal
variability of the raindrop size distribution (and hence that of any derived rainfall
related variable) is controlled both by that of the raindrop concentration ρV and by
that of the characteristic raindrop sizes DC. This happens in such a way that the ratio
of ρV to DC is a constant, implying that the exponents of power law relationships

22The origin of this discrepancy is not clear, but it might be due to a typographical error in
List’s (1988) article. Using the original values of κ given in Table 3.7 (not corrected for violation of
self-consistency) leads to an even worse agreement: CZ = 688.
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between them and any reference variable Ψ are equal, i.e. γρV = γDC
(Eq. (3.3)). Via

Eq. (3.5) this implies that the scaling exponent α is zero. Subsequently, in case R
is taken to be the reference variable, the self-consistency constraint on the scaling
exponents (Eq. (3.38)) yields for the other scaling exponent β = 1

4+γ
, where γ is the

exponent of the power law v(D) relationship (Eq. (2.10)). These values of the scaling
exponents finally imply via Eq. (3.53) (or Eq. (3.54)) that the exponent γΩm of a power
law relationship between a moment Ωm of the raindrop size distribution (such as Z)
and R must equal m+1

4+γ
. From the latter, it is easy to see that the exponent of a power

law relationship between Ωm and any other moment Ωn in general follows γΩm

γΩn
= m+1

n+1
.

This whole process has been summarized in Table 3.8.
In a similar manner, the equilibrium raindrop size distribution corresponds to the

special (limiting) case where the variability of the raindrop size distribution is entirely
controlled by that of the raindrop concentration. Since the characteristic raindrop
sizes are constants in this case, γDC

= 0. This implies β = 0 and hence α = 1, for
any choice of the rainfall integral variable. The result is that γΩm = 1, independent
of m and the same holds obviously for γΩm

γΩn
. Again, the results are summarized in

Table 3.8.
It is suggested here that the equilibrium rainfall point indeed represents a limiting

case. Negative values of β would namely imply that the characteristic raindrop sizes
would decrease with increasing rain rates (since, according to Eq. (3.6), β = γDC

).
This seems not very plausible and, moreover, in the literature such values of β have
to the best of the author’s knowledge never been reported. Perhaps it would be
possible to use the stochastic collection equation to rigorously prove this hypothesis,
but this has not been attempted here23.

A third special case, one which has not been treated yet, is then of course the case
where the variability of the raindrop size distribution is entirely controlled by that
of the characteristic raindrop sizes, the raindrop concentration remaining constant.
This implies γρV = 0 and hence α + β = 0. For R as the reference variable, the self-
consistency constraint on the exponents now implies α = − 1

3+γ
and β = γDC

= 1
3+γ

(Fig. 3.2(a) and (b)). The resulting exponent of a power law relationship between
Ωm and R is then m

3+γ
and that of a power law relationship with another moment

necessarily m
n
, as indicated in Table 3.8. This probably represents another limiting

23A possible approach toward tackling this and associated problems might be to substitute an
appropriate form of the scaling law (Eq. (3.4)) in the transient (i.e. non-stationary) form of the
stochastic collection equation. List and McFarquhar (1990) describe their zero-dimensional (box)
model for solving this equation numerically as follows: ‘Collisional breakup and the coalescence of
raindrops are the only two factors considered in the model describing the time evolution of the
drop spectra. The studies are performed using a box model with zero spatial dimensions. All
drops that fall out of the bottom of the volume element are immediately reinserted at the top so
that mass is conserved and so that there are no effects due to the sedimentation of drops.’ In
other words, List and McFarquhar use a ‘torus’ model (top = bottom) and neglect the effects of
evaporation and condensation. Then conservation of mass implies that the liquid rainwater content
W (mgm−3) should be a conserved quantity. This suggests taking W as a stationary reference
variable in the scaling law and let the corresponding scaling exponents βW (t) (and through self-
consistency αW (t) = 1− 4βW (t)) become time-dependent functions. It would then be interesting to
study (perhaps analytically) the time evolution of βW (t) due to raindrop interaction.
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case. A further decrease of α (and hence increase of β) would namely imply that
γρV would become negative and consequently that the raindrop concentration would
decrease with increasing rain rates. This seems rather unlikely, but again no definitive
proof of this assertion can be given.

This type of reasoning finally provides some clues as to the physical interpretation
of the scaling exponents, something about which Sempere Torres et al. (1994, 1998)
have remained rather vague. In a plot of β versus α (such as Fig. 3.2(a)) or a plot
of β = γDC

versus α + β = γρV (such as Fig. 3.2(a)) there are apparently three fixed
points:

1. α+ β = 0, corresponding to raindrop size controlled variability (indicated by a
cross in Fig. 3.2);

2. α = 0, corresponding to an intermediate case in which the variability is con-
trolled by raindrop size and raindrop concentration in equal proportions (Marshall-
Palmer rainfall; the plus in Fig. 3.2);

3. β = 0, corresponding to raindrop concentration controlled variability (equilib-
rium rainfall; the circle in Fig. 3.2).

Hence, moving from the cross in Fig. 3.2(a) and (b) via the plus to the circle, the
fractional control by raindrop concentration increases from zero to one, whereas that
by characteristic raindrop size decreases from one to zero. At the cross, a doubling
of the rain rate will be caused by a doubling of the raindrop volumes, at the circle by
a doubling of the raindrop concentration (and hence of the raindrop arrival rate). At
all points in between, it will be caused partly by an increase of the raindrop volumes,
partly by an increase in the raindrop concentration, with the Marshall-Palmer point as
a special case. It will be the challenge of Chapters 4–6 to relate these interpretations
to the different types of rainfall (stratiform, convective) and possibly to different
rainfall climatologies.

It is already clear that the Marshall-Palmer point can be associated more or
less with stratiform conditions and the equilibrium point with persistent tropical
rainfall. Hence, the meaning that may be attached to the distance (in the geometrical
sense) between any given point on the line β = 1−α

4+γ
and the point (α, β) = (1, 0)

(in Fig. 3.2(a)) or similarly that between any given point on the line γDC
=

1−γρV
3+γ

and (γρV , γDC
) = (1, 0) (in Fig. 3.2(b)) is that it represents a distance (in the physical

sense) from equilibrium24. In any case, since different points on this line are associated
with different Z–R relationships, a rainfall classification in terms of the values of α
and β may also have important practical implications.

24It might indicate a time from equilibrium as well. List (1988) argued that ‘any raindrop distribu-
tion will develop with time into an equilibrium distribution regardless of the initial spectrum’. Using
a similar model as that described above23, List et al. (1987) simulate the time evolution of initial
Marshall-Palmer distributions (β = 0.21) toward equilibrium distributions (β = 0). They show that
for high values of W equilibrium is reached within one hour (indicating ∆β/∆t ≈ 0.2 h−1), whereas
for low values of W this takes more than two hours (∆β/∆t ≈ 0.1 h−1). Hence, the value of β might
be somehow related to the time a raindrop size distribution has been allowed to evolve, which in
turn might be related to the type of rainfall (height of the cloud base, updrafts/downdrafts, etc.).
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3.6 Summary and conclusions

A comprehensive general framework for the analysis of raindrop size distributions and
their properties has been presented. It is a further extension and generalization of a
recently proposed general formulation for the raindrop size distribution. In the pre-
sented framework, the general formulation for the raindrop size distribution takes the
form of a scaling law. This law is consistent with the ubiquitous power law relation-
ships between rainfall related variables. They follow logically from its formulation.
Moreover, the scaling law unifies all previously proposed parameterizations for the
raindrop size distribution. All can be recast in forms which are consistent with the
formulation and as such can be considered as special cases thereof.

In the scaling law formulation, the raindrop size distribution is not only a function
of the raindrop diameter, but of a reference variable as well. Any rainfall related vari-
able can play the role of reference variable, not necessarily the rain rate historically
used for that purpose. The spatial and temporal variability of the reference variable
reflects that of the raindrop size distribution. There are two scaling exponents associ-
ated with the reference variable, one to scale the raindrop diameters and another to
scale the corresponding raindrop concentrations. Once these scaling exponents have
been estimated, they can be used to scale raindrop size distributions corresponding to
different values of the reference variable. The identified curve is a scaled raindrop size
distribution, the so-called general raindrop size distribution function, which is in prin-
ciple independent of the value of the reference variable. The physical interpretation
of both the scaling exponents and the general raindrop size distribution function has
been clarified. In particular, the values of the scaling exponents determine whether
it is the raindrop concentration or the characteristic raindrop sizes which control the
variability of the raindrop size distribution. A second type of general function has
been introduced, the general rain rate density function, which has the advantage of
behaving as a probability density function. This will facilitate the parameter estima-
tion process.

Since any reference variable is itself a function of the raindrop size distribution,
there exist self-consistency constraints both on the scaling exponents and on the gen-
eral raindrop size distribution function. The constraint on the exponents implies that
only one of the two is a free parameter. In case the reference variable is proportional
to a moment of the raindrop size distribution, the scaling exponents must be linearly
related. The constraint on the general raindrop size distribution function implies that
it must satisfy an integral equation. This reduces its number of degrees of freedom
by one.

From a practical point of view, the two main advantages of the proposed scaling
law procedure over previous approaches are its robustness and its generality. The
robustness of the procedure stems from the fact that all available empirical raindrop
size distributions can be used directly to identify the general raindrop size distribution
function, thus avoiding the common requirement to calculate average distributions for
different classes of the reference variable. The generality of the procedure is due to
the fact that it is no longer necessary to impose an a priori functional form for the
raindrop size distribution. Only after the general raindrop size distribution function
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has been identified, a suitable parameterization may be selected. This selection will
consequently be based on all available information. Expressions have been provided
for the self-consistent forms of both types of general functions for all analytical forms
of the raindrop size distribution which have been proposed in the literature over
the years (exponential, gamma, generalized gamma, Best and lognormal). In this
manner, the gap between the scaling law formulation and the traditional analytical
parameterizations is bridged explicitly.
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Chapter 4

Verification of the scaling law using
mean raindrop size distributions1

4.1 Introduction

In Chapter 3 a general framework for the analysis of raindrop size distributions and
their properties has been introduced. In this framework, the formulation of the rain-
drop size distribution takes the form of a scaling law. Preliminary evidence for its va-
lidity has been provided through the discussion of three special cases. The aim of this
chapter is to provide further evidence for the validity of the scaling law formulation
by revisiting two classical parameterizations for the mean raindrop size distribution,
namely those due to Best (1950b) and Laws and Parsons (1943). Neither of these has
been treated by Sempere Torres et al. (1994, 1998).

In both parameterizations the rain rate R is used as the reference variable, i.e. as
the variable controlling the spatial and temporal variability of the parameterizations.
However, because they are not formulated in terms of the raindrop size distribution
NV(D,R) itself, these parameterizations are not directly comparable to the scaling law
formulation presented in Chapter 3 (Eq. (3.4), p. 59). The analytical parameterization
due to Best (1950b) pertains to the (cumulative) distribution of the liquid rainwater
content W over all raindrop diameters, i.e. it is a parameterization of FW (D,R).
The tabulated parameterization due to Laws and Parsons (1943) pertains to the
distribution of the rain rate R over D, i.e. it is a parameterization of FR(D,R).
In both cases it will therefore be necessary to recast the parameterization into a
form which is consistent with the scaling law for the raindrop size distribution, i.e.
to derive the intrinsic NV(D,R)-formulation contained in it. For Laws and Parsons’
parameterization, the derivation of the general rain rate density function will of course
be straightforward (Eq. (3.67), p. 77).

Although the parameterization proposed by Best has not been very widely used
(see Wessels (1967, 1972) for a notable exception), it is of interest here because Best

1Adapted version of Uijlenhoet, R., Creutin, J.-D., and Stricker, J. N. M. (1999). Scaling prop-
erties of classical parameterizations for the raindrop size distribution. Q. J. R. Meteorol. Soc.
(submitted).
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adjusted his parameterization to raindrop size data from different locations around
the world, corresponding to very different climatic settings. Knowledge of the val-
ues of the scaling exponents α and β and the shapes of the general raindrop size
distribution function g(x) and associated general rain rate density function h(x) for
these locations may therefore provide information as to the climatological variability
of α, β, g(x) and h(x). This may perhaps lead to clues concerning the type of cli-
matic setting to which the three special cases of the scaling law treated in Chapter 3
(Section 3.5) correspond. An additional argument in favor of a treatment of Best’s
parameterization is that its typical functional form has recently been found to re-
semble (at least qualitatively) empirical general raindrop size distribution functions
observed in convective rainfall (Sempere Torres et al., 1999). Best’s parameterization
will be the subject of Section 4.2.

After Marshall and Palmer’s (1948) celebrated exponential parameterization, the
tabulated parameterization of Laws and Parsons has probably been the most widely
used standard family of raindrop size distributions, both in radar meteorology (e.g.
Doviak and Zrnić, 1993) and in telecommunications research dealing with microwave
signal propagation (e.g. Crane, 1971; Olsen et al., 1978; and references therein).
It will therefore be of considerable practical interest to have a consistent analytical
parameterization available based on Laws and Parsons’ data. An additional motiva-
tion for discussing Laws and Parsons’ parameterization in this context is that, in its
original form, it is a tabulated parameterization. In this respect, it resembles the raw
raindrop size distribution data which may be gathered with disdrometers and optical
spectrometers. It will therefore provide an ideal example for testing the procedures
for the estimation of the scaling exponents α and β, for the identification of the gen-
eral functions g(x) and h(x) and for the adjustment of analytical parameterizations
to the empirical g(x) and h(x) which have been outlined in Chapter 3 (Section 3.4).
The same methodology may then in a later stage be applied to raw raindrop size
distributions. In fact, that is what will be done in Chapter 5. Laws and Parsons’
parameterization will be treated in Section 4.3.

An interesting alternative approach towards the parameterization of raindrop size
distributions, with a particular emphasis on the description of Laws and Parsons’
(1943) data, has been discussed by Spilhaus (1948). Probably, this apparently for-
gotten approach2 can be regarded as the first attempt to derive a general raindrop
size distribution function, i.e. a drop size distribution which is independent of rain
rate. It is therefore a pity that Spilhaus’ approach, as is demonstrated in AppendixD,
contains some fundamental inconsistencies. It will not be pursued any further here.

2Although its general subject is the parameterization of raindrop size distributions, Spilhaus’
(1948) article is almost only cited for a relation between the terminal fall speed of drops and their
diameter which appeared on the first page (Eq. (D.3), AppendixD).
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4.2 Best’s parameterization

4.2.1 Functional form

Best (1950b) has examined a substantial set of raindrop size distribution measure-
ments collected in many parts of the world. He has found that the mean cumulative
distribution of the liquid rainwater content over all raindrop diameters can often be
parameterized with good accuracy according to (using a notation consistent with
NV(D,R))

FW (D,R) = 1− exp

[
−
(
D

a

)n
]
; a, n > 0; D ≥ 0, (4.1)

where FW (D,R) [-] is the ‘fraction of liquid water in the air comprised by drops with
diameter less than D’ [L] for a given rain rate R, a [L] is a scale parameter and n [-] is
a shape parameter. This functional form corresponds to the (cumulative) probability
distribution function of a Weibull distribution (Mood et al., 1974). Best reports that,
on average, the parameter a is related to the rain rate R according to the power law

a = ARp, (4.2)

where A = 1.30 and p = 0.232 if a is expressed in mm and R in mmh−1. Moreover,
he finds n to be approximately constant with a mean value of 2.25 (and a standard
deviation among different locations of 0.41). Finally, he reports the liquid rainwater
content W on average to be related to the rain rate R according to the power law

W = CRr, (4.3)

where C = 67 and r = 0.846 if W is expressed in3 mgm−3 and R in mmh−1.
Fig. 4.1(a) shows FW (D,R) for rain rates of 1, 10 and 100 mmh−1, respectively. It is
clear that, for larger rain rates, the proportion of large drops increases and as such
their contribution to the liquid rainwater content.

A convenient reformulation of Eq. (4.1) from the point of view of parameter esti-
mation is

− ln [1− FW (D,R)] =
(
D

a

)n

. (4.4)

This form shows that if a raindrop size distribution obeys Best’s parameterization, a
plot of − ln [1− FW (D,R)] against D on log-log paper will yield a straight line with
slope n and intercept −n log a. Best and Wessels (1967, 1972) have used this method
to estimate the a and n parameters for the experimental raindrop size distributions
they examined. In Fig. 4.1(b) the FW (D,R)-curves of Fig. 4.1(a) are replotted in this
manner. That the obtained lines are parallel to each other stems from the fact that,
according to Best’s parameterization, n is independent of the rain rate R.

3In fact, Best expressed W in units of mm3 m−3. However, since the density of water ρw is to a
very close approximation 1000 kgm−3 (i.e. 1 mgmm−3) over a wide range of air temperatures and
pressures, numerically there is little or no difference with units of mgm−3.
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Figure 4.1: (a) Cumulative distributions FW (D,R) (–) of the liquid rainwater content W
(mgm−3) over the raindrop diameters D (mm) according to Best’s (1950b) parameteriza-
tion (solid line: 1 mmh−1; dashed line: 10 mmh−1; dash-dotted line: 100 mmh−1). (b)
Corresponding curves after the transformation − ln [1− FW (D,R)], with logarithmic scales
on both axes.
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4.2.2 Characteristic properties

To obtain some idea of the physical meaning of the parameters a and n, a few char-
acteristic properties of Best’s parameterization will be discussed. First, as opposed
to what is the case for the widely used gamma raindrop size distribution (Ulbrich,
1983), for Best’s FW (D,R)-parameterization the median-volume raindrop diameter
D0,V can easily be obtained explicitly. By definition, half of the liquid rainwater
content is comprised by raindrops smaller than D0,V, i.e. FW (D0,V, R) = 1/2. This
implies

D0,V = a (ln 2)1/n (4.5)

(Best, 1950b). In the same manner, Best presents explicit expressions for other quan-
tiles of FW (D,R). A particular case, not explicitly treated by Best, is the scale param-
eter a. Eq. (4.1) shows that a is the raindrop diameter for which FW (a, R) = 1− e−1

(≈ 0.63), independent of n. In other words, for any raindrop size distribution satis-
fying Best’s parameterization, 63% of the liquid rainwater content will be comprised
by raindrops smaller than a.

A second characteristic raindrop diameter treated by Best (1950b) is what he calls
the ‘predominant drop diameter, that is the diameter of the drops which account
for the greatest volume of water in the air’. This is the mode of the derivative of
FW (D,R) with respect to D, the liquid rainwater density function fW (D,R), which
can be obtained by setting ∂2FW (D,R) /∂D2 = 0. This yields

Dp,V =





a
(
1− 1

n

)1/n
; n > 1

0 ; 0 < n ≤ 1
. (4.6)

Hence, if n approaches infinity Dp,V approaches a. Already for n = 4.48, the largest
value reported by Best, the ratio of Dp,V to a becomes 0.95.

Another widely used characteristic raindrop diameter, although not treated by
Best (1950b), is the so-called volume-weighted mean diameter Dm,V (Ulbrich, 1983;
Chapter 2, Section 2.6). By definition, Dm,V is the mean of the distribution of the
liquid rainwater content over all raindrop diameters. Hence

Dm,V =
∫ ∞

0
[1− FW (D,R)] dD = aΓ

(
1 +

1

n

)
. (4.7)

For n = 2.25, the mean value determined by Best (1950b), the ratio of Dm,V to
D0,V is 1.04. For n = 1.85 and 4.48, the minimum and maximum values found by
Best for different locations, this ratio becomes 1.08 and 0.99, respectively. Hence, for
all encountered values of n, Dm,V is a very good approximation to D0,V. The same
has been recognized for the case of the gamma raindrop size distribution by Ulbrich
(1983).

In general, the difference between the mean and the median of a unimodal distri-
bution is a measure of its skewness (Kendall and Stuart, 1977). Hence, the closeness
of Dm,V to D0,V in this case indicates in advance that the liquid rainwater density
function fW (D,R) must be a more or less symmetrical function of D. It is then nat-
ural to look for a measure of its spread (dispersion). Such a measure is the variance
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σ2
m,V of the ‘mass spectrum’ (i.e. fW (D,R)) (Ulbrich, 1983), which in case of Best’s

parameterization becomes

σ2
m,V = a2

[
Γ
(
1 +

2

n

)
− Γ2

(
1 +

1

n

)]
. (4.8)

A measure of the relative spread of FW (D,R) is its coefficient of variation CVm,V, by
definition the ratio of σm,V to Dm,V. This yields

CVm,V =

[
Γ(1 + 2/n)

Γ2(1 + 1/n)
− 1

]1/2
, (4.9)

which depends solely on n. For the values n = 1.85, n = 2.25 and n = 4.48 (the
minimum, mean and maximum values reported by Best) CVm,V becomes 0.561, 0.470
and 0.253, respectively. For reference, exponential distributions have a coefficient of
variation equal to one. In other words, ‘an increase in the value of n will decrease the
spread of the distribution’, as noted by Best (1950b). In summary, the parameter a is
a measure of the location of FW (D) and the parameter n a measure of its (relative)
dispersion.

4.2.3 Raindrop size distribution

In order to be able to verify whether Best’s parameterization satisfies the scaling law
formulation for the raindrop size distribution (Eq. (3.4), p. 59), it needs to be recast
in a form which is consistent with that formulation. In this case the reference variable
is R, so the particular form of the scaling law of interest here is Eq. (3.39) (p. 65).
Since Eq. (3.39) is formulated in terms of NV(D,R), the NV(D,R) corresponding to
Best’s FW (D,R) is needed.

By definition (Table 2.3, p. 39), the liquid rainwater content W (mgm−3) is related
to NV(D,R) according to

W =
πρw
6

× 10−3
∫ ∞

0
D3NV(D,R) dD, (4.10)

where ρw = 1000 kgm−3 is the density of water. This implies that FW (D,R) (-) can
be expressed in terms of NV(D,R) according to

FW (D,R) =
πρw
6W

× 10−3
∫ D

0
D′3NV(D

′, R) dD′. (4.11)

FW (D,R) increases from 0 to 1 as D goes from 0 to ∞, as would be expected for
a (cumulative) distribution function. The density function fW (D,R) (mm−1) corre-
sponding to FW (D,R) can be obtained by taking its derivative with respect to D.
This yields for the relationship between fW (D,R) and NV(D,R)

fW (D,R) =
∂FW (D,R)

∂D
=

πρw
6W

× 10−3D3NV(D,R) . (4.12)
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In case of Best’s parameterization (Eq. (4.1)), fW (D,R) is

fW (D,R) =
n

a

(
D

a

)n−1

exp

[
−
(
D

a

)n
]
; a, n > 0; D ≥ 0. (4.13)

This functional form corresponds to the probability density function of a Weibull
distribution (Mood et al., 1974). Substitution of this result in Eq. (4.12) finally yields
for the raindrop size distribution in the air

NV(D,R) =
6× 103nW

πρwa4

(
D

a

)n−4

exp

[
−
(
D

a

)n
]
; a > 0; n > 3; D ≥ 0.

(4.14)
This is the NV(D,R)-parameterization intrinsically contained in Best’s parameter-
ization for FW (D,R) (Eq. (4.1)). It shows that the probability density function of
the raindrop diameters in the air is a special case of the so-called generalized gamma
distribution (Stacy, 1962).

Care should be exercised when integrating Eq. (4.14) with respect to D. If Dmin

is taken to be 0, as is usually done, then for a given value of n > 0, all moments of
NV(D,R) of orders smaller than or equal to 3− n will diverge, i.e. become infinitely
large. Hence, only those of orders larger than 3−n will be finite, even though for n > 0
all non-negative moments of fW (D,R) are finite. For example, for the mean value of
n reported by Best (n = 2.25), the zeroth moment of the raindrop size distribution
(i.e. the physically important raindrop concentration) diverges. This implies that the
corresponding probability density function of the raindrop diameters in the air does
not exist, which is both mathematically undesirable and physically unrealistic. In a
later article, dealing with applications of Eq. (4.1) to the size distributions of cloud
and fog droplets, Best (1951) proposes a ‘solution’ to this problem, namely truncating
the raindrop size distribution at some minimum diameter Dmin. However, in practical
situations this is often very inconvenient, as Dmin represents an extra parameter to be
estimated from the data at hand. If Dmin = 0, the requirement that n > 3 guarantees
the existence of all non-negative moments of NV(D,R).

4.2.4 Comparison with the Marshall-Palmer distribution

Before considering Eq. (4.14) in the framework of the scaling law formulation, it seems
informative to compare Best’s parameterization with that which has become the
reference parameterization over the years, the exponential Marshall-Palmer (1948)
distribution (Eqs. (2.2)–(2.4), p. 25). This will be done in two ways, namely both in
terms of FW (D,R) and in terms of NV(D,R).

If Dmin = 0 and Dmax = ∞ then substituting Eq. (2.2) in Eq. (4.11) yields

FW (D,R) = Γ(4,ΛD) , (4.15)

where Γ (·, ·) is the incomplete gamma function, defined here as

Γ(s, x) =
1

Γ(s)

∫ x

0
ys−1e−ydy (4.16)
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Figure 4.2: (a) Cumulative distributions FW (D,R) (–) of the liquid rainwater content
according to the parameterizations of Best (1950b; bold) and Marshall and Palmer (1948;
normal) (solid lines: 1 mmh−1; dashed lines: 10 mmh−1; dash-dotted lines: 100 mmh−1).
(b) Corresponding raindrop size distributions NV(D,R) (mm−1m−3).
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(e.g. Abramowitz and Stegun, 1972)4. On the basis of Eq. (4.15), Best (1950b) has
adjusted his parameterization to Marshall and Palmer’s data5 and reports for the
corresponding coefficients the values n = 1.85, A = 1.00, p = 0.240, C = 72 and
r = 0.880 (if a is expressed in mm, W in mgm−3 and R in mmh−1). In Fig. 4.2(a)
this adjustment is compared to FW (D,R)-curves derived for Marshall and Palmer’s
parameterization for rain rates of 1, 10 and 100 mmh−1 (using Eqs. (4.15) and (2.4)).
The contribution of small raindrops to the liquid rainwater content is significantly
stronger for Best’s parameterization than for the Marshall-Palmer parameterization.
For diameters in excess of one millimeter, on the other hand, the correspondence is
fairly close.

These observations are confirmed by Fig. 4.2(b), where the raindrop size distribu-
tions NV(D,R) corresponding to Best’s parameterization (Eq. (4.14)) are compared
to Marshall and Palmer’s original parameterization (Eq. (2.2)) for the same rain rates.
It is exactly this behavior of Best’s parameterization at the small diameter end of the
raindrop size distribution which may cause the divergence of the low order moments
mentioned above.

4.2.5 General raindrop size distribution function

Unconstrained form

Substituting the power law a–R and W–R relationships (Eqs. (4.2) and (4.3)) in the
raindrop size distribution corresponding to Best’s parameterization (Eq. (4.14)) yields

NV(D,R) =
6× 103nCRr−4p

πρwA4

(
D

ARp

)n−4

exp

[
−
(

D

ARp

)n
]
. (4.17)

A comparison with Eq. (3.39) (p. 65) shows that Best’s parameterization satisfies the
scaling law, if the general raindrop size distribution function is taken to be

g(x) =
6× 103nC

πρwA4

(
x

A

)n−4

exp
[
−
(
x

A

)n]
, (4.18)

where x = R−pD is a scaled raindrop diameter, and the scaling exponents are

{
α = r − 4p

β = p
. (4.19)

4If s is a positive integer (which is the case here) then successive integrations by parts yield the
identity (e.g. Mood et al., 1974)

Γ(s, x) = 1− e−x

s−1∑

j=0

xj

j!
.

5Rather, Best (1950b) used Marshall and Palmer’s (1948) exponential parameterization and
the corresponding W–R and Z–R relationships to generate an artificial set of ‘empirical’ values of
FW (D,R) to which he subsequently adjusted his parameterization (via Eq. (4.4)).
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In other words, Best’s raindrop size parameterization can be recast in a form which is
consistent with the scaling law formulation6. For the mean values of p and r reported
by Best, p = 0.232 and r = 0.846, this yields for the scaling exponents α = −0.082 and
β = 0.232. These values are quite close to those identified for the Marshall-Palmer
raindrop size distribution (α = 0 and β = 0.21, Chapter 3, Section 3.5.1), indicating
that Best’s mean parameterization could be suitable for stratiform conditions.

Substitution of Eq. (4.18) in Eq. (3.86) (p. 88) yields for the self-consistency coef-
ficient of the prefactor for Best’s parameterization

Sp =
3.6cCAγ

ρw
Γ
(
1 +

γ

n

)
. (4.20)

Similarly, substitution of Eq. (4.19) in Eq. (3.87) yields for the self-consistency coeffi-
cient of the exponent

Se = r + γp. (4.21)

For Best’s mean values of n, A and C (together with c = 3.778 and γ = 0.67), Sp

becomes 0.98. Similarly, for Best’s mean values of p and r, Se becomes 1.00. In other
words, for diameter integration limits of 0 and ∞, Best’s parameterization is almost
perfectly self-consistent.

In summary, Eqs. (4.18) and (4.19) allow the identification of the general rain-
drop size distribution function g(x) (from n, A and C) and the associated scaling
exponents α and β (from r and p) corresponding to previously published adjustments
of Best’s parameterization (Eq. (4.1)) to measured raindrop size distributions. The
self-consistency of such adjustments can then be evaluated on the basis of Eqs. (4.20)
and (4.21).

Self-consistent form

One could of course also force the Best parameterization to be completely self-
consistent. For the general raindrop size distribution function g(x) this can be
achieved by setting the self-consistency coefficient for the prefactor Sp (Eq. (4.20))
equal to one and substituting the result in the derived expression for the general
raindrop size distribution function (Eq. (4.18)). The result is

g(x) =
104nA−(γ+n)

6πcΓ(1 + γ/n)
xn−4 exp

[
−
(
x

A

)n]
. (4.22)

In a similar manner, setting the self-consistency coefficient for the exponent Se (Eq. (4.21))
equal to one and substituting the result in Eq. (4.19) yields

{
α = 1− (4 + γ) p

β = p
. (4.23)

6Best himself already recognizes the fact that his raindrop size parameterization can be written
independently of rain rate. He notes that ‘if we regard the parameter a as determining the scale
upon which the drop diameters are measured we see that the drop size distribution is the same for
all rates of rainfall’.
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Table 4.1: Summary of the statistical properties of the re-parameterized form of Best’s
raindrop size distribution per unit volume of air. The second column pertains to raindrops
present in a volume of air (subscripts V), the third column to those arriving at a surface
(subscripts A). The listed properties are: raindrop concentration (m−3) / raindrop arrival
rate (m−2 s−1), mean diameter (mm), modal diameter (mm), coefficient of variation of the
diameters (–), median-volume diameter (mm) and volume-weighted mean diameter (mm).
Note that for the first five properties of the sample volume process ν should exceed 3 and
for the corresponding properties of the raindrop arrival process ν should exceed 3− γ.

Property Sample volume process Raindrop arrival process

ρV, ρA N0
Γ(1−3/ν)
νΛ1−3/ν cN0

Γ[1−(3−γ)/ν]
νΛ1−(3−γ)/ν

µDV
, µDA

Γ(1−2/ν)

Λ1/νΓ(1−3/ν)

Γ[1−(2−γ)/ν]

Λ1/νΓ[1−(3−γ)/ν]

modeDV
,modeDA





(
1−4/ν

Λ

)1/ν
; ν ≥ 4

0 ; ν < 4





[
1−(4−γ)/ν

Λ

]1/ν
; ν ≥ 4− γ

0 ; ν < 4− γ

CVDV
,CVDA

[
Γ(1−1/ν)Γ(1−3/ν)

Γ2(1−2/ν)
− 1

]1/2 {
Γ[1−(1−γ)/ν]Γ[1−(3−γ)/ν]

Γ2[1−(2−γ)/ν]
− 1

}1/2

D0,V, D0,A

(
ln 2
Λ

)1/ν (
0.67+γ/ν

Λ

)1/ν

Dm,V, Dm,A
Γ(1+1/ν)

Λ1/ν

Γ[1+(1+γ)/ν]

Λ1/νΓ(1+γ/ν)

Obviously, these expressions will both perfectly satisfy the self-consistency constraints
posed by Eqs. (3.37) and (3.38) (p. 64). Substituting them in the scaling law (Eq. (3.39))
yields finally

NV(D,R) =
104nA−(γ+n)

6πcΓ(1 + γ/n)
R1−(γ+n)pDn−4 exp

(
−A−nR−pnDn

)
;

A, p > 0; n > 3; D ≥ 0. (4.24)

In contrast to Eq. (4.14), this is a completely self-consistent form of Best’s raindrop
size distribution parameterization. As a result of the imposed self-consistency, for a
given value of n, the coefficients of only one power law relationship between rainfall
related variables (in this case of that between a and R) unambiguously determine
NV(D,R). In a slightly different form, Eqs. (4.22) and (4.24) are the self-consistent
versions of the general raindrop size distribution function and the general rain rate
density function listed in Table 3.4 (p. 81) (with the substitutions n = ν, A−n = λ
and p = β).

A concise re-parameterization of Eq. (4.24), with a functional form similar to that
introduced for the gamma raindrop size distribution by Ulbrich (1983) (Eq. (3.71),
p. 82), is

NV(D,R) = N0D
ν−4 exp (−ΛDν) ; N0,Λ > 0; ν > 3; D ≥ 0. (4.25)

It follows from Eq. (4.24) and Table 3.4 that this parameterization will only be self-
consistent if N0 (mm−(ν−3)m−3) and Λ (mm−ν) are power law functions of the rain
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rate R (mmh−1) according to

N0 =
104

6πc

νλ1+γ/ν

Γ(1 + γ/ν)
R1−(γ+ν)β (4.26)

and

Λ = λR−βν . (4.27)

Table 4.1 summarizes some statistical properties of this parameterization for the
raindrop size distribution in terms of the parameters N0, Λ and µ. It forms an exten-
sion of Table 3.5 (p. 85), which lists the corresponding properties for the exponential,
gamma and lognormal parameterizations. Unfortunately, no closed form expressions
for the median diameter are available in this case. The approximation proposed by
Ulbrich (1983) for the median of the gamma distribution ceases to yield satisfactory
results for the typical shapes of the Best parameterization. For the median-volume
diameter of raindrops arriving at a surface (D0,A), however, it is still valid.

4.2.6 Results and discussion

Best (1950b) has adjusted his parameterization (Eq. (4.1), recast in the form of
Eq. (4.4)) to raindrop size distribution datasets from various parts of the world. Ta-
ble 4.2 lists the values of the scaling exponents α and β and the corresponding values
of the self-consistency coefficients Se and Sp (assuming c = 3.778 and γ = 0.67)
which can be obtained on the basis of Eqs. (4.19)–(4.21) and the values of n, A, p, C
and r he estimates for the different locations (TableVIII on p. 32 of his article). For
comparison, the values corresponding to a fit of Best’s parameterization to empirical
raindrop size distributions collected in 1968 and 1969 in De Bilt, The Netherlands by
Wessels (1972) and colleagues are included as well. These will be discussed at length
in Chapter 5. All raindrop size measurements have been obtained using the filter
paper method, except those from Washington DC, which have been obtained using
the flour method. The latter are the data of Laws and Parsons (1943), which will be
analyzed in Section 4.3. Note that there is a small difference between the values of the
scaling exponents for Montreal, Canada obtained from Best’s adjustment to Marshall
and Palmer’s (1948) data (α = −0.08 and β = 0.24) and those obtained directly from
Marshall and Palmer’s original adjustment (α = 0 and β = 0.21). This is probably
due to the method Best employed to adjust the Marshall-Palmer distribution to his
own parameterization5.

Table 4.2 shows that the self-consistency constraint on the exponents is satisfied
very well in all cases, the deviations being less than ±4% from unity. This can also
be seen from Fig. 4.3(a), where the scaling exponents are plotted against each other
in a manner analogous to what has been done in Fig. 3.2 (p. 90). All data points
closely follow the theoretical self-consistency relationship β = 1−α

4+γ
. The method

used to calculate the error bars around the data point for The Netherlands (the
bootstrap method) will be explained in Chapter 5. Here it serves to indicate the
typical uncertainty associated with the data points as a result of sampling variability.
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Figure 4.3: (a) Climatological scaling exponents α (–) and β (–) for 7 different locations
around the world (Best, 1950b), for the mean distribution of all locations derived by Best
and for De Bilt, The Netherlands (Wessels, 1972). Error bars around the Dutch data point
indicate 99% confidence limits, estimated from 1000 bootstrap samples. (b) Corresponding
values for the self-consistency coefficients of the prefactors Sp and those of the exponents
Se (again with a 99% confidence interval around the Dutch data point).
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Table 4.2: Scaling exponents α (–) and β (–) of Best’s form of the general raindrop size
distribution function g(x) and corresponding self-consistency coefficients Se (–) and Sp (–)
for different locations around the world, based on data reported by Best (1950b) and Wessels
(1972).

