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Abstract. Landscape evolution models can be used to assess the impact of rainfall variability on bedrock river

incision over millennial timescales. However, isolating the role of rainfall variability remains difficult in nat-

ural environments, in part because environmental controls on river incision such as lithological heterogeneity

are poorly constrained. In this study, we explore spatial differences in the rate of bedrock river incision in the

Ecuadorian Andes using three different stream power models. A pronounced rainfall gradient due to orographic

precipitation and high lithological heterogeneity enable us to explore the relative roles of these controls. First, we

use an area-based stream power model to scrutinize the role of lithological heterogeneity in river incision rates.

We show that lithological heterogeneity is key to predicting the spatial patterns of incision rates. Accounting

for lithological heterogeneity reveals a nonlinear relationship between river steepness, a proxy for river incision,

and denudation rates derived from cosmogenic radionuclide (CRNs). Second, we explore this nonlinearity using

runoff-based and stochastic-threshold stream power models, combined with a hydrological dataset, to calculate

spatial and temporal runoff variability. Statistical modeling suggests that the nonlinear relationship between river

steepness and denudation rates can be attributed to a spatial runoff gradient and incision thresholds. Our findings

have two main implications for the overall interpretation of CRN-derived denudation rates and the use of river

incision models: (i) applying sophisticated stream power models to explain denudation rates at the landscape

scale is only relevant when accounting for the confounding role of environmental factors such as lithology, and

(ii) spatial patterns in runoff due to orographic precipitation in combination with incision thresholds explain part

of the nonlinearity between river steepness and CRN-derived denudation rates. Our methodology can be used as

a framework to study the coupling between river incision, lithological heterogeneity and climate at regional to

continental scales.
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1 Introduction

1.1 Background

Research on how climate variability and tectonic forcing in-

teract to make a landscape evolve over time has long been

limited by the lack of techniques that measure denudation

rates over sufficiently long time spans (Coulthard and Van de

Wiel, 2013). Consequently, the relative role of climate vari-

ability and tectonic processes could only be deduced from

sediment archives (e.g., Hay et al., 1988). However, whether

sediment archives offer reliable proxies remains contested

because sediment sources and transfer times to depositional

sites are often obscured by stochastic processes that shred

environmental signals (Bernhardt et al., 2017; Jerolmack and

Paola, 2010; Romans et al., 2016; Sadler, 1981).

Nowadays, cosmogenic radionuclides (CRNs) contained

in quartz minerals of river sediments provide an alterna-

tive tool for determining catchment-wide denudation rates

on a routine basis (Codilean et al., 2018; Harel et al., 2016;

Portenga and Bierman, 2011). In sufficiently large catch-

ments, detrital CRN-derived denudation rates (ECRN) inte-

grate over timescales that average out the episodic nature of

sediment supply (Kirchner et al., 2001). Hence, benchmark

or natural denudation rates can be calculated for disturbed as

well as pristine environments (Reusser et al., 2015; Safran et

al., 2005; Schaller et al., 2001; Vanacker et al., 2007).

Catchment-wide denudation rates have been found to cor-

relate with a range of topographic metrics including basin

relief, average basin gradient and elevation (Abbühl et al.,

2011; Kober et al., 2007; Riebe et al., 2001; Safran et al.,

2005; Schaller et al., 2001). However, in tectonically active

regimes, hillslopes tend to evolve towards a critical threshold

gradient, which is controlled by mechanical rock properties

(Anderson, 1994; Roering et al., 1999; Schmidt and Mont-

gomery, 1995). Once slopes approach this critical gradient,

mass wasting becomes the dominant process controlling hill-

slope response to changing base levels (Burbank et al., 1996).

In such a configuration, hillslope gradients are no longer an

indication of denudation rates (Binnie et al., 2007; Korup et

al., 2007; Montgomery and Brandon, 2002), and hillslope

metrics (Hurst et al., 2012) often require high-resolution to-

pographic data that are not widely available.