Location α (–) β (–) Se (–) Sp (–)
Hilo (Hawaii, USA) −0.294 0.283 1.03 0.96
Germany −0.248 0.272 1.02 0.95
East Hill (UK) −0.247 0.269 1.01 0.98
Montreal (Canada) −0.080 0.240 1.04 0.87
mean (Best, 1950b) −0.082 0.232 1.00 0.98
Shoeburyness (UK) −0.020 0.209 0.96 0.97
De Bilt (Netherlands) +0.051 0.205 1.01 0.96
Ynyslas (UK) +0.033 0.203 0.98 1.02
Washington DC (USA) +0.071 0.199 1.00 1.02

Fig. 4.3(b) is a graphical representation of the error coefficients associated with
the self-consistencies of the prefactors and the exponents (Sp and Se). That all data
points cluster closely around the point with coordinates (1,1) is an indication of their
overall self-consistency. From this point of view, the method used by Best (1950b) to
estimate the model parameters can be considered quite accurate. The only data point
which significantly violates the self-consistency, particularly that with regard to the
prefactor, is that associated with Best’s re-parameterization of the Marshall-Palmer
distribution. In Chapter 3 (Section 3.5.1) the same has been observed with regard to
the original formulation of the Marshall-Palmer distribution. The only difference is
that for the original Marshall-Palmer distribution, Sp is significantly larger than one
(1.16), whereas here it is significantly smaller than one (0.87). This discrepancy is
likely to be associated with the fact that in adjusting his parameterization to that
of Marshall and Palmer, Best (1950b) forced it to be consistent with the Z–R rela-
tionship Z = 199R1.60, whereas the original Marshall-Palmer distribution implicitly
contains the relationship Z = 296R1.47 (Chapter 2, Section 2.7).

On the basis of the values of the scaling exponents given in Table 4.2 and Fig. 4.3(a)
roughly three groups of locations can be distinguished: (1) a group with β ≈ 0.27
(Hilo, Germany, East Hill); (2) a group with β ≈ 0.24 (Montreal, the mean of all
data); (3) a group with β ≈ 0.21 (Shoeburyness, De Bilt, Ynyslas, Washington DC).
In accordance with the reasoning of Chapter 3 (Section 3.5), moving from β ≈ 0.27
to β ≈ 0.21 corresponds to an increase in the proportion of raindrop concentration
control on the variability of the raindrop size distribution from 0 to 0.5 and accordingly
a decrease of the proportion of diameter control from 1 to 0.5. Because nearly all
data points refer to mixtures of different types of rainfall over significant periods of
time, it is rather difficult to associate this interpretation of the scaling exponents in
terms of different control mechanisms with the physics of the rainfall process for the
different locations.
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Table 4.3: Parameters κ, λ and ν (where D in mm, NV(D,R) in mm−1m−3 and R in
mmh−1) of the self-consistent forms of Best’s general raindrop size distribution function
g(x) and general rain rate density function h(x) for the locations reported by Best (1950b)
and Wessels (1972).

Location κ λ ν
Hilo (Hawaii, USA) 1302 1.77 4.48
Germany 128 0.403 2.59
East Hill (UK) 133 0.527 1.99
Montreal (Canada) 292 1.00 1.85
mean (Best, 1950b) 164 0.554 2.25
Shoeburyness (UK) 95.9 0.361 2.29
De Bilt (Netherlands) 215 0.578 2.75
Ynyslas (UK) 230 0.662 2.49
Washington DC (USA) 185 0.600 2.29

There is one exception, however. Best (1950b) clearly states that the data collected
in Hilo (Hawaii, USA) correspond to orographic rainfall. That would imply that in
orographic rainfall the raindrop concentrations on the average would be approximately
constant and that accordingly most spatial and temporal variability of the raindrop
size distribution would come from differences in characteristic raindrop sizes. In
that sense, it would be the opposite of equilibrium rainfall, where the characteristic
raindrop sizes are constant on average and all variability comes from spatial and
temporal variations in raindrop concentrations. Clearly, further research is needed
to verify this hypothesis for other datasets corresponding to orographic conditions.
For the moment, it provides a preliminary interpretation of the third special case of
the scaling law discussed in Chapter 3 (Section 3.5) (α + β = 0) in terms of rainfall
typology.

Table 4.3 gives the values of the parameters κ, λ and ν of the general raindrop
size distribution function g(x) and the associated general rain rate density function
h(x) for the locations treated above. As can be gathered from Eq. (4.24) and the
subsequent discussion, these values have been obtained from the parameter values
quoted by Best using the relations ν = n, λ = A−n and κ according to the expression
given in Table 3.4. The latter guarantees self-consistency of the general raindrop size
distribution function.

In search for possible dependencies between the parameters (including the scaling
exponents), Fig. 4.4(a)–(c) shows scatter plots of β versus λ, β versus ν and λ versus
ν, respectively. Because the units of λ (mm−ν (mmh−1)βν) depend on the values of
β and ν care must be exercised to avoid interpreting spurious correlations in terms
of physical dependencies. However, no clear relations emerge from these scatterplots,
indicating that the number of degrees of freedom (the number of free parameters)
of the raindrop size distribution cannot be reduced. Incidentally, Hilo is the only
location for which the identified value of ν exceeds 3 and as a result the only location
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for which the raindrop concentration will be finite for diameter integration limits of
0 and ∞. All other locations require truncation of the raindrop size distribution at
some minimum raindrop diameter Dmin.

Table 4.3 and Fig. 4.4 show that its orographic rainfall conditions cause Hilo
(Hawaii, USA) to be an outlier in comparison with the other locations. Its values of
κ, λ and ν (and to a lesser extent that of β) are all significantly higher than those for
the other locations. Fig. 4.5 shows how these parameter values translate to the form
of the general raindrop size distribution function g(x) and the corresponding general
rain rate density function h(x). This figure gives g(x) and h(x) for one location in
each of the three groups identified above on the basis of the scaling exponents: Hilo
(β ≈ 0.27), the mean of all data (β ≈ 0.24) and De Bilt (β ≈ 0.21). The latter two
are not very different, but for Hilo both g(x) and h(x) are much narrower (Eq. (4.9))
and concentrated at smaller scaled raindrop diameters (Eqs. (4.5)–(4.7)).

The fact that mean raindrop sizes in orographic rainfall are generally smaller than
those in other types of rainfall (at the same rain rate) is a well-known effect and has
been reported before by Cataneo and Stout (1968) and Ulbrich (1983), among others.
Note that because for Hilo α approximately equals −β (α + β ≈ 0), a change in
the rain rate R will scale the horizontal and vertical axes in such a manner that the
area under the g(x)-curve will remain roughly constant, independent of R. This is
a reflection of the fact that all variability in this case is raindrop size controlled, the
raindrop concentration remaining constant. Of course, the area under the h(x)-curve
is by definition constant (one), for any location and any rain rate.

In summary, Best’s parameterization for the distribution of the liquid rainwater
content over all raindrop diameters contains an intrinsic function for NV(D,R) which
is consistent with the scaling law formulation. This has allowed an estimation of the
scaling exponents and an identification for the corresponding general raindrop size
distribution functions and general rain rate density functions for all locations for which
Best has adjusted his parameterization. Both the estimated scaling exponents and
the identified general functions closely satisfy the self-consistency constraints following
from the scaling law formulation. For one location (Hilo, Hawaii) it has been possible
to relate the values of the scaling exponents and the shapes of the general functions
to the type of rainfall (orographic). This has provided a possible interpretation of the
third special case of the scaling law treated in Chapter 3 (Section 3.5) (α + β = 0).

4.3 Laws and Parsons’ parameterization

4.3.1 Materials and methods

Laws and Parsons (1943) have carried out measurements of raindrop sizes on the
roof of their laboratory in Washington DC during 1938 and 1939. They have used
the so-called flour method, which in their case has consisted of exposing pans 10
inch (25.4 cm) in diameter and 1 inch (2.54 cm) deep, filled with calibrated flour, to
rainfall ‘for intervals ranging from a few minutes to a fraction of a second, depending
upon the rain-intensity’. Upon contact with the flour the raindrops captured in
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this way tend to produce dough-pellets with sizes related to those of the original
raindrops. Laboratory experiments with drops of known sizes have been carried out
to establish the calibration curve. After allowing the dough-pellets to dry, they have
been separated from the remaining flour and heated in an oven. Subsequently, the
pellets have been grouped into different size classes using a set of standard sieves. In
this manner, Laws and Parsons have obtained histograms of the fraction of the total
rainfall volume per size class captured during a particular time interval (i.e. fraction
of the average rain rate during that interval).

Since ‘samples of nearly equal intensity displayed wide differences in distribu-
tion’, Laws and Parsons have found it necessary to classify the obtained empirical
histograms into rain rate intervals and derive mean distributions for 8 different rain
rates (0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 4.0 and 6.0 inch h−1, i.e. 0.254, 1.27, 2.54, 12.7,
25.4, 50.8, 101.6 and 152.4 mmh−1). In their 1943 article, these mean distributions
are presented in the form of a table in which each entry represents the fraction of the
rain rate in one of twenty eight raindrop diameter intervals of 0.25 mm width (be-
tween 0 and 7 mm). Fig. 4.6(a) shows the corresponding empirical rain rate density
functions fR(D,R) (mm−1) (normalized to unit area) and Fig. 4.6(b) the correspond-
ing (cumulative) distribution functions FR(D,R) (-). These figures clearly show the
well-known shift to larger diameters for increasing rain rates.

4.3.2 Raindrop size distribution and liquid rainwater density
function

Laws and Parsons’ tabulated parameterization will be analyzed both directly in terms
of Best’s parameterization (Eqs. (4.1)–(4.4)) and in the general framework posed by
the scaling law formulation with rain rate as reference variable (Eq. (3.39), p. 65).
Therefore, it has to be recast in forms which are consistent with these formulations.
In case of Best’s parameterization, this means that the liquid rainwater distribution
functions FW (D,R) (–) corresponding to Laws and Parsons’ data are needed. To be
able to verify whether Laws and Parsons’ data satisfy the scaling law formulation, the
corresponding raindrop size distributions NV(D,R) (mm−1m−3) should be derived.

Using the definition of the rain rate R in terms of the raindrop size distribution
NV(D,R) in a volume of air (Eq. (3.32), p. 64), the rain rate density function fR(D,R)
(mm−1) can be defined in terms of NV(D,R) (mm−1m−3) as

fR(D,R) =
6πD3v(D)NV(D,R)

104R
. (4.28)

The inversion of this expression yields a relationship between NV(D,R) and fR(D,R),
namely

NV(D,R) =
104RfR(D,R)

6πD3v(D)
. (4.29)

Substitution of this relationship in the definition of fW (D,R) (mm−1) in terms of
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NV(D,R) (Eq. (4.12)) shows that fW (D,R) can be expressed in terms of fR(D,R) as

fW (D,R) =
ρwRfR(D,R)

3.6Wv(D)
. (4.30)

Assuming v (m s−1) to be related to D (mm) via a power law (Eq. (2.10), p. 28) with
coefficients c = 3.778 and γ = 0.67 and ρw to be 1000 kgm−3, these relationships
have been employed to estimate the raindrop size distributions NV(D,R) and the
(cumulative) liquid rainwater distributions FW (D,R) from Laws and Parsons’ tab-
ulated fR(D,R)-data. The discrete values of D used in these calculations are the
mid-points of the twenty eight 0.25 mm wide raindrop diameter intervals. Sheppard’s
corrections for grouping (Kendall and Stuart, 1977) have not been applied.

Fig. 4.7(a) shows a plot of − ln [1− FW (D,R)] against D on log-log paper for the
eight rain rates considered by Laws and Parsons (1943). For reference, the adjustment
of Eq. (4.1) to Laws and Parsons’ data obtained by Best (1950b) (corresponding to
n = 2.29, A = 1.25 and p = 0.199) is shown as well. Best’s parameterization provides
a reasonable fit to Laws and Parsons’ data. Fig. 4.7(b) compares the NV(D,R)-
curves estimated from Laws and Parsons’ data with the Marshall-Palmer raindrop
size distributions (Eq. (2.2), p. 25) for the same rain rates. The latter provides a
satisfactory fit in the tails of Laws and Parsons’ raindrop size distributions, but
deviates for diameters smaller than 1 mm. In this interval, the behavior of Laws and
Parsons’ distributions (with an excess of small drops as compared to those of Marshall
and Palmer for the four lowest rain rates) seems to be more consistent with the shape
of Best’s NV(D,R)-curves as shown Fig. 4.2(b). Before turning the attention to the
identification of the general raindrop size distribution function g(x) for Laws and
Parsons’ data, this apparent correspondence with Best’s parameterization will be
investigated in some more detail.

4.3.3 Normalization on the basis of Best’s parameterization

For all (cumulative) liquid rainwater distributions FW (D,R) obtained from Laws and
Parsons’ rain rate densities fR(D,R) using Eq. (4.30), the values of the parameters
a have been estimated using the fact that for Best’s parameterization (Eq. (4.1)) the
identity FW (a, R) = 1 − e−1 holds independently of n. The eight values of a thus
obtained have been used to determine a power law a–R relationship (Eq. (4.2)) using
linear least-squares regression7 of the logarithm of a on that of R. The estimated
values of the prefactor and the exponent are A = 1.25 and p = 0.184 when a is

7The motivation for using linear least-squares regression on the logarithmic values instead of
nonlinear (power law) regression on the original values in this context is that Laws and Parsons’
raindrop size distributions are average distributions. It is likely that those corresponding to the lower
rain rates are actually based on a much larger number of raw distributions than those corresponding
to the higher rain rates. Nonlinear regression would put an unrealistically large weight on those
high rain rates in this case. The problem would of course be completely different in case power
law relationships would be established based on the raw raindrop size distributions. In that case
nonlinear regression seems preferable, the frequency of occurrence of the different rain rates in the
sample automatically taking care of the appropriate weighting.
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expressed in mm and R in mmh−1. As a measure for the goodness-of-fit of the
obtained a–R relationship, the corresponding coefficient of determination r2 has been
calculated8. The result is r2 = 1.00, indicating a nearly perfect fit. For comparison,
Best reports A = 1.25 and p = 0.199 for Laws and Parsons’ data, i.e. a slightly higher
value of p.

Integrating both sides of Eq. (4.30) from Dmin to Dmax (in this case 0 and 7 mm)
yields

W =
ρwR

3.6

∫ Dmax

Dmin

fR(D,R)

v(D)
dD. (4.31)

This equation has been used (again together with a power law v(D) relationship) to
estimate the liquid rainwater content W for each of Laws and Parsons’ rain rate den-
sities fR(D,R). The resulting power law W–R relationship (Eq. (4.3)), established
on the basis of linear least-squares regression of the logarithm of W on that of R, has
coefficients C = 68.9 and r = 0.878 when W is expressed in mgm−3 and R in mmh−1

(r2 = 1.00). Best estimates these coefficients as C = 72 and r = 0.867, quite close to
the values obtained here. The small discrepancy can perhaps be attributed to differ-
ences in the employed v(D) relationship (Best did not use a power law relationship)
and to other differences in computational procedures. In any case, the coefficients
determined here have been used in the sequel9.

Best remarks that ‘if we regard the parameter a as determining the scale upon
which the drop diameters are measured we see that the drop size distribution is the
same for all rates of rainfall’. Indeed, it follows from Eq. (4.1) that if D is rendered
dimensionless through dividing by a and − ln [1− FW (D,R)] is subsequently plotted

8The coefficient of determination r2, sometimes called the model efficiency (e.g. Nash and Sut-
cliffe, 1970), is defined as one minus the ratio of the mean square model error and the sample variance
of the observations, i.e.

r2 = 1−
∑

i (Oi −Mi)
2

∑
i

(
Oi −O

)2 ,

where Oi are the observed (measured) values, Mi are the modeled (computed) values and O is the
mean of the observed values. For instance, in case of an empirical power law a–R relationship,
Oi = ai and Mi = ARp

i in case the coefficients A and p are estimated using nonlinear (power
law) regression and Oi = ln ai and Mi = lnA + p lnRi in case they are estimated using linear
least-squares regression on the logarithms. The value of r2 can be interpreted as the fraction of
the observed variance explained by the model. r2 = 1 indicates perfect agreement between model
and observations, r2 = 0 indicates that the model does not perform better than the mean of the
observations and r2 < 0 indicates a complete lack of agreement. The notation r2 is appropriate
because if the model used is the simple linear regression model, then the coefficient of determination
reduces to the square of the sample correlation coefficient between the observed and the modeled
values.

9In a similar manner, power laws have been established which relate the median-volume diameters
D0,A (for the (cumulative) rain rate distribution FR(D)) and D0,V (for the (cumulative) liquid
rainwater distribution FW (D)) to the rain rate R (mmh−1). The estimated prefactor and exponent
for the D0,A–R relationship are 1.22 and 0.184 (r2 = 1.00), which compares well with the values
(converted to the units used here) estimated by Laws and Parsons themselves (1.24 and 0.182). For
the D0,V–R relationship, these coefficients are 1.09 and 0.184 (r2 = 1.00). Using Eq. (4.5) and the
values for A, p and n found by Best (1950b) for Laws and Parsons’ data, the coefficients become
1.07 and 0.199, quite different from the values obtained here.
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against D/a on log-log paper then one single normalized cumulative liquid rainwater
distribution is obtained, a straight line with a slope n independent of R. This is
because, according to Best’s parameterization, n does not depend on R. Fig. 4.8(a)
shows to what extent Laws and Parsons’ data satisfy this type of normalization.
Indeed, as theory predicts, the data points are more or less concentrated along a
straight line. The values of − ln [1− FW (D,R)] for D/a = 1 are all very close to
1, almost without any dispersion. This is because the normalization of D has been
performed using the established a–R power law, a relationship with virtually no
scatter.

According to Best’s (1950b) parameterization for FW (D,R) (Eq. (4.1)), the slope
of − ln [1− FW (D,R)] plotted on log-log paper as a function of D/a must equal n.
Using the data points plotted in Fig. 4.8(a), n has been estimated using a linear least-
squares regression procedure. In order to be consistent with Best’s parameterization,
the regression line has been forced to go through the point with coordinates (1, 1).
The resulting slope is n = 2.43 (r2 = 0.98). This value is slightly higher than that
which Best estimated for Laws and Parsons’ data (n = 2.29). Fig. 4.8(b) shows the
corresponding plot of FW (D,R) against D/a for n = 2.43. The obtained fit is very
good (r2 = 1.00). The dispersion of the data around the point with coordinates
(1, 0.63) is again negligible.

In an analogous manner, it is possible to go even one step further and normalize
the raindrop size distribution NV(D,R) corresponding to Best’s parameterization.
Rearranging Eq. (4.14) yields

ρwa
4NV(D,R)

103W
=

6n

π

(
D

a

)n−4

exp

[
−
(
D

a

)n
]
, (4.32)

which is a dimensionless form of Best’s raindrop size distribution. Hence, if the data
satisfy Best’s parameterization then a plot of a4NV(D,R) /W (which, for the units
used here, is numerically the same as the left-hand side of Eq. (4.32)) against D/a
will yield one single curve. This curve, defined by the right-hand side of Eq. (4.32), is
a normalized raindrop size distribution, independent of rain rate. This type of nor-
malization is in fact very similar to that employed by Sekhon and Srivastava (1971).
Apart from their different manner of derivation (being based on the exponential dis-
tribution), the only difference with the normalization proposed here is that they use
the median-volume diameter D0,V instead of the 63% quantile of the liquid rainwater
distribution a.

As has been argued in Chapter 3 (Section 3.3), both the normalization procedure
proposed here and that of Sekhon and Srivastava require two variables (here a andW ,
in case of Sekhon and Srivastava D0,V and W ). The scaling law formulation, however,
predicts that this can (and should) in fact be achieved using only one variable, the
reference variable. Since power law a–R and W–R relationships have already been
established, the rain rate R plays the role of reference variable here. Substitution of
the general a–R and W–R relationships (Eqs. (4.2) and (4.3)) into Eq. (4.32) shows
that if the normalized raindrop size distribution a4NV(D,R) /W is plotted against
the normalized raindrop diameters D/a (provided both a and W are calculated from
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the rain rate R according to their respective power law relationships) then a scaled
version of the general raindrop size distribution function g(x) (Eq. (4.18)) will be
obtained.

Fig. 4.8(c) shows the results of this normalization as applied to Laws and Parsons’
data. As was the case for the normalization of FW (D,R) (Fig. 4.8(a) and (b)), the
scaling procedure seems to work satisfactorily. The individual curves, which before
were distributed over a large domain as a result of their dependence on rain rate
(Figs. 4.6 and 4.7), are stacked right on top of each other once the rain rate depen-
dence has been removed. Moreover, the scaled version of Best’s general raindrop size
distribution function (Fig. 4.8(c)) fits the normalized raindrop size distributions very
well, except for scaled raindrop diameters D/a exceeding 2 (r2 = 0.87 on a logarith-
mic scale). For the values of A and p estimated previously from Laws and Parsons’
data (A = 1.25 and p = 0.184), D = 2a ranges from 1.94 mm at R = 0.254 mmh−1

to 6.30 mm for R = 152.4 mmh−1. These raindrop diameters will contribute hardly
anything to the liquid rainwater content at the corresponding rain rates and not much
to the radar reflectivity factor either. As a matter of fact, FW (2a, R) for n = 2.43 is
more than 0.995, which implies that less than 0.5% of the liquid rainwater content is
comprised by drops with diameters exceeding 2a. Note the particular behavior of the
normalized distribution at the small diameter end of the spectrum, typical for Laws
and Parsons’ data (see Fig. 4.7(b)).

Using Eqs. (4.19)–(4.21) and the estimated values of A, p, C, r and n, the cor-
responding scaling exponents (α and β) and self-consistency coefficients (Sp and Se)
have been calculated. The results are α = 0.141, β = 0.184, Se = 1.00 and Sp = 0.98,
respectively. These values of α and β are quite different from those obtained from
Best’s adjustment (see Table 4.2). The self-consistency constraints on the prefactor
and on the exponent, however, remain largely satisfied.

An advantage of the scaling law approach over the normalization procedure used
in this section is that the self-consistency is guaranteed. Its chief advantage, however,
is that it is no longer necessary to impose an a priori functional form for the raindrop
size distribution. This will be explored in the next sections.

4.3.4 Estimation of the scaling exponents

In the previous section, the scaling exponents α and β have been estimated using the
exponents p and r of power law relationships between two rainfall related variables
and the rain rate R, namely those of a and W . However, from a statistical point of
view, this is not a very objective and robust method. It has been argued in Chapter 3
(Section 3.4.1) that in principle α and β could be estimated using any pair of rainfall
related variables. However, since different variables will put their weight on different
parts of the drop size distribution, the choice of the pair of variables will influence the
results. That is a very undesirable situation, as the optimality and robustness of the
applied estimation procedures will determine in the end to what extent differences in
the values of the scaling exponents can be related to true physical (meteorological,
climatological, or instrument-related) differences between various datasets. In Chap-
ter 3 (Section 3.4.1) two estimation procedures have been presented which intend to
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Figure 4.9: Log-log plots of the first six integer moments of the eight mean raindrop size
distributions corresponding to Laws and Parsons’ (1943) data against the corresponding rain
rates ((a)–(f): 1st–6th moments). Dashed lines indicate power law relationships adjusted
using linear regression on the logarithmic values.
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Figure 4.10: (a) Exponents γm (–) of power law relationships between the moments of Laws
and Parsons’ (1943) raindrop size distributions and the corresponding rain rates versus the
orders of the moments m plus one. Circles correspond to regressions where the first diameter
interval has been taken into account, crosses to regressions where it has been disregarded.
Dashed line indicates a linear regression between γm and m+1 for m ≥ 3. (b) Idem for the
exponents βm (–) of power law relationships between the weighted mean raindrop diameters
and the corresponding rain rates.
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overcome this subjectivity problem. The first procedure is based on the exponents of
power law relationships between moments Ωm of the raindrop size distribution and
the reference variable Ψ and the second on the exponents of power law relationships
between the weighted mean raindrop diameters Dm and Ψ. Both have been applied
to Laws and Parsons’ data, using rain rate as the reference variable.

As an illustration of the first estimation procedure, Fig. 4.9 shows log-log plots
of the first six integer moments Ωm of Laws and Parsons’ eight mean raindrop size
distributions versus the corresponding rain rates R. The slopes of the associated
power laws, which have been adjusted on the basis of linear least-squares regressions
on the logarithmic values, clearly exhibit a tendency to increase with the order of the
moment m. It should be noted that in calculating the moments, the first raindrop
diameter interval (comprising drops with equivalent spherical diameters less than
0.25 mm) has been disregarded. This has been done because, in Laws and Parsons’
original table, only the four distributions corresponding to the lowest rain rates show
a contribution from the first interval. For the other distributions, Laws and Parsons
simply indicate that the contribution of this class to the total rain rate is zero. Since
the low order moments are strongly dependent on exactly this part of the raindrop size
distribution, the difference between zero and any small fraction in the first diameter
interval has an appreciable influence on the calculation of these moments and therefore
on the estimation of the exponents of the corresponding power laws.

Fig. 4.10(a) shows a plot of the exponents γm (a shorthand notation for γΩm) of the
power laws of Fig. 4.9 against the corresponding moment orders m plus one, in a form
suggested by Eq. (3.53) (p. 72). Besides the integer order moments, those of half order
have been included as well. To illustrate the influence of the first diameter interval
on the calculated exponents, both those for which it has been taken into account and
those for which it has been disregarded have been plotted. Both sets of exponents
deviate quite strongly for moments of order two and lower (m+1 ≤ 3). For moments
of order three and higher however, they coincide and, more importantly, they follow
the straight line behavior predicted by the scaling law formulation (Eq. (3.53), p. 72).
This set of exponents has been employed in a linear least-squares regression of γm on
(m+ 1). The resulting intercept α is 0.177 and the slope β is 0.176 (r2 = 1.00). These
values yield for the self-consistency coefficient of the exponent Se (Eq. (3.87)) a value
of 1.00, implying that the regression line perfectly crosses the point (m+ 1, γm) =
(4.67, 1). Hence, the self-consistency constraint is satisfied perfectly, even though
α and β have been estimated independently. This suggests, as noted by Sempere
Torres et al. (1994), that self-consistency is ‘an implicit property of the experimental
data’. In general, it is clear that small changes in the slope β of the regression line
will strongly affect the intercept α. Therefore, if it is desired to estimate one scaling
exponent from the data at hand and obtain the other by imposing self-consistency, it
is recommended to estimate β and then calculate α from Eq. (3.38) on p. 64.

Fig. 4.10(b) shows a plot of the exponents βm (a shorthand notation for γDm
)

of power law relationships between the weighted mean raindrop diameters Dm =
Ωm/Ωm−1 and the rain rate R against the corresponding moment orders m. These
exponents have again been estimated using linear least-squares regressions on the log-
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arithmic values10. The scaling law formulation predicts that these exponents should
all equal β, independent of the value of m (Eq. (3.28), p. 63). There is again a distinct
effect associated with whether or not the first diameter interval is taken into account.
But for moments of order four and higher, the two sets of exponents more or less
coincide and follow the predicted straight line. The mean value of βm for 4 ≤ m ≤ 7
is 0.175, which can be seen as an estimate of β. The corresponding self-consistent
value of α is 0.183. The value of β obtained in this manner corresponds closely to
that obtained using the exponents of the moments and is not too different from that
obtained above on the basis of Best’s parameterization either. Apparently, for Laws
and Parsons’ data α ≈ β, which implies γρV ≈ 2γDC

(Eqs. (3.5) and (3.6), p. 59).

4.3.5 Identification of the general raindrop size distribution
function and the general rain rate density function

The procedure outlined in Chapter 3 (Section 3.4.2) shows that, given estimates of the
scaling exponents α and β, the general raindrop size distribution function g(x) can be
identified by plotting the scaled raindrop size distributions R−αNV(D,R) against the
scaled diameters R−βD. Similarly, the general rain rate density function h(x) can be
identified by plotting the scaled rain rate density functions RβfR(D,R) against the
scaled diameters R−βD (Chapter 3, Section 3.4.3). The latter is particularly straight-
forward for the parameterization of Laws and Parsons (1943), because in its original
form it is a table of rain rate density functions fR(D,R) for eight different rain rates.
Fig. 4.11 shows the resulting empirical general rain rate density function, obtained
using the value of 0.176 estimated for β in the previous section. Although it exhibits
some scatter, particularly around its mode, the empirical density function in gen-
eral closely resembles the unimodal, positively skewed form known from the classical
probability density functions of statistical theory. If the data points would have been
plotted in a cumulative manner, then the resulting empirical general rain rate distri-
bution function H(x) would have had virtually no scatter (in much the same way as
for the normalization based on Best’s parameterization shown in Fig. 4.8(b)).

The method employed to adjust analytical parameterizations to the empirical
general functions has been to calculate the first two sample moments of the em-
pirical general rain rate density function h(x) and equate them to their theoretical
expressions for the different analytical parameterizations presented in Chapter 3 (Ta-
bles 3.2–3.4). In statistics, this procedure is known as the method of moments. For
later comparison, the moments of orders three and four have been calculated as well.

10The corresponding estimator for βm is the least-squares estimator for the slope of a regression
line of lnDm on lnR, i.e.

βm =
Cov

(
lnDm, lnR

)

Var (lnR)
,

where Cov and Var denote the sample (co)variance. The fact that Dm = Ωm/Ωm−1 implies lnDm =
lnΩm− lnΩm−1. This shows that linear regression implies βm = γm−γm−1, in accordance with the
scaling law formulation (Eq. (3.28), p. 63). Hence, βm is simply the local slope of γm as a function
of m.
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Figure 4.11: Identified general rain rate density function h(x) for Laws and Parsons’ (1943)
data (circles) and adjusted theoretical parameterizations: (a) exponential g(x) (dashed line;
r2 = 0.921) and gamma g(x) (dash-dotted line; r2 = 0.977); (b) Best g(x) (dashed line;
r2 = 0.966) and lognormal g(x) (dash-dotted line; r2 = 0.924).
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The moments of the empirical rain rate density function have been obtained from11

µ̂′
x,r =

∑
i hix

r
i∑

i hi

, (4.33)

where the xi and hi are the x- and y-coordinates of the data points in Fig. 4.11.
The hat on µ̂′

x,r indicates that these are the sample moments. Using the expressions
given in Table 3.2, the sample moments of orders 1–4 have been employed to calcu-
late the dimensionless coefficients of variation, skewness and kurtosis (peakedness).
Since these are dimensionless coefficients, they must in principle be equal to those
which can be calculated directly from the eight original fR(D,R)-curves. Hence, for
comparison the means and standard deviations of those have been calculated as well.
The results are given in Table 4.4. This table shows that the statistics obtained from
the empirical general rain rate density function are quite close to those which can
be obtained directly from the original rain rate density functions. The small dif-
ferences can probably be explained by the weighting which is implicitly applied in
Eq. (4.33)11. The mean and standard deviation of the natural logarithm of x have
been calculated as well. These have been used to estimate the parameters of the
lognormal distribution12.

Table 4.5 summarizes the obtained parameter estimates using the method of mo-
ments. The parameters of the lognormal distribution have been estimated from the
mean and standard deviation of the natural logarithm of x (Table 4.4)13. Note the
close correspondence of the parameter estimates for the Best parameterization with
those given in Table 4.3 (‘Washington DC (USA)’) based on Best’s (1950b) adjust-
ment to Laws and Parsons’ data. For comparison with the empirical values, Table 4.5
also provides the values of the coefficients of variation, skewness and kurtosis implied
by the estimated parameters. It can be seen that, with the exception of the gamma

11Substituting xi = R−βDi and hi = RβfR,i shows that for a given rain rate R

µ̂′

x,r =
R(1−r)β

∑
i fR,iD

r
i

Rβ
∑

i fR,i

= R−rβµ̂′

D,r.

If the data at hand are a combination of empirical rain rate density functions corresponding to
different rain rates, as is usually the case, then

µ̂′

x,r =

∑
j R

(1−r)β
j

∑
i fR,i,jD

r
i∑

j R
β
j

∑
i fR,i,j

=

∑
j R

(1−r)β
j µ̂′

D,r,j∑
j R

β
j

=

∑
j R

β
j µ̂

′

x,r,j∑
j R

β
j

.

Hence, µ̂′

x,r is a weighted mean of the values corresponding to the individual distributions. Only if

β = 0 (equilibrium rainfall) will µ̂′

x,r represent the arithmetic mean of the individual values.
12The values of CVx and σln x given in Table 4.4 do not satisfy the theoretical relationship relating

these parameters for the lognormal distribution (Table 3.4), which may indicate a departure of the
data from lognormality.

13The value of σ estimated from the empirical h (x) (0.433) is very close to that reported by
Markowitz (1976) for Laws and Parsons’ data (0.432). As a matter of fact, in his Table 1 Markowitz
erroneously reports σ for various rain rates to be approximately 0.77 mm. This cannot be correct,
however, as σ is a dimensionless parameter. A careful look at Laws and Parsons’ data reveals that
what he actually means is 1

2 exp (σ), the factor 1
2 arising from the fact that he deals with raindrop

radii instead of diameters.
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Table 4.4: Mean (µx) of the scaled raindrop diameters (x = R−βD, where D in mm and
R in mmh−1) with respect to the general rain rate density function h(x), corresponding
coefficients of variation (CVx), skewness (CSx) and kurtosis (CKx) and mean (µlnx) and
standard deviation (σlnx) of lnx = lnD−β lnR for Laws and Parsons’ (1943) data. Values
in the column labeled ‘From empirical h(x)’ have been obtained from the scaled rain rate
density function, those in the columns labeled ‘From original data’ are the means and
standard deviations of the values for the 8 original distributions. The value of µx in the
latter is the prefactor of a power law regression of µD on R and the corresponding value of
µlnx is the intercept of a linear regression of µlnD on lnR.

Parameter From empirical h(x) From original data
Mean Standard deviation

µx 1.31 1.29 –
CVx 0.395 0.398 0.015
CSx 0.684 0.704 0.212
CKx 0.815 0.836 0.528
µlnx 0.181 0.170 –
σlnx 0.433 0.435 0.012

parameterization, the differences are appreciable, indicating that although the ad-
justed curves will accurately represent the location and dispersion of the empirical
general rain rate density function (which is guaranteed by the employed estimation
procedure), there may be significant deviations from the overall shape of the empirical
general rain rate density function. This is confirmed by Fig. 4.11, which shows the
adjusted analytical parameterizations (obtained using the parameter values listed in
Table 4.5 and the theoretical expressions given in Tables 3.2–3.4) together with the
empirical ‘curve’. Visually, the gamma function provides the best fit.

Via the expressions listed in Tables 3.2–3.4 the estimated parameters also define
analytical general rain rate density functions g(x). These are shown together with
their empirical counterparts in Figs. 4.12 and 4.13. Apparently, the scaling procedure
works perfectly for Laws and Parsons’ data. There is almost no scatter in the data
points, which indicates that the original rain rate dependence of the individual rain-
drop size distributions has been filtered out entirely by the applied scaling. Table 4.6
provides the coefficients of determination corresponding to the different analytical
adjustments to the empirical g(x) and h(x). From these figures it would seem that
the exponential parameterization provides the best fit to the empirical g(x). Visually,
however, all four parameterizations provide reasonable fits, although each parameter-
ization seems to have a different part of the distribution where it performs best. In
particular, there are significant differences between the parameterizations at the small
size limit and in the tail of the distribution.

In summary, the raindrop size analysis procedures associated with the scaling
law formulation presented in Chapter 3 have been tested on Laws and Parsons’ data.
Both the estimation of the scaling exponents α and β and the identification of the
general functions g(x) and h(x) have demonstrated the power of these procedures
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Figure 4.12: Identified general raindrop size distribution function g(x) for Laws and Par-
sons’ (1943) data (circles) and adjusted theoretical parameterizations (dashed lines): (a)
exponential (r2 = 0.991); (b) gamma (r2 = 0.963).
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Figure 4.13: Identified general raindrop size distribution function g(x) for Laws and Parsons’
(1943) data (circles) and adjusted theoretical parameterizations (dashed lines): (a) Best
(r2 = 0.942); (b) lognormal (r2 = 0.799).
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Table 4.5: Parameters κ, λ, µ, ν and σ (where D in mm, NV(D,R) in mm−1m−3 and R in
mmh−1) of different self-consistent forms of the general raindrop size distribution function
g(x) and general rain rate density function h(x) for Laws and Parsons’ (1943) data. Values
in parentheses for the exponential distribution represent the slope λ and corresponding self-
consistent intercept κ of a linear regression of ln g(x) on x. Values in parentheses for the
lognormal distribution represent estimates based on µx and CVx instead of µlnx and σlnx.
Coefficients of variation (CVx), skewness (CSx) and kurtosis (CKx) represent the values
implied by the parameters. That the values of CVx for the gamma and Best distributions
are the same and match the experimental value is because, in contrast with the exponential
and lognormal distributions, CVx has been used as a fitting parameter in the method of
moments.

Parameter Exponential Gamma Best Lognormal
κ 3.66× 103 1.52× 104 170 235

(3.96× 103) (192)
λ 3.58 4.90 0.551 –

(3.64)
µ 0 1.72 – −0.507

(−0.340)
ν – – 2.35 –
σ – – – 0.433

(0.381)
CVx 0.463 0.395 0.395 0.454
CSx 0.926 0.791 0.355 1.46
CKx 1.28 0.938 −0.0833 3.99

and the validity of the scaling law formulation. The concrete result of the presented
analyses is a set of four different self-consistent parameterizations for the raindrop size
distributions corresponding to Laws and Parsons’ data. Substitution of the estimated
parameters (Table 4.5) in the expressions of Tables 3.2–3.4 yields (with β = 0.176 and
γ = 0.67)

NV(D,R) = 3.66× 103R0.178 exp
(
−3.58R−0.176D

)
(4.34)

for the exponential parameterization,

NV(D,R) = 1.52× 104R−0.125D1.72 exp
(
−4.90R−0.176D

)
(4.35)

for the gamma parameterization,

NV(D,R) = 170R0.468D−1.65 exp
(
−0.551R−0.414D2.35

)
(4.36)

for the Best parameterization and finally

NV(D,R) = 235R0.354D−1 exp
[
−2.67 ln2

(
1.66R−0.176D

)]
(4.37)

for the lognormal parameterization. Note that although Best’s parameterization pro-
vides a satisfactory fit to the data, it needs to be truncated at some minimum diameter
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Table 4.6: Goodness-of-fit, as quantified by the coefficient of determination (r2), of different
theoretical forms for the general raindrop size distribution function g(x) and general rain
rate density function h(x) to Laws and Parsons’ (1943) data (with and without taking into
account the raindrops in the first diameter class). The values for g(x) have been calculated
on a logarithmic scale, those for h(x) on a linear scale.

Distribution type g(x) (logarithmic r2) h(x) (linear r2)
with without with without

1st class 1st class 1st class 1st class
Exponential 0.991 0.992 0.921 0.919
Gamma 0.963 0.984 0.977 0.977
Best 0.942 0.934 0.966 0.966
Lognormal 0.799 0.944 0.924 0.929

because ν < 3. Such a truncation will render the raindrop concentration finite with-
out appreciably affecting the higher order moments (liquid rainwater content, rain
rate, radar reflectivity factor). Ulbrich (1983) reports for the same data an exponen-
tial adjustment with parameters N0 = 5.1 × 103R−0.03 and Λ = 3.8R−0.20. Not only
are these relationships quite different from the ones implied by Eq. (4.34), they are
not self-consistent either, as a comparison with Eqs. (3.69) and (3.70) (p. 82) shows.

The negative exponential distribution provides the most satisfactory results. Al-
though it has only one free parameter, it gives the best adjustment to Laws and
Parson’s data. This confirms the findings of Sempere Torres et al. (1998), who re-
ported the exponential distribution to be a satisfactory parameterization for general
raindrop size distribution functions from a variety of locations. In a sense it also
explains why Marshall and Palmer’s parameterization has been such a success and
still is, more than five decades after its introduction. If the exponential turns out to
be the standard form for the general raindrop size distribution function, this implies
that a complete parameterization of the raindrop size distribution for a given location
requires only two parameters, one scaling exponent (β) and the slope of the expo-
nential function (λ). As mentioned before, it will be a challenge to investigate how
these parameters are related to the physics of rainfall (both on weather and climate
scales), to the type of measurement device and possibly to each other.

4.4 Summary and conclusions

In search for further evidence of the validity of the general framework for the analysis
of raindrop size distributions presented in Chapter 3, the scaling law formulation has
been verified experimentally using parameterizations of mean raindrop size distribu-
tions collected in various climatic settings all over the world.

It has been demonstrated that both Best’s analytical parameterization for the
distribution of the liquid rainwater content over raindrop size and Laws and Parsons’
tabulated parameterization for the distribution of rain rate over raindrop size can be
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recast in forms which are consistent with the scaling law formulation. This has allowed
an identification of the corresponding scaling exponents from previously published
adjustments of these parameterizations to measured raindrop size distributions for
different types of rainfall in different climatic settings. The exponents identified in
this manner closely satisfy the theoretical self-consistency relationship predicted by the
scaling law formulation. For Best’s analytical distributions, these scaling exponents
directly lead to analytical parameterizations for the general raindrop size distribution
functions and the associated general rain rate density functions.

Interestingly, application of the identified exponents to scale Laws and Parsons’
tabulated distributions has also lead to one single general raindrop size distribution
function and associated rain rate density function. Both of these are perfectly inde-
pendent of rain rate, in accordance with the scaling law formulation. Among different
analytical descriptions (exponential, gamma, Best and lognormal) of the empirical
general raindrop size distribution function, the negative exponential yields the best
adjustment.

The obtained results provide further evidence for the scaling law formulation as
the most general description of raindrop size distributions and their properties con-
sistent with power law relationships between rainfall related variables and as such
as a convenient summary of all previously proposed parameterizations in one simple
expression.



Chapter 5

Experimental verification of the
scaling law using raw raindrop size
distributions1

5.1 Introduction

In Chapter 4, the data analysis procedures associated with the scaling law formulation
developed in Chapter 3 have been applied to two classical raindrop size distribution
parameterizations, those due to Best (1950b) and Laws and Parsons (1943). The
results have been excellent. Both parameterizations can be recast in forms which are
perfectly consistent with the scaling law formulation for the raindrop size distribution.
However, in a sense these results have been somewhat fortuitous. That is because the
treated parameterizations are only representative for average rainfall conditions. In
order to arrive at these parameterizations, a large part of the original variability in
the raindrop size distribution has been averaged out. It is then not really surprising
that the remaining variability can be satisfactorily explained by the variations in only
one rainfall related variable, the reference variable (the rain rate in case of both Best’s
and Laws and Parsons’ parameterizations). For instance, the eight distributions of
rain rate over raindrop diameter in Laws and Parsons original article (as shown in
Fig. 4.6, p. 119) represent mean distributions for eight classes of rain rate. In other
words, the variability which must have been present within each rain rate interval
has been filtered out by the classification. Indeed, Laws and Parsons remark that
‘samples of nearly equal intensity displayed wide differences in distribution’.

The objective of this chapter is to investigate exactly the variability which is gen-
erally disregarded in mean (climatological) parameterizations such as those presented
in the previous chapter. It will in particular be interesting to see how the scaling
law formulation and its data analysis procedures are able to cope with this increased
amount of variation. To that end, two types of analyses will be carried out: (1) an
event-to-event analysis based on adjustments of Best’s parameterization to empirical

1Adapted version of Uijlenhoet, R., Wessels, H. R. A., and Stricker, J. N. M.(1999). Experimental
verification of a scaling law for the raindrop size distribution. J. Hydrometeorol. (submitted).

139
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raindrop size distributions for a series 28 rainfall events collected in The Netherlands
during 1968 and 1969 (Wessels, 1972); (2) a global (climatological) analysis based in
principle on the same dataset, but now employing the raw raindrop size distributions.
The first analysis will provide insight into the variability of the scaling exponents and
the corresponding shapes of the general raindrop size distribution functions from one
event to the next. Since it will be based on one adjusted parameterization per event,
the variability within each event will in principle be disregarded. However, some in-
formation regarding this variability will be obtained by re-sampling from the original
data according to the so-called bootstrap method. The second analysis will provide
one set of scaling exponents and one general raindrop size distribution function for
the entire data set. Again, the four classical parameterizations for the raindrop size
distribution (exponential, gamma, Best and lognormal) will be adjusted to them.
Since this analysis will be based on the raw data, it will provide insight as to what
extent one single reference variable is able to explain all variability present in the
data. As such, this analysis will explore the limits of the scaling law formulation.

Section 5.2 will introduce the raindrop size distribution measurements and the
associated data processing. In Section 5.3 the event-to-event analysis based on Best’s
parameterization will be presented. Section 5.4 will discuss the global (climatological)
analysis. Finally, Section 5.5 will present the summary and conclusions of this chapter.

5.2 Materials and methods

From January 1968 to March 1969 Wessels and coworkers have carried out measure-
ments of raindrop size distributions at the Royal Netherlands Meteorological Institute
(KNMI) in De Bilt, The Netherlands (Wessels, 1972). They use an ingenious type of
device in which filter paper coated with a water-soluble dye (sometimes referred to
as ‘blotting paper’) is transported automatically underneath a 20 cm2 exposure slit
(Wessels, 1967). The height of the 2 cm × 10 cm slit is 70 cm above ground level.
The device is positioned such that the slit is parallel to the prevailing wind direction
as much as possible.

The sizes of the stains left by the raindrops on the filter paper are related to their
equivalent spherical diameters. The calibration curve has been determined on the ba-
sis of laboratory experiments using drops of known sizes. A total number of 454, 976
raindrops have been manually counted, sized and classified into 534 histograms (the
empirical raindrop size distributions), each consisting of raindrop counts in 24 diam-
eter classes of 0.2 mm width (from 0 to 4.8 mm). Since it has been found impossible
to resolve stains on the filter paper corresponding to drops with diameters less than
about 0.08 mm, the center of the first class has been taken to be 0.14 mm. The 534
time intervals identified on the filter paper have been (manually) chosen in such a
way that (1) they represent periods during which the rainfall properties (rain rate,
size distribution) have remained more or less stationary and (2) they consist of a
reasonable number of raindrops (at least of the order of 100, the average sample size
being 852). This procedure has resulted in intervals of variable length, ranging from
1 minute for the highest rain rates (where the temporal variability is the limiting
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Figure 5.1: Scatterplot of rain rates measured with a 200 cm2 raingauge versus those
measured with a 20 cm2 semi-automatic filter paper device for 446 time intervals during
28 rainfall events in 1968 and 1969 in De Bilt, The Netherlands (Wessels, 1972). (a)
Logarithmic representation. (b) Linear representation.
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Figure 5.2: Three different representations of the cumulative frequency of rain rates ex-
ceeding 0.1 mmh−1 measured with a 200 cm2 raingauge (solid lines) and with a 20 cm2

semi-automatic filter paper device (dashed lines) for 28 rainfall events in 1968 and 1969 in
De Bilt, The Netherlands (Wessels, 1972): (a) empirical cumulative probability distribution
function; (b) empirical exceedance probabilities; (c) empirical cumulative probabilities on
lognormal probability paper.
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factor) to more than 10 minutes for the lowest rain rates (where the sample size is
the limiting factor)2.

The raw raindrop counts have been converted to estimates of raindrop size distri-
butions per unit volume of air according to

N̂V(Di) =
ni

v(Di)A∆t∆Di
, (5.1)

where N̂V(Di) (mm−1m−3) is the estimated value of the raindrop size distribution
for the ith diameter interval, Di (mm) is the central diameter of that interval, ni (–)
the measured number of raindrops in interval i, v(Di) (m s−1) the terminal fall speed
corresponding to Di, A (m2) the exposure area (here 2 × 10−3 m2), ∆t the exposure
time (s) and ∆Di (mm) the width of interval i. The various rainfall integral variables
of interest can now be estimated using discretized versions of the expressions given
in Tables 2.3 (p. 39) and 2.4 (p. 43). Sheppard’s corrections for grouping (Kendall
and Stuart, 1977) have not been applied. For the particular case of rain rate the
appropriate conversion is

R̂ = 6π × 10−4
24∑

i=1

niD
3
i

A∆t
, (5.2)

where R̂ (mmh−1) is the estimated rain rate. Since the rain rate is a flux variable,
this conversion is particularly simple and does not involve the raindrop terminal fall
speed.

A comparison of the rain rates calculated according to Eq. (5.2) with those mea-
sured by a 200 cm2 raingauge (height: 40 cm; resolution: 0.05 mm) installed at 10 m
distance shows that there are no systematic differences between the two for 446 time
periods with rain rates exceeding 0.1 mmh−1 (Fig. 5.1). The slope and intercept of a
linear regression of the former on the latter are 0.975 (–) and 0.178 (mmh−1), respec-
tively (r2 = 0.87). The mean, standard deviation and maximum rain rate estimated
from the filter paper measurements are 2.00 mmh−1, 3.31 mmh−1 and 33.0 mmh−1.
The corresponding values for the raingauge are 2.22 mmh−1, 3.33 mmh−1 and 27.9
mmh−1. Wessels (1972) reports systematic deviations only during periods of high
wind speeds, when the filter paper measurements have a tendency to overestimate
the raingauge measurements.

Fig. 5.2(a)–(c) shows three different representations of the cumulative frequencies
(i.e. the sample probability distribution functions) of the rain rates estimated with
both instruments (for the same 446 time periods as in Fig. 5.1). Obviously, the cor-
respondence between the two devices is again quite good, although the low rain rates
seem to be a little bit better represented in the filter paper measurements than in

2Although this might seem a strange procedure compared to the fixed time bases of the disdrom-
eters and optical spectrometers used nowadays, a similar approach has been employed to collect the
experimental raindrop size distributions from which Marshall and Palmer (1948) have derived their
famous parameterization. Describing their measurements, Marshall et al. (1947) remark that ‘the
time of exposure varied from 30 seconds in very light rain to 3 seconds in heavy rain’. Because the
area of their filter papers is much larger (24 cm diameter) they are able to use shorter exposure
times than Wessels.
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the raingauge measurements. This is probably associated with the lower resolution
of the raingauge. If the measurements would be samples from an exponential dis-
tribution then the empirical probability distributions in Fig. 5.2(b) would roughly be
straight lines. However, this does not seem to be the case. Similarly, if the data
would be samples from a lognormal distribution then the curves in Fig. 5.2(c) would
approximately be straight lines, which is more or less true. Wessels (1972) has also
compared the empirical probability distribution function obtained from the filter pa-
per measurements with that from three consecutive years (1968, 1969 and 1970) of
raingauge measurements. He reports a close correspondence. This indicates that the
available set of raindrop size distributions can roughly be assumed climatologically
representative for the De Bilt.

5.3 Event-to-event analysis

5.3.1 Estimation of the scaling exponents

Using the method proposed by Best (1950b), i.e. by plotting − ln [1− FW (D)] (with
FW (D) from Eq. (4.11), p. 106) against D on log-log paper, Wessels (1972) has been
able to adjust Best’s parameterization (Eq. (4.1), p. 103) to 521 of the 534 experimen-
tal raindrop size distributions. Apart from the values of a (mm) and n (–), he has
calculated the values of the rain rate R (mmh−1) and the liquid rainwater content W
(mgm−3) for these distributions as well. For an event-to-event analysis of power law
relationships, he has selected 28 rainfall events with at least 6 raindrop size distribu-
tions per event, comprising a total of 476 experimental distributions. The same set of
distributions has been used for the current analysis. The values of a, R and W deter-
mined by Wessels for these distributions have been used to estimate the coefficients
A, p, C and r of the power law a–R and W–R relationships (Eqs. (4.2) and (4.3),
p. 103) for each of the 28 events via nonlinear (power law) least-squares regression. A
mean value of n has been determined for each event as a weighted average (using R
as weight) of the individual n-values determined by Wessels (1972). In this manner,
28 values of A, p, C, r and n have been obtained, one for each of the selected rainfall
events.

With Eq. (4.19) (p. 109), the values of p and r can be used directly to obtain
the corresponding values of the scaling exponents α and β for each rainfall event.
Fig. 5.3(a) shows a plot of the obtained 28 (α, β)-pairs. The error bars indicate
estimates of the 68% confidence limits on α and β. These would correspond to
plus and minus one standard deviation from their mean values if their sampling
distributions would be normal (Mood et al., 1974). These confidence limits actually
represent the 16% and 84% quantiles of the empirical sampling distributions of α and
β, estimated from 1000 so-called bootstrap samples in each case (Efron and Tibshirani,
1993)3. The data points in Fig. 5.3(a) themselves are not the means of the bootstrap

3The bootstrap method is a so-called nonparametric statistical method, i.e. it does not make any
distributional assumption (Efron and Tibshirani, 1993). In this case, the method works as follows.
Suppose an (α, β)-pair is calculated from a sample of n empirical raindrop size distributions. (1)
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samples, but the values obtained directly from the original samples (which is not
exactly the same).

Fig. 5.3(a) shows clearly that the uncertainty associated with α tends to be larger
than that associated with β. As has been noted in Chapter 4, if a self-consistent (α, β)-
pair is required, it seems therefore wiser to estimate β from the data and obtain α from
the self-consistency constraint on the exponent (Eq. (3.38), p. 64), i.e. to consider β
as the single free scaling exponent. A large part of the uncertainty in α and β must
be due to the limited number of raindrop size distributions per event, i.e. due to
sampling variability. Note that 8 of the 28 events consist of less than 10 experimental
distributions. Nevertheless, on average the 28 (α, β)-pairs cluster quite closely around
the theoretically predicted curves, an indication that the self-consistency constraint
on the exponent is largely satisfied.

This is confirmed by Fig. 5.3(b), which shows the self-consistency coefficients of
the prefactors Sp (Eq. (4.20) on p. 110, with c = 3.778 and γ = 0.67) plotted against
those of the exponents Se (Eq. (4.21)) for the 28 values of A, p, C, r and n determined
by Wessels. Again, the 68% confidence intervals are obtained using the bootstrap
method (1000 samples). For all events, the self-consistency is satisfied to within
±20%, for the majority of the cases even to within ±10% (both for the prefactors
and for the exponents). There seems to be a slight tendency towards underestimation
of the exponents. This might be associated with the procedure used to estimate the
coefficients of the power law a–R andW–R relationships (nonlinear (power law) least-
squares regression). Moreover, the prefactors may have been affected by the fact that
possible truncation effects have been neglected. In general, however, the results are
satisfactory.

In the same manner as the individual values of A, p, C, r and n have been
determined for each of the 28 selected rainfall events, global values of these coefficients
for the entire set of 476 experimental raindrop size distributions have been calculated.
With a, R and W expressed in the same units as above, the estimated coefficients
of the global power law a–R relationship become A = 1.22 and p = 0.205 (r2 =
0.66) and those of the global power law W–R relationship C = 68 and r = 0.871
(r2 = 0.99). The weighted mean value of n is 2.75 (with a standard deviation on
the estimated mean of 0.03), respectively. The estimated coefficients for the a–R
relationship correspond closely to those reported by Wessels (1972) for the same data
set (A = 1.21 and p = 0.21). These values, however, are both smaller than the mean
values obtained by Best (1950b). That the estimated power law W–R relationship
provides an almost perfect fit to the data is not surprising in view of the fact that
W and R are proportional to the 3rd and the (3 + γ)th moment of the raindrop size

Associate with each distribution the probability 1/n. (2) Draw n new distributions independently
and with replacement from the original sample. This new sample is called the bootstrap sample. (3)
Compute α and β for the bootstrap sample using the method indicated in the text. (4) Repeat steps
(2) and (3) a large number of times (in this case 1000) each time using an independent new bootstrap
sample. (5) Sort the 1000 values of α and β thus obtained (in ascending or descending order) and
select the 159th and 842nd values. These constitute bootstrap estimates of the 68.26% confidence
intervals on α and β (if the distributions of α and β would be normal, these would correspond to
intervals of length 2σ).
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Figure 5.3: (a) Scaling exponents α (–) and β (–) for 28 rainfall events in 1968 and 1969 in
De Bilt, The Netherlands (based on data reported by Wessels (1972)). Error bars indicate
68% confidence limits, estimated from 1000 bootstrap samples in each case. Straight lines
represent the theoretical self-consistency relationship between the scaling exponents. (b)
Corresponding values for the self-consistency coefficients of the prefactors Sp and those of
the exponents Se (again with 68% confidence intervals).
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distribution, respectively.

From the estimated global values for the coefficients A, p, C, r and n, the scaling
exponents and self-consistency coefficients can again be found from Eqs. (4.19)–(4.21)
(p. 109). As a matter of fact, these have already been encountered in Chapter 4. In
Fig. 4.3(a) and (b) (p. 113) they have been plotted for comparison with the values
for the locations treated by Best (1950b). In contrast to Fig. 5.3, the error bars
around the Dutch data point in Fig. 4.3 represent the minimum and maximum values
encountered in 1000 bootstrap samples. Hence, they correspond approximately to
the 99.74% confidence interval. These would be of length 6σ if the corresponding
sampling distributions would be normal. Again, the uncertainty associated with α
tends be larger than that associated with β.

If Fig. 5.3 is compared to Fig. 4.3, there are three points which directly draw
the attention. First of all, the data points in Fig. 5.3(a) are distributed along a
significantly larger portion of the three reference lines than in Fig. 4.3(a). Secondly,
the self-consistency errors in Fig. 5.3(b) are much larger than in Fig. 4.3(b). Finally,
as can be seen from the lengths of the error bars, the uncertainty associated with
each point in Fig. 5.3 is much larger than that in Fig. 4.3. The fundamental difference
between both figures is of course that in Fig. 5.3 the data points represent different
rainfall events collected at one location, whereas in Fig. 4.3 they represent average
values for different locations. Hence, Fig. 5.3 is more indicative of the variability
associated with different rainfall (weather) types within a certain climatology, whereas
Fig. 4.3 is more indicative of that due to different rainfall climatologies. What is
surprising is that the data points in Fig. 5.3 cover practically the entire range from
purely raindrop size controlled variability to purely raindrop concentration controlled
variability. Obviously, part of this spread can be explained in terms of sampling
variability, as indicated by the lengths of the error bars. However, even if this is
taken into account, there appear to remain physically significant differences between
the events.

5.3.2 Identification of the general raindrop size distribution
functions and the general rain rate density functions

Using the parameters A and n estimated for the 28 rainfall events, the parameters κ,
λ and ν of the corresponding self-consistent general raindrop size distribution func-
tions can be obtained from ν = n, λ = A−n (Eq. (4.22), p. 110) and κ according to the
expression given in Table 3.4 (p. 81). To investigate possible dependencies between
these parameters and the scaling exponents, Fig. 5.4(a)–(c) shows scatter plots of β
versus λ, β versus ν and λ versus ν, respectively. The error bars are again estimates of
the 68% confidence intervals based on 1000 bootstrap samples. Just as for the clima-
tological analysis presented in Fig. 4.4 (p. 116), there are no clear relations between
these parameters. This is again an indication that the number of free parameters
cannot be reduced. This contrasts a similar type of event-to-event analysis (based
on exponential general raindrop size distribution functions however) with two clearly
distinguishable groups of data points, one corresponding to stratiform events and the
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Figure 5.4: (a) Scaling exponent β (–) versus the parameter λ (mm−ν (mmh−1)βν) of the
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other to convective events (Salles et al., 1999). Nevertheless, although part of the
observed variability in the parameters will be related to sampling fluctuations (as
indicated by the lengths of the error bars), just as in Fig. 5.3 there seem to remain
physically significant differences between the rainfall events.

The corresponding parameter values based on the global estimates for A, p and
n have been plotted in Fig. 4.4 (p. 116). The error bars associated with the Dutch
data point represent again 99% confidence intervals estimated from 1000 bootstrap
samples. A comparison of Fig. 5.4 with Fig. 4.4 shows that although the inter-event
variability in the value of the scaling exponent β is larger than the climatological
variability, this is less true for the parameters λ and ν (although it makes quite a dif-
ference whether or not the data point corresponding to Hilo, Hawaii in Fig. 4.4 is taken
into account). Obviously, the sampling variability associated with the climatological
parameter estimates will be less strong.

Fig. 5.5(a) and (b) shows what these parameter values mean in terms of the general
raindrop size distribution functions and the general rain rate density functions for the
28 rainfall events. When this figure is compared to Fig. 4.5 (p. 117), which shows the
global functions for De Bilt, then it is clear that there exists a strong inter-event
variability. Since this is more than just sampling variability, it would be interesting
to investigate to what extent the scaling exponents and the parameters of the general
raindrop size distribution functions are related to certain meteorological quantities.
Indeed, Wessels (1972) has investigated the possible relations between on the one
hand the parameters A, p and n of Best’s parameterization and on the other hand:

1. rainfall type (drizzle, widespread rain, showers, thunderstorm);

2. synoptic weather type (warm front, cold front, etc.);

3. atmospheric stability;

4. height of the 0◦C isotherm (which is related to the precipitation formation
process);

5. mean relative humidity during rainfall (which might indicate the possible evap-
oration of small droplets);

6. mean wind speed at 10 m height (which might indicate possible size sorting
effects).

However, quite disappointingly, Wessels has not found any relation between these
quantities and the values of the parameters A, p and n. Since p equals the scaling
exponent β and A and n determine the shape of the general functions g(x) and h(x),
this would imply that the observed event-to-event variability in the scaling exponents
and the general functions would have no relation whatsoever with any meteorological
variability. This seems hard to believe and is therefore a subject which needs further
investigation. Perhaps other types of meteorological quantities need to be considered,
such as those which can be derived from radar data (e.g. Steiner et al., 1995). Sempere
Torres et al. (1999) show some preliminary but nevertheless promising results in
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this direction. They have been able to relate the shape of the general raindrop size
distribution function to the type of rainfall (convective, stratiform, transition) using
a pre-classification based on volume-scan radar data.

5.4 Climatological analysis

Although some preliminary global results have already been presented, they have
been based on Wessels’ adjustments of Best’s parameterization to the Dutch rainfall
data and their main purpose has been to provide a comparison with the climatological
parameterizations proposed by Best (1950b) for various other locations (Chapter 4).
In this section, a climatological analysis of the Dutch rainfall data will be carried
out based on the raw raindrop size distributions. To provide a comparison with
the analyses presented in Chapter 4 for Laws and Parsons’ (1943) average raindrop
size distributions, again two analyses will be presented. The first analysis will be a
normalization procedure based on Best’s parameterization and the second a general
analysis, independent of any a priori assumption regarding the form of the raindrop
size distribution, based on the scaling law formulation. The analyses are based on
the 446 empirical raindrop size distributions corresponding to rain rates exceeding
0.1 mmh−1.

5.4.1 Normalization on the basis of Best’s parameterization

Fig. 5.6 shows the resulting normalized forms of the cumulative liquid rainwater con-
tent distribution FW (D) and the raindrop size distribution NV(D). These have been
obtained using the values of the scale parameter a (the 1 − e−1 ≈ 63% quantile of
FW (D)) and the liquid rainwater content W calculated for each raindrop size distri-
bution separately. Hence, this is a two-parameter normalization, similar to that used
by Sekhon and Srivastava (1971). A comparison with Fig. 4.8 (p. 123) demonstrates
clearly that the normalization for the Dutch data works less satisfactory than for Laws
and Parsons’ data. However, this is not surprising given the fact that the former are
raw raindrop size distributions and the latter mean raindrop size distributions for
different classes of rain rate. This immediately shows two general advantages of ap-
plying normalizations to raw data: (1) it avoids the subjective grouping of the data
into classes of rain rate by using all available data at once; (2) it reveals much more
clearly the limitations of any parameterization for the raindrop size distribution (i.e.
it does not hide any of the variability present in the data).

In accordance with Best’s parameterization (Eq. (4.4), p. 103), the slope of the
(linear) regression line in Fig. 5.6(a) is an estimate for the parameter n. This yields
n = 2.65 (r2 = 0.94 on a logarithmic scale), which is quite close to the value estimated
in Section 5.3 using Wessels’ (1972) fits of n to the individual distributions (2.75). The
resulting cumulative liquid rainwater distribution FW (D) (Eq. (4.1)) is given on a
linear scale in Fig. 5.6(b) (r2 = 0.98). Fig. 5.6(c) shows the corresponding normalized
raindrop size distribution (Eq. (4.32), p. 125) (r2 = 0.87 on a logarithmic scale). The
fact that there is no scatter at D/a = 1 in Fig. 5.6(a) and (b) is because a has been
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versus R, with power law relationship W = 70.0R0.869 (r2 = 0.992).

calculated as the 63% quantile of FW (D) for each empirical raindrop size distribution
separately. In a similar manner, the liquid rainwater contents W used to obtain the
normalization in 5.6(c) have been determined for each distribution separately.

One step in the direction of the scaling law formulation is to perform the nor-
malization not using a and W determined for each distribution separately, but on
the basis of power law a–R and W–R relationships. The two-parameter normaliza-
tion then reduces to a one-parameter normalization. Fig. 5.7 shows the empirical
power law relationships and corresponding regression lines for the 446 raindrop size
distributions considered here. The coefficients (adjusted using nonlinear (power law)
regression) are A = 1.20 and p = 0.204 for the a–R relationship (r2 = 0.66) and
C = 70.0 and r = 0.869 for the W–R relationship (r2 = 0.99). These values are close
to those estimated in Section 5.3 using Wessels’ (1972) values of a, R and W for the
individual distributions. Although the W–R relationship provides an almost perfect
fit, the a–R relationship does not. This is obviously going to affect the normalization
results.

Fig. 5.8 shows the corresponding normalizations. Comparing these with those
given in Fig. 5.6 shows immediately that the amount of scatter about the adjusted
parameterizations has increased significantly. This is not surprising in view of the fact
that one rainfall related variable R will obviously be able to explain a smaller fraction
of the natural variability than two rainfall related variables (a and W ). Neverthe-
less, the use of only one variable as explanatory variable (i.e. reference variable) has
been the starting point of any of the parameterizations for the raindrop size distri-
bution which have been encountered before (Marshall-Palmer, Best, Laws-Parsons).
Moreover, it is the basis of any of the ubiquitous power law relationships of radar
meteorology. That one variable is not able to explain all spatial and temporal vari-
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is not performed using the values of a and W for each individual distribution, but those
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ability of the raindrop size distribution has been used as an argument in favor of
multi-parameter radar (e.g. Atlas et al., 1984).

Nevertheless, as can be seen from Fig. 5.8(a)–(c), the rain rate R is still able to
explain a significant amount of the variability present in the data. The slope of the
linear regression line in Fig. 5.8(a) now yields a value of 2.58 for n (r2 = 0.89), slightly
lower than that obtained from Fig. 5.6(a). The coefficients of determination r2 for the
adjusted parameterizations in Fig. 5.8(b) and (c) are 0.91 and 0.76, respectively, both
reduced with respect to 5.6(b) and (c). The fact that a is now a function of R and has
not been determined for each distribution separately, as in Fig. 5.6(a) and (b), makes
that the scatter is no longer absent in Fig. 5.8(a) and (b) for D/a = 1. The estimated
values of the parameters A, p, C, r and n can be used to calculate the corresponding
scaling exponents and self-consistency coefficients from Eqs. (4.19)–(4.21) (p. 109).
This yields α = 0.053, β = 0.204, Se = 1.01 and Sp = 0.98. These values are close to
those resulting from the analysis in Section 5.3 (Table 4.2, p. 114).

In the next two sections, the procedures developed in Chapter 3 to estimate the
scaling exponents α and β and identify the general raindrop size distribution function
g(x) and the associated general rain rate density function h(x) will be applied to the
Dutch rainfall data. Recall that the main advantage of the scaling law approach over
an approach such as that treated in this section is that it is no longer necessary to
impose a particular a priori functional form for the raindrop size distribution.

5.4.2 Estimation of the scaling exponents

Entirely analogous to the analysis of Laws and Parsons’ (1943) data presented in
Chapter 4 (Section 4.3), two methods to estimate the scaling exponents will be ap-
plied to the Dutch rainfall data. The first is based on power law relationships between
the moments Ωm of the raindrop size distribution and a reference variable Ψ (again
the rain rate R), the second on power law relationships between the weighted mean
raindrop diameters Dm and R. Fig. 5.9 shows log-log plots of the first six integer mo-
ments of the 446 raindrop size distributions considered here versus the corresponding
rain rates R. The regression lines indicated in the figure have been adjusted using lin-
ear least-squares regression on the logarithmic values4. There are two aspects which
draw the attention: (1) in correspondence with Fig. 4.9 (p. 127), there is a clear ten-
dency of the slopes of the regression lines to increase with the order of the moment
m; (2) in contrast to Fig. 4.9, there is an appreciable amount of scatter about these
regression lines. That there is virtually no scatter about the regression lines in Fig. 4.9
is because Laws and Parsons’ data represent average raindrop size distributions for
different classes of rain rate. The analysis in Fig. 5.9, however, is performed on raw
raindrop size distributions.

There is a well-defined tendency in the amounts of scatter about the regression
lines as well, both visually and as indicated by the r2-values. The further the order of
a moment is away from 3.67 (that corresponding to R), the more pronounced is the

4Although nonlinear (power law) regression seems preferable in this context, convergence prob-
lems for the moments of orders 0–1 have been encountered. In order to obtain consistent results,
linear regression on the logarithmic values has therefore been applied to all moments.
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Figure 5.9: Log-log plots of the first six integer moments and the corresponding rain rates
for 446 raindrop size distributions collected in 1968 and 1969 in De Bilt, The Netherlands
(Wessels, 1972) ((a)-(f): 1st-6th moments). Dashed lines indicate power law relationships
adjusted using linear regression on the logarithmic values (r2 = 0.669, 0.880, 0.986, 0.998,
0.970 and 0.930, respectively).
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Figure 5.10: (a) Exponents γm (–) of power law relationships between the moments of
Wessels’ (1972) 446 raindrop size distributions and the corresponding rain rates versus the
orders of the moments m plus one. Dashed line indicates linear regression between γm and
m + 1 for m ≥ 2. Error bars indicate 99% confidence limits on the exponents, estimated
from 250 bootstrap samples. (b) Idem for the exponents βm (–) of power law relationships
between the weighted mean raindrop diameters and the corresponding rain rates.
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scatter. For example, for the fourth moment (Fig. 5.9(d)), there is hardly any scatter,
whereas for the first and the sixth moments (Fig. 5.9(a) and (f)) there are appreciable
amounts of scatter. This simply indicates that the further the order of a moment is
away from that corresponding to the rain rate R, the less able is R to explain the
variability associated with that moment. This observation indicates a fundamental
limitation of the scaling law formulation, and as such of any raindrop size distribution
parameterization based on only one explanatory rainfall variable (reference variable).
Fig. 5.9 clearly shows that the power laws between rainfall related variables in general
are statistical in nature, not deterministic.

Fig. 5.10(a) shows a plot of the slopes γm of the regression lines of Fig. 5.9 ver-
sus the orders of the corresponding moments m plus one. As an indication for the
(sampling) uncertainty associated with each point, error bars representing estimates
of the 99% confidence intervals on the exponents (obtained from 250 bootstrap sam-
ples) have been included. It is clear that the uncertainty in the exponents of orders
2–5 is negligible, but that for lower orders (0–2) and higher orders (5–6) it becomes
appreciable. Moreover, the exponents of orders less than two deviate from the straight
line behavior predicted by the scaling law formulation (in much the same way as the
circles in Fig. 4.10(a), p. 128). Therefore, those of orders 2–6 have been employed
in a linear regression of γm on (m+ 1). The resulting intercept α is 0.072 and the
corresponding slope β is 0.201 (r2 = 1.00). For the self-consistency coefficient of
the exponent Se (Eq. (3.87), p. 88) this yields 1.01, implying an almost perfect con-
sistency. As an indication of the (sampling) uncertainties in these coefficients, 99%
confidence limits have been estimated on the basis of 250 bootstrap samples. For α
these limits are −0.014 and 0.171, for β they are 0.179 and 0.219. As noted before,
the uncertainty associated with α is appreciably larger than that associated with β.

Fig. 5.10(b) shows a plot of the exponents βm of power law relationships between
the weighted mean raindrop diameters Dm and the rain rate R versus the order of the
moment m. The exponents have again been obtained using linear regression on the
logarithmic values. The error bars indicate 99% confidence limits estimated from 250
bootstrap samples. In this case the uncertainty remains significant for moments of all
orders, although it is stronger for the lower order moments. For these moments, there
is also a clear deviation from the horizontal straight line behavior predicted by the
scaling law formulation. Qualitatively, the effect is the same as that which has been
observed in Fig. 4.10(b) (p. 128), but in this case it is much stronger. For instance,
the data point for m = 1 indicates the virtual absence of correlation between the
natural logarithm of the mean raindrop diameters and that of the rain rate. This is
likely to be associated with sampling effects, e.g. underestimation of the number of
small drops. A reliable estimate of the scaling exponent β can be obtained by taking
the mean of the exponents βm for m ≥ 3. This yields β = 0.205, with a corresponding
self-consistent value of α equal to 0.043. This value of β is approximately the same
as that estimated from Fig. 5.10(a) (0.201). The associated 99% confidence limits
estimated from 250 bootstrap samples are now 0.182 and 0.223. It can be concluded
that the values of the scaling exponents α and β for De Bilt, The Netherlands are
close to those corresponding to the Marshall-Palmer distribution (α = 0, β = 0.21).
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5.4.3 Identification of the general raindrop size distribution

function and the general rain rate density function

Fig. 5.11 shows the empirical general rain rate density function h(x) which has been
identified for the Dutch data by plotting the scaled rain rate density functions RβfR(D)
corresponding to each of the 446 measured raindrop size distributions versus the scaled
raindrop diameters R−βD (for β = 0.201). The obtained scaling is far from perfect,
i.e. there remains a significant amount of scatter in the data points. This indicates
that the rain rate alone is not able to explain all variability in the experimental data.
Nevertheless, there is still a relatively clear unimodal probability density function
discernible. Its empirical moments will be used to estimate the parameters of various
analytical functions which will be adjusted to the data.

The experimental data points in Fig. 5.11 have been used to estimate the sample
moments of orders 1–4 from Eq. (4.33) (p. 132). Using the expressions given in Ta-
ble 3.2, these have been employed to estimate the coefficients of variation, skewness
and kurtosis of the empirical general rain rate density function. Table 5.1 summarizes
the statistics estimated from the empirical h(x). For comparison, the correspond-
ing statistics have been calculated directly from the 446 empirical rain rate density
functions as well. In contrast to what has been found for Laws and Parsons’ (1943)
data (Table 4.4, p. 133), there are significant differences between the dimensionless
coefficients of variation, skewness and kurtosis estimated from the empirical h(x) and
the means of those estimated directly from the original data, particularly for CSx and
CKx. This is a result of (1) the temporal variability of these coefficients from one
experimental raindrop size distribution to the next and (2) the particular weighting
which is implicitly involved in calculating them from the empirical h(x) (Footnote 11,
p. 132).