Contrary to hillslope gradients, rivers and river longi-

tudinal profiles are more sensitive to changes in erosion

rates (Whipple et al., 1999). Bedrock rivers in mountain-

ous regions mediate the interplay between uplift and erosion

(Whipple and Tucker, 1999; Wobus et al., 2006). They incise

into bedrock and efficiently convey sediments, thus setting

the base level for hillslopes and controlling the evacuation

of hillslope-derived sediment. Quantifying the spatial pat-

terns of natural denudation rates in tectonically active regions

therefore requires detailed knowledge of the processes driv-

ing fluvial incision (Armitage et al., 2018; Castelltort et al.,

2012; Finnegan et al., 2008; Gasparini and Whipple, 2014;

Goren, 2016; Scherler et al., 2017; Tucker and Bras, 2000).

River morphological indices, such as channel steepness

(ksn) (Wobus et al., 2006), have successfully been applied

as a predictor for catchment denudation and thus ECRN by

Safran et al. (2005) and many others, commonly identify-

ing a monotonically increasing relationship between channel

steepness (ksn) (Wobus et al., 2006) and ECRN (Cyr et al.,

2010; DiBiase et al., 2010; Mandal et al., 2015; Ouimet et

al., 2009; Safran et al., 2005; Vanacker et al., 2015). Several

authors identified a nonlinear relationship between ksn and

ECRN in both regional (e.g., DiBiase et al., 2010; Ouimet et

al., 2009; Scherler et al., 2014; Vanacker et al., 2015) and

global compilation studies (Harel et al., 2016). Theory sug-

gests that this nonlinear relationship reflects the dependency

of long-term denudation on hydrological variability (Deal et

al., 2018; Lague et al., 2005; Tucker and Bras, 2000). Hy-

drological variability affects both temporal and spatial vari-

ations in river discharge, and the effect of river discharge on

denudation and river incision rates can be approximated by

theoretical model derivations. However, the impact of hydro-

logical variability on incision rates in natural environments

has, until now, only been successfully identified in a limited

number of case studies (DiBiase and Whipple, 2011; Ferrier

et al., 2013; Scherler et al., 2017).

We identify two limitations hampering the large-scale ap-

plication of river incision models that include hydrological

variability. First, the necessary high-resolution hydrologi-

cal data are usually unavailable. Mountain regions are typi-

cally characterized by large temporal and spatial variation in

runoff rates (e.g., Mora et al., 2014). Yet, most of the obser-

vational records on river discharge in mountain regions are

fragmented and/or have limited geographic coverage. Sec-

ond, large catchments are often underlain by variable litholo-

gies. Studies exploring the role of river hydrology in con-

trolling river incision have hitherto mainly focused on re-

gions underlain by rather uniform lithology (DiBiase and

Whipple, 2011; Ferrier et al., 2013) or they have consid-

ered lithological variations to be of minor importance (Scher-

ler et al., 2017). However, tectonically active regions have

usually experienced tectonic accretion, subduction, active

thrusting, volcanism and denudation, resulting in a highly

variable lithology over > 100 km distances (Horton, 2018).

Rock strength is known to control river incision rates and is

a function of its lithological composition and stratigraphic

age (Brocard and van der Beek, 2006; Lavé and Avouac,

2001; Stock and Montgomery, 1999), as well as its rheology

and fracturing (Molnar et al., 2007). If we want to use ge-

omorphic models not only to emulate the response of land-

scapes to climatic and/or tectonic forces but also to predict

denudation rates, then we need to account for variations in

physical rock properties (Attal and Lavé, 2009; Nibourel et

al., 2015; Stock and Montgomery, 1999). Even more impor-
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tantly, these variations in rock erodibility can potentially ob-

scure the relation between river incision and discharge (Deal

et al., 2018). Therefore, the climatic effects on denudation

rates can only be correctly assessed if the geomorphic model

accounts for physical rock properties and vice versa. Based

on current limitations, we formulate two main objectives: we

want (i) to assess the impact of lithological heterogeneity on

river incision and (ii) to unravel the role of allogenic (spa-

tial and/or temporal runoff variability) versus autogenic (in-

cision thresholds) controls on river incision. We develop and

evaluate our approach in the southern Ecuadorian Andes, for

which detailed lithological information is available as is a

database of CRN-derived denudation rates (Vanacker et al.,

2007, 2015).