As a matter of fact, a basic assumption in the derivation of the scaling law has
been that all spatial and temporal variability arises either as a result of fluctuations
in the raindrop concentration or as a result of fluctuations in the characteristic rain-
drop diameters (or due to a combination of these two). The dimensionless shape
coefficients are assumed to remain constant. That this is not the case for the Dutch
data is shown in Fig. 5.12, which plots these coefficients against each other for the
446 empirical raindrop size distributions considered here. The lines in this figure
indicate the theoretical relationships between these coefficients for the gamma, Best
and lognormal distributions (given in Tables 3.3–3.4). Note that a significant amount
of the variability and dependence between the empirical coefficients may be due to
sampling fluctuations5. It is therefore difficult to attach a meaning to the (lack of)
correspondence between the ‘clouds’ of data points and the theoretical relationships.
They serve here mainly to indicate the appreciable amount of variability which exists
in these coefficients from one experimental raindrop size distribution to the next.

Table 5.2 summarizes the parameters of four different analytical distributions es-
timated from the sample values of µx and CVx (µlnx and σlnx in case of the lognormal

5For instance, the coefficient of kurtosis (peakedness) of a rain rate density function fR (D) is a
function of its 4th moment, which in turn is proportional to the 7.67th moment of the corresponding
raindrop size distribution NV (D).
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Figure 5.11: Identified general rain rate density function h(x) for Wessels’ (1972) data (dots)
and adjusted theoretical parameterizations: (a) exponential g(x) (dashed line; r2 = 0.455)
and gamma g(x) (dash-dotted line; r2 = 0.502); (b) Best g(x) (dashed line; r2 = 0.474) and
lognormal g(x) (dash-dotted line; r2 = 0.471).
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Figure 5.12: Relationships between the dimensionless shape coefficients of 446 empirical
rain rate density functions corresponding to rain rates exceeding 0.1 mmh−1 collected in
1968 and 1969 in De Bilt, The Netherlands (Wessels, 1972), and comparison with theoretical
relationships. (a) CVD versus CSD (solid line: gamma; dashed line: Best; dash-dotted line:
lognormal). (b) CVD versus CKD (idem). (c) CVD versus σ(lnD) (solid line: lognormal).
Note that all coefficients pertain to the scaled raindrop diameters x as well.
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Table 5.1: Mean (µx) of the scaled raindrop diameters (x = R−βD, where D in mm and
R in mmh−1) with respect to the general rain rate density function h(x), corresponding
coefficients of variation (CVx), skewness (CSx) and kurtosis (CKx) and mean (µlnx) and
standard deviation (σlnx) of lnx = lnD − β lnR for Wessels’ (1972) data. Values in the
column labeled ‘From empirical h(x)’ have been obtained from the scaled rain rate density
function, those in the columns labeled ‘From original data’ are the means and standard
deviations of the values for the 446 original distributions. The value of µx in the latter is
the prefactor of a power law regression of µD on R and the corresponding value of µlnx is
the intercept of a linear regression of µlnD on lnR.

Parameter From empirical h(x) From original data
Mean Standard deviation

µx 1.20 1.18 –
CVx 0.410 0.334 0.061
CSx 0.952 0.143 0.456
CKx 1.85 0.0199 0.794
µlnx 0.0905 0.0947 –
σlnx 0.442 0.384 0.064

distribution) and the theoretical expressions given in Tables 3.2–3.4 (method of mo-
ments). As a measure of the uncertainty in these parameter estimates, 99% confidence
limits estimated from 250 bootstrap samples are provided as well. Note that the pa-
rameter estimates obtained for the Best parameterization are different from those
reported in Table 4.3 (p. 115). The latter have been based on Wessels’ (1972) ad-
justments of Best’s parameterization to the raw raindrop size distributions and not
on the raw distributions themselves. The value for ν obtained here happens to be
exactly the mean value for ν proposed by Best (1950b).

Table 5.3 compares the values of the coefficients of variation, skewness and kurto-
sis implied by the estimated parameters with the values obtained directly from the
empirical h(x). The appreciable differences between the theoretical and the empirical
values of CSx and CKx indicate that the method of moments does not guarantee a
good adjustment to the overall shape of the distribution. It merely equates the first
two sample moments (only the first in case of the exponential g(x)–parameterization)
with the first two theoretical moments. Fig. 5.11 shows how well the four analytical
expressions defined by the parameters in Table 5.2 describe the experimental data. It
is hard to make any judgment based on a visual inspection of this figure, but it seems
clear that the lognormal distribution provides a rather poor fit, particularly for the
smaller scaled raindrop diameters.

Fig. 5.13 shows the empirical general raindrop size distribution function g(x) for
the Dutch data. It has been identified by plotting the scaled raindrop size distribu-
tions R−αNV(D) corresponding to each of the 446 measured raindrop size distribu-
tions versus the scaled raindrop diameters R−βD (for β = 0.201). In the same figure
the four analytical expressions for g(x) defined by the parameters of Table 5.2 have
been plotted. Table 5.4 gives the coefficients of determination corresponding to the
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Table 5.2: Parameters κ, λ, µ, ν and σ (where D in mm, NV(D,R) in mm−1m−3 and
R in mmh−1) of different self-consistent forms of the general raindrop size distribution
function g(x) and general rain rate density function h(x) for Wessels’ (1972) data. Values
in parentheses for the exponential distribution represent the slope λ and corresponding self-
consistent intercept lnκ of a linear regression of ln g(x) on x. Values in parentheses for the
lognormal distribution represent estimates based on µx and CVx instead of µlnx and σlnx.
The ‘mean’ values represent the parameters estimated directly from the empirical h(x).
The ‘minimum’ and ‘maximum’ values indicate 99% confidence limits, estimated from 250
bootstrap samples.

Distribution type Parameter minimum mean maximum
Exponential κ 4.93× 103 5.51× 103 6.23× 103

(2.44× 103) (2.86× 103) (3.41× 103)
λ 3.81 3.91 4.01

(3.28) (3.40) (3.53)
Gamma κ 8.11× 103 1.81× 104 2.98× 104

λ 4.26 4.99 5.44
µ 0.51 1.29 1.72

Best κ 208 222 240
λ 0.664 0.703 0.743
ν 2.05 2.25 2.34

Lognormal κ 316 339 373
(255) (279) (305)

µ −0.664 −0.626 −0.597
(−0.541) (−0.468) (−0.428)

σ 0.433 0.442 0.456
(0.381) (0.394) (0.420)

Table 5.3: Coefficients of variation (CVx), skewness (CSx) and kurtosis (CKx) implied
by the parameters of the different distribution types adjusted to Wessels’ (1972) data.
That the values of CVx for the gamma and Best distributions are the same and match the
experimental value is because, in contrast with the exponential and lognormal distributions,
CVx has been used as a fitting parameter in the method of moments.

Parameter From h(x) Exponential Gamma Best Lognormal
CVx 0.410 0.463 0.410 0.410 0.464
CSx 0.952 0.926 0.819 0.399 1.49
CKx 1.85 1.28 1.01 −0.0341 4.21
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Figure 5.13: Identified general raindrop size distribution function g(x) for Wessels’ (1972)
data (dots) and adjusted theoretical parameterizations: (a) exponential (dashed line; r2 =
0.871) and gamma (dash-dotted line; r2 = 0.817); (b) Best (dashed line; r2 = 0.825) and
lognormal (dash-dotted line; r2 = 0.390).
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Table 5.4: Goodness-of-fit, as quantified by the coefficient of determination (r2), of different
theoretical forms for the general raindrop size distribution function g(x) and general rain
rate density function h(x) to Wessels’ (1972) data. The values for g(x) have been calculated
on a logarithmic scale, those for h(x) on a linear scale.

Distribution type g(x) (logarithmic r2) h(x) (linear r2)
Exponential 0.871 0.455
Gamma 0.817 0.502
Best 0.825 0.474
Lognormal 0.390 0.471

various analytical adjustments to the empirical g(x) and h(x). It is again the negative
exponential function for g(x) which provides the best adjustment, notwithstanding
the fact that it has a parameter less than the other distributions. The behavior of the
empirical g(x) for small scaled raindrop diameters is similar to that found for Laws
and Parsons’ data (Fig. 4.12 and 4.13)6.

Substitution of the estimated parameters (Table 5.2) in the expressions given in
Tables 3.2–3.4 yields (with β = 0.201 and γ = 0.67) four different, but all self-
consistent, climatological parameterizations for raindrop size distributions in The
Netherlands. They are

NV(D,R) = 5.51× 103R0.0613 exp
(
−3.91R−0.201D

)
(5.3)

for the exponential parameterization,

NV(D,R) = 1.81× 104R−0.198D1.29 exp
(
−4.99R−0.201D

)
(5.4)

for the gamma parameterization,

NV(D,R) = 222R0.413D−1.75 exp
(
−0.703R−0.452D2.25

)
(5.5)

for the Best parameterization and finally

NV(D,R) = 339R0.262D−1 exp
[
−2.56 ln2

(
1.87R−0.201D

)]
(5.6)

for the lognormal parameterization. Note that the Best parameterization should
again be truncated at some minimum diameter because ν < 3. Which of these four
parameterizations would be the most suitable in a given situation is something which
is difficult to judge at this point. The exponential is probably a good candidate on
the average.

6Rogers et al. (1991) report a similar behavior in a modeling study of the temporal evolution of
raindrop size distributions in steady light rain.
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5.5 Summary and conclusions

The scaling law formulation and its analysis procedures have been verified experi-
mentally on the basis of raindrop size distributions collected with the filter paper
technique at the Royal Netherlands Meteorological Institute in De Bilt, The Nether-
lands. Two types of analyses have been carried out: (1) an event-to-event analysis
based on Wessels’ (1972) adjustments of Best’s parameterization to 476 raindrop size
distributions for a series of 28 rainfall events; (2) a climatological analysis based on
446 raw raindrop size distributions. Both types of analysis have yielded satisfac-
tory results in the sense that it has been possible to estimate the scaling exponents
and identify the general raindrop size distribution function and the general rain rate
density function.

Although re-sampling of the distributions according to the bootstrap method has
indicated that there is an appreciable amount of uncertainty associated with the
estimates of the scaling exponents and the parameters of the general functions for
each of the 28 rainfall events, they closely satisfy the self-consistency constraints
following from the scaling law formulation. Moreover, there seems to be more inter-
event variability in the exponents and parameters than can be explained solely on
the basis of sampling uncertainties. However, quite disappointingly, an effort to try
to relate this variability to differences in various meteorological quantities (type of
rainfall, synoptic weather type, atmospheric stability, height of the 0◦C isotherm,
relative humidity and wind speed) has failed. This suggests that these quantities are
not appropriate indicators for the type of rainfall and that one has to look for other
manners to classify different rainfall regimes, perhaps based on the use of radar data.

The climatological analysis based on the raw raindrop size distribution data has
indicated that although there is an appreciable amount of scatter about the mean
curves, it is still possible to obtain consistent estimates of the scaling exponents and
reasonably accurate fits to the general raindrop size distribution function and general
rain rate density function. As such, this analysis confirms the power of the scaling law
formulation as a manner to obtain climatological parameterizations for the raindrop
size distribution. Four different self-consistent parameterizations have been adjusted
to the Dutch raindrop size distributions (exponential, gamma, Best and lognormal).
The exponential parameterization seems to provide the best adjustment.

The remaining scatter about the mean parameterizations is an indication of the
fact that not all observed variability can be explained by one single reference variable
(in this case the rain rate). This should not be interpreted as a weak point of the
scaling law in particular. The use of one single rainfall related variable as explanatory
(reference) variable has formed the basis of all previously proposed parameterizations
for the raindrop size distribution (Marshall-Palmer, Best, Laws-Parsons) and, more-
over, of the ubiquitous power law relationships of radar meteorology. There is a
remaining amount of variability associated in part with sampling fluctuations and in
part with other sources of natural variability. This suggests that it would be useful
to further extend the scaling law formulation in such a manner that it would be able
to cope with this excess variability. A first approach could then be to recognize that
the power law relationships between rainfall related variables are not deterministic in
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nature, but statistical. This leads to a statistical interpretation for the scaling expo-
nents, as is demonstrated in AppendixE. A second approach could be the inclusion
of an additional reference variable in the scaling law. In this manner, each rainfall
related variable would become a function of two others. As a matter of fact, this type
of approach has formed the basis of multi-parameter radar methods.
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Chapter 6

Implications of the scaling law
formulation for radar reflectivity –
rain rate relationships1

6.1 Introduction

The most fundamental conversion in radar remote sensing of rainfall is that from
radar reflectivity factor Z (mm6m−3) to rain rate R (mmh−1). This is but one
aspect of the much larger problem of the use of weather radar for the reliable and
accurate estimation of the spatial and temporal distribution of rainfall over an area.
The crucial step in tackling that problem is the conversion of (equivalent) radar
reflectivities measured aloft to rain rates at the ground. In an ideal situation, i.e.
one in which all other possible error sources are negligible, the main uncertainty in
rainfall estimates by (conventional, i.e. single parameter) weather radar will be due
to uncertainty in the Z–R relationship. In practice, this means a situation where a
non-attenuated, pencil beam weather radar is observing nearby homogeneous rainfall
close to the ground. In reality, these requirements are hardly ever met. Therefore, in
any practical situation the uncertainty in the Z–R relationship will provide a lower
bound to the uncertainties associated with radar rainfall estimation. That alone
seems reason enough to merit a careful treatment.

Establishing radar reflectivity factor–rain rate relationships has captured the at-
tention of radar meteorologists since the early days of weather radar more than five
decades ago. From the point of view of instrumentation, there exist two approaches.
Either they are established using a combination of weather radar and raingauge mea-
surements (e.g. Wilson and Brandes, 1979) or they are established on the basis of
measurements of raindrop size distributions (in the air or at the ground) (e.g. Mar-
shall and Palmer, 1948). From the point of view of methodology there exist basically
three approaches. The classical approach is that of a regression analysis to estimate
the coefficients of power law Z–R relationships (e.g. Marshall and Palmer, 1948).

1Partly based on Uijlenhoet, R. (1999). Raindrop size distributions and radar reflectivity–rain
rate relationships for radar hydrology. Hydrol. Earth Syst. Sci. (accepted for publication).
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Statistically speaking, this amounts to approximating the expected value of R for a
given value of Z (i.e. the conditional mean of R)2.

A more recent approach, but one which has gained rapid recognition, is a nonpara-
metric method called the Probability Matching Method. It has been re-introduced
into the field of radar meteorology by Calheiros and Zawadzki (1987) and has been
generalized more recently by Rosenfeld et al. (1993). The method amounts to match-
ing the empirical (sample) cumulative distribution functions of Z and R. It has the
advantage over regression methods that it no longer requires synchronous measure-
ments (or rather estimates) of Z and R. There has recently been quite some discussion
about the advantages and disadvantages of the two methods (regression and proba-
bility matching). The question does not yet seem to be entirely solved. The reader is
referred to Krajewski and Smith (1991), Haddad and Rosenfeld (1997) and Rosenfeld
and Amitai (1998) for discussions on various aspects of the problem.

A third approach is based on the explicit recognition of the fact that Z and R are
related to each via the raindrop size distribution. Therefore, any parameterization
for the raindrop size distribution with one explanatory (reference) variable implies
a particular Z–R relationship. For the particular case of Marshall and Palmer’s
(1948) exponential parameterization this has already been demonstrated in Chapter 2
(Section 2.7, Eq. (2.65) and subsequent discussion)3. This is the approach which will
be followed in this chapter. However, the treatment here will be much more general
since it will be based on the scaling law for the raindrop size distribution presented
in Chapter 3. Therefore, it is no longer necessary to make any a priori assumption
regarding the functional form of the raindrop size distribution.

In Section 6.2 the implications of the scaling law formulation for the functional
form of radar reflectivity–rain rate relationships will be presented. In Section 6.3 the
resulting methodology will be used to derive such Z–R relationships from the various
raindrop size distribution parameterizations which have been developed in Chapters 4
and 5 (i.e. those obtained from the data of Best (1950b), Laws and Parsons (1943)
and Wessels (1972)). Battan’s (1973) classical list of 69 empirical Z–R relationships
will be revisited in the light of the scaling law formulation in Section 6.4 in an effort
to obtain from them mean raindrop size distribution parameterizations for different
types of rainfall. In Section 6.5 the methodology developed in the previous sections
will be used to shed some light on a curious but widely used relationship between two
parameters of the gamma raindrop size distribution established by Ulbrich (1983) on
the basis of Battan’s Z–R relationships. Finally, the summary and conclusions of this
chapter will be discussed in Section 6.6.

2Only in the particular case where Z and R are jointly lognormally distributed (i.e. logZ and
logR have a bivariate normal distribution) the conditional mean of R given Z really reduces to the
classical power law relationship.

3In their 1948 article, Marshall and Palmer provide two Z–R relationships, one (Z = 220R1.60)
based on a regression analysis of Z on R and another (Z = 296R1.47) which follows analytically from
their parameterization for the raindrop size distribution.
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6.2 Radar reflectivity–rain rate relationships and

the scaling law formulation

By definition, the radar reflectivity factor Z (mm6m−3) is the sixth moment of the
raindrop size distribution in a volume of air NV(D) (mm−1m−3) (Table 2.3, p. 39).
Or, in terms of the notation employed in Eq. (3.18) (p. 62), Z is Ω6 with cZ = 1. If the
reference variable Ψ in Eq. (3.18) is taken to be the rain rate R then Eqs. (3.19)–(3.21)
imply that Z must be related to R according to the power law

Z = CZR
γZ (6.1)

with prefactor

CZ =
∫ ∞

0
x6g(x) dx (6.2)

(where x = R−βD is the scaled raindrop diameter) and exponent

γZ = α+ 7β. (6.3)

Since R is the reference variable, the self-consistency constraint on the scaling ex-
ponent α is given by α = 1 − (4 + γ)β (Eq. (3.38), p. 64), where γ is the exponent
of the power law raindrop terminal fall speed–diameter relationship. Substitution of
this constraint in Eq. (6.3) yields

γZ = 1 + (3− γ)β, (6.4)

which for γ = 0.67 (Atlas and Ulbrich, 1977) reduces to

γZ = 1 + 2.33β. (6.5)

Hence, the prefactor of the Z–R relationship is simply the sixth moment of the general
raindrop size distribution function g(x) and the exponent is uniquely determined by
the value of the scaling exponent β.

As a matter of fact, these relations have already been encountered before in a
different context (Footnote 11, p. 72 and Eq. (3.95), p. 95). They demonstrate that
the value of the exponent γZ of the Z–R relationship (and of any other power law
relationship between rainfall related variables) is independent of the shape of the
scaled raindrop size distribution. Information regarding the shape of the scaled rain-
drop size distribution is entirely contained in the prefactor CZ . Using the definition
of the general rain rate density function h(x) in terms of the general raindrop size
distribution function g(x) (Eq. (3.66), p. 77), CZ can also be written as

CZ =
104

6πc

∫ ∞

0
x3−γh(x) dx (6.6)

Specific expressions for the prefactor CZ for the five analytical forms of g(x) and h(x)
presented in Tables 3.2–3.4 (p. 79–81) (the exponential, gamma, generalized gamma,
Best and lognormal forms) can now be obtained by substituting these functions in
Eqs. (6.2) or (6.6). Table 6.1 summarizes the results. This table can be seen as an
extension of Tables 3.2–3.4.
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Table 6.1: Theoretical expressions for the prefactors CZ of power law Z–R relationships
(where D in mm, NV(D,R) in mm−1m−3, R in mmh−1, v(D) = cDγ in m s−1 and Z
in mm6m−3) for different self-consistent forms of the general raindrop size distribution
function g(x) (where x is the scaled raindrop diameter R−βD) or the corresponding general
rain rate density function h(x).

g(x) CZ

Definition NV(x, 1)
∫∞
0 x6g(x)dx =
104

6πc

∫∞
0 x3−γh(x)dx

Exponential κ exp (−λx) 104

6πc
Γ(7)

λ3−γΓ(4+γ)

Gamma κxµ exp (−λx) 104

6πc
Γ(7+µ)

λ3−γΓ(4+γ+µ)

Generalized gamma κxµ exp (−λxν) 104

6πc
Γ[(7+µ)/ν]

λ(3−γ)/νΓ[(4+γ+µ)/ν]

Best κxν−4 exp (−λxν) 104

6πc
Γ(1+3/ν)

λ(3−γ)/νΓ(1+γ/ν)

Lognormal κx−1 exp
[
−1

2

(
lnx−µ

σ

)2]
104

6πc
exp [(3− γ)µ+

1
2
(3− γ) (9 + γ) σ2

]

6.3 Radar reflectivity–rain rate relationships from

raindrop size distribution parameterizations

6.3.1 Best’s data

On the basis of the values of the parameters of the self-consistent parameterizations for
the raindrop size distribution derived in Chapters 4 and 5, specific Z–R relationships
are easily obtained. For instance, the values of the scaling exponents β in Table 4.2
(p. 114) and those of the parameters of the self-consistent form of the Best general
raindrop size distribution function in Table 4.3 (p. 115) yield the Z–R coefficients
listed in Table 6.2. These values differ little from those derived by Best (1950b)
himself for the various locations (TableVIII on p. 32 of his article). However, his
manner of derivation does not guarantee self-consistency, whereas the scaling law
approach does.

Fig. 6.1(a) shows a plot of the exponents γZ versus the prefactors CZ . The
two reference lines in the figure correspond to the Marshall-Palmer Z–R relation-
ship (Z = 200R1.6) and the Z–R relationship consistent with the Marshall-Palmer
(1948) raindrop size distribution and the Atlas and Ulbrich (1977) raindrop termi-
nal fall speed parameterization (Z = 237R1.50). Fig. 6.1(b) shows the coefficients

CR = (1/CZ)
1/γZ and γR = 1/γZ of the corresponding power law R–Z relationships.

Note that this conversion introduces a certain dependence between the coefficients, a
negative correlation to be precise, to which more attention will be paid later in this
section. Fig. 6.2(a) finally is a plot of the climatological Z–R relationships for the
three locations (De Bilt, The Netherlands; the mean of Best’s data; Hilo, Hawaii) for
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Figure 6.1: (a) Coefficients CZ (mm6m−3 (mmh−1)−γZ ) and γZ (–) of climatological power
law Z–R relationships for 7 different locations around the world (Best, 1950a), for the mean
distribution of all locations derived by Best and for De Bilt, The Netherlands (Wessels,
1972). Error bars around the Dutch data point indicate 99% confidence limits, estimated
from 1000 bootstrap samples. Dashed line corresponds to Z = 200R1.6 (Marshall et al.,
1955), dash-dotted line to Z = 237R1.50 (Marshall and Palmer, 1948). (b) Coefficients
of corresponding R–Z relationships (again with 99% confidence interval around the Dutch
data point) and regression line (dashed) of γR on logCR.
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Figure 6.2: (a) Climatological Z–R relationships for De Bilt, The Netherlands (Wessels,
1972; solid line), for the mean distribution proposed by Best (1950a; dashed line) and
for Hilo, Hawaii, USA (Best, 1950a; dash-dotted line). (b) Relationships between radar
reflectivity factor 10 logZ (dBZ) and rain rate R (mmh−1) for 28 rainfall events in 1968
and 1969 in De Bilt, The Netherlands (based on data reported by Wessels, 1972).
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Table 6.2: Prefactors (CZ) and exponents (γZ) of Z–R relationships (with R in mmh−1

and Z in mm6m−3) obtained from self-consistent forms of Best’s general raindrop size
distribution function g(x) (or the corresponding general rain rate density function h(x)) for
the locations reported by Best (1950a) and Wessels (1972).

Location CZ γZ
Hilo (Hawaii, USA) 101 1.66
Germany 379 1.63
East Hill (UK) 445 1.63
Montreal (Canada) 229 1.56
mean (Best, 1950b) 343 1.54
Shoeburyness (UK) 517 1.49
De Bilt (Netherlands) 256 1.48
Ynyslas (UK) 253 1.47
Washington DC (USA) 308 1.46

which the self-consistent g(x) and h(x) have been encountered in Fig. 4.5 (p. 117).

The coefficients given in Table 6.2 for De Bilt, The Netherlands are close to those
obtained from a regression analysis on the Dutch data by Wessels (1972) (CZ = 260,
γZ = 1.43). The small value for the prefactor for Hilo (Hawaii) is typical for orographic
rainfall (e.g. Cataneo and Stout, 1968) and is associated with the fact that the general
raindrop size distribution g(x) for this location is narrow and concentrated at small
scaled raindrop diameters (Fig. 4.5, p. 117). The large values of the prefactors CZ for
East Hill and particularly for Shoeburyness are caused by large values of the prefactors
A of the corresponding power law a–R relationships (Eq. (4.2), p. 103). This indicates
liquid rainwater content distributions which are weighted towards larger raindrops,
something which may be related to thunderstorm rainfall (e.g. Joss and Waldvogel,
1969; Sekhon and Srivastava, 1971; Battan, 1973). On the other hand, Waldvogel
(1974) and Huggel et al. (1996) associate distributions with large raindrops with
widespread rainfall without any convective activity and a very pronounced bright
band4. From Best’s (1950a) description of the East Hill and Shoeburyness data it
does not become clear which of these explanations is justified in this case.

4This confirms the findings of Pruppacher and Klett (1978), who, in a discussion of various
model results regarding collisional breakup in rainfall, argue that ‘in precipitation from “warm”
clouds, where no ice particles are present, the raindrop size distribution is likely to be limited to
drops of diameters less than 2 to 3 mm, as a result of collisional breakup. On the other hand,
in precipitation from “cold” clouds, which do contain ice particles, raindrops larger than 3 mm in
diameter may be present if the melting level in the atmosphere is relatively close to the ground such
that the ice particles have sufficient time to melt, but insufficient time to change their size spectrum
by collisional breakup’.
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Table 6.3: Prefactors (CZ) and exponents (γZ) of Z–R relationships (with R in mmh−1 and
Z in mm6m−3) obtained from different self-consistent forms of the general raindrop size
distribution function g(x) (or the corresponding general rain rate density function h(x)) for
Laws and Parsons’ (1943) data.

Parameter Exponential Gamma Best Lognormal
CZ 351 326 325 357
γZ 1.41 1.41 1.41 1.41

6.3.2 Laws and Parsons’ data

The value of β estimated in Chapter 4 (Section 4.3) for Laws and Parsons’ (1943) tab-
ulated raindrop size distribution parameterization (β = 0.176) and the corresponding
values of the parameters of the four self-consistent analytical forms for the general
raindrop size distribution function g(x) (Table 4.5, p. 136) yields the Z–R coefficients
summarized in Table 6.3. Since the value of the exponent γZ is uniquely determined
by the value of the scaling exponent β (Eq. (6.5)), γZ is equal for all four parameter-
izations. The prefactors are all somewhat higher and the exponents somewhat lower
than those obtained on the basis of Best’s (1950a) adjustment to Laws and Parsons’
data (Table 6.2, ‘Washington DC (USA)’).

The differences between the prefactors for the different parameterizations are not
very significant. Specifically, the values for the exponential and lognormal parame-
terizations are almost equal, as are those for the gamma and Best parameterizations.
Recall that the parameters of g(x) and h(x) have been adjusted on the basis of the
method of moments, using the first (mean) and second moment (variance) of h(x).
These are proportional to the 4.67th and 5.67th moment of g(x), respectively. The
latter is very close to the 6th moment of g(x), i.e. to CZ and it is therefore not
surprising to find that the prefactors in Table 6.3 are relatively close. As a matter of
fact, these could have been forced to be equal through use of the 6th moment of g(x),
i.e. the 2.33th moment of h(x), in the method of moments employed to estimate the
parameters.

6.3.3 Dutch rainfall data

Event-to-event analysis

The values of the scaling exponents β and the parameters λ and ν of the self-consistent
general raindrop size distributions functions for the 28 rainfall events in De Bilt, The
Netherlands to which Wessels (1972) adjusted Best’s parameterization have been ob-
tained in Chapter 5 (Fig. 5.4, p. 148 and Fig. 5.5, p. 149). Fig. 6.3(a) shows the corre-
sponding prefactors CZ (calculated using the expression for the Best parameterization
given in Table 6.1) and exponents γZ , Fig. 6.2(b) the corresponding 28 Z–R relation-
ships. As can be seen, there is an appreciable amount of inter-event variability in the
Z–R relationships, something which has been noted by Smith and Krajewski (1993)
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Figure 6.3: (a) Coefficients CZ (mm6m−3 (mmh−1)−γZ ) and γZ (–) of power law Z–R
relationships for 28 rainfall events in 1968 and 1969 in De Bilt, The Netherlands (Wessels,
1972). Error bars indicate 68% confidence limits, estimated from 1000 bootstrap samples
in each case. Dashed line corresponds to Z = 200R1.6 (Marshall et al., 1955), dash-dotted
line to Z = 237R1.50 (Marshall and Palmer, 1948). (b) Coefficients of corresponding R–Z
relationships (again with 68% confidence intervals) and regression line (dashed) of γR on
logCR.
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among others as well. As indicated by the lengths of the error bars in Fig. 6.3(a),
this cannot solely be explained in terms of sampling fluctuations. It is therefore a
pity that Wessels (1972) has not been able to relate this variability to changes in any
of a series of important meteorological parameters (see the discussion in Chapter 5,
Section 5.3).

Rain rate–radar reflectivity relationships and spurious correlations

For hydrological and meteorological applications, R–Z relationships are often more
appropriate than Z–R relationships. This is because the rain rate R is the quantity
which needs to be determined from the radar-estimated reflectivity factor Z. The
coefficients CR = (1/CZ)

1/γZ and γR = 1/γZ of the power law R–Z relationships
corresponding to the Z–R relationships for the 28 rainfall events have been plotted
in Fig. 6.3(b). Just as in Fig. 6.1(b), the data points exhibit a pronounced negative
correlation, even though the coefficients of the original Z–R relationships seem to be
more or less uncorrelated. A similar effect has been observed by Smith and Krajewski
(1993) in a study of storm-to-storm variability of the coefficients of R–Z relationships
in North Carolina (USA). How can this be explained?

In AppendixF it is shown that if CZ and γ
Z
are supposed to be two independent

random variables, then the square of the correlation coefficient between logCR =
−γ

R
logCZ and γ

R
= γ−1

Z
is given by

ρ2 =
CV2

(
γ−1
Z

)

CV2
(
γ−1
Z

)
+ CV2 (logCZ) + CV2

(
γ−1
Z

)
CV2 (logCZ)

, (6.7)

where CV denotes the coefficient of variation (i.e. the ratio of the standard deviation
to the mean). It is also shown that the sign of ρ, the actual correlation coefficient,
is negative as long as E[logCZ ] is positive, i.e. as long as the geometric mean of
CZ exceeds one (which is generally the case). Eq. (6.7) shows that even independent
fluctuations in the prefactors and exponents of Z–R relationships are enough to cause
(negative) correlations between the prefactors and exponents of R–Z relationships.
This is of course not really surprising, given the fact that CR depends both on CZ

and on γZ . Eq. (6.7) quantifies this effect.
For the 28 rainfall events collected in 1968 and 1969 in De Bilt, The Netherlands,

logCZ and γZ are found to be virtually uncorrelated, with a sample correlation co-
efficient r of only 0.0867. The sample geometric mean of CZ is 246, well above one,
and therefore the correlation between logCR and γR will be negative. The sample
coefficients of variation of logCZ and γ−1

Z are 0.0785 and 0.1265, respectively. Substi-
tuting these values in Eq. (6.7) yields a correlation coefficient of −0.85, which is quite
close to the actual sample correlation coefficient between logCR and γR (−0.82) and
as such demonstrates the validity of Eq. (6.7).

AppendixF also shows that if Z and R would be expressed in SI units (i.e. in
m3 and ms−1, respectively), then the corresponding prefactors and exponents of both
Z–R and R–Z relationships would be strongly positively correlated. All this serves
to show that the observed (negative) correlation between logCR and γR is in fact a
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spurious correlation, i.e. an apparent correlation between variables which may just
as well be uncorrelated (Haan, 1977). The magnitude and sign of the correlation is
completely determined by the employed units for Z and R. Care should therefore be
exercised when a physical meaning is attributed to such correlations.

Climatological analysis

Table 6.4: Prefactors (CZ) and exponents (γZ) of Z–R relationships (with R in mmh−1

and Z in mm6m−3) for De Bilt, The Netherlands, obtained from (1) different self-consistent
forms of the general raindrop size distribution function g(x) (or the corresponding general
rain rate density function h(x)) and (2) different types of least-squares regression. The ‘min’
and ‘max’ values indicate 99% confidence limits, estimated from 250 bootstrap samples.

Method Specific form CZ γZ
min mean max min mean max

Scaling law Exponential 265 286 302 1.41 1.47 1.53
Gamma 247 270 289 1.41 1.47 1.53
Best 246 269 287 1.41 1.47 1.53
Lognormal 269 295 315 1.41 1.47 1.53

Regression logZ − logR 224 241 255 1.43 1.49 1.55
logR− logZ 225 241 255 1.54 1.60 1.66

Z − R 186 285 396 1.31 1.47 1.60
R− Z 193 258 303 1.45 1.53 1.71

The value of β estimated in Chapter 5 (Section 5.4) for the 446 raw raindrop size
distributions collected by Wessels (1972) and colleagues (β = 0.201) and the corre-
sponding values of the parameters of the four self-consistent analytical forms for the
general raindrop size distribution function g(x) (Table 5.2, p. 163) lead to the Z–R
coefficients given in Table 6.4. The exponent γZ is again equal for all four parame-
terizations. Moreover, as is the case for the Z–R relationships obtained for Laws and
Parsons’ parameterization (Table 6.3) the values for the exponential and lognormal
parameterizations are almost equal, as are those of the gamma and Best parameter-
izations. Those for the Best parameterization are also quite close to those given in
Table 6.2 for De Bilt, The Netherlands, which are based on Wessels’ (1972) adjust-
ment of Best’s parameterization to the raw data. Table 6.4 also provides estimates of
the 99% confidence limits on the coefficients, based on 250 bootstrap samples. It can
be seen that the prefactors are more sensitive to sampling fluctuations than the expo-
nents. Note that because the sampling fluctuations in CZ and γZ will be correlated,
their confidence intervals will not be independent.

For comparison, the coefficients of the climatological Z–R relationship for De Bilt
have also been determined on the basis of four different least-squares regression anal-
yses: twice linear regression on the logarithmic values (logZ on logR and logR on
logZ) and twice nonlinear (power law) regression on the linear values (Z on R and R
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Figure 6.4: (a) Scatterplot of rain rate R (mmh−1) versus radar reflectivity factor Z
(mm6m−3) (expressed in logarithmic units) calculated from 446 raindrop size distribu-
tions collected in 1968 and 1969 in De Bilt, The Netherlands (Wessels, 1972). Dashed line
is Z = 285R1.47, obtained from nonlinear (power law) regression of Z on R. (b) Compar-
ison of different power law relationships adjusted to the data in (a): Z = 241R1.49 (linear
regression of logZ on logR, bold line); Z = 241R1.60 (linear regression of logR on logZ,
dashed line); Z = 285R1.47 (nonlinear regression of Z on R, dash-dotted line); Z = 258R1.53

(nonlinear regression of R on Z, solid line).
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on Z). On the average, the prefactors are somewhat lower and the exponents some-
what higher than those obtained from the scaling law approach5. Note that power law
regression of Z on R yields almost exactly the same coefficients as those which follow
from the self-consistent exponential parameterization adjusted to the data. The sam-
pling uncertainties associated with the coefficients obtained using linear regression on
the logarithms are comparable to those obtained from the raindrop size distribution
parameterizations. This is perhaps not surprising, since the value of the scaling expo-
nent β (which determines γZ via Eq. (6.5)) has been obtained using linear regression
on the logarithms as well (Chapter 5, Section 5.4). The uncertainties associated with
the coefficients obtained from the power law regression procedures are significantly
greater than those associated with the other coefficients. Fig. 6.4(a) is a scatterplot
of Z versus R for the 446 empirical raindrop size distributions and Fig. 6.4(b) gives
a comparison between the four different regression-based Z–R relationships. Both
figures reflect the fundamental uncertainty associated with mean Z–R relationships.