1.2 River incision models

Bedrock rivers are shaped by processes including weath-

ering, abrasion–saltation, plucking, cavitation and debris

scouring (Whipple et al., 2013). However, explicitly account-

ing for these processes renders models too complex at the

spatial and temporal scales relevant to understanding land-

scape evolution of entire mountain ranges. Therefore, a broad

variety of models have been proposed to simplify the com-

plex nature of river incision dynamics (Armitage et al., 2018;

Lague et al., 2005; Shobe et al., 2017; Venditti et al., 2019).

Most river incision models assume a functional dependence

of river incision on the shear stress (τ ; Pa) exerted by the river

on its bed (Sklar and Dietrich, 1998; Whipple and Tucker,

1999). However, within the family of shear stress–stream

power models, several approaches exist. Most commonly

used is the Area-Based Stream Power Model (A-SPM), ex-

plicitly representing the universally observed inverse power

relation between channel slope and drainage area (Howard,

1994; Whipple and Tucker, 1999). Parametrization of the

A-SPM is purely empirical and involves the calibration of

three incision parameters (an erosion efficiency parameter,

an area exponent and a slope exponent). Given the interde-

pendency of these parameters (e.g., Campforts and Govers,

2015; Croissant and Braun, 2014; Roberts and White, 2010),

there is an ongoing effort to calibrate river incision models

using a process-oriented strategy whereby small-scale obser-

vations and physical mechanisms are upscaled to the land-

scape scale (Venditti et al., 2019). In particular and not ex-

clusively, ongoing efforts evaluate how the three incision pa-

rameters are affected by the presence of incision thresholds

(e.g., DiBiase and Whipple, 2011; Lague, 2014), discharge

variability (DiBiase and Whipple, 2011; Lague et al., 2005;

Snyder et al., 2003; Tucker and Bras, 2000), and the spatial

and temporal distribution of runoff (Deal et al., 2018; Fer-

rier et al., 2013; Lague et al., 2005; Molnar et al., 2006).

In this paper, we evaluate how two of such derived models

(the Stochastic-Threshold and Runoff-Based Stream Power

Model – ST-SPM and R-SPM, respectively) can be used to

explain measured variations in denudation rates at the land-

scape scale.

1.2.1 Area-Based Stream Power Model

The Area-Based Stream Power Model (A-SPM; Howard,

1994) is a first, lumped statistical approach to represent river

incision:

E =K ′AmSn, (1)

in which E is the long-term river erosion (L T−1), K ′

(L1−2m T−1) is the erosional efficiency as a function of rock

erodibility and erosivity, A (L2) is the upstream drainage

area, S (L L−1) is the channel slope, and m and n are expo-

nents whose values depend on lithology, rainfall variability

and sediment load. Equation (1) can be rewritten as a func-

tion of the steepness index, ks,

E =K ′kns , (2)

where ks can be written as the upstream area-weighted chan-

nel gradient:

ks = SAθ , (3)

in which θ =m/n is the concavity index (Snyder et al.,

2000; Whipple and Tucker, 1999). In order to compare steep-

ness indices from different locations, θ is commonly set to

0.45 and referred to as the normalized steepness index, ksn

(Wobus et al., 2006). Variations in ksn are often used to infer

uplift patterns by assuming a steady state between uplift and

erosion (Kirby and Whipple, 2012). In transient settings, in

which steady-state conditions are not necessarily met, the ksn

values can be used to infer local river incision rates (Harel et

al., 2016; Royden and Perron, 2013).