6.4 Battan’s radar reflectivity–rain rate relation-

ships revisited

In Section 6.3 the methodology developed in Section 6.2 has been applied to derive
Z–R relationships from the different parameterizations for the raindrop size distribu-
tion presented in Chapters 4 and 5. In this section, the reverse will be done. In an
effort to obtain more information on the manner in which the parameters of raindrop
size distribution parameterizations depend on the type of rainfall, Z–R relationships
published in the literature will be used to derive the raindrop size distribution pa-
rameterizations which correspond to them. Specifically, the classical list of Z–R
relationships compiled by Battan (1973) will be used for this purpose. This list (Bat-
tan’s Table 7.1 on his p. 90–92) provides a total of 69 Z–R relationships derived from
raindrop size distribution measurements for different types of rainfall in many parts
of the world. Ulbrich (1983) argues that ‘the observed variations in [CZ ] and [γZ ] are
[...] not due to measurement errors nor are they induced by correlations between the
errors involved in measuring Z and R’ and that as a result ‘these variations in [CZ ]
and [γZ ] are due to real physical differences between the types of rainfall to which the
Z–R relations apply’. Although this is perhaps stated somewhat boldly (the analy-
ses in Section 6.3 have for instance shown that there can be a pronounced effect of
the manner in which the coefficients CZ and γZ are adjusted to the data), Ulbrich’s

5There is an ongoing debate whether it would be preferable to use R as the independent variable
or Z. From the point of view of rain rate estimation, the choice for Z might seem logical, as that is
the variable estimated using weather radar. However, from the point of view of sampling variability,
the choice for R is preferable. Z is the sixth moment of the raindrop size distribution and depends
strongly on the scarcely sampled large raindrops. In order to avoid the asymmetry associated with
ordinary regression procedures (where the coefficients depend on the choice of the independent
variable), certain researchers prefer to minimize the sum of the squared distances normal to the
regression line (Amayenc, 1999, personal communication). However, that has not been pursued
here.
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Figure 6.5: (a) The 69 Z–R relationships quoted by Battan (1973; p. 90–92), including five
deviating relationships (dashed lines), four of which have prefactors CZ significantly smaller
than 100 and one of which has an exponent γZ as high as 2.87. The bold line indicates
the linear relationship Z = 742R (List, 1988). (b) The mean of Battan’s relationships,
Z = 238R1.50 (bold line), the reference relationship Z = 200R1.6 (Marshall et al., 1955;
dashed line) and the envelope of 64 of Battan’s 69 Z–R relationships (solid lines).
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arguments will be taken as the starting point for the analysis which follows.

6.4.1 Presentation and discussion of the radar reflectivity–
rain rate relationships

Fig. 6.5(a) shows a plot of Battan’s 69 Z–R relationships. For reference, the linear Z–
R relationship proposed by List (1988) for equilibrium rainfall conditions is included
as well (Eq. (3.94), p. 95). Whereas Fig. 6.4 has provided an idea of the uncertainty
associated with the Z–R relationship within a given rainfall climatology, Fig. 6.5(a)
provides an idea of the variability associated with Z–R relationships between different
climatologies. The latter is even more clearly demonstrated in Fig. 6.5(b), which
shows the envelope of 64 of Battan’s Z–R relationships. Note that five strongly
deviating relationships, four with prefactors CZ significantly smaller than 100 (the
smallest two, corresponding to orographic rainfall in Hawaii, have values of only 16.6
and 31) and one with an exponent γZ as high as 2.87 have not been taken into
account in calculating the envelope6. Also shown in Fig. 6.5(b) is the mean of all
69 Z–R relationships, obtained by taking the geometric mean of all prefactors and
the arithmetic mean of all exponents7. Interestingly, the coefficients of this mean
relationship (Z = 238R1.50) are almost exactly the same as those which follow from
the exponential raindrop size distribution with Marshall and Palmer’s (1948) value
for N0 and Atlas and Ulbrich’s (1977) raindrop terminal fall speed parameterization
(Z = 237R1.50, see Eq. (2.65) on p. 51 and subsequent discussion). As Fig. 6.5(b)
shows, this mean relationship is not very different from the Marshall-Palmer Z–R
relationship either.

From the remarks provided by Battan in his table, it is possible to associate 25
of the 69 Z–R relationships unambiguously with a particular type of rainfall. Using
the same stratification as Ulbrich (1983), 4 of the relationships have been identified
as pertaining to orographic rainfall, 5 to thunderstorm rainfall, 10 to widespread or
stratiform rainfall and 6 to showers8. For the other 44 relationships no unambigu-
ous identification has been possible, either because they correspond to mixtures of
different types of rainfall or because Battan has not indicated a rainfall type at all.
Fig. 6.6(a) shows a plot of the exponents γZ versus the prefactors CZ for the different
types of rainfall, similar to Fig. 6.1(a) for Best’s data and Fig. 6.3(a) for the Dutch
data. If Fig. 6.6(a) is indicative for the climatological variability of the coefficients

6For γZ = 2.87, Eq. (6.5) yields β = 0.803. The self-consistency constraint on α (Eq. (3.38),
p. 64) then implies α = −2.75. Substituting these values in Eqs. (3.5) and (3.6) (p. 59) finally gives
γρV

= −1.95 and γDC
= 0.803. This indicates that for γZ = 2.87, the raindrop concentration ρV

would decrease almost proportionally to the square of the rain rate R, i.e. a doubling of R would
roughly correspond to a 75% reduction of ρV (and a 75% increase in the characteristic diameters
DC to compensate). This seems very unlikely.

7Although this is a rather ad hoc method, it has some theoretical justification in that it is the
same as taking the arithmetic mean of the coefficients of the linear logZ–logR relationships.

8Rogers and Yau (1996) make a useful distinction between continuous rain and showers, by
approximating the former as ‘a steady-state process, in which cloud quantities may vary with height
but are constant with time at any given height’ and the latter as ‘systems in which the cloud
properties vary with time but are constant with height at any given time’.
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Figure 6.6: (a) Coefficients CZ (mm6 m−3 (mmh−1)−γZ ) and γZ (–) of 69 power law Z–
R relationships quoted by Battan (1973), stratified according to rainfall type: orographic
(bold circles); thunderstorm (bold stars); widespread/stratiform (bold plusses); showers
(bold crosses); no unambiguous identification possible (circles). Dashed line corresponds to
Z = 200R1.6 (Marshall et al., 1955), dash-dotted line to Z = 237R1.50 (Marshall and Palmer,
1948). (b) Coefficients of corresponding R–Z relationships and regression line (dashed) of
γR on logCR.
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of Z–R relationships and Fig. 6.3(a) for the event-to-event variability within a given
climatology, then it would seem that both types of variability are comparable. This
also follows from a comparison of 6.5(b) with Fig. 6.2(b).

There is again no significant correlation between logCZ and γZ , the sample cor-
relation coefficient for the 69 coordinate pairs being only −0.2146. Moreover, it is
almost impossible to unambiguously distinguish the different types of rainfall, i.e. to
associate them with different non-overlapping regions in the (logCZ , γZ)-parameter
space. For orographic rainfall the prefactors tend to be lower and the exponents
higher than the average. For thunderstorm rainfall the opposite seems true, with
higher prefactors and lower exponents than the average. For widespread/stratiform
rainfall, the values are in between these two extremes on the average. This is con-
firmed by the ‘typical’ Z–R relationships provided by Battan for these three types of
rainfall. For showers, the coefficients are highly variable and, as Ulbrich states, ‘no
general statement can be made about [their] range of values’.

Fig. 6.6(b) shows the prefactors versus the exponents of the R–Z relationships
implied by Battan’s Z–R relationships. As in Fig. 6.3(b), these coefficients exhibit
again a clear (spurious) negative correlation. The sample coefficients of variation
of logCZ and γ−1

Z are now 0.1140 and 0.1213, respectively, and Eq. (6.7) predicts a
correlation coefficient of −0.73 (negative since the sample geometric mean of CZ is
238, larger than one). Notwithstanding the weak correlation which exists between
logCZ and γZ (assumed to be independent in Eq. (6.7)), this is still reasonably close
to the actual sample correlation coefficient between logCR and γR (−0.78). This
again confirms the validity of Eq. (6.7).

6.4.2 Implications for raindrop size distribution parameteri-

zations

Since parameterizations for the raindrop size distribution imply coefficients of Z–R
relationships via Eq. (6.5) and the expressions given in Table 6.1, the prefactors CZ

and the exponents γZ of Z–R relationships can in principle be employed to infer the
parameters of raindrop size distributions. It will be clear that for a given value of
γZ (–), Eq. (6.5) provides a direct estimate of the scaling exponent β (–). For the
prefactors the situation is a little more restrictive, since for each value of CZ only
one raindrop size distribution parameter can be estimated. The only one-parameter
distribution mentioned in Table 6.1 is the exponential distribution.

A given value of CZ (mm6m−3 (mmh−1)−γZ ) implies an estimate of the parameter
λ (mm−1 (mmh−1)β) of that distribution via

λ =

[
104

6πc

Γ (7)

Γ (4 + γ)

]1/(3−γ)

C
−1/(3−γ)
Z , (6.8)

which reduces to
λ = 44.3C−0.429

Z (6.9)

for c = 3.778 (m s−1 mm−γ) and γ = 0.67 (–). Using the corresponding expression for
κ (mm−1m−3 (mmh−1)−α, where α = 1−(4 + γ) β) given in Table 3.2, p. 79, Eq. (6.8)
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Figure 6.7: (a) Parameters λ (mm−1 (mmh−1)β) and β (–) of exponential parameterizations
for g (x) obtained from Battan’s (1973) 69 Z–R relationships (bold circles: orographic; bold
stars: thunderstorm; bold plusses: widespread/stratiform; bold crosses: showers; circles: no
unambiguous identification possible). Dashed line corresponds to Z = 200R1.6 (Marshall et
al., 1955), dash-dotted line to Z = 237R1.50 (Marshall and Palmer, 1948). (b) Idem for the
parameters κ (mm−1 m−3 (mmh−1)−α, where α = 1− 4.67β) and β.
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implies

κ =
104

6πc

1

Γ (4 + γ)

[
104

6πc

Γ (7)

Γ (4 + γ)

](4+γ)/(3−γ)

C
−(4+γ)/(3−γ)
Z , (6.10)

which for c = 3.778 and γ = 0.67 reduces to

κ = 4.62× 108C−2.00
Z . (6.11)

In order to be able to employ CZ for the identification of any of the other parameteri-
zations, one or more parameters have to be assumed constant9. The two coefficients of
Z–R relationships in principle provide no further information about these additional
parameters, which in general may also differ from one location to the next. There-
fore, the analysis which follows has been restricted to the exponential distribution.
An approach to relate the coefficients of Z–R relationships to the parameters of the
gamma distribution will be discussed in Section 6.5.

Eqs. (6.5), (6.9) and (6.11) have been employed to estimate the values of the scaling
exponents β and the parameters λ and κ of exponential raindrop size distributions
on the basis of the coefficients of Battan’s 69 Z–R relationships. Fig. 6.7 shows the
resulting scatter plots of β versus λ and β versus κ for the previously identified types
of rainfall. That Fig. 6.7(a) and (b) mimic each other closely is a result of the fact
that log κ and λ are nearly linearly related for the range of values of these parameters
considered here. It is again not easy to distinguish between the different types of
rainfall in these scatter plots, but orographic rainfall seems to be associated with
larger values of β, κ and λ, thunderstorm rainfall with smaller values of β, κ and λ
and widespread/stratiform rainfall with values in between.

This is confirmed by Table 6.5, which shows the mean values and associated stan-
dard deviations of the exponent β and the parameter λ for the different types of
rainfall. Clearly, the standard deviation of β in case of showers and that of λ in
case of orographic rainfall are of such a magnitude compared to the corresponding
means, that the mean results should be interpreted with care. This holds in fact
for all statistics in Table 6.5, as the sample sizes are extremely small. These results
merely indicate some tendencies, and not more than that.

Nevertheless, the results seem more or less consistent with what has been en-
countered before. Recall that β (–) can be interpreted physically as an indicator for
the proportion of diameter control in the variability of the raindrop size distribution
(Chapter 3, Section 3.5.3) and that λ (mm−1 (mmh−1)β) represents the inverse mean
raindrop diameter for R = 1 mmh−1 (Eq. 3.70, p. 82). Then it is seen that oro-
graphic rainfall is associated with almost pure diameter control (α ≈ −β) and small
mean raindrop diameters, confirming the results obtained in Chapter 4 (Section 4.2)
for Hilo, Hawaii. For thunderstorm rainfall exactly the opposite is the case, with a
relatively large proportion of raindrop concentration control (i.e. closer to equilib-
rium than orographic rainfall) and large mean raindrop diameters. The values for
widespread/stratiform rainfall fall again in between these two extremes. The mean

9Recall that the exponential parameterization is a special case of the gamma parameterization
for µ = constant = 0.
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Table 6.5: Summary statistics for the exponential g(x)-model as applied to Battan’s (1973)
69 Z–R relationships, stratified according to rainfall type. The category ‘Rest’ contains
all relationships for which an unambiguous identification of rainfall type is impossible, ‘nr.’
denotes the number of relationships in each category and ‘s.d.’ is the standard deviation
of the corresponding parameter. The parameter κ and the coefficients CZ and γZ of the
corresponding Z–R relationships are those implied by the mean values of the parameters β
and λ in each category.

Rainfall type nr. β λ κ CZ γZ
mean s.d. mean s.d.

Orographic 4 0.261 0.036 8.44 4.01 2.02× 105 47.4 1.61
Thunderstorm 5 0.185 0.022 3.53 0.58 3.44× 103 361 1.43
Widespread/
stratiform 10 0.189 0.074 4.20 0.46 7.74× 103 241 1.44
Showers 6 0.321 0.252 4.15 0.90 7.32× 103 248 1.75
Rest 44 0.202 0.068 4.21 0.97 7.85× 103 240 1.47
All 69 0.213 0.099 4.40 1.57 9.63× 103 216 1.50
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Figure 6.8: Mean Z–R relationships implied by the exponential g(x)-model for different rain-
fall types (based on Battan’s (1973) 69 Z–R relationships): orographic (bold line); thunder-
storm (dashed line); widespread/stratiform (dash-dotted line); showers (dotted line). The
solid lines indicate the envelope of the majority of Battan’s Z–R relationships.
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Figure 6.9: (a) Exponential models of the mean general raindrop size distribution func-
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showers (dash-dotted line). (b) Corresponding general rain rate density functions h(x)
(mm−1 (mmh−1)β).
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value of β for showers (0.321) is suspect. Via Eq. (3.38) (p. 64) it implies α = −0.499.
Substituting these values in Eqs. (3.5) and (3.6) (p. 59 then yields γρV = −0.178.
This suggests that the raindrop concentration in case of showers would decrease with
increasing rain rates, something which seems unlikely.

Table 6.5 also gives the values of the parameters κ and those of the prefactors
CZ (from the expression for the exponential parameterization in Table 6.1) and ex-
ponents γZ of Z–R relationships as implied by the mean values of β and λ for the
different types of rainfall. The Z–R relationships derived in this manner for oro-
graphic, thunderstorm and widespread/stratiform rainfall correspond quite closely to
those provided by Battan as being ‘typical’ for these types of rainfall. Fig. 6.8 shows
a plot of the obtained Z–R relationships for the four types of rainfall considered. For
reference, the envelope of 64 of Battan’s 69 Z–R relationships is indicated as well.
Fig. 6.9 gives the corresponding general raindrop size distribution functions g(x) and
general rain rate density functions h(x). Those for widespread/stratiform rainfall
and showers are indistinguishable. Again, qualitatively, the plotted functions have
the behavior one would expect for these types of rainfall. This serves to show that
the scaling law formulation does not only allow to derive consistent Z–R relationships
from raindrop size distribution parameterizations, but consistent raindrop size distri-
bution parameterizations from Z–R relationships as well. In the general framework
provided by the scaling law, they are two sides of the same coin.

6.5 Ulbrich’s N0–µ relationship revisited

6.5.1 General relationships implied by the scaling law for-

mulation

Suppose one wants to relax the hypothesis of an exponential raindrop size distribution
to a form with more than one parameter. Then the correspondence between a Z–R
relationship on the one hand and a raindrop size distribution parameterization on the
other will only be unique if the additional parameters are assumed to be constant or if
all parameters are assumed to be uniquely related to each other. Several approaches
in this direction have been proposed in the literature over the years, in particular for
the gamma parameterization. Therefore, the analysis here will be restricted to the
latter.

The expression for the prefactor CZ (mm6m−3 (mmh−1)−γZ ) for the gamma pa-
rameterization given in Table 6.1 can be inverted to yield for λ (expressed in units of
mm−1 (mmh−1)β)

λ =

[
104

6πc

Γ (7 + µ)

Γ (4 + γ + µ)

]1/(3−γ)

C
−1/(3−γ)
Z (6.12)

Using the corresponding expression for κ (mm−(1+µ) m−3 (mmh−1)−(1−(4+γ+µ)β)) given
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Figure 6.10: (a) Theoretical dependence of the parameter λ (mm−1 (mmh−1)β) of the
gamma model for g(x) on the parameter µ (–) for given values of the prefactor CZ of the
corresponding Z–R relationship (solid: 100; dashed: 200; dash-dotted: 300; dotted: 500).
(b) Idem for the parameter κ (mm−1m−3 (mmh−1)−(1−(4.67+µ)β)mm−µ).
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in Table 3.3, p. 80, Eq. (6.12) implies

κ =
104

6πc

1

Γ (4 + γ + µ)

[
104

6πc

Γ (7 + µ)

Γ (4 + γ + µ)

](4+γ+µ)/(3−γ)

C
−(4+γ+µ)/(3−γ)
Z . (6.13)

For µ = 0, these expression reduce to Eqs. (6.8) and (6.10) derived for the exponential
parameterization. In general however, λ and κ will not only depend on the value of
CZ but on that of µ (–) as well. Fig. 6.10 shows in what manner the parameters λ
and κ are related to µ for different values of the prefactor CZ . Apparently, for the
range of values considered here, λ and log κ depend both approximately linearly on µ.
Eqs. (6.12) and (6.13) can in principle be employed to estimate, for a particular value
of the parameter µ, the parameters λ and κ implied by Battan’s Z–R relationships.
Above, this has been done for the special case when µ = 0. In general, however, µ
will differ from one location to another and its value cannot be obtained from the
coefficients of the Z–R relationship.

6.5.2 Ulbrich’s approach

By a slightly different approach, Ulbrich (1983) has been able to obtain estimates of
µ for all of Battan’s Z–R relationships. Using his parameterization for the gamma
distribution (Eq. (3.71), p. 82), he obtains expressions for Z and R (and in general
any moment of the raindrop size distribution) in terms of N0 (mm−(1+µ) m−3), Λ
(mm−1) and µ (–). Subsequently, by eliminating10 Λ, Ulbrich derives a general power
law Z–R relationship with an exponent which depends solely on µ and a prefactor
which depends on both N0 and µ. In this manner, he is able to employ the expo-
nents γZ of Battan’s 69 Z–R relationships to estimate the corresponding parameters
µ. From them and the prefactors CZ he estimates the corresponding values of N0.
Ulbrich subsequently plots logN0 versus µ for Battan’s 69 Z–R relationships and
11 additional power law relationships between other pairs rainfall integral variables
(his Fig. 6) and finds an almost perfect linear relationship between the two. A linear
regression analysis reveals that lnN0 (with N0 expressed in cm−(1+µ)m−3) is related
to µ according to the equation

N0 = CN0 exp (γN0µ) , (6.14)

with CN0 = 6 × 104, γN0 = 3.2 and ‘the linear correlation coefficient between lnN0

and µ for these data greater than 0.98’. If Eq. (6.14) would represent a true physical
relation between N0 and µ, it would have important practical implications for radar
remote sensing of rainfall, because it would reduce the number of degrees of freedom
of the gamma raindrop size distribution from three to two. Indeed, during the past
decade Eq. (6.14) has found wide application in radar meteorology, notably in feasi-
bility studies concerning polarimetric weather radar (see Illingworth and Blackman,
1999 and references therein).

10As a matter of fact, Ulbrich (1983) eliminates the median-volume raindrop diameterD0 = 3.67+µ
Λ

(mm) instead of the inverse mean diameter Λ (mm−1), but the final result is identical.
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How can Ulbrich’s approach be understood in terms of the framework developed
in this thesis? Since Ulbrich derives one value of N0 and one value of µ for each Z–R
relationship, he implicitly assumes these two variables to be independent of the rain
rate R. This is a result of the fact that he eliminates Λ, thereby implicitly assuming
that all variation with R arises as a result of variation in Λ. From Eq. (3.72) (p. 83)
and Table 3.6 it follows directly that the assumption of a rain rate-independent N0

implies that
1− (4 + γ + µ) β = 0, (6.15)

or
µ = β−1 − (4 + γ) (6.16)

and that consequently
N0 = κ. (6.17)

It has already been established that the scaling exponent β is related to the exponent
γZ according to Eq. (6.4) and that the parameter κ is related to the prefactor CZ

according to Eq. (6.13). Substitution of these expressions in Eqs. (6.16) and (6.17)
yields

µ =
7− (4 + γ) γZ

γZ − 1
(6.18)

and

N0 =

{
Γ (7 + µ)

CZ [6π × 10−4cΓ (4 + γ + µ)]γZ

}1/(γZ−1)

, (6.19)

in units of mm−(1+µ)m−3. These expressions11 relate µ to γZ and N0 to CZ and γZ .
As a matter of fact, they equal Ulbrich’s Eqs. (22) and (23) for the special case when
the moments involved in the power law relationship are Z and R.

Fig. 6.11 shows plots of λ and κ = N0 versus µ (obtained from CZ and γZ using
Eqs. (6.12), (6.18) and (6.19)) corresponding to Battan’s 69 Z–R relationships. For
reference, the curves of Fig. 6.10 have been re-plotted in this figure. It is clear that
a significant number of data points correspond to values of µ smaller or equal than
−1. For non-truncated raindrop size distributions, these are not permissible, as they
correspond to diverging raindrop concentrations ρV (Table 3.5). This already indicates
one weak point of the approach adopted by Ulbrich.

Another problem associated with his approach is the following. The square of
the sample linear correlation coefficient between ln κ (= lnN0) and µ for the data
points in Fig. 6.11(b) (i.e. the coefficient of determination r2 of a linear regression
of ln κ on µ) is only 0.776, whereas Ulbrich (1983) finds r2 ≈ 0.96. The origin of
this discrepancy is that Ulbrich does not express N0 in units of mm−(1+µ)m−3, but
in units of cm−(1+µ) m−3. The corresponding values can easily be obtained from the
ones which have already been plotted in Fig. 6.11(b) by multiplying them with 101+µ.

11Sempere Torres et al. (1994) use the parameters of gamma distributions adjusted in this man-
ner by Ulbrich (1983) to some of Battan’s (1973) Z–R relationships as a means to verify the
self-consistency of the scaling exponents α and β. However, Ulbrich’s approach guarantees self-
consistency and it is therefore not surprising that Sempere Torres et al. find that the obtained
exponents satisfy the self-consistency relationship (α = 1− (4 + γ)β) perfectly.
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Figure 6.11: (a) Dependence of the parameter λ (mm−1 (mmh−1)β, where β = (4.67 + µ)−1

in this case) of the gamma model for g(x) on µ (–) for Battan’s (1973) 69 Z–R relationships,
as implied by Ulbrich’s (1983) assumption of a rain rate-independent N0 (which therefore
equals κ). (b) Idem for the parameter κ = N0 (mm−(1+µ)m−3 ). Bold circles: orographic;
bold stars: thunderstorm; bold plusses: widespread/stratiform; bold crosses: showers; cir-
cles: no unambiguous identification possible.
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Figure 6.12: (a) Dependence of κ = N0 (expressed in units of cm−(1+µ)m−3 ) on µ for
Battan’s (1973) 69 Z–R relationships, as implied by Ulbrich’s (1983) assumption of a rain
rate-independent N0. Solid line: theoretical κ–µ relationship for CZ = 100; dashed line:
linear regression of lnκ on µ; dotted line: theoretical κ–µ relationship for CZ = 500. (b)
Idem for κ expressed in units of m−(1+µ)m−3 =m−(4+µ).
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Table 6.6: Dependence on the units of κ = N0 of the parameters CN0 and γN0 and the
associated coefficients of determination r2 of regression relationships of the form N0 =
CN0 exp(γN0µ) for Battan’s (1973) 69 Z–R relationships, as implied by Ulbrich’s (1983)
assumption of a rain rate-independent N0. As suggested by Ulbrich, the parameters and
r2-values have been obtained from linear regressions of lnN0 on µ.

Units of κ = N0 CN0 γN0 r2

mm−(1+µ)m−3 7.00× 103 0.950 0.776
cm−(1+µ) m−3 7.00× 104 3.25 0.976
m−(1+µ)m−3 = m−(4+µ) 7.00× 106 7.86 0.996

The result is shown in Fig. 6.12(a). Visually, the linear dependence of lnN0 and µ
has become significantly stronger. This is confirmed by the corresponding coefficient
of determination, which now equals 0.976, approximately equal to that reported by
Ulbrich. As a matter of fact, this correlation can be made to increase even more, when
N0 is expressed in SI units (m−(4+µ)). This corresponds to a further multiplication of
the N0-values by 1001+µ. Fig. 6.12(b) shows the result. The dependence of lnN0 on
µ has become almost perfect, without any scatter. The corresponding coefficient of
determination has increased to 0.996. Table 6.6 summarizes the results. Also given
are the coefficients of a regression relation of the form of Eq. (6.14).

6.5.3 The N0–µ relationship and spurious correlation

In AppendixG, Ulbrich’s approach is analyzed from a theoretical point of view. Two
concrete results are obtained. First, it is demonstrated that a first order Taylor series
expansion of lnN0 (= ln κ with κ according to Eq. (6.13)) about µ = 0 yields an
expression of the form of Eq. (6.14) with coefficients which are numerically related to
the prefactor CZ of the Z–R relationship according to

CN0 = 4.62× 108C−2.00
Z (6.20)

and
γN0 = 3.25− 0.429 lnCZ , (6.21)

if c = 3.778 m s−1 mm−γ and γ = 0.67 (Atlas and Ulbrich, 1977) and N0 is expressed
in units of mm−(1+µ) m−3. Note that Eq. (6.20) equals Eq. (6.11), which is logical
because for µ = 0 Eq. (6.14) reduces to N0 = κ = CN0 . Eqs. (6.20) and (6.21) provide
a theoretical explanation for the approximately straight line behavior observed in
Fig. 6.10(b) and Fig. 6.11(b) where κ has been plotted against µ on semi-logarithmic
paper.

The effect of expressing N0 in cm−(1+µ)m−3 instead of in mm−(1+µ) m−3 is a mul-
tiplication of CN0 by 10 and an increase of γN0 with ln 10. For the typical mean value
of CZ = 250, the resulting values are CN0 = 7.39 × 104 and γN0 = 3.18, quite close
to Ulbrich’s (1983) empirically determined values (6 × 104 and 3.2). For CZ = 277
the values become almost perfectly equal to those of Ulbrich (CN0 = 6.02 × 104 and
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γN0 = 3.14). CZ = 277 happens to be exactly the (arithmetic) mean value of the
prefactors of all 69 Z–R relationships quoted by Battan (1973).

In other words, a first order Taylor series expansion of lnN0 about µ = 0 shows
that the strong positive correlation between lnN0 (withN0 expressed in cm−(1+µ)m−3)
and µ found by Ulbrich (1983) can be explained purely on theoretical grounds. It
is the result of Ulbrich’s implicit assumption that N0 is independent of rain rate. A
closer look at the functional form of the gamma raindrop size distribution (NV(D) =
N0D

µ exp (−ΛD)) reveals that when D is expressed in units of cm (a consequence of
Ulbrich’s units for N0) then high values of µ correspond to very low values of Dµ,
because typical equivalent spherical raindrop diameters are much smaller than 1 cm.
In order to compensate for this effect and ensure that total integrals over NV (D)
(such as the rain rate R) remain within physically realistic ranges, the value of N0

then has to be very high. Exactly the opposite effect is at work for negative values
of µ.

A second result of AppendixG is that it is demonstrated that if the units of D
are changed such that its original value changes to D′ = s−1D and consequently the
original value of N0 changes to N

′
0 = s1+µN0 then the parameters of the corresponding

N ′
0–µ relationship become

CN ′

0
= sCN0 (6.22)

for the prefactor,
γN ′

0
= γN0 + ln s (6.23)

for the exponent and

ρ2N ′

0
=

ρ2N0
(γN0 + ln s)2

ρ2N0
(γN0 + ln s)2 +

(
1− ρ2N0

)
γ2
N0

(6.24)

for the square of the correlation coefficient (coefficient of determination) between lnN ′
0

and µ. Eqs. (6.22) and (6.23) can of course be obtained directly from Eq. (6.14) via
multiplication with s1+µ. Eq. (6.24) is interesting in that it provides a priori estimates
of the change of the correlation coefficient with changes in the units of N0. Note that
ρN ′

0
remains positive as long as the slope of the regression line (γN ′

0
) remains positive,

i.e. as long as γN0 + ln s > 0. It becomes zero when s = exp (−γN0). Obviously, ρ2N ′

0

reduces to ρ2N0
for s = 1.

The parameter values of Ulbrich’s (1983) regression line are CN0 = 6× 104, γN0 =
3.2 and ρ2N0

= 0.96 (with N0 expressed in cm−(1+µ)m−3). Hence, if the units of N0

were to be changed to mm−(1+µ)m−3 (which corresponds to s = 0.1) then CN0 would
become 6 × 103, γN0 would be reduced to 0.9 and ρ2N0

would be reduced to 0.66
(corresponding to a correlation coefficient of approximately 0.8). This is comparable
to what has been estimated from Fig. 6.11(b). Similarly, Eqs. (6.22)–(6.24) are able
to perfectly predict the values given in Table 6.6. Starting with N0 expressed in any
of the indicated units, these equations can be used to obtain the values of CN0, γN0

and ρ2N0
for N0 expressed in one of the other units. As the strong positive correlation

between lnN0 and µ found by Ulbrich (1983) can be explained entirely in terms of
the particular units he employed for N0, it is a spurious one. As a matter of fact, it



198 CHAPTER 6. REFLECTIVITY – RAIN RATE RELATIONSHIPS

can be made to disappear entirely and even rendered negative by a simple change of
units.

In short, the parameter N0, with units which depend on the value of the parameter
µ, is not a very suitable concentration parameter in the gamma raindrop size distribu-
tion. Alternative parameters, such as the raindrop concentration (Chandrasekar and
Bringi, 1987) or the recently proposed parameters NL (Illingworth and Blackman,
1999; Illingworth and Johnson, 1999) and N∗

0 (Dou et al., 1999; Testud et al., 1999),
all parameters with units independent of the value of µ, are preferable12.

6.6 Summary and conclusions

A new method for establishing power law Z–R relationships has been presented. It
is based on the scaling law formulation for the raindrop size distribution. It has
been demonstrated that once a self-consistent parameterization for the raindrop size
distribution has been established for a particular location, the coefficients of the Z–R
relationship follow naturally. They are two sides of the same coin. The exponent of
the Z–R relationship is uniquely determined by the value of the scaling exponent β,
its prefactor is a function of the parameters of the general raindrop size distribution
function (or general rain rate density function). Therefore, the dependence of the
Z–R relationship on the shape of the (scaled) raindrop size distribution is entirely
contained in the prefactor.

Specific expressions have been presented for the exponential, gamma, generalized
gamma, Best and lognormal parameterizations for the general raindrop size distribu-
tion function. These have subsequently been used to derive Z–R relationships using
the parameterizations for the raindrop size distribution obtained in Chapters 4 and 5.
The results show that besides a strong climatological variability, Z–R relationships
exhibit an even more pronounced inter-event variability (within one rainfall climatol-
ogy). These observations are consistent with estimates of these variabilities reported
in the literature. This suggests that climatological Z–R relationships are probably of
little practical use in the radar estimation of rainfall. One should be able to distin-
guish between different types of rainfall, perhaps on the basis of the parameters of the
scaling law for the raindrop size distribution. The strong negative dependence ob-
served between the prefactors and exponents of power law R–Z relationships has been
shown to be the result of a spurious correlation and should therefore be interpreted
with care.

12The parameters NL and N∗

0 (which are the same) are related to the concept of the normalized
gamma distribution. They are defined as the equivalent N0 of an exponential raindrop size distribu-
tion with the same liquid rainwater content W and median-volume raindrop diameter D0,V as the
gamma distribution under consideration. Using the definitions of W and D0,V for the exponential
distribution given in Chapter 2, it can be shown that NL and N∗

0 are related to N0 according to

NL = N∗

0 = N0
Γ (4 + µ)

Γ (4)

(
3.67

3.67 + µ

)4

Λ−µ.
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The 69 Z–R relationships reported by Battan (1973) have been used to estimate
the parameters of the corresponding exponential forms of the general raindrop size
distribution function. The Z–R data have been stratified according to rainfall type
(orographic, thunderstorm, widespread/stratiform and showers) and a mean parame-
terization has been derived for each type of rainfall. The obtained functional forms are
consistent with the type of rainfall to which they pertain. It has been demonstrated
that if the prefactors and exponents of Z–R relationships are used to estimate the
parameters of other forms than the exponential distribution, assumptions have to be
made regarding the values of the additional parameters.

One such an approach is that of Ulbrich (1983), who assumes the parameter N0

of the gamma raindrop size distribution to be independent of rain rate. It has been
shown that the widely used exponential N0–µ relationship he obtains on the basis
of an analysis Battan’s Z–R relationships is in fact a spurious relationship. It is
the result of the fact that the units of N0 depend on the value of µ. It is therefore
recommended to abandon N0 as concentration parameter in the gamma raindrop size
distribution and replace it in favor of some other parameter.
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Chapter 7

Experimental verification of the
Poisson homogeneity hypothesis in
stationary rainfall1

7.1 Introduction

7.1.1 Background

It has been explained in Chapters 1 and 2 that the concept of the raindrop size dis-
tribution, used extensively throughout this thesis, is only a useful and valid concept
if raindrops, at least over some minimum scale, are distributed homogeneously in
space and time. In analogy with the terminology used for transport phenomena in
porous media, this minimum spatial scale could be called the representative elemen-
tary volume of rainfall. If rainfall were not homogeneous over some minimum scale, it
would be impossible to define a representative elementary volume and consequently
the raindrop size distribution would intrinsically depend on the size of the reference
volume to which it pertains. Traditionally however, the raindrop size distribution has
been defined independent of any notion of spatial or temporal scale, thus implicitly
assuming homogeneity at the local scale.

Because both the radar reflectivity factor Z and the rain rate R are defined in
terms of the raindrop size distribution (Chapter 1), local homogeneity is a fundamen-
tal assumption in radar meteorology as well. In this application, the homogeneity
hypothesis is perhaps even stronger than for the concept of the raindrop size dis-
tribution as such, because typical radar sample volumes can be as large as 1 km3.
Besides via the raindrop size distribution, the homogeneity assumption also appears
in connection with the fluctuation statistics of the backscattered signal (“echo”) re-
ceived from a radar sample volume filled with hydrometeors (in this case raindrops).
In particular, it forms the basis of the classical Rayleigh probability distribution for

1Adapted version of Uijlenhoet, R., Stricker, J. N. M., Torfs, P. J. J. F., and Creutin, J.-D.
(1999). Towards a stochastic model of rainfall for radar hydrology: Testing the Poisson homogeneity
hypothesis. Phys. Chem. Earth (B), 24:747–755.
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the sample-to-sample fluctuations of the echo voltage (i.e. the exponential distribu-
tion for those of the echo power). This can be considered one of the cornerstones of
radar meteorology (Marshall and Hitschfeld, 1953; Wallace, 1953; Atlas, 1964). Even
though the theory of radar echo fluctuations has been generalized to be able to cope
with inhomogeneities at larger scales, inducing non-Rayleigh statistics as the com-
bined result of antenna motion and target variability, the assumption of homogeneity
at the local scale has not been abandoned (Smith, 1966; Rogers, 1971; Jameson and
Kostinski, 1996). The distribution of the sample-to-sample fluctuations determines in
what manner the variance of the signal decreases under local averaging and therefore
the accuracy with which the mean echo power can be estimated. It is the mean echo
power which determines the radar reflectivity factor via the weather radar equation
(Eq. (1.1)).

The homogeneity hypothesis is not only fundamental to the concept of the rain-
drop size distribution and to the principle of weather radar, it has been widely used
in the study of sampling fluctuations in rainfall observations as well (e.g. Sasyo, 1965;
Cornford, 1967; Cornford, 1968; Joss and Waldvogel, 1969; de Bruin, 1977; Gertzman
and Atlas, 1977; Stow and Jones, 1981; Wirth et al., 1983; Wong and Chidambaram,
1985; Chandrasekar and Bringi, 1987; Hosking and Stow, 1987; Chandrasekar and
Gori, 1991; Smith et al., 1993; Bardsley, 1995). Most of these investigations have
simply assumed rainfall to be homogeneous without testing the hypothesis. Although
there is indeed some theoretical justification for using the “law of rare events” as a
model of raindrop arrivals at the ground, the choice of the Poisson model seems to
have been made mainly because of its mathematical tractability.

Due to the small collector areas (typically 20–200 cm2) and the short accumu-
lation periods (typically 1–60 s) nowadays commonly employed by surface raindrop
measurement devices such as disdrometers and optical spectrometers, the numbers of
raindrops in samples collected with such instruments are typically not large from a
statistical point of view. As a result, the observed rain rate fluctuations must be due
‘both to statistical sampling errors and to real fine-scale physical variations which
are not readily separable from the statistical ones’ (Gertzman and Atlas, 1977) (see
Fig. 1.2). As mentioned in Chapter 1, the terminology generally adopted for these two
types of fluctuations is sampling fluctuations and natural variability, respectively. It
would be of practical importance to be able to distinguish between both sources of
variability, because the parameters of raindrop size distributions and the coefficients
of Z–R relationships should represent the properties of the type of rainfall to which
they pertain as much as possible and the properties of the raindrop sampling device
from which they are derived as little as possible. It is therefore necessary to investi-
gate to what extent rainfall fluctuations observed with different types of instruments
reflect the properties of the rainfall process itself and to what extent they are merely
instrumental artefacts.

Homogeneity (in a statistical sense) implies that the sampled numbers of rain-
drops in fixed volumes and time intervals obey Poisson statistics. Recently, several
investigations have questioned the validity of the Poisson homogeneity hypothesis in
rainfall because it would be unable to cope with the spatial and temporal clustering of
raindrops observed in reality. Two groups of investigations can be distinguished: (1)
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those which propose to generalize the restrictive homogeneous Poisson process (which
has a constant mean) to a Poisson process with randomly varying rate of occurrence
(i.e. to a so-called doubly stochastic Poisson process or Cox process) (e.g. Smith,
1993a; Kostinski and Jameson, 1997; Jameson and Kostinski, 1998, 1999a; Kostinski
and Jameson, 1999; Jameson et al., 1999); (2) those which propose to abandon the
Poisson process framework altogether and replace it with a (multi-)fractal framework
(e.g. Lovejoy and Schertzer, 1990; Zawadzki, 1995; Lavergnat and Golé, 1998). The
cited doubly stochastic Poisson process models tend to produce clustering of raindrops
on certain distinct, predefined spatial and/or temporal scales. The implications of this
type of rainfall behavior for sample-to-sample radar echo fluctuations are discussed
by Jameson and Kostinski (1999b). (Multi-)fractal processes on the other hand are
associated with clustering of raindrops on all scales. If rainfall would indeed exhibit
such a strong clustering behavior, the implications for radar remote sensing of rainfall
would be profound, as pointed out by Lovejoy and Schertzer (1990). For instance,
there would no longer be a simple proportionality between the expected number of
raindrops in a radar sample volume and the size of that sample volume. Due to
increased coherent scattering, it would affect the sample-to-sample echo fluctuations
as well. In short, it would essentially be necessary to revise the currently accepted
theory of weather radar.

(Multi-)fractal models have originally been used to describe turbulence. Since
rainfall is intimately related to the (turbulent) wind field in the atmosphere, it seems
natural to use the same approach for modeling rainfall (e.g. de Lima, 1998). However,
Fabry (1996) argues that, since raindrops are not passive tracers of the wind field, the
analogy between wind and rain may break down at the smallest spatial and temporal
scales. The fact that raindrops have different sizes and therefore different fall speeds
would tend to filter out the scaling properties of the wind field at those scales. A
“white noise” (i.e. homogeneous) regime would be the result.

Additionally, it has recently been demonstrated that one of the strongest empirical
arguments in favor of the (multi-)fractal hypothesis at the raindrop scale available to
date (the results reported by Lovejoy and Schertzer (1990)) may not be as convincing
as it seems (Jameson and Kostinski, 1998). Lovejoy and Schertzer (1990) report on
a box counting analysis of blotting paper observations of the spatial distribution of
raindrops. They find evidence for the scaling behavior of raindrops in space. How-
ever, first of all the limited size of their sample (comprising only 452 raindrop stains)
questions the statistical significance of their results. Moreover, since the sizes of the
raindrops are not taken into account in their analysis, it remains unclear whether the
reported scaling behavior is exhibited to the same extent by raindrops of all sizes.
Perhaps the deviation from homogeneity is largely restricted to particular raindrop
sizes. Thirdly, Jameson and Kostinski (1998) present the results of a numerical sim-
ulation experiment intended to mimic Lovejoy and Schertzer’s box counting analysis.
They find exactly the same fractal dimension as Lovejoy and Schertzer, even though
their simulation is based on uniformly distributed raindrops, consistent with the Pois-
son hypothesis. This indicates that the fractal dimension reported by Lovejoy and
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Schertzer may have been a mere sampling artifact2.

7.1.2 Objectives

The objective of this chapter is to investigate experimentally whether the raindrop
arrival process at the ground can at times be considered a homogeneous Poisson
process or whether it systematically exhibits clustering (or possibly even scaling) be-
havior. Kostinski and Jameson (1997) find indications for Poisson behavior during
‘a time of unusually constant flux’. The same authors argue that ‘evidence of non-
clustering, Poissonian structure conflicts with any ubiquitous fractal description of
rain’ (Jameson and Kostinski, 1998). It would not conflict with the doubly stochastic
Poisson process description of rain, however. The latter contains the homogeneous
Poisson process as a limiting case. In view of these arguments, this chapter will report
on the analysis of a stationary dataset with mostly sampling fluctuations and very
little natural variability. Acceptation of the Poisson homogeneity hypothesis would
then automatically imply a rejection of the (multi-)fractal hypothesis (at least at the
raindrop scale).

Section 7.2 will present the available dataset and will review some properties of the
homogeneous Poisson process which are relevant to the data analysis which follows. In
Section 7.3 the results of two types of analysis will be presented: (1) a global analysis
taking into account all raindrops regardless of their size; (2) a spectral analysis in
which a distinction between the raindrops in the different diameter classes is made.
Finally, Section 7.4 will present the summary and conclusions of this chapter.

7.2 Materials and methods

7.2.1 Rainfall data

The available dataset consists of raindrop counts in 16 diameter intervals of 0.21 mm
width for 1066 consecutive time intervals of about 10 s duration, i.e. almost 3 h in to-
tal. The data have been collected as part of the NERC Special Topic HYREX, a large
hydrological radar experiment organized in the United Kingdom, at the Bridge Farm
Orchard site on 14 February 1995. The instrument used is an Illingworth-Stevens
Paired-Pulse Optical Disdrometer, which has an area presented to the rain of 50 cm2

(Illingworth and Stevens, 1987). Although the first diameter interval actually com-
prises all raindrops smaller than 0.72 mm and the last diameter interval all raindrops
larger than 3.65 mm, the limits of these intervals are simply taken to be 0.51 mm and
3.86 mm, respectively, in accordance with the class widths of the other intervals. This
will not affect the results of the current data analysis, as it will be restricted to the
raindrop counts themselves and does not involve the calculation of rainfall integral
variables. Since the first diameter interval is at the resolution limit of the instrument

2That this is indeed the case can be demonstrated analytically (Uijlenhoet, R. (1999). An expla-
nation for the apparent fractal dimension of homogeneously distributed raindrops. J. Atmos. Sci.
(submitted)).
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and the last interval in general contains only very few raindrops, these diameter in-
tervals are often disregarded in practice anyway (e.g. Hall and Calder, 1993). Rain
rates calculated using the observed raindrop counts vary from 0 to 9 mmh−1. The
average wind speed during the event amounts approximately 3 m s−1.

As mentioned in Section 7.1, observed rain rate fluctuations are caused both by
sampling fluctuations and by natural variability, which are not readily separable from
each other. That is why experimental studies intended to test the Poisson homo-
geneity hypothesis in rain are often bound to fail. Unless of course there are strong
indications that the amount of natural variability present in a particular time series
is negligible as compared to the amount of sampling fluctuations. This rare situation
happens to be the case in the dataset at hand during a period of 35 min. This pe-
riod contains 210 consecutive 10 s raindrop size distributions (comprising a total of
6281 raindrops) and is roughly characterized by uncorrelated fluctuations around a
constant mean rain rate of about 3.5 mmh−1. Fig. 7.1(a) shows the time series of the
total raindrop arrival rate for this period, i.e. including all diameter intervals. The 5
min mean raindrop arrival rate drawn in this figure does not display any systematic
changes (trends) during this period, which is an indication that the time series may
be considered approximately stationary.

Fig. 7.2(a) gives the empirical autocorrelation function calculated from the 210
raindrop count observations. If the true autocorrelation is zero then the sample au-
tocorrelation is known to be approximately normally distributed with mean µ =
−1/ (n− 1) and variance σ2 = (n− 2) / (n− 1)2, provided the number of observa-
tions n from which the autocorrelation is calculated is large in comparison to the
number of time lags considered (e.g. Haan, 1977). In this case n = 210, resulting in
µ ≈ −0.005 and σ ≈ 0.07. This asymptotic property has been used to define µ±2σ as
approximate 95% confidence limits for the autocorrelation function. Fig. 7.2(a) shows
that although the raindrop arrival rate generally displays very little autocorrelation,
it is probably not negligible for the first (10 s) time lag. Nevertheless, the amount
of natural variability present in this dataset seems small enough to allow an analy-
sis of the raindrop count fluctuations for the purpose of verifying the homogeneity
hypothesis.

7.2.2 The homogeneous Poisson process

If the stochastic process of raindrops arriving at a disdrometer is indeed a homo-
geneous Poisson process with rate parameter ρA (m−2 s−1), the probability that the
instrument with receptor area A (m2) will catch n (0, 1, 2, · · ·) (–) raindrops in a time
interval of length t (s) is

Pr {n(t) = n} = e−AρAt (AρAt)
n

n!
. (7.1)

This is the frequency function of a Poisson distribution with parameter AρAt (–) (e.g.
Mood et al., 1974). The random variable n(t) denotes the number of raindrops caught
by the raingauge in an interval of length t. For a homogeneous Poisson process, n(t)
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Figure 7.1: Time series of 10 s raindrop counts (thin lines) and 5 min mean raindrop
counts (bold lines) together with respective 95% confidence intervals (dashed lines). (a) All
raindrop diameters. (b) Raindrop diameters larger than 1.14 mm.
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Figure 7.2: Empirical autocorrelation functions of 10 s raindrop counts (solid lines) together
with approximate 95% confidence limits (dashed lines). (a) All raindrop diameters. (b)
Raindrop diameters larger than 1.14 mm.

has the same probability distribution for any interval of length t. Moreover, for non-
overlapping intervals these distributions are independent (e.g. Cox and Isham, 1980).
The mean of n(t) is equal to its variance and is proportional to t according to

E [n(t)] = Var [n(t)] = AρAt. (7.2)

This property of the Poisson process can be used to define a so-called dispersion index
as the ratio of Var[n(t)] to E[n(t)] (e.g. Cox and Isham, 1980). For a homogeneous
Poisson process this index obviously equals one for any duration t. Significant de-
viations from one observed in real data can then be interpreted as indications for
deviations from homogeneous Poisson behavior.

A useful property of the homogeneous Poisson process is that the sum of M
independent random variables ni(t) (for i = 1, 2, · · ·,M) each distributed according
to Eq. (7.1) follows a Poisson distribution with parameter MAρAt (e.g. Mood et al.,
1974). This property directly leads to an exact expression for the frequency function
of the sample mean (i.e. its sampling distribution) in samples from a homogeneous
Poisson process (again for n = 0, 1, 2, · · ·), namely

Pr

{
1

M

M∑

i=1

ni(t) =
n

M

}
= Pr

{
M∑

i=1

ni(t) = n

}

= e−MAρAt (MAρAt)
n

n!
. (7.3)

This expression can be used to obtain an estimate of the confidence interval about
the sample mean at a given level of significance. Confidence intervals may aid to
distinguish between significant deviations from homogeneous Poisson behavior and
sampling fluctuations.

In a similar manner, the exact sampling distributions of the sample frequencies in
samples from a homogeneous Poisson process may be obtained. Consider a random
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sample of M intervals from the Poisson distribution defined by Eq. (7.1). To calculate
the sampling fluctuations around Pr{n(t) = n}, it must be recognized that the sample
at hand can be interpreted as a sequence of M independent Bernoulli trials, where
for each trial Pr{n(t) = n} is the probability of success and Pr{n(t) 6= n} = 1−
Pr{n(t) = n} the probability of failure. The probability that out of a total of M
intervals, m (≤ M) intervals contain exactly n raindrops is then found to be governed
by the binomial probability distribution

Pr {m(M,n) = m} =

(
M

m

)
[p(n)]m [1− p(n)]M−m . (7.4)

Here, the random variable m(M,n) denotes the number of intervals out of a total of
M containing exactly n raindrops and p(n) is a shorthand notation for Pr{n(t) = n}.
By the same token, the sampling distribution of the sample cumulative frequencies
follows Eq. (7.4), with p(n) now representing Pr{n(t) ≤ n}. Again, these sampling
distributions may be employed to estimate confidence intervals.

7.3 Results and discussion

7.3.1 Global analysis

Eq. (7.1) has been used to calculate 95% confidence limits for the raindrop count
time series in Fig. 7.1(a). These can be found as the 0.025 and 0.975 quantiles of
the cumulative Poisson distribution with mean Aρt = 6281/210 = 29.9 raindrops.
Fig. 7.1(a) shows that the data exceed these confidence limits 33 times in total, 14
times the upper confidence limit and 19 times the lower limit. At the 95% confidence
level one would expect this to happen on the average only about 10 times in 210
observations (0.05 × 210 = 10.5) if these would form a random sample drawn from
the Poisson population with mean 29.9. This indicates that the total raindrop count
is more dispersed (i.e. more heavily fluctuating) than would be expected on the basis
of homogeneous Poisson behavior.

In an entirely analogous manner, Eq. (7.3) has been employed to calculate 95%
confidence limits for the 5 min mean raindrop counts shown in Fig. 7.1(a). The result
of this exercise is seen to be 3 exceedances out of 7 observations, again indicating a
more erratic behavior than expected for a homogeneous Poisson process.

Fig. 7.3 shows the series of Poisson dispersion indices calculated over consecutive 5
min intervals. According to Hosking and Stow (1987), the asymptotic distribution of
the dispersion index calculated from a random sample of n observations drawn from
a Poisson distribution has mean µ = 1 and standard deviation σ = [2/ (n− 1)]1/2.
In this case, each 5 min interval contains 30 basic 10 s intervals (i.e. n = 30), which
yields σ ≈ 0.26. Analogous to what has been done for the autocorrelation function,
µ ± 2σ has been defined as the approximate 95% confidence limits for the Poisson
dispersion index. Once again the data seem to indicate overdispersion with respect
to a homogeneous Poisson process.
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Figure 7.3: Time series of 5 min Poisson dispersion indices of 10 s raindrop counts (solid
lines) together with approximate 95% confidence limits (dashed lines). (a) All raindrop
diameters. (b) Raindrop diameters larger than 1.14 mm.

Finally, a χ2 test has been carried out to compare the actual number of observa-
tions (out of a total of 210) in 61 different classes (from 0 to 60 raindrops) with the
theoretically expected number on the basis of a Poisson distribution with the same
mean. The resulting value of the χ2 goodness-of-fit statistic is found to be 1832. This
is two orders of magnitude larger than the 0.95 quantile of a χ2 distribution with 59
degrees of freedom (e.g. Mood et al., 1974). The conclusion can only be that the
hypothesis that the experimental data can be considered a random sample from a
Poisson distribution is rejected.

7.3.2 Spectral analysis

The question remains whether the observed deviations from homogeneity are re-
stricted to particular raindrop diameter intervals. To this end, the raindrop count
fluctuations have been analyzed for each diameter interval separately. A generaliza-
tion of a property of the homogeneous Poisson process mentioned in Section 7.2.2
is that the sum of M independent Poisson distributed random variables ni(t) (for
i = 1, 2, · · ·,M) with different means AρA,it follows a Poisson distribution with pa-
rameter A

∑M
i=1 ρA,it (e.g. Cox and Isham, 1980). This means that if the raindrop

counts in each diameter interval separately behave according to Poisson statistics,
the total raindrop count over all intervals together will behave according to Poisson
statistics as well.

With this in mind, the empirical frequency function calculated from the 210 ob-
servations has been compared for each raindrop diameter interval with the theoretical
frequency function expected for a homogeneous Poisson process with the same mean.
Fig. 7.4 shows the results for the first 6 intervals, corresponding to diameters from
0.51 mm to 1.77 mm. The error bars in this figure represent 95% confidence limits,
calculated using Eq. (7.4). Fig. 7.4 also provides the mean raindrop count, the value
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Figure 7.4: Empirical (crosses) and theoretical Poisson (circles) frequency functions of rain-
drop counts for diameters between 0.51 and 1.77 mm diameter (24 degrees of freedom).
Error bars indicate 95% confidence limits. Also indicated are the average number of rain-
drops per 10 s interval, the Poisson dispersion index and the χ2 goodness-of-fit statistic.
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Figure 7.5: Empirical (crosses) and theoretical Poisson (circles) cumulative frequency func-
tions of raindrop counts for diameters between 0.51 and 1.77 mm diameter. Error bars
indicate 95% confidence limits. Also indicated are the average number of raindrops per 10
s interval, the Poisson dispersion index and the maximum absolute deviation between the
empirical and the theoretical cumulative frequency function.
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of the Poisson dispersion index and the value of the χ2 goodness-of-fit statistic for
each diameter interval. Fig. 7.5 gives the corresponding results for the empirical cu-
mulative frequency function. Again, the 95% confidence limits have been calculated
using Eq. (7.4). This figure also provides the maximum absolute deviation between
the empirical and the theoretical cumulative frequency function for each diameter
interval.

A visual inspection of Figs. 7.4 and 7.5 reveals that only the first diameter interval
shows major deviations from Poisson behavior. For all other intervals the relative
frequencies more or less correspond to what can be expected on the basis of Poisson
statistics. The fit with the Poisson frequency function becomes nearly perfect for the
last diameter intervals3. A closer look at the values of the Poisson dispersion indices
may give these observations a more quantitative basis. For n = 210 observations, the
value of the standard error for this index (which is by definition equal to the standard

deviation of its sampling distribution [2/ (n− 1)]1/2) becomes about 0.1. This means
roughly that there is a probability of only 5 percent that fluctuations outside the range
between 0.8 and 1.2 are the result of pure sampling effects. All diameter intervals
containing raindrops with diameters larger than 1.14 mm fall roughly within this
range. The 0.95 quantiles of χ2 distributions with 24 degrees of freedom is found to
be 36.4 (e.g. Mood et al., 1974). Again, the hypothesis that the raindrop counts
can be considered random samples from Poisson distributions is only rejected for
the first three diameter intervals, containing raindrops with diameters less than 1.14
mm. Figs. 7.1(b), 7.2(b) and 7.3(b) show the time series of raindrop counts, the
empirical autocorrelation function and the time series of Poisson dispersion indices
for all raindrops larger than 1.14 mm. These figures confirm the validity of the Poisson
homogeneity hypothesis for raindrops of this size.

These findings are in close agreement with those of Hosking and Stow (1987).
In a first case study of a time series of total raindrop counts, they find strong de-
viations from Poisson behavior toward clustering of raindrops as well. Moreover, a
second, more detailed case study indicates that clustering occurs predominantly for
the smallest raindrops, confirming the observations of this chapter. The main differ-
ence between their results and the ones reported here is that they find the transition
from clustering to Poisson behavior to occur at about 0.5 mm diameter, as opposed
to 1.14 mm for the dataset analyzed here. It is not clear what the cause for this
discrepancy is. It could be attributed either to specific instrumental effects or to dif-
ferent local environmental conditions. As for the reason why deviations from Poisson
behavior seem to be found mainly for the smallest raindrops in the first place, Hosk-
ing and Stow (1987) conclude after a careful analysis of several possible causes that
‘the precise mechanism for drop clustering remains obscure’. The results obtained
here do not seem to shed any more light on this matter. In any case, they seem to be
incompatible with any (multi-)fractal description of rainfall at the considered spatial
and temporal scales, except perhaps for the smallest raindrops.

3The results for the last 10 diameter intervals (1.77–3.86 mm) are not shown here as they provide
little extra information.
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7.4 Summary and conclusions

The classical Poisson homogeneity hypothesis in rainfall, a fundamental hypothesis
in radar meteorology, has been tested using a unique extraordinary stationary 35 min
time series of 10 s raindrop size distributions collected with a 50 cm2 optical disdrom-
eter. The rain rates calculated from the distributions indicate roughly uncorrelated
fluctuations around a constant mean rain rate of about 3.5 mmh−1.

Two types of analyses of the raindrop counts have been carried out, a global anal-
ysis taking into account all raindrops regardless of their size and a “spectral” analysis
considering the raindrop counts in the 16 diameter intervals of 0.21 mm width sepa-
rately. The first type of analysis reveals that even for the more or less stationary time
series under consideration the total raindrop arrival rate is overdispersed with respect
to the homogeneous Poisson process. The second type of analysis demonstrates that
this rejection of the homogeneity hypothesis can be attributed entirely to raindrops
with diameters smaller than 1.14 mm. Although these raindrops account for 66%
of the raindrop concentration in the air and 55% of the raindrop arrival rate at the
ground, they only account for 14% of the rain rate and 2% of the radar reflectivity
factor (on the basis of the mean raindrop size distribution during the experiment).
In other words, although clustering may be a significant phenomenon for the smallest
raindrops, the analyzed data seem to indicate that for moderate rain rates the ar-
rival rate fluctuations of the raindrops which contribute most to rain rate and radar
reflectivity factor behave according to Poisson statistics.
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Chapter 8

Summary and conclusions

A comprehensive general framework for the description and analysis of the microstruc-
ture of rainfall has been presented. The microstructure of rainfall has been parame-
terized in terms of the raindrop size distribution. It is the raindrop size distribution
which determines both the macroscopic physical properties of rainfall and the rela-
tionships between them. Several of these, such as the rain rate R and the radar
reflectivity factor Z, have a direct relevance for radar meteorology (radar remote
sensing of rainfall) and hydrology (land surface processes).

A rainfall parameterization based on the exponential raindrop size distri-
bution

As an example of how the definitions of rainfall related variables in terms of the
raindrop size distribution naturally lead to power law relationships, a rainfall pa-
rameterization based on the widely used exponential distribution has been presented.
First of all, it has been explained that there exist two fundamentally different forms
of the raindrop size distribution, namely that per unit volume of air and that per unit
surface area and per unit time.

Subsequently, it has been shown how various hydrologically and meteorologically
relevant rainfall variables are related to both these forms of the raindrop size dis-
tribution. Three groups of rainfall related variables have been considered, namely
properties of individual raindrops (size, speed, volume, mass, momentum and kinetic
energy), rainfall integral variables (raindrop concentration, raindrop arrival rate, liq-
uid rainwater content, rain rate, rainfall pressure, rainfall power and radar reflectivity
factor) and characteristic raindrop sizes (median-volume diameter, volume-weighted
mean diameter and mean-volume diameter). In the treatment of these variables, the
importance of the distinction between the properties of raindrops present in a vol-
ume of air and those of raindrops arriving at a surface has been emphasized. For
the rainfall integral variables, this has lead to a distinction between state variables,
representing concentrations, and flux (or rate) variables, representing flux densities.

Finally, it has been demonstrated how the coefficients of power law relationships
between such rainfall variables are determined by the parameters of both forms of
the raindrop size distribution, i.e. by the parameters N0 and Λ of the exponential

215
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raindrop size distribution and the coefficients c and γ of the power law relationship
between raindrop terminal fall speed and equivalent spherical diameter. Six different
consistent sets of power law relationships between the rainfall related variables and
rain rate have been derived, based on different assumptions regarding the rain rate
dependence of N0 and Λ. Special attention has been paid to the internal consistency
of the different sets of power law relationships.

A general framework for the analysis of raindrop size distributions and
their properties

Although the widely used exponential distribution can be considered the “null hy-
pothesis” of radar meteorology, it is but one possible analytical form for the raindrop
size distribution. There does not seem to be any physical reason why raindrop size dis-
tributions observed in nature should necessarily follow the exponential form. Bearing
this in mind, the previously presented rainfall parameterization based on the expo-
nential distribution has been generalized to be able to cope with any functional form
for the raindrop size distribution. In the resulting general framework, the formulation
for the raindrop size distribution takes the form of a scaling law. This law is consistent
with the ubiquitous power law relationships between rainfall related variables. They
follow logically from its formulation. Moreover, the scaling law unifies all previously
proposed parameterizations for the raindrop size distribution. All can be recast in
forms which are consistent with the formulation and as such can be considered as
special cases thereof.

In the scaling law formulation, the raindrop size distribution is not only a function
of the raindrop diameter, but of a reference variable as well. Any rainfall related vari-
able can play the role of reference variable, not necessarily the rain rate historically
used for that purpose. The spatial and temporal variability of the reference variable
reflects that of the raindrop size distribution. There are two scaling exponents associ-
ated with the reference variable, one to scale the raindrop diameters and another to
scale the corresponding raindrop concentrations. Once these scaling exponents have
been estimated, they can be used to scale raindrop size distributions corresponding to
different values of the reference variable. The identified curve is a scaled raindrop size
distribution, the so-called general raindrop size distribution function, which is in prin-
ciple independent of the value of the reference variable. The physical interpretation
of both the scaling exponents and the general raindrop size distribution function has
been clarified. In particular, the values of the scaling exponents determine whether
it is the raindrop concentration or the characteristic raindrop sizes which control the
variability of the raindrop size distribution (as shown in Fig. 3.2, p. 90). A second type
of general function has been introduced, the general rain rate density function, which
has the advantage of behaving as a probability density function. This will facilitate
the parameter estimation process.

Since any reference variable is itself a function of the raindrop size distribution,
there exist self-consistency constraints both on the scaling exponents and on the gen-
eral raindrop size distribution function. The constraint on the exponents implies that
only one of the two is a free parameter. In case the reference variable is proportional
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to a moment of the raindrop size distribution, the scaling exponents must be linearly
related. The constraint on the general raindrop size distribution function implies that
it must satisfy an integral equation. This reduces its number of degrees of freedom
by one.

From a practical point of view, the two main advantages of the proposed scaling
law procedure over previous approaches are its robustness and its generality. The
robustness of the procedure stems from the fact that all available empirical raindrop
size distributions can be used directly to identify the general raindrop size distribution
function, thus avoiding the common requirement to calculate average distributions for
different classes of the reference variable. The generality of the procedure is due to
the fact that it is no longer necessary to impose an a priori functional form for the
raindrop size distribution. Only after the general raindrop size distribution function
has been identified, a suitable parameterization may be selected. This selection will
consequently be based on all available information. Expressions have been provided
for the self-consistent forms of both types of general functions for all analytical forms
of the raindrop size distribution which have been proposed in the literature over
the years (exponential, gamma, generalized gamma, Best and lognormal). In this
manner, the gap between the scaling law formulation and the traditional analytical
parameterizations is bridged explicitly.

Experimental verification of the scaling law using mean raindrop size dis-
tributions

In search for further evidence of its validity, the scaling law formulation has been
verified experimentally using parameterizations of mean raindrop size distributions
collected in various climatic settings all over the world.

It has been demonstrated that both Best’s (1950b) analytical parameterization for
the distribution of the liquid rainwater content over raindrop size and Laws and Par-
sons’ (1943) tabulated parameterization for the distribution of rain rate over raindrop
size can be recast in forms which are consistent with the scaling law formulation. This
has allowed an identification of the corresponding scaling exponents from previously
published adjustments of these parameterizations to measured raindrop size distri-
butions for different types of rainfall in different climatic settings. The exponents
identified in this manner closely satisfy the theoretical self-consistency relationship
predicted by the scaling law formulation. For Best’s analytical distributions, these
scaling exponents directly lead to analytical parameterizations for the general rain-
drop size distribution functions and the associated general rain rate density functions.

Interestingly, application of the identified exponents to scale Laws and Parsons’
tabulated distributions has also lead to one single general raindrop size distribution
function and associated rain rate density function. Both of these are perfectly inde-
pendent of rain rate, in accordance with the scaling law formulation. Among different
analytical descriptions (exponential, gamma, Best and lognormal) of the empirical
general raindrop size distribution function, the negative exponential yields the best
adjustment.

The obtained results provide further evidence for the scaling law formulation as
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the most general description of raindrop size distributions and their properties con-
sistent with power law relationships between rainfall related variables and as such
as a convenient summary of all previously proposed parameterizations in one simple
expression.

Experimental verification of the scaling law using raw raindrop size distri-
butions

The successful verification of the scaling law using the parameterizations for the mean
raindrop size distribution has provided an important indication for its validity and
usefulness. However, the ultimate test has been provided by a direct confrontation
with raw (empirical) raindrop size distributions.

In particular, the scaling law formulation and its analysis procedures have been
verified experimentally on the basis of raindrop size distributions collected with the
filter paper technique at the Royal Netherlands Meteorological Institute in De Bilt,
The Netherlands. Two types of analyses have been carried out: (1) an event-to-
event analysis based on Wessels’ (1972) adjustments of Best’s parameterization to
476 raindrop size distributions for a series of 28 rainfall events collected during a
period of more than a year; (2) a climatological analysis based on 446 raw raindrop
size distributions from all events together. Both types of analysis have yielded satis-
factory results in the sense that it has been possible to estimate the scaling exponents
and identify the general raindrop size distribution function and the general rain rate
density function.

Although re-sampling of the distributions according to the bootstrap method has
indicated that there is an appreciable amount of uncertainty associated with the
estimates of the scaling exponents and the parameters of the general functions for
each of the 28 rainfall events, they closely satisfy the self-consistency constraints
following from the scaling law formulation. Moreover, there seems to be more inter-
event variability in the exponents and parameters than can be explained solely on
the basis of sampling uncertainties. However, quite disappointingly, an effort to try
to relate this variability to differences in various meteorological quantities (type of
rainfall, synoptic weather type, atmospheric stability, height of the 0◦C isotherm,
relative humidity and wind speed) has failed. This suggests that these quantities are
not appropriate indicators for the type of rainfall and that one has to look for other
manners to classify different rainfall regimes, perhaps based on the use of radar data.

The climatological analysis based on the raw raindrop size distribution data has
indicated that although there is an appreciable amount of scatter about the mean
curves, it is still possible to obtain consistent estimates of the scaling exponents and
reasonably accurate fits to the general raindrop size distribution function and general
rain rate density function. As such, this analysis confirms the power of the scaling law
formulation as a manner to obtain climatological parameterizations for the raindrop
size distribution. Four different self-consistent parameterizations have been adjusted
to the Dutch raindrop size distributions (exponential, gamma, Best and lognormal).
The exponential parameterization again seems to provide the best adjustment.
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Implications of the scaling law formulation for radar reflectivity – rain rate
relationships

As an example of the application of the scaling law formulation, a new method for
establishing power law Z–R relationships has been presented. It has been demon-
strated that once a self-consistent parameterization for the raindrop size distribution
has been established for a particular location, the coefficients of the Z–R relationship
follow naturally. They are two sides of the same coin. The exponent of the Z–R rela-
tionship is uniquely determined by the value of the scaling exponent β, its prefactor
is a function of the parameters of the general raindrop size distribution function (or
general rain rate density function). Therefore, the dependence of the Z–R relation-
ship on the shape of the (scaled) raindrop size distribution is entirely contained in the
prefactor.

Specific expressions have been presented for the exponential, gamma, generalized
gamma, Best and lognormal parameterizations for the general raindrop size distribu-
tion function. These have subsequently been used to derive Z–R relationships using
the parameterizations for the raindrop size distribution obtained in Chapters 4 and 5.
The results show that besides a strong climatological variability, Z–R relationships
exhibit an even more pronounced inter-event variability (within one rainfall climatol-
ogy). These observations are consistent with estimates of these variabilities reported
in the literature. This suggests that climatological Z–R relationships are probably of
little practical use in the radar estimation of rainfall. One should be able to distin-
guish between different types of rainfall, perhaps on the basis of the parameters of the
scaling law for the raindrop size distribution. The strong negative dependence ob-
served between the prefactors and exponents of power law R–Z relationships has been
shown to be the result of a spurious correlation and should therefore be interpreted
with care.

The 69 Z–R relationships reported by Battan (1973) have been used to estimate
the parameters of the corresponding exponential forms of the general raindrop size
distribution function. The Z–R data have been stratified according to rainfall type
(orographic, thunderstorm, widespread/stratiform and showers) and a mean parame-
terization has been derived for each type of rainfall. The obtained functional forms are
consistent with the type of rainfall to which they pertain. It has been demonstrated
that if the prefactors and exponents of Z–R relationships are used to estimate the
parameters of other forms than the exponential distribution, assumptions have to be
made regarding the values of the additional parameters.

One such an approach is that of Ulbrich (1983), who assumes the parameter N0

of the gamma raindrop size distribution to be independent of rain rate. It has been
shown that the widely used exponential N0–µ relationship he obtains on the basis
of an analysis Battan’s Z–R relationships is in fact a spurious relationship. It is
the result of the fact that the units of N0 depend on the value of µ. It is therefore
recommended to abandon N0 as concentration parameter in the gamma raindrop size
distribution and replace it in favor of some other parameter.
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Experimental verification of the Poisson homogeneity hypothesis in sta-
tionary rainfall

Both the established theory of weather radar and the concept of the raindrop size
distribution (on which the scaling law is based) rely on the assumption that, at least
over certain minimum scales, raindrops are homogeneously distributed in space and
time. This so-called Poisson homogeneity hypothesis is generally difficult to verify
experimentally due to the strong natural variability of the rainfall process on many
scales. However, using a unique extraordinary stationary 35 min time series of 10 s
raindrop size distributions collected with a 50 cm2 optical disdrometer, it has been
possible to do just this.

The rain rates calculated from the distributions indicate roughly uncorrelated
fluctuations around a constant mean rain rate of about 3.5 mmh−1. Two types of
analyses of the raindrop counts have been carried out, a global analysis taking into
account all raindrops regardless of their size and a “spectral” analysis considering the
raindrop counts in the 16 diameter intervals of 0.21 mm width separately. The first
type of analysis reveals that even for the more or less stationary time series under
consideration the total raindrop arrival rate is overdispersed with respect to the homo-
geneous Poisson process. The second type of analysis demonstrates that this rejection
of the homogeneity hypothesis can be attributed entirely to raindrops with diameters
smaller than 1.14 mm. Although these raindrops account for 66% of the raindrop
concentration in the air and 55% of the raindrop arrival rate at the ground, they only
account for 14% of the rain rate and 2% of the radar reflectivity factor (on the basis of
the mean raindrop size distribution during the experiment). In other words, although
clustering may be a significant phenomenon for the smallest raindrops, the analyzed
data seem to indicate that for moderate rain rates the arrival rate fluctuations of
the raindrops which contribute most to rain rate and radar reflectivity factor behave
according to Poisson statistics.

Perspectives

Smith (1993) states that ‘the study of drop-size distributions, with its roots in both
land-surface processes [e.g. interception, erosion, infiltration and surface runoff] and
atmospheric remote sensing [radar meteorology], provides an important element to
an integrated program of hydrometeorological research’. It has been the aim of this
thesis to contribute to such a program by providing the hydrometeorological commu-
nity with a consistent framework for treating raindrop size distributions and related
rainfall properties, i.e. for treating the microstructure of rainfall.

Where to go from here? The research described in this thesis has shown that there
are a couple of points which merit further attention. First, there is the observation of
the remaining residual scatter about the mean curves when the scaling law is applied
to raw raindrop size distribution data (Chapter 5). This is an indication of the fact
that not all observed variability can be explained by one single reference variable (in
this case the rain rate). This should not be interpreted as a weak point of the scal-
ing law in particular. The use of one single rainfall related variable as explanatory
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(reference) variable has formed the basis of all previously proposed parameterizations
for the raindrop size distribution (Marshall-Palmer, Best, Laws-Parsons) and, more-
over, of the ubiquitous power law relationships of radar meteorology. The remaining
amount of variability can be associated in part with sampling fluctuations and in part
with sources of natural variability. This suggests that it would be useful to further
extend the scaling law formulation in such a manner that it would be able to cope with
this excess variability. A first approach could then be to recognize that the power
law relationships between rainfall related variables are not deterministic in nature,
but statistical. This leads to a statistical interpretation for the scaling exponents,
as is demonstrated in AppendixE. A second approach could be the inclusion of an
additional reference variable in the scaling law. In this manner, each rainfall related
variable would become a function of two others. As a matter of fact, this type of
approach has formed the basis of multi-parameter radar methods.

A second possible extension of the scaling law formulation as presented in this
thesis might be the relaxation of the assumption of power law relationships between
rainfall related variables altogether. It should be possible to generalize the scaling
law in such a manner that it is able to cope with other than power law relationships.
In this manner, both the shape of the raindrop size distribution and the shape of the
relationships between rainfall related variables could be left to follow from the exper-
imental data at hand. It should be noted, however, that the empirical evidence for
power law relationships between such variables is very strong (at least in a statistical
sense), as has been shown in Chapter 2.

A third possible extension of the scaling law, one which is probably relatively easy
to realize, would be to formulate a scaling law for the Doppler velocity spectrum, using
the radar reflectivity factor Z as the reference variable. The scaling law as presented
in this thesis is a convenient summary of raindrop size distributions. However, since
the Doppler velocity spectrum by definition is the distribution of the total reflectivity
over the fall speeds of all particles in the radar sample volume, in still air there will
exist a direct relationship between the raindrop size distribution and the Doppler
velocity spectrum. This notion could allow one to reformulate the scaling law in
terms of the Doppler velocity spectrum. This might provide interesting possibilities
for the analysis of data collected with vertically pointing Doppler radars. A possible
product of such analyses might be vertical profiles of the scaling exponents and general
distribution functions. Such profiles might contribute to an improved understanding
of the physical processes which shape the vertical structure of precipitation.