When using the A-SPM, the effect of autogenic (caused

by intrinsic river dynamics such as incision thresholds and

changes in channel width) and allogenic (originating from

the transient response of river dynamics to extrinsic changes

such as climate variability) controls is assumed to be ac-

counted for in the model parameters (K ′, m and n). For ex-

ample, it has been shown that incision thresholds translate

into a slope exponent n greater than unity when applying

the A-SPM (Lague, 2014). Notwithstanding empirical evi-

dence supporting the A-SPM, such as the scaling between

drainage area and channel slope in steady-state river profiles

(Lague, 2014) or its capability to simulate transient river inci-

sion pulses (Campforts and Govers, 2015), the lumped mod-

eling approach of the A-SPM cannot be used to evaluate the

role of autogenic or allogenic river response.

1.2.2 Stochastic-Threshold Stream Power Model

The Stochastic-Threshold Stream Power Model (ST-SPM;

Crave and Davy, 2001; Deal et al., 2018; Lague et al., 2005;

Snyder et al., 2003; Tucker and Bras, 2000) simulates the
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impact of hydrological variability and incision thresholds on

river incision and thus enables us to evaluate the role of au-

togenic or allogenic river response.

The ST-SPM is calculated in two consecutive steps. First,

instantaneous river incision I (L t−1) is calculated as

I
(

Q∗
)

=KQ∗γ kns −ψ, (4a)

K = kek
a
t k

−aα
w R

m
; ψ = keτ

a
c , (4b)

γ = aα (1 −ωs) ; m= aα (1 −ωb) ; n= aβ, (4c)

in which Q∗ represents the dimensionless normalized daily

discharge calculated by dividing daily discharge Q (L3 T−1)

by mean annual discharge Q (L3 T−1), ke (L2.5 T2 m−1.5) is

the erosional efficiency constant, R (L T−1) is the mean an-

nual runoff, a is the shear stress exponent reflecting the na-

ture of the incision process (Whipple et al., 2000), ψ is the

threshold term (L T−1), and kt , kw, α, β, ωa and ωb are the

channel hydraulic parameters described in Table 1.

In a second step, long-term river incision is calculated by

multiplying instantaneous river incision, I , calculated for a

discharge of a given magnitude (Q∗) with the probability

for that discharge to occur (pdf(Q∗)), and subsequently in-

tegrating this product over the range of possible discharge

events specific to the studied timescale (DiBiase and Whip-

ple, 2011; Lague et al., 2005; Scherler et al., 2017; Tucker

and Bras, 2000; Tucker and Hancock, 2010):

E =

∫ Q∗
m

Q∗
c

I
(

Q∗
)

pdf
(

Q∗
)

dQ∗, (5)

in which Q∗
c is the minimum normalized discharge required

to exceed the critical shear stress (τc), and Q∗
m is the max-

imum possible normalized discharge over the time consid-

ered.

1.2.3 Runoff-Based Stream Power Model

The Runoff-Based Stream Power Model (R-SPM) is a sim-

plified version of the Stochastic-Threshold Stream Power

Model (ST-SPM). The R-SPM assumes that the incision

thresholds are negligible (ψ = 0) and that discharge is con-

stant over time (Q∗ = 1), simplifying Eq. (5) to

E =Kkns . (6)