A final point of attention is that of sampling fluctuations. Any surface measure-
ment of raindrop size distributions and consequently any derived rainfall property
will be subject to sampling fluctuations (e.g. Smith et al., 1993). This is because
the sample sizes employed to estimate raindrop size distributions and their proper-
ties are typically not large from a statistical point of view (Chapter 7). Hence, if the
objective is to relate the values of the scaling exponents and the shapes of the general
distribution functions to the natural variability of rainfall, it should be quantified in
advance to what extent their estimation is affected by sampling fluctuations. A first
step towards tackling this problem has been provided by the results of Chapter 7,
where it has been demonstrated that, at least for stationary rainfall conditions, the
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Figure 8.1: Simulation of the temporal evolution of rainfall integral variables in a 1 m3 sam-
ple volume on the basis of the Poisson homogeneity hypothesis: (a) number of raindrops
n (–) or raindrop concentration ρV (m−3); (b) rain rate R (mmh−1); (c) radar reflectiv-
ity factor Z (mm6m−3). Mean rain rate R = 1 mmh−1, Marshall-Palmer raindrop size
distribution NV (D,R), raindrop diameter resolution ∆D = 0.1 mm, maximum raindrop
diameter Dmax = 6 mm, time step ∆t = 0.05 s.
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raindrop arrival rate fluctuations may be assumed to behave according to Poisson
statistics. Preferably, a stochastic model of rainfall to study the sampling problem
in its entire complexity should incorporate both sampling fluctuations and natural
variability.

It should be noted that, with the smaller and smaller sample volumes employed,
(Doppler) radar observations of precipitation will be subject to sampling fluctuations
as well. For example, suppose the rectangular reference volume indicated in Fig. 1.1
(p. 12) is a radar sample volume of 1 m3. Fig. 8.1 shows what the temporal (sampling)
fluctuations in the raindrop concentration ρV (m−3), the rain rate R (mmh−1) and
the radar reflectivity factor Z (mm6m−3) might look like for this hypothetical sam-
ple volume, assuming a Marshall-Palmer raindrop size distribution and a constant
(mean) rain rate of 1 mmh−1. This simulation has been based on an adapted version
of von Smoluchowski’s (1916) stochastic model of density fluctuations for intermittent
observations (e.g. Fürth, 1918, 1919; Chandrasekhar, 1943; Smith, 1993a). Although
ρV remains roughly constant, R and particularly Z are observed to fluctuate apprecia-
bly. Note the differences in correlation structure between these three rainfall integral
variables as well. Again, in a practical situation, a first estimate of the magnitude and
speed of these fluctuations may be obtained on the basis of the Poisson homogeneity
hypothesis.
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Samenvatting en conclusies

De microstructuur van regen, in het bijzonder het concept van de druppelgrootte-
verdeling, bepaalt de samenhang tussen alle fysische (mechanische en elektromag-
netische) eigenschappen van regen. Bovendien bepaalt de druppelgrootteverdeling,
althans gedeeltelijk, het discrete karakter van regen wanneer de traditionele con-
tinuümbenadering wordt verlaten. Hoewel er sinds de aanvang van het ‘moderne’
wetenschappelijke onderzoek op dit gebied, ongeveer honderd jaar geleden, veel in-
dividuele bijdragen zijn geleverd, ontbreekt tot op heden een algemeen kader voor
het bestuderen van druppelgrootteverdelingen. Dit proefschrift beoogt een dergelijk
samenhangend raamwerk voor de beschrijving van de microstructuur van regen te
geven.

De concrete doelstelling van dit proefschrift is een parametrisatie voor de mi-
crostructuur van regen te ontwikkelen ten behoeve van toepassingen in de radarmeteo-
rologie en hydrologie. De term ‘parametrisatie’ betekent in dit verband dat de be-
langrijkste aspecten van de microstructuur van regen worden gevat in een beperkt
aantal parameters, zoals de concentratie van regendruppels en hun karakteristieke
grootte. De variabiliteit van deze parameters in tijd en ruimte bepaalt dan de varia-
biliteit van iedere afgeleide grootheid en bepaalt bovendien het karakter van de re-
laties tussen zulke grootheden. Dit zal leiden tot een verbeterd begrip van zowel de
(on)mogelijkheden van radar remote sensing van regen als van de interacties tussen
regenval en landoppervlak en uiteindelijk tot verbeterde schattingen van de daarmee
verband houdende processen.

Een parametrisatie van regen gebaseerd op de exponentiële druppelgrootte-
verdeling

Als voorbeeld van de manier waarop de definities van regenvariabelen in termen van
de druppelgrootteverdeling op natuurlijke wijze tot machtsrelaties leiden, wordt in
Hoofdstuk 2 een parametrisatie van regen gebaseerd op de veel gebruikte exponentiële
druppelgrootteverdeling gepresenteerd. Allereerst wordt uitgelegd dat er twee funda-
menteel verschillende vormen van de druppelgrootteverdeling bestaan, namelijk ener-
zijds die per eenheid van volume en anderzijds die per eenheid van oppervlak en per
eenheid van tijd.

Vervolgens wordt getoond hoe verschillende hydrologisch en meteorologisch rele-
vante regenvariabelen zijn gerelateerd aan deze beide vormen van de druppelgrootte-
verdeling. Drie groepen regenvariabelen worden onderscheiden, namelijk eigenschap-
pen van individuele druppels (grootte, snelheid, volume, massa, impuls en kinetische
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energie), integrale regenvariabelen (druppelconcentratie, druppelfluxdichtheid, vocht-
gehalte, regenintensiteit, druk, kinetische energie fluxdichtheid en radar reflectiviteit)
en karakteristieke druppelgrootten (de diameter corresponderend met de mediaan van
het vochtgehalte, de volume-gewogen gemiddelde diameter en de diameter correspon-
derend met het gemiddelde druppelvolume). Bij de behandeling van deze variabelen
wordt het belang benadrukt van het onderscheid tussen de eigenschappen van drup-
pels die aanwezig zijn in een volume lucht en de eigenschappen van druppels die
aankomen op een oppervlak. Voor de integrale regenvariabelen leidt dit tot een on-
derscheid tussen toestandsvariabelen, die concentraties voorstellen, en fluxvariabelen,
die fluxdichtheden voorstellen.

Tenslotte wordt gedemonstreerd hoe de coëfficiënten van machtsrelaties tussen
regenvariabelen worden bepaald door de parameters van beide vormen van de drup-
pelgrootteverdeling, dat wil zeggen door de parameters N0 en Λ van de exponentiële
druppelgrootteverdeling en de coëfficiënten c en γ van de machtsrelatie tussen de
terminale valsnelheid en de equivalente sferische diameter van regendruppels. Op
die manier worden zes verschillende consistente groepen van machtsrelaties tussen
regenvariabelen en de regenintensiteit afgeleid, gebaseerd op verschillende veronder-
stellingen betreffende de afhankelijkheid van N0 en Λ van de regenintensiteit. Spe-
ciale aandacht wordt besteed aan de interne consistentie van de verschillende groepen
machtsrelaties.

Een algemeen kader voor de analyse van druppelgrootteverdelingen en hun
eigenschappen

Hoewel de veel gebruikte exponentiële verdeling beschouwd kan worden als de ‘nul
hypothese’ van de radarmeteorologie, is het slechts één mogelijke analytische vorm
voor de druppelgrootteverdeling. Er lijkt vooralsnog geen enkele fysische reden te
bestaan om aan te nemen dat druppelgrootteverdelingen zoals die in de natuur wor-
den waargenomen noodzakelijkerwijs een exponentiële vorm moeten hebben. Met
dit in gedachten wordt de in Hoofdstuk 2 gepresenteerde parametrisatie van regen
gebaseerd op de exponentiële druppelgrootteverdeling in Hoofdstuk 3 veralgemeend
tot een parametrisatie die compatibel is met iedere willekeurige vorm van de drup-
pelgrootteverdeling. In het resulterende algemene raamwerk neemt de formulering
van de druppelgrootteverdeling de vorm aan van een schaalwet die consistent is met
de alomtegenwoordige machtsrelaties tussen regenvariabelen. Dergelijke relaties vol-
gen op natuurlijke wijze uit de formulering. Bovendien verenigt de schaalwet alle
voorheen voorgestelde parametrisaties voor de druppelgrootteverdeling in één for-
mulering. Deze parametrisaties kunnen allemaal worden herschreven in een vorm die
consistent is met de schaalwet en kunnen dientengevolge als speciale gevallen daarvan
beschouwd worden.

In de formulering als schaalwet is de druppelgrootteverdeling niet alleen een func-
tie van de druppeldiameter maar ook van een zogenaamde referentievariabele. Iedere
regenvariabele kan in principe de rol van referentievariabele op zich nemen, niet alleen
de regenintensiteit die veelal voor dat doel wordt gebruikt. De variabiliteit van de refe-
rentievariabele in tijd en ruimte weerspiegelt de variabiliteit van de druppelgroottever-
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deling als geheel. Met de referentievariabele zijn twee zogenaamde schaalexponenten
verbonden, één om de druppeldiameters te schalen en een ander om de correspon-
derende druppelconcentraties te schalen. Indien deze schaalexponenten eenmaal zijn
bepaald, kunnen zij gebruikt worden om druppelgrootteverdelingen die correspon-
deren met verschillende waarden van de referentievariabele te schalen. De op die
manier verkregen curve is een geschaalde druppelgrootteverdeling, de zogenaamde
algemene druppelgrootteverdelingsfunctie, die in principe onafhankelijk is van de
waarde van de referentievariabele. De fysische interpretatie van beide schaalexpo-
nenten en van de algemene druppelgrootteverdelingsfunctie wordt opgehelderd. Het
blijkt dat de waarden van de schaalexponenten bepalen of het de druppelconcentratie
is dan wel de karakteristieke druppelgrootte die de variabiliteit van de druppelgrootte-
verdeling stuurt (zoals wordt getoond in Fig. 3.2, p. 90). Een tweede type algemene
functie wordt gëıntroduceerd, de zogenaamde algemene regenintensiteitsdichtheids-
functie. Die heeft het voordeel zich als een kansdichtheidsfunctie te gedragen, hetgeen
het schatten van de parameters vergemakkelijkt.

Aangezien iedere referentievariabele zelf weer een functie is van de druppelgrootte-
verdeling, leidt de eis van interne consistentie ertoe dat er beperkingen gelden zowel
ten aanzien van de schaalexponenten als ten aanzien van de algemene druppelgroot-
teverdelingsfunctie. De beperking ten aanzien van de exponenten heeft tot gevolg
dat slechts één van beide een vrije parameter is. Indien, zoals gebruikelijk, de refe-
rentievariabele evenredig is met een moment van de druppelgrootteverdeling, zijn de
schaalexponenten lineair afhankelijk van elkaar. De beperking ten aanzien van de al-
gemene druppelgrootteverdelingsfunctie heeft de vorm van een integraalvergelijking.
Deze reduceert het aantal vrijheidsgraden van de functie met één.

Vanuit praktisch oogpunt zijn de twee belangrijkste voordelen van de voorgestelde
schalingsprocedure ten opzichte van de bestaande aanpak dat de procedure robuust en
algemeen is. Robuust in de zin van dat alle beschikbare empirische druppelgrootte-
verdelingen direct gebruikt kunnen worden om de algemene druppelgrootteverdelings-
functie te bepalen. Op die manier vervalt de gebruikelijke eis gemiddelde verdelingen
voor verschillende klassen van de referentievariabele te berekenen. Algemeen in de
zin van dat het niet langer noodzakelijk is een a priori functionele vorm voor de drup-
pelgrootteverdeling op te leggen. Een geschikte parametrisatie hoeft pas gekozen te
worden nadat de algemene druppelgrootteverdelingsfunctie is bepaald. Deze keuze zal
dientengevolge gebaseerd zijn op alle beschikbare informatie. Uitdrukkingen voor de
consistente vormen van beide typen algemene functies worden gepresenteerd voor alle
analytische vormen van de druppelgrootteverdeling die tot op heden zijn voorgesteld
in de literatuur (exponentieel, gamma, gegeneraliseerde gamma, Best en lognormaal).
Op die manier wordt de formulering van de druppelgrootteverdeling als schaalwet
verenigd met de traditionele analytische parametrisaties.

Experimentele verificatie van de schaalwet op basis van gemiddelde drup-
pelgrootteverdelingen

Op zoek naar nieuw bewijsmateriaal voor het in Hoofdstuk 3 gepresenteerde algemene
raamwerk, wordt de formulering van de druppelgrootteverdeling als schaalwet in
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Hoofdstuk 4 experimenteel geverifieerd op basis van parametrisaties van gemiddelde
druppelgrootteverdelingen. De hieraan ten grondslag liggende experimentele verde-
lingen zijn verzameld in verschillende klimatologische omstandigheden over de gehele
wereld.

Gedemonstreerd wordt dat zowel de analytische parametrisatie van Best (1950b)
voor de verdeling van het vochtgehalte over de druppelgrootten als de getabelleerde
parametrisatie van Laws en Parsons (1943) voor de verdeling van de regenintensiteit
over de druppelgrootten herschreven kunnen worden in vormen die consistent zijn
met de schaalwet. Daardoor is het mogelijk gebleken voorheen gepubliceerde aan-
passingen van deze parametrisaties aan gemeten druppelgrootteverdelingen voor ver-
schillende soorten regen in verschillende klimatologische omstandigheden te gebruiken
om de corresponderende schaalexponenten te schatten. De op deze manier verkregen
schaalexponenten blijken nauw te voldoen aan de theoretische relatie die volgt uit de
schaalwet en de eis van interne consistentie. Voor de analytische verdelingen van
Best leiden de geschatte schaalexponenten direct tot analytische parametrisaties voor
de algemene druppelgrootteverdelingsfuncties en de daaraan gekoppelde algemene
regenintensiteitsdichtheidsfuncties.

Interessant is dat het gebruik van de geschatte exponenten om de getabelleerde
verdelingen van Laws en Parsons te schalen tot één enkele algemene druppelgrootte-
verdelingsfunctie en een corresponderende algemene regenintensiteitsdichtheidsfunc-
tie leidt. Beide functies zijn volkomen onafhankelijk van de regenintensiteit, in
overeenstemming met de formulering als schaalwet. Van verschillende analytische
beschrijvingen (exponentieel, gamma, Best en lognormaal) voor de empirische al-
gemene druppelgrootteverdelingsfunctie blijkt de exponentiële het best te voldoen.

De verkregen resultaten vormen nieuw bewijsmateriaal voor de schaalwet als de
meest algemene beschrijving van druppelgrootteverdelingen en hun eigenschappen, con-
sistent met machtsrelaties tussen regenvariabelen. Als zodanig vormt de schaalwet
een praktische samenvatting van alle tot op heden voorgestelde parametrisaties in één
eenvoudige uitdrukking.

Experimentele verificatie van de schaalwet op basis van ruwe druppel-
grootteverdelingen

De succesvolle verificatie van de schaalwet op basis van parametrisaties van gemid-
delde druppelgrootteverdelingen in Hoofdstuk 4 vormt een belangrijke indicatie voor
de geldigheid en bruikbaarheid ervan. Echter, de ultieme test wordt gevormd door
een directe confrontatie met ruwe (empirische) druppelgrootteverdelingen.

In Hoofdstuk 5 worden de schaalwet en de daarmee corresponderende analyse pro-
cedures experimenteel geverifieerd op basis van druppelgrootteverdelingen verzameld
met de filterpapiertechniek op het KNMI in de Bilt. Twee soorten analyses worden
uitgevoerd: (1) een analyse per bui gebaseerd op Wessels’ (1972) aanpassingen van
de parametrisatie van Best aan 476 druppelgrootteverdelingen voor een reeks van 28
buien verzameld gedurende een periode van ruim een jaar; (2) een klimatologische ana-
lyse gebaseerd op 446 ruwe druppelgrootteverdelingen van alle buien tezamen. Beide
analyses geven bevredigende resultaten. Het blijkt mogelijk de schaalexponenten te
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schatten en de algemene druppelgrootteverdelingsfunctie en algemene regenintensi-
teitsdichtheidsfunctie te bepalen.

Hoewel het herbemonsteren van de verdelingen volgens de ‘bootstrap’ methode
aangeeft dat de schattingen van de schaalexponenten en de parameters van de al-
gemene functies voor ieder van de 28 regenbuien tamelijk onzeker zijn, voldoen zij
nauw aan de beperkingen die volgen uit de schaalwet en de eis van interne con-
sistentie. Bovendien blijkt er meer variabiliteit per bui te bestaan in de exponen-
ten en parameters dan verklaard kan worden op basis van steekproefonzekerheden
alleen. Enigszins teleurstellend is echter dat het niet mogelijk blijkt deze variabili-
teit te verklaren aan de hand van verschillen in een aantal meteorologische groot-
heden (soort regen, synoptisch weertype, atmosferische stabiliteit, hoogte van de 0◦C
isotherm, relatieve vochtigheid en windsnelheid). Dit suggereert dat deze grootheden
geen geschikte indicatoren zijn voor het type regen en dat er gezocht dient te worden
naar alternatieve manieren om regenregimes te classificeren, wellicht gebaseerd op het
gebruik van radargegevens.

De klimatologische analyse gebaseerd op de ruwe druppelgrootteverdelingen geeft
aan dat hoewel er een aanzienlijke hoeveelheid verstrooiing rond de gemiddelde curves
is, het nog steeds mogelijk blijkt consistente schattingen van de schaalexponenten te
verkrijgen alsmede redelijk nauwkeurige aanpassingen van de algemene druppelgroot-
teverdelingsfunctie en de algemene regenintensiteitsdichtheidsfunctie. Als zodanig
bevestigt deze analyse de kracht van de schaalwet als een manier om klimatologische
parametrisaties voor de druppelgrootteverdeling af te leiden. Vier verschillende con-
sistente parametrisaties worden aangepast aan de Nederlandse druppelgrootteverde-
lingen (exponentieel, gamma, Best en lognormaal). Wederom geeft de exponentiële
parametrisatie het beste resultaat.

Implicaties van de schaalwet voor radar reflectiviteit – regenintensiteitsre-
laties

Als voorbeeld van de toepassing van de schaalwet voor de druppelgrootteverdeling
wordt een nieuwe methode voor het bepalen van Z–R machtsrelaties gepresenteerd.
Hoofdstuk 6 laat zien dat indien een consistente parametrisatie voor de druppel-
grootteverdeling is afgeleid voor een bepaalde locatie, de coëfficiënten van de corres-
ponderende Z–R relatie daaruit rechtstreeks volgen. Parametrisatie en Z–R relatie
zijn aldus direct gekoppeld aan elkaar. De exponent van de Z–R relatie wordt on-
dubbelzinnig bepaald door de waarde van de vrije schaalexponent, de prefactor is
een functie van de parameters van de algemene druppelgrootteverdelingsfunctie (of
van de algemene regenintensiteitsdichtheidsfunctie). Met andere woorden, alle infor-
matie over de manier waarop de Z–R relatie afhangt van de vorm van de (geschaalde)
druppelgrootteverdeling is volledig geconcentreerd in de prefactor.

Specifieke uitdrukkingen worden afgeleid voor de exponentiële, gamma, gegene-
raliseerde gamma, Best en lognormale vorm voor de algemene druppelgrootteverde-
lingsfunctie. Deze worden vervolgens gebruikt om Z–R relaties af te leiden op basis
van de parametrisaties voor de druppelgrootteverdeling die in Hoofdstukken 4 en 5
zijn verkregen. De resultaten laten zien dat behalve een duidelijke klimatologische
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variabiliteit, Z–R relaties een nog sterkere variabiliteit per bui (binnen één klimato-
logische situatie) kennen. Deze bevindingen zijn consistent met schattingen van deze
variabiliteit die in de literatuur worden gerapporteerd. Dit suggereert dat klimato-
logische Z–R relaties van een beperkt praktisch nut zullen zijn ten behoeve van radar
remote sensing van regen. Het is daarom noodzakelijk verschillende soorten regen te
onderscheiden, wellicht gebaseerd op de parameters van de schaalwet voor de drup-
pelgrootteverdeling. Overigens wordt aangetoond dat de sterke negatieve afhanke-
lijkheid die in het algemeen gevonden wordt tussen de prefactoren en de exponenten
van Z–R machtsrelaties is toe te schrijven aan een schijncorrelatie en dientengevolge
voorzichtig gëınterpreteerd dient te worden.

De 69 Z–R relaties die door Battan (1973) bij elkaar zijn gebracht, worden ge-
bruikt om de parameters te schatten van de corresponderende exponentiële drup-
pelgrootteverdelingen. De Z–R gegevens worden gegroepeerd naar regentype (oro-
grafisch, onweer, gelijkmatig/stratiform en buiig) en voor ieder regentype wordt een
gemiddelde parametrisatie afgeleid. De aldus verkregen functionele vormen zijn con-
sistent met het type regenval waar zij betrekking op hebben. Gedemonstreerd wordt
dat indien de prefactoren en exponenten van Z–R relaties gebruikt worden om de
parameters te schatten van andere vormen dan de exponentiële druppelgrootteverde-
ling, veronderstellingen met betrekking tot de waarden van de additionele parameters
gemaakt dienen te worden.

Een dergelijke benadering wordt gevolgd door Ulbrich (1983), die aanneemt dat
de parameter N0 van de gamma druppelgrootteverdeling onafhankelijk is van de re-
genintensiteit. Aangetoond wordt dat de veel gebruikte exponentiële N0–µ relatie die
door Ulbrich wordt gevonden op basis van een analyse van Battan’s Z–R relaties in
feite een schijnafhankelijkheid is. Het is het gevolg van het feit dat de eenheid van
N0 afhangt van de waarde van µ. Het wordt daarom afgeraden N0 nog langer als
concentratieparameter in de gamma druppelgrootteverdeling te gebruiken. N0 dient
vervangen te worden door een parameter met een eenheid die onafhankelijk is van de
waarde van µ.

Experimentele verificatie van de Poisson homogeniteitshypothese in sta-
tionaire regenval

Zowel de gevestigde theorie van weerradar als het concept van de druppelgroottever-
deling (waarop de schaalwet is gebaseerd) steunt op de veronderstelling dat, tenmin-
ste over zekere minimum schalen, regendruppels homogeen verdeeld zijn in tijd en
ruimte. Deze zogenaamde Poisson homogeniteitshypothese is in het algemeen lastig
experimenteel te verifiëren als gevolg van de sterke natuurlijke variabiliteit van het
regenproces. In Hoofdstuk 7 echter wordt een poging hiertoe gedaan, gebruikmakend
van een unieke, uitzonderlijk stationaire 35 minuten lange tijdreeks van over 10 sec-
onden geaggregeerde druppelgrootteverdelingen.

De regenintensiteiten berekend uit de druppelgrootteverdelingen geven aan dat
er sprake is van ruwweg ongecorreleerde fluctuaties rond een constante gemiddelde
regenintensiteit van ongeveer 3.5 millimeter per uur. Twee soorten analyses van de
aantallen regendruppels worden uitgevoerd, een globale analyse waarbij alle druppels



SAMENVATTING EN CONCLUSIES 231

worden meegenomen, ongeacht hun grootte, en een ‘spectrale’ analyse waarbij de aan-
tallen druppels in 16 diameter intervallen van 0.21 millimeter breedte apart worden
geanalyseerd. De eerste analyse toont aan dat zelfs voor de min of meer statio-
naire tijdreeks die voorhanden is de totale druppelfluxdichtheid een sterkere spreiding
vertoont dan op basis van een homogeen Poisson proces verwacht mag worden. De
tweede analyse laat zien dat deze verwerping van de homogeniteitshypothese volledig
kan worden toegerekend aan regendruppels met diameters kleiner dan 1.14 millimeter.
Hoewel deze druppels 66% van de druppelconcentratie in de lucht vertegenwoordigen
en 55% van de druppelfluxdichtheid aan de grond, nemen zij slechts 14% van de re-
genintensiteit en 2% van de radar reflectiviteit voor hun rekening (op basis van de
gemiddelde druppelgrootteverdeling gedurende het experiment). Met andere woor-
den, hoewel clusteren een significant verschijnsel kan zijn voor de kleinste regendrup-
pels, lijken de geanalyseerde gegevens erop te wijzen dat voor beperkte regeninten-
siteiten de fluctuaties in de fluxdichtheid van de druppels die het meest bijdragen aan
de regenintensiteit en de radar reflectiviteit de Poisson statistiek volgen.

Epiloog

Smith (1993) merkt op dat ‘de bestudering van druppelgrootteverdelingen, met hun
wortels zowel in de processen aan het landoppervlak [zoals interceptie van regen door
vegetatie en gebouwen, bodemerosie als gevolg van de inslag van regendruppels, infil-
tratie van regenwater in de bodem en oppervlakkige afvoer] als in de remote sensing
van de atmosfeer [zoals radarmeteorologie], een belangrijk element vormt voor een
gëıntegreerd programma van hydrometeorologisch onderzoek’. Het is de bedoeling
van dit proefschrift geweest een bijdrage te leveren aan een dergelijk onderzoekspro-
gramma door de hydrometeorologische gemeenschap te voorzien van een consistent
raamwerk voor het bestuderen van druppelgrootteverdelingen en de daaraan gekop-
pelde eigenschappen van regen, kortom: zijn microstructuur. Tot slot worden in
Hoofdstuk 8 nog een aantal suggesties voor toekomstig onderzoek gedaan.
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Appendix A

The method of derived
distributions

Suppose the probability density function of a certain non-negative random variable D
is given by fD(D). If another non-negative random variable ω is related to D via the
power law relationship ω(D) = cωD

γω (where cω and γω are both positive coefficients),
how will its probability density function fω(ω) be related to fD(D)? This is a special
case of a classical problem in statistics, which can be solved via the method of derived
distributions (e.g. Mood et al., 1974).

The fact that ω(D) = cωD
γω is a monotonically increasing function of D implies

Pr {ω ≤ ω} = Pr {D ≤ D(ω)} , (A.1)

where

D(ω) =
(
ω

cω

)1/γω

. (A.2)

In terms of the probability density functions of ω and D this becomes

∫ ω

0
fω(x) dx =

∫ D(ω)

0
fD(x) dx. (A.3)

Taking derivatives with respect to ω on both sides of this equality (using Leibniz’s
rule for differentiating an integral) gives the general relationship

fω(ω) = fD(D(ω))

∣∣∣∣∣
dD(ω)

dω

∣∣∣∣∣ , (A.4)

where the absolute value sign |·| is introduced to ensure that fω(ω) remains positive
even if the derivative of D(ω) with respect to ω is negative. In case of a power law
D(ω) relationship, the absolute value sign can be neglected and one simply obtains

fω(ω) =
1

cωγω

(
ω

cω

)1/γω−1

fD

[(
ω

cω

)1/γω
]
; cω, γω > 0; ω ≥ 0, (A.5)

which is the desired result.
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Appendix B

General relationships between the
probability density functions of
raindrop terminal fall speed in a
volume and at a surface

Consider the general relationship between the size distribution of raindrops present
in a volume of air NV(D) (mm−1m−3) and the size distribution of those arriving at
a surface NA(D) (mm−1m−2 s−1)

{
NA(D) = v(D)NV(D)

NV(D) = v(D)−1NA(D)
, (B.1)

where v(D) denotes the relationship between the terminal fall speed v (m s−1) of a
raindrop in still air and its equivalent spherical diameter D (mm). The validity of this
formulation is strictly limited to the case where (1) the fall speed of each raindrop
is a constant which is entirely determined by its size (and not by other factors such
as wind, turbulence or the interaction with other raindrops) and (2) the raindrop
size distributions do not depend on time or location (i.e. in the case of stationary
rainfall).

In terms of the corresponding probability density functions this implies (Smith,
1993) {

ρAfDA
(D) = v(D) ρVfDV

(D)

ρVfDV
(D) = v(D)−1 ρAfDA

(D)
, (B.2)

where ρA (m−2 s−1) is the raindrop arrival rate and ρV (m−3) the raindrop concentra-
tion. Transformations to the corresponding probability density functions of raindrop
terminal fall speed in the air vV and at the ground vA yields

{
ρAfvA(v) = vρVfvV(v)
ρVfvV(v) = v−1ρAfvA(v)

. (B.3)

Integrating both expressions on either side of the equality sign between zero and
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infinity gives {
ρA = ρVE [vV]

ρV = ρAE
[
v−1
A

] , (B.4)

where E[·] is the expectation operator. This implies

ρA
ρV

= E [vV] = E
[
v−1
A

]−1
. (B.5)

In other words, the arithmetic mean of the fall speeds of raindrops in a volume of air
is equal to the harmonic mean of the fall speeds of those arriving at a surface.

A second relationship can be obtained by multiplying both sides of the first equa-
tion in (B.3) with v and subsequently integrating the result between zero and infinity.
This gives

ρAE [vA] = ρVE
[
v2V
]
, (B.6)

which is equivalent to

E [vA] =
E [v2V]

E [vV]
. (B.7)

Using the definition of the variance of the raindrop terminal fall speeds in the air
(Var[vV]), this gives

E [vA] = E [vV] +
Var [vV]

E [vV]
, (B.8)

which in terms of the corresponding coefficient of variation CVvV
(the ratio of the

standard deviation to the mean) corresponds to

E [vA] =
(
1 + CV2

vV

)
E [vV] . (B.9)

This equation immediately shows that the mean fall speed of raindrops arriving at a
surface will generally be larger than that of raindrops present in a volume of air. Only
if there is no variability whatsoever in the fall speeds (CVvV

= 0), both means will
be equal (an obvious result). Similar relations between the higher order moments of
the distributions of vV and vA are easy to obtain, but have little practical relevance.

Eq. (B.8) is a well-known result in traffic flow theory, where vV represents the
speed of cars present at a certain moment on a particular stretch of highway and vA
the speed of cars passing a particular point on that highway during a certain period
of time (e.g. Gerlough and Huber, 1975). The analogy with the problem of falling
raindrops will be clear.



Appendix C

Consistent sets of power law
relationships

Table C.1: Power law relationships of the mean properties of raindrops present in a volume
of air (diameter (mm), terminal fall speed (m s−1), volume (mm3), momentum (kgms−1)
and kinetic energy (J), respectively) with rain rate (mmh−1) for six different consistent sets
of power law relationships.

Set µDV
× 10 µvV

µV V
× 102 µMV

× 107 µEV
× 107

N0,Λ 2.44R0.210 1.02R0.160 4.56R0.630 1.42R0.790 2.55R0.950

N0, v 2.36R0.214 1.30R0.143 4.15R0.642 1.47R0.786 2.90R0.929

N0, Z 2.31R0.229 2.13R0.086 3.85R0.686 1.51R0.771 3.05R0.857

Λ, v 2.44R0.210 1.33R0.141 4.56R0.630 1.65R0.771 3.32R0.911

Λ, Z 2.44R0.210 3.60R0.030 4.56R0.630 2.11R0.660 4.89R0.690

v, Z 2.20R0.258 1.24R0.173 3.33R0.773 1.12R0.945 2.10R1.12

Table C.2: Power law relationships of the mean properties of raindrops arriving at a surface
(diameter (mm), terminal fall speed (m s−1), volume (mm3), momentum (kgm s−1) and
kinetic energy (J), respectively) with rain rate (mmh−1) for six different consistent sets of
power law relationships.

Set µDA
× 10 µvA

µV A
× 102 µMA

× 107 µEA
× 107

N0,Λ 4.30R0.210 1.63R0.160 13.9R0.630 4.98R0.790 10.0R0.950

N0, v 3.95R0.214 1.90R0.143 11.3R0.642 4.46R0.786 9.65R0.929

N0, Z 3.17R0.229 2.47R0.086 7.08R0.686 2.87R0.771 6.00R0.857

Λ, v 4.07R0.210 1.94R0.141 12.4R0.630 5.01R0.771 11.1R0.911

Λ, Z 2.79R0.210 3.70R0.030 5.85R0.630 2.72R0.660 6.34R0.690

v, Z 3.67R0.258 1.81R0.173 9.07R0.773 3.41R0.945 7.01R1.12
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Table C.3: Power law relationships of the rainfall state variables (raindrop concentration
(m−3), liquid rainwater content (mgm−3) and radar reflectivity factor (mm6m−3)) with
rain rate (mmh−1) for six different consistent sets of power law relationships.

Set ρV × 10−3 W Z
N0,Λ 1.95R0.210 88.9R0.840 296R1.47

N0, v 1.89R0.214 78.4R0.857 237R1.50

N0, Z 1.85R0.229 71.1R0.914 200R1.60

Λ, v 1.69R0.229 76.8R0.859 255R1.49

Λ, Z 1.32R0.340 60.1R0.970 200R1.60

v, Z 2.48R0.055 82.4R0.827 200R1.60

Table C.4: Power law relationships of the rainfall flux variables (raindrop arrival rate
(m−2 s−1), rainfall pressure (Pa) and rainfall power (Wm−2)) with rain rate (mmh−1)
for six different consistent sets of power law relationships.

Set ρA × 10−3 P × 104 U × 103

N0,Λ 2.00R0.370 9.94R1.16 2.00R1.32

N0, v 2.46R0.358 11.0R1.14 2.37R1.29

N0, Z 3.92R0.314 11.2R1.09 2.35R1.17

Λ, v 2.23R0.370 11.2R1.14 2.47R1.28

Λ, Z 4.75R0.370 12.9R1.03 3.01R1.06

v, Z 3.06R0.227 10.4R1.17 2.15R1.35
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Table C.5: Power law relationships of the characteristic sizes of raindrops present in a
volume of air (median-volume diameter, volume-weighted mean diameter and mean-volume
diameter (all in mm)) with rain rate (mmh−1) for six different consistent sets of power law
relationships.

Set D0,V × 10 Dm,V × 10 DV,V × 10
N0,Λ 8.95R0.210 9.76R0.210 4.43R0.210

N0, v 8.67R0.214 9.45R0.214 4.30R0.214

N0, Z 8.46R0.229 9.23R0.229 4.19R0.229

Λ, v 8.95R0.210 9.76R0.210 4.43R0.210

Λ, Z 8.95R0.210 9.76R0.210 4.43R0.210

v, Z 8.06R0.258 8.78R0.258 3.99R0.258

Table C.6: Power law relationships of the characteristic sizes of raindrops arriving at a
surface (median-volume diameter, volume-weighted mean diameter and mean-volume di-
ameter (all in mm)) with rain rate (mmh−1) for six different consistent sets of power law
relationships.

Set D0,A × 10 Dm,A × 10 DV,A × 10
N0,Λ 10.8R0.210 11.6R0.210 6.43R0.210

N0, v 10.3R0.214 11.0R0.214 6.00R0.214

N0, Z 9.33R0.229 10.1R0.229 5.13R0.229

Λ, v 10.6R0.210 11.4R0.210 6.19R0.210

Λ, Z 9.30R0.210 10.1R0.210 4.82R0.210

v, Z 9.53R0.258 10.3R0.258 5.58R0.258
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Appendix D

Spilhaus’ general raindrop size
distribution function revisited

This appendix is intended to reintroduce the general raindrop size distribution func-
tion proposed by Spilhaus (1948) to describe Laws and Parsons’ (1943) data and to
provide some additional results. Although Spilhaus’ parameterization has an inter-
esting functional form, it will be demonstrated that it is not entirely consistent and
that as such it should be considered with care when applied in its original form.

Spilhaus found that Laws and Parsons’ tabulated raindrop size data for all rain
rates can be closely described by the (dimensionless) general function

lnDfR(D) = −k2
0u

2, (D.1)

whereD is ‘the median diameter dividing rain falling on a horizontal surface into equal
halves by volume’, 100×fR(D)dD is ‘the distribution of the percentage volume of total
rainfall on a horizontal surface [...] by diameter classes (dD)’, k2

0 is a (dimensionless)
factor ‘constant for all rains’ and

u =
(
D

D

)1/2

− 1. (D.2)

Spilhaus found that when values of lnDfR(D) and u2 are computed from Laws and
Parsons’ measured (smoothed) results and plotted against each other, it follows that
‘the linear relationship Eq. (D.1) holds very closely for k2

0 = 11.5, although there is a
slight systematic deviation’.

Spilhaus motivated his choice for this particular functional form by his finding
that Laws’ (1941) earlier measurements of the terminal fall speed of raindrops can be
closely described for diameters up to 4 mm by the theoretical relation

v = KD1/2, (D.3)

with K = 1.42 × 103 cm1/2 s−1 (if D in cm and v in cm s−1), i.e. 4.49 m s−1 mm−1/2

(if D in mm and v in m s−1). If this is substituted in Eq. (D.2) then u can be written
as

u =
v − v

v
, (D.4)
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where v, defined as KD
1/2

, is ‘a median fall speed, corresponding to the median-sized
drop’. Spilhaus accordingly interpreted u as ‘the deviation of the fall speed of any
drop from the fall speed of the median-sized drop, expressed as a ratio to the fall speed
of the median-sized drop’. He claimed that since ‘coalescence of drops of raindrop size
depends on collision, the frequency of which in turn depends on relative speed’, his
general raindrop size distribution function (Eq. (D.1)), essentially corresponding to a
normal distribution of the liquid rainwater content over v (as will be shown below,
see Eq. (D.22)), is ‘therefore not physically unreasonable’.

However, apart from being physically reasonable, parameterizations of raindrop
size distributions should also bemathematically consistent. To verify the self-consistency
of Spilhaus’ parameterization, an explicit expression for the cumulative distribution
of rain rate over drop size, defined as

FR(D) =
∫ D

0
fR(x) dx, (D.5)

is needed. Such an expression, although not provided by Spilhaus, can be derived
from his general size distribution function as follows. Taking exponents on both sides
of Eq. (D.1) and subsequently integrating between diameters 0 and D yields

FR(D) =
1

D

∫ D

0
exp

[
−k2

0u
2(x)

]
dx. (D.6)

Since x = D (u+ 1)2 (from Eq. (D.2)), dx = 2D (u+ 1)du. A change of variables
from x to u therefore gives

FR(D) = 2
∫ u(D)

−1
(u+ 1) exp

(
−k2

0u
2
)
du. (D.7)

This can also be written as

FR(D) =

√
π

k0
[erf (k0u(D)) + erf (k0)] +

1

k2
0

[
exp

(
−k2

0

)
− exp

(
−k2

0u
2(D)

)]
, (D.8)

where erf (x) is the error function, defined as

erf (x) =
2√
π

∫ x

0
e−t2dt, (D.9)

with erf (−x) = −erf (x) (e.g. Abramowitz and Stegun, 1972). FR (D) has a rather
tedious functional form. A slight simplification can be achieved by noting that for
typical values of k2

0 (of the order of 10), erf (k0) is already very close to 1 and e−k20

very close to 0. Substituting these limiting values in Eq. (D.8) yields

FR(D) ≈
√
π

k0
[erf (k0u(D)) + 1]− 1

k2
0

exp
(
−k2

0u
2(D)

)
, (D.10)



APPENDIX D. SPILHAUS’ RAINDROP SIZE DISTRIBUTION 243

which can be shown to be a very accurate approximation.
A first check as to the consistency of Spilhaus’ parameterization is provided by

noting that by definition1
∫∞
0 fR(D)dD = 1, which implies FR(∞) = 1. Hence, from

Eq. (D.8), √
π

k0
[1 + erf (k0)] +

1

k2
0

exp
(
−k2

0

)
= 1, (D.11)

an implicit constraint for k2
0, yielding k2

0 ≈ 12.6. For k2
0 = 11.5, the value obtained by

Spilhaus, the left-hand side of Eq. (D.11) becomes 1.05, a minor violation of consis-
tency. From Eq. (D.10) an approximation to the consistent value of k2

0 can be obtained
explicitly, yielding k2

0 = 4π. That this is indeed a very accurate approximation, can
easily be verified by substituting it in the left-hand side of Eq. (D.11). The result
deviates from 1 by less than 10−6.

A second check as to the consistency of Spilhaus’ parameterization is provided
by considering in more detail the definition of D. According to Spilhaus, D is ‘the
median diameter dividing rain falling on a horizontal surface into equal halves by
volume’. This would imply FR

(
D
)
= 1/2. From Eq. (D.2) it follows that u

(
D
)
= 0.

Substituting these values in Eq. (D.8) yields
√
π

k0
erf (k0) +

1

k2
0

[
exp

(
−k2

0

)
− 1

]
=

1

2
, (D.12)

another implicit constraint for k2
0, giving k2

0 ≈ 8.07. For k2
0 = 11.5, the left-hand side

of Eq. (D.12) becomes 0.436, again a consistency violation. An explicit approximation
to the consistent value of k2

0 can again be obtained from Eq. (D.10). This yields the
quadratic equation k2

0 − 2k0
√
π + 2 = 0, with roots k0 =

√
π ±

√
π − 2. Substitution

of these roots in Eq. (D.12) shows that only k0 =
√
π+

√
π − 2 satisfies the constraint

and it is therefore the desired solution.
Apart from the fact that Spilhaus’ value for k2

0 is neither consistent with the
constraint imposed by Eq. (D.11) nor with the constraint imposed by Eq. (D.12), the
latter two are not consistent with each other either. This implies that D, in contrast
to what Spilhaus suggested, cannot be the median of fR(D). To what characteristic
diameter does D correspond then? From Eq. (D.8) it follows that

FR

(
D
)
=

√
π

k0
erf (k0) +

1

k2
0

[
exp

(
−k2

0

)
− 1

]
. (D.13)

Combining this with Eq. (D.11) yields

FR

(
D
)
= 1−

√
π

k0
− 1

k2
0

, (D.14)

which, for k2
0 = 4π, leads to FR

(
D
)
= 1/2 − 1/ (4π) ≈ 0.420. Starting with the

approximation of Eq. (D.10) would yield numerically the same result. Hence, to render

1Although taking the limiting raindrop diameters as 0 and∞ is indeed a simplification of matters,
Spilhaus justified it by noting that ‘the limits are taken from 0 to ∞ for simplicity, with no great
error because in normal rains the number of drops approaching maximum size (about 7 mm) is
negligible and the contribution of drops less than “raindrop” size (0.5 mm) is likewise negligible’.
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Spilhaus’ parameterization (Eq. (D.1)) consistent, D would have to correspond to the
42nd percentile of the distribution of rain rate over drop size, at least for diameter
integration limits of 0 and ∞.

For many applications, it is not only the distribution of rain rate over drop size
(fR(D)) which is of interest, but that of liquid rainwater content (fW (D)) as well. For
diameter integration limits of 0 and ∞, the latter is related to the former according
to

fW (D) =
v−1(D) fR(D)

∫∞
0 v−1(D) fR(D) dD

, (D.15)

where v(D) is the relation between terminal fall speed and drop diameter. In case of
Spilhaus’ v(D) relation (Eq. (D.3)), this becomes

fW (D) =
D−1/2fR(D)

∫∞
0 D−1/2fR(D) dD

. (D.16)

Upon substitution of Eq. (D.1), the integral in the denominator can be written as

∫ ∞

0
D−1/2fR(D) dD =

1

D

∫ ∞

0
D−1/2 exp

[
−k2

0u
2(D)

]
dD. (D.17)

A change of variables from D to u on the right-hand side gives
∫ ∞

0
D−1/2fR(D) dD = 2D

−1/2
∫ ∞

−1
exp

(
−k2

0u
2
)
du, (D.18)

which can also be written as
∫ ∞

0
D−1/2fR(D) dD =

√
π

k2
0D

[1 + erf (k0)] . (D.19)

Since, as has been shown above, erf (k0) is approximately 1, this integral is to a very

close approximation equal to

√
4π/

(
k2
0D
)
. Substituting this in Eq. (D.16) yields

fW (D) ≈
√

k2
0

4π

exp [−k2
0u

2(D)]

D [u(D) + 1]
. (D.20)

In terms of the variable u this becomes

fW (u) ≈ k0√
π
exp

(
−k2

0u
2
)
, (D.21)

an approximation found by Spilhaus as well. However, a final change of variables to
v yields an even more instructive result, namely

fW (v) ≈ 1

v/k0
√
π
exp


−

(
v − v

v/k0

)2

 . (D.22)

This function corresponds to the probability density function of a normal distribution

with a mean of v and a standard deviation of v/
√
2k2

0, which for k2
0 = 4π becomes
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approximately v/5 (e.g. Mood et al., 1974). The fact that for typical values of k2
0 the

standard deviation is much smaller than the mean guarantees that the probability
mass corresponding to negative fall speeds is negligible (it is less than 10−6 if k2

0 = 4π).
Finally, Eq. (D.22) also resolves the problem of the definition ofD: it is not the median
of fR(D), as Spilhaus erroneously assumed, but that of fW (D).
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Appendix E

A statistical interpretation of the
scaling exponent β

E.1 Introduction

The starting point for the developments in this appendix is the dimensionless form
of the raindrop size distribution NV(D) [L−4] derived in Chapter 3 (Eq. (3.2)), i.e.

NV (D) =
ρV
DC

fDC

(
D

DC

)
, (E.1)

where ρV [L−3] is the raindrop concentration and DC [L] a characteristic raindrop
diameter. In the derivation of the scaling law (Eq. (3.4)) it has been assumed that
both ρV and DC are uniquely related (via power law relationships) to a reference
variable Ψ, itself a function of the raindrop size distribution. The net effect of this
assumption is that the raindrop size distribution effectively becomes a distribution
which depends on only one parameter, namely the reference variable Ψ. However, the
results of Chapter 5 have indicated that not all observed variability in raindrop size
distributions and power law relationships can generally be explained by one single
reference variable, suggesting the extension of the scaling law formulation in such a
manner that it would be able to cope with the excess variability. In this appendix,
a first approach to such an extension is investigated. The problem is treated in a
statistical framework. The analysis is restricted to the common case where the rain
rate R plays the role of reference variable. However, the results are easily generalized
to any other choice for the reference variable.

Consider rainfall related variables which are proportional to the moments of the
raindrop size distribution, i.e.

Ωm = cΩm

∫ ∞

0
DmNV(D) dD. (E.2)

Substitution of Eq. (E.1) yields

Ωm = c′Ωm
ρVD

m
C , (E.3)
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where
c′Ωm

= cΩm

∫ ∞

0
xmfDC

(x) dx (E.4)

and x = D/DC is a dimensionless raindrop size. In particular, if ρV is expressed in
m−3 and DC in mm, the definition of the rain rate R (mmh−1) becomes

R = c′RρVD
3+γ
C , (E.5)

with
c′R = 6π × 10−4c

∫ ∞

0
x3+γfDC

(x) dx, (E.6)

where c and γ are the coefficients of a power law relationship between raindrop termi-
nal fall speed v (m s−1) and equivalent spherical diameter D (mm). It is seen that in
general, a moment of the raindrop size distribution depends on at least two variables:
the raindrop concentration ρV, a characteristic raindrop diameter DC and possibly
one or more (dimensionless) coefficients characterizing the shape of fDC

(x), such as
its coefficients of variation, skewness or kurtosis. If, for a given climatology or a given
type of rainfall, the latter are assumed to be constant (i.e. independent of the value
of any rainfall related variable), only two variables remain: ρV and DC.

E.2 A statistical approach

As a generalization of the methodology applied by Smith and Krajewski (1993), a
simple linear regression approach is adopted to tackle the problem. Taking natural
logarithms on both sides of Eqs. (E.3) and (E.5) yields

lnΩm = ln c′Ωm
+ ln ρV +m lnDC (E.7)

and
lnR = ln c′R + ln ρV + (3 + γ) lnDC. (E.8)

If Ωm, R, ρ
V
and DC are now assumed to be random variables, the slope of a simple

linear regression of lnΩm on lnR is given by

γ̂Ωm =
Cov (lnΩm, lnR)

Var (lnR)
(E.9)

and the associated coefficient of determination, i.e. the square of the correlation
coefficient between lnΩm and lnR, is given by

ρ2Ωm
=

Cov2 (lnΩm, lnR)

Var (lnΩm)Var (lnR)
. (E.10)

The slope has been written as γ̂Ωm because it provides an estimate of the exponent
of a power law relationship between Ωm and R. Using Eqs. (E.7) and (E.8), these
(co)variances can be written as

Var (lnΩm) = Var
(
ln ρ

V

)
+m2Var (lnDC) +

2mCov
(
ln ρ

V
, lnDC

)
, (E.11)
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Var (lnR) = Var
(
ln ρ

V

)
+ (3 + γ)2Var (lnDC) +

2 (3 + γ)Cov
(
ln ρ

V
, lnDC

)
(E.12)

and

Cov (lnΩm, lnR) = Var
(
ln ρ

V

)
+m (3 + γ) Var (lnDC) +

(m+ 3 + γ)Cov
(
ln ρ

V
, lnDC

)
. (E.13)

Substitution of these results in Eq. (E.9) yields

γ̂Ωm =
1 +m (3 + γ)

Var(lnDC)
Var(ln ρ

V
)
+ (m+ 3 + γ)

Cov(ln ρ
V
,lnDC)

Var(ln ρ
V
)

1 + (3 + γ)2
Var(lnDC)
Var(ln ρ

V
)
+ 2 (3 + γ)

Cov(lnρ
V
,lnDC)

Var(ln ρ
V
)

, (E.14)

which is a linear function of the order of the moment m, in accordance with the
scaling law formulation (Eq. (3.21)).

Finally, this expression leads to an explicit formulation for the scaling exponent
β in terms of the (co)variances between the raindrop concentration and the charac-
teristic raindrop size according to

β̂ =
(3 + γ)

Var(lnDC)
Var(lnρ

V
)
+

Cov(ln ρ
V
,lnDC)

Var(lnρ
V
)

1 + (3 + γ)2
Var(lnDC)
Var(ln ρ

V
)
+ 2 (3 + γ)

Cov(lnρ
V
,lnDC)

Var(ln ρ
V
)

. (E.15)

A comparison with Table 3.8 shows that this expression has the right limiting behav-
ior: if Var(lnDC) ≫ Var

(
ln ρ

V

)
(raindrop size controlled variability) then β̂ = 1

3+γ
; if

Var
(
ln ρ

V

)
≫ Var(lnDC) (raindrop concentration controlled variability, i.e. equilib-

rium rainfall) then β̂ = 0. Hence, this expression provides a statistical interpretation
of all intermediate points on the self-consistency curves in Fig. 3.2 in terms of the
relative variabilities of the raindrop concentration and characteristic raindrop size.



250 APPENDIX E. STATISTICAL INTERPRETATION OF β



Appendix F

An explanation for the spurious
correlation between CR and γR

F.1 Introduction

The problem at hand can be formulated as follows. Suppose there is available a
large number of empirical values of the prefactors CZ and exponents γZ of power law
relationships between the radar reflectivity factor Z (mm6m−3) and the rain rate R
(mmh−1),

Z = CZR
γZ . (F.1)

Although the Z–R relationship is the most common form of relationship between Z
and R, often the interest lies more in obtaining R from Z (as estimated by radar)
than in obtaining Z from R. Hence, an R–Z relationship of the form

R = CRZ
γR (F.2)

is required. If it is assumed that Z and R are uniquely related to each other, then the
Z–R and R–Z relationships must be two different forms of one and the same relation.
This implies that CR and γR must be related to CZ and γZ according to

CR = C−γR
Z (F.3)

and

γR = γ−1
Z . (F.4)

The available empirical values of CZ and γZ can be used in this manner to estimate
the values of CR and γR. The question is now how these transformations affect
the dependence between CR and γR, given a priori knowledge about the dependence
between CZ and γZ and their respective variabilities.
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F.2 Case 1: Z and R are expressed in their tradi-

tional units

If Z is expressed in units of mm6m−3 and R in mmh−1, their traditional units, then
often the values of CR and γR are found to be quite strongly (negatively) correlated,
even though CZ and γZ exhibit little or no correlation. More specifically, when
plotted on semi-logarithmic paper, the values of logCR and γR are generally found to
lie roughly on a straight line with a negative slope, while logCZ and γZ do not seem
to show any systematic dependence. How can this be explained?

This is a typical example of what is called spurious correlation, i.e. apparent
correlation between variables which in fact may be uncorrelated (e.g. Haan, 1977).
In statistical terms, the problem can be posed as follows. Suppose CZ and γ

Z
are

two independent random variables. Then what is the correlation coefficient between
the random variables

logCR = −γ
R
logCZ (F.5)

and
γ
R
= γ−1

Z
? (F.6)

By definition, the square of this correlation coefficient is given by

ρ2 =
Cov2

(
logCR, γR

)

Var (logCR)Var
(
γ
R

) . (F.7)

Again by definition, the covariance between logCR and γ
R
can be written in terms

of expectations as

Cov
(
logCR, γR

)
= E

[
γ
R
logCR

]
− E

[
γ
R

]
E [logCR]

= −E
[
γ2
R
logCZ

]
+ E

[
γ
R

]
E
[
γ
R
logCZ

]
. (F.8)

The fact that CZ and γ
Z
are independent implies that logCZ and γ

R
are independent

as well. Hence, the previous expression reduces to

Cov
(
logCR, γR

)
= −E

[
γ2
R

]
E [logCZ ] + E2

[
γ
R

]
E [logCZ ]

= −E [logCZ ] Var
(
γ
R

)
, (F.9)

which is negative as long as E[logCZ ] is positive, i.e. as long as the geometric mean
of CZ exceeds one (which is typically the case for the assumed units of Z and R).
This reduces the square of the correlation coefficient between logCR and γ

R
to

ρ2 =
E2 [logCZ ] Var

(
γ
R

)

Var (logCR)
. (F.10)

By definition, the variance of logCR is

Var (logCR) = E
[
log2CR

]
− E2 [logCR] . (F.11)
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Hence

Var (logCR) = E
[
γ2
R
log2CZ

]
− E2

[
γ
R
logCZ

]

= E
[
γ2
R

]
E
[
log2CZ

]
− E2

[
γ
R

]
E2 [logCZ ]

= Var
(
γ
R

)
Var (logCZ) + E2

[
γ
R

]
Var (logCZ) +

E2 [logCZ ] Var
(
γ
R

)
. (F.12)

This finally implies for the square of the correlation coefficient between logCR and
γ
R

ρ2 =
E2 [logCZ ] Var

(
γ
R

)

E2 [logCZ ] Var
(
γ
R

)
+ E2

[
γ
R

]
Var (logCZ) + Var

(
γ
R

)
Var (logCZ)

=
CV2

(
γ−1
Z

)

CV2
(
γ−1
Z

)
+ CV2 (logCZ) + CV2

(
γ−1
Z

)
CV2 (logCZ)

, (F.13)

the desired expression for the square of the correlation coefficient between logCR and
γ
R
in terms of the coefficients of variation (the ratios of the standard deviations to

the means) of logCZ and γ−1
Z
. Eq. (F.13) shows that independent fluctuations in

logCZ and γ
Z
alone are enough to produce (spurious) correlations between logCR

and γ
R
. Moreover, it shows that if CV

(
γ−1
Z

)
≫ CV(logCZ) ρ

2 will tend to one (with

the sign of ρ equal to that of −E[logCZ ], see Eq. (F.9)), whereas if CV(logCZ) ≫
CV

(
γ−1
Z

)
ρ2 will tend to zero. Since the last term in the denominator is of fourth

order and the others are all of second order, it can be neglected if both coefficients
of variation are small enough. Two examples will serve to illustrate the usefulness of
this expression.

For 28 rainfall events collected in 1968 and 1969 in De Bilt, The Netherlands
(Wessels, 1972), logCZ and γZ are found to be virtually uncorrelated, with a sample
correlation coefficient r of only 0.0867. The sample geometric mean of CZ is 246, well
above one, and therefore the correlation between logCR and γR will be negative, as
can be seen from Eq. (F.9). The sample coefficients of variation of logCZ and γ−1

Z

are 0.0785 and 0.1265, respectively. Substituting these values in Eq. (F.13) yields a
correlation coefficient of −0.85, which is quite close to the actual sample correlation
coefficient between logCR and γR (−0.82).

The 69 Z–R relationships reported by Battan (1973) exhibit a slight negative
correlation between logCZ and γZ , their sample correlation coefficient is −0.2146.
Hence, Eq. (F.13), being based on the assumption that logCZ and γZ are indepen-
dent, is expected to yield less satisfactory results in this case. The sample geometric
mean of CZ is 238, again implying a negative correlation between logCR and γR. The
sample coefficients of variation of logCZ and γ−1

Z are now 0.1140 and 0.1213, respec-
tively, resulting in a predicted correlation coefficient of −0.73. This is still reasonably
close to the actual sample correlation coefficient between logCR and γR (−0.78). The
conclusion is that Eq. (F.13) provides relatively robust estimates of the spurious
correlation between logCR and γR.
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F.3 Case 2: Z and R are expressed in SI-units

Suppose now the radar reflectivity factor and the rain rate are both expressed in SI-
units. To distinguish them from their traditional counterparts, they will be called ZSI

and RSI, respectively. Hence, ZSI has units of m
3 and RSI has units of m s−1. As the

units of the prefactor of a power law radar reflectivity – rain rate relationship depend
both on those of radar reflectivity and rain rate and on the value of the exponent,
it will be clear that changing their units will affect the correlation between prefactor
and exponent. This problem will first be treated for the case of ZSI–RSI relationships,
then for that of RSI–ZSI relationships.

ZSI (m
3) and RSI (m s−1) are numerically related to Z (mm6m−3) and R (mmh−1)

according to {
Z = 1018ZSI

R = 3.6× 106RSI
. (F.14)

For convenience in notation, the proportionality factors will be called pZ and pR in
the sequel. This yields for the power law relationship between ZSI and RSI

ZSI = CZSI
RγZ

SI , (F.15)

where
CZSI

= CZ (pR)
γZ p−1

Z , (F.16)

or
logCZSI

= logCZ + γZ log pR − log pZ . (F.17)

Hence, only the prefactor is affected by a change of units. Because it is dimensionless,
the exponent of the power law remains the same. If CZSI

, CZ and γ
Z
are three random

variables, then the covariance between logCZSI
and γ

Z
can be written as

Cov
(
logCZSI

, γ
Z

)
= Cov

(
logCZ + γ

Z
log pR − log pZ , γZ

)

= Cov
(
logCZ , γZ

)
+ log pRVar

(
γ
Z

)
. (F.18)

If CZ and γ
Z
are uncorrelated (not necessarily independent) then this reduces to

Cov
(
logCZSI

, γ
Z

)
= log pRVar

(
γ
Z

)
, (F.19)

which is positive as long as log pR is positive, i.e. as long as pR exceeds one (as is the
case here). The variance of logCZSI

is

Var
(
logCZSI

)
= Var

(
logCZ + γ

Z
log pR − log pZ

)

= Var (logCZ) + log2 pRVar
(
γ
Z

)
+ 2 log pRCov

(
logCZ , γZ

)
.

(F.20)

If CZ and γ
Z
are uncorrelated then this reduces to

Var
(
logCZSI

)
= Var (logCZ) + log2 pRVar

(
γ
Z

)
. (F.21)
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This finally implies for the square of the correlation coefficient between logCZSI
and

γ
Z
(if CZ and γ

Z
are uncorrelated)

ρ2 =
Cov2

(
logCZSI

, γ
Z

)

Var
(
logCZSI

)
Var

(
γ
Z

)

=
log2 pRVar

(
γ
Z

)

log2 pRVar
(
γ
Z

)
+Var (logCZ)

. (F.22)

This expression shows that if log2 pRVar
(
γ
Z

)
≫ Var(logCZ) then ρ2 tends to one,

whereas if Var(logCZ) ≫ log2 pRVar
(
γ
Z

)
then ρ2 tends to zero. Since in the case

treated here pR equals 3.6× 106, ρ2 will almost surely be close to one. As pR exceeds
one, this indicates a strong positive correlation between logCZSI

and γ
Z
. Indeed,

for the Dutch data reported in the first section of this appendix Eq. (F.22) predicts
ρ = +0.99, for Battan’s Z–R relationships ρ = +0.98. Both these values deviate less
than 0.01 from their actual sample values, which confirms the validity of Eq. (F.22).

In accordance with what has been shown in the first section of this appendix for
R–Z relationships, for RSI–ZSI relationships the problem is to find an appropriate
expression for the correlation coefficient between the random variables

logCRSI
= −γ

R
logCZSI

(F.23)

and

γ
R
= γ−1

Z
. (F.24)

Substitution of Eq. (F.17) into the expression for logCRSI
yields

logCRSI
= −γ

R

(
logCZ + γ

Z
log pR − log pZ

)

= −γ
R
logCZ + γ

R
log pZ − log pR (F.25)

= logCR + γ
R
log pZ − log pR. (F.26)

Hence, the covariance of logCRSI
and γ

R
is

Cov
(
logCRSI

, γ
R

)
= Cov

(
logCR, γR

)
+ log pZVar

(
γ
R

)
. (F.27)

Substitution of Eq. (F.9) into this expression yields

Cov
(
logCRSI

, γ
R

)
= {log pZ − E [logCZ ]}Var

(
γ
R

)
, (F.28)

which is positive as long as log pZ−E[logCZ ] is positive, i.e. as long as pZ exceeds
the geometric mean of CZ (which is largely the case here). The variance of logCRSI

is

Var
(
logCRSI

)
= Var (logCR) + log2 pZVar

(
γ
R

)
+ 2 log pZCov

(
logCR, γR

)
. (F.29)
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Substituting Eqs. (F.12) and (F.9) into this expression yields

Var
(
logCRSI

)
= Var

(
γ
R

)
Var (logCZ) + E2

[
γ
R

]
Var (logCZ) +

E2 [logCZ ] Var
(
γ
R

)
+ log2 pZVar

(
γ
R

)
−

2 log pZE [logCZ ] Var
(
γ
R

)

= Var
(
γ
R

)
Var (logCZ) + E2

[
γ
R

]
Var (logCZ) +

{log pZ − E [logCZ ]}2Var
(
γ
R

)
. (F.30)

This finally implies for the square of the correlation coefficient between logCRSI
and

γ
R

ρ2 =
Cov2

(
logCRSI

, γ
R

)

Var
(
logCRSI

)
Var

(
γ
R

)

=
{log pZ − E [logCZ ]}2Var

(
γ
R

)

{log pZ − E [logCZ ]}2Var
(
γ
R

)
+ E2

[
γ
R

]
Var (logCZ)+

Var
(
γ
R

)
Var (logCZ)

=

{
log pZ

E[logCZ]
− 1

}2

CV2
(
γ−1
Z

)

{
log pZ

E[logCZ ]
− 1

}2

CV2
(
γ−1
Z

)
+ CV2 (logCZ) + CV2

(
γ−1
Z

)
CV2 (logCZ)

,

(F.31)

which reduces to Eq. (F.13) if pZ = 1, as it should. This expression shows that if
log pZ ≫ E[logCZ ], i.e. if pZ largely exceeds the geometric mean of CZ (which is the

case here), then ρ2 will tend to one (unless CV2 (logCZ) ≫ CV2
(
γ−1
Z

)
). Indeed, both

for the Dutch data reported in the first section of this appendix and for Battan’s 69
Z–R relationships Eq. (F.31) predicts ρ = +0.99. Again, these values deviate less
than 0.01 from their actual sample values, thus confirming the validity of Eq. (F.31).

In summary, the derivations in this appendix lead to the following conclusions:
(1) the empirically established strong negative correlation between logCR and γR
when Z and R are expressed in their traditional units (mm6m−3 and mmh−1) can
be explained theoretically as a spurious correlation; (2) both the strong negative
correlation between logCR and γR and the quasi-independence of logCZ and γZ
should not be construed as to have any physical meaning. These dependencies are
completely determined by the units employed for Z and R. A simple change of units
(to SI-units for instance) may alter them radically.



Appendix G

An explanation for the dependence
between N0 and µ1

G.1 Introduction

Assuming the parameter N0 to be independent of rain rate, Ulbrich (1983) has em-
ployed the prefactors and exponents of the 69 power law Z–R relationships quoted
by Battan (1973) and those of 11 other relationships reported in the literature to
estimate the parameters N0 and µ of the gamma raindrop size distribution. A plot of
the values thus obtained on semi-logarithmic paper has revealed that the data points
lie more or less on a straight line. A linear least squares regression of lnN0 (with N0

expressed in units of cm−(1+µ)m−3) on µ (–) has yielded an expression of the form

N0 = 6× 104 exp (3.2µ) , (G.1)

with a linear correlation coefficient between lnN0 and µ exceeding 0.98. Ulbrich
argues that ‘this very high correlation is not surprising in view of the dependence
of N0 on µ implied theoretically’. Indeed, when plotted on semi-logarithmic paper
for given values of the prefactor CZ of the Z–R relationship, the theoretical N0–µ
relationship implied by Ulbrich’s approach yields approximately straight lines for the
range of values of µ encountered experimentally (−4 ≤ µ ≤ 10) (Fig. 6.11(b) and
Fig. 6.12, p. 194– 195). Ulbrich (1983) concludes that Eq. (G.1) has ‘both theoretical
and empirical justification’.

However, several authors have questioned the validity of this and similar equations.
Using their own experimental raindrop size distributions, Feingold and Levin (1986)
find that the correlation between lnN0 and µ decreases if N0 is expressed in units of
mm−(1+µ)m−3 instead of cm−(1+µ) m−3. They argue that the reason for this is ‘the
fact that the units of N0 depend on the value of µ itself’. This sensitivity of the
N0–µ relationship on the units of N0 has been confirmed by Chandrasekar and Bringi
(1987) through extensive simulation experiments. These investigators conclude that
‘the mean N0–µ relationship derived by Ulbrich (1983) is due to the nature of the

1Adapted version of Uijlenhoet, R. (1999). An explanation for the spurious correlation between
the parameters N0 and µ of the gamma raindrop size distribution. J. Appl. Meteorol. (submitted).
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quantities involved’ and that as a result ‘the three-parameter gamma raindrop size
distribution cannot be reduced to a two parameter form’.

Despite the apparently well-founded criticism which this approach has yielded,
the relationship between N0 and µ has remained widely used (e.g. Ulbrich and Atlas,
1998). It therefore seems appropriate to investigate this relationship a little more in
detail. The two major aspects of the problem are: (1) the mathematical origin of the
approximately linear theoretical relationship between lnN0 and µ for a given value
of CZ if N0 is independent of rain rate; (2) the influence of the units of N0 on the
correlation between empirical values of lnN0 and µ.

G.2 An approximate linear relationship between

lnN0 and µ

The starting point of the derivation here is Eq. (6.13) (p. 192), which gives the value
of N0 (mm−(1+µ) m−3) (independent of rain rate) as a function of µ (–) for a given
value of CZ (mm6m−3 (mmh−1)−γZ )

N0 =
104

6πc

1

Γ(4 + γ + µ)

[
104

6πc

Γ(7 + µ)

Γ(4 + γ + µ)

](4+γ+µ)/(3−γ)

C
−(4+γ+µ)/(3−γ)
Z . (G.2)

Taking the natural logarithm on both sides of this equation gives

lnN0 =
7 + µ

3− γ
ln

(
104

6πc

)
− 4 + γ + µ

3− γ
lnCZ +

4 + γ + µ

3− γ
ln Γ(7 + µ)− 7 + µ

3− γ
ln Γ(4 + γ + µ) . (G.3)

The first two terms of this expression are linear in µ, the last two not. However,
for moderate values of µ (the interest here lies typically in the range −4 ≤ µ ≤ 10)
ln Γ(7 + µ) and ln Γ(4 + γ + µ) may be approximated by their respective Taylor series
expansions about µ = 0, i.e.

ln Γ(7 + µ) = ln Γ(7) + µΨ(7) + O
(
µ2
)

(G.4)

and

ln Γ(4 + γ + µ) = ln Γ(4 + γ) + µΨ(4 + γ) + O
(
µ2
)
, (G.5)

where Ψ(x) is the psi (or digamma) function, defined as

Ψ(x) =
d ln Γ(x)

dx
=

Γ′ (x)

Γ(x)
(G.6)

(Abramowitz and Stegun, 1972). Substituting these expansions in Eq. (G.3), collect-
ing terms of the same order in µ and retaining only those of zeroth and first order
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yields the approximation

lnN0 ≈ 7

3− γ
ln

[
104

6πc

1

Γ(4 + γ)

]
+

4 + γ

3− γ
ln

[
Γ(7)

CZ

]
+

{
1

3− γ
ln

[
104

6πc

Γ(7)

CZΓ(4 + γ)

]
− 7

3− γ
Ψ(4 + γ) +

4 + γ

3− γ
Ψ(7)

}
µ.

(G.7)

This can be written alternatively as

N0 ≈ CN0 exp (γN0µ) , (G.8)

with

CN0 =

[
104

6πcΓ(4 + γ)

]7/(3−γ) [
Γ(7)

CZ

](4+γ)/(3−γ)

(G.9)

and

γN0 =
1

3− γ
ln

[
104

6πcCZ

Γ(7)

Γ(4 + γ)

]
− 7

3− γ
Ψ(4 + γ) +

4 + γ

3− γ
Ψ(7) . (G.10)

If c = 3.778 m s−1 mm−γ and γ = 0.67 (Atlas and Ulbrich, 1977) then numerically
these expressions reduce to

CN0 = 4.62× 108C−2.00
Z (G.11)

and
γN0 = 3.25− 0.429 lnCZ , (G.12)

where CN0 is expressed in units of mm−(1+µ)m−3 and CZ in mm6m−3 (mmh−1)−γZ .
If, in accordance with Eq. (G.1), N0 is expressed in cm−(1+µ) m−3 then Eq. (G.8)
should be multiplied with 101+µ. It then retains its exponential form, but with CN0

increased by a factor 10 and γN0 increased with ln 10, i.e.

CN0 = 4.62× 109C−2.00
Z (G.13)

and
γN0 = 5.55− 0.429 lnCZ . (G.14)

For the typical mean value of CZ = 250, these equations yield CN0 = 7.39 × 104

and γN0 = 3.18, quite close to Ulbrich’s (1983) empirically determined values of
6 × 104 and 3.2. If CZ = 277 then Eq. (G.8) fits his regression line almost perfectly
(CN0 = 6.02×104 and γN0 = 3.14). This happens to be exactly the (arithmetic) mean
value of the prefactors of all 69 Z–R relationships quoted by Battan (1973). Another
point which follows from these equations is that the sensitivity of the intercept lnCN0

and the slope γN0 of the lnN0–µ relation to changes in CZ has decreased after the
change of units of N0 from mm−(1+µ) m−3 to cm−(1+µ)m−3. As a matter of fact, this
sensitivity can be made to disappear almost entirely when N0 is expressed in SI-units
(m−(4+µ)).
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G.3 The correlation between empirical values of

lnN0 and µ

The second aspect of N0–µ relations which will be dealt with here is the influence of
the units of N0 on the (spurious) correlation between empirical values of lnN0 and
µ. For example, a practical question would be how the intercept lnCN0, the slope
γN0 and the associated correlation coefficient of the linear relationship between lnN0

and µ established via least squares regression by Ulbrich (1983) (Eq. (G.1)) would be
affected if the units of N0 would be changed from cm−(1+µ)m−3 to mm−(1+µ) m−3.

Consider the relation
lnN0 = lnCN0 + γN0µ, (G.15)

with N0 expressed in arbitrary units (within the constraints posed by its dimensions
L−(4+µ)). If this functional relation is the result of a linear least squares regression
analysis, then lnCN0 and γN0 can be interpreted as the intercept and the slope of the
regression line, i.e.

lnCN0 = E [lnN0]− γN0E
[
µ
]

(G.16)

and

γN0 =
Cov

(
lnN 0, µ

)

Var
(
µ
) , (G.17)

where lnN0 and µ are random variables. Similarly, the square of the correlation
coefficient between lnN0 and µ is

ρ2N0
=

Cov2
(
lnN 0, µ

)

Var (lnN 0) Var
(
µ
) . (G.18)

Now a new random variable N ′
0 is defined, which is related to N0 according to

N ′
0 = s1+µN 0, (G.19)

where s denotes the change in scale of the raindrop diameter, i.e. D′ = s−1D.
For instance, if D were originally expressed in units of mm and now changed to D′

expressed in cm, then s = 10. This implies for the natural logarithm of N ′
0

lnN ′
0 = lnN 0 +

(
1 + µ

)
ln s. (G.20)

The covariance of lnN ′
0 and µ is therefore given by

Cov
(
lnN ′

0, µ
)

= Cov
[
lnN 0 +

(
1 + µ

)
ln s, µ

]

= Cov
(
lnN0, µ

)
+ ln sVar

(
µ
)

(G.21)

and the variance of lnN ′
0 by

Var (lnN ′
0) = Var (lnN 0) + ln2 sVar

(
µ
)
+ 2 ln sCov

(
lnN0, µ

)
. (G.22)
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This implies for the slope of the regression line between lnN ′
0 and µ

γN ′

0
=

Cov
(
lnN ′

0, µ
)

Var
(
µ
)

=
Cov

(
lnN 0, µ

)
+ ln sVar

(
µ
)

Var
(
µ
)

= γN0 + ln s, (G.23)

for its intercept

lnCN ′

0
= E [lnN ′

0]− γN ′

0
E
[
µ
]

= E [lnN 0] +
(
1 + E

[
µ
])

ln s− (γN0 + ln s) E
[
µ
]

= E [lnN 0]− γN0E
[
µ
]
+ ln s

= lnCN0 + ln s (G.24)

(or CN ′

0
= sCN0) and for the corresponding square of the correlation coefficient

ρ2N ′

0
=

Cov2
(
lnN ′

0, µ
)

Var (lnN ′
0) Var

(
µ
)

= γ2
N ′

0

Var
(
µ
)

Var (lnN ′
0)

=
ρ2N0

(γN0 + ln s)2

ρ2N0
(γN0 + ln s)2 +

(
1− ρ2N0

)
γ2
N0

. (G.25)

Obviously, for s = 1 γN ′

0
reduces to γN0, CN ′

0
to CN0 and ρ2N ′

0
to ρ2N0

. The correlation

between lnN ′
0 and µ remains positive as long as the slope of the regression line (γN ′

0
)

remains positive, i.e. as long as γN0 + ln s > 0. It becomes zero when s = exp (−γN0).
For s = 1, ρ2N ′

0
obviously reduces to ρ2N0

. The parameter values of Ulbrich’s (1983)

regression line are CN0 = 6 × 104, γN0 = 3.2 and ρ2N0
= 0.96 (with N0 expressed in

cm−(1+µ)m−3). Hence, if the units of N0 were to be changed to mm−(1+µ) m−3 (which
corresponds to s = 0.1) then CN0 would become 6 × 103, γN0 would be reduced to
0.9 and ρ2N0

would be reduced to 0.66 (corresponding to a correlation coefficient of
approximately 0.8).

In short, the parameter N0, with units which depend on the value of the parameter
µ, is not a very suitable concentration parameter in the gamma raindrop size distribu-
tion. Alternative parameters, such as the raindrop concentration (Chandrasekar and
Bringi, 1987) or the recently proposed parameters NL (Illingworth and Blackman,
1999; Illingworth and Johnson, 1999) and N∗

0 (Dou et al., 1999; Testud et al., 1999),
all parameters with units independent of the value of µ, are preferable.
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Sempere Torres, D., Porrà, J. M., and Creutin, J.-D. (1994). A general formulation for
raindrop size distribution. J. Appl. Meteorol., 33:1494–1502.
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