In the following sections, we first describe the study area,

characterize the lithological configuration by developing a

lithological erodibility index and compile a database to rep-

resent runoff variability. Second, we present the methods and

assumptions used for calibrating and simulating river inci-

sion. In a third section, the modeling results are presented

at the catchment scale: we start by evaluating the impact

of lithological heterogeneity on river incision rates using an

area-based river incision model (A-SPM). We then evaluate

to what extent the variability in denudation rates can be ex-

plained by spatial and/or temporal runoff variability and the

Figure 1. Geomorphic setting of the Paute catchment. The num-

bered dots indicate the sampling locations for the CRN-derived

erosion rates and their corresponding watersheds (Table 2). Solid

black lines indicate the major faults. PF: the Peltetec Fault, CF: the

Cosanga Fault, SA: the sub-Andean thrust fault. Concealed faults

separating major stratigraphical units are indicated with dashed

lines. The location of Quaternary faults is derived from the in-

ternational lithosphere program (http://geology.cr.usgs.gov). Major

knickpoints are indicated as red diamonds. The color scale indi-

cates elevations, which were derived from the 30 m SRTM v3 DEM

(Farr et al., 2007). The main map is produced with Topo Toolbox

(Schwanghart and Scherler, 2014). The inset map is made in QGis

3 ©.

existence of incision thresholds using the R-SPM and ST-

SPM. In a final section, we discuss our findings, highlight the

implications of our work and discuss further perspectives.

2 Study area

2.1 Tectonics and geomorphic setting

The Paute catchment is a 6530 km2 transverse drainage basin

(2.9◦ S, 79◦ W): the Paute River has its source in the eastern

flank of the Western Cordillera, traverses the Cuenca intra-

montane basin and cuts through the Eastern Cordillera before

joining the Santiago River, a tributary of the Amazon (Fig. 1;

Hungerbühler et al., 2002; Steinmann et al., 1999). Where

the Paute River cuts through the Eastern Cordillera, the to-

pography is rough with steep hillslopes (90th percentile of

slope gradients: 0.40 m m−1) and deeply incised river valleys

(Guns and Vanacker, 2013).

The oblique accretion of terranes to the Ecuadorian mar-

gin during the Cenozoic resulted in a diachronous exhuma-

tion and cooling history along the Ecuadorian cordillera sys-

tem (Spikings et al., 2010). South of 1.5◦ S, where the Paute

Earth Surf. Dynam., 8, 447–470, 2020 https://doi.org/10.5194/esurf-8-447-2020
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Table 1. Constant model parameters.

Parameter Model Description Value Unit

a R-SPM/ST-SPM Bed shear stress exponent, with τa representing unit stream power if a = 3/2 3/2 dimensionless

kt R-SPM/ST-SPM Flow resistance factor 1000 kg m−7/3 s−4/3

kw R-SPM/ST-SPM Scaling parameter between bankfull river width and discharge 3.7 m−0.65 s0.55

α R-SPM/ST-SPM Flow resistance exponent (Darcy–Weisbach) 2/3 dimensionless

β R-SPM/ST-SPM Flow resistance exponent (Darcy–Weisbach) 2/3 dimensionless

θref R-SPM/ST-SPM Reference concavity 0.45 dimensionless

ρs ST-SPM Sediment particle density 2.7 g cm−3

ρw ST-SPM Fluid density 1 g cm−3

τc* ST-SPM Shield’s number 0.045 dimensionless

ωb ST-SPM Downstream channel width variation exponent 0.55 dimensionless

ωs ST-SPM At-a-station channel width variation exponent 0.25 dimensionless

basin is situated, three distinct periods with a higher cooling

rate have been reported during the Paleogene at 73–55, 50–30

and 25–18 Ma, corresponding to a total cooling from ca. 300

to ca. 60◦ C (Spikings et al., 2010). In the Western Cordillera,

no elevated cooling is observed during the Paleogene and ex-

tensional subsidence of the Cuenca basin allowed synsedi-

mentary deposition of marine, lacustrine and terrestrial facies

until the Middle to Late Miocene (Hungerbühler et al., 2002;

Steinmann et al., 1999). The collision between the Carnegie

ridge and Ecuadorian trench at some time between the Mid-

dle to Late Miocene (Spikings et al., 2001) resulted in uplift

of the Western Cordillera and caused a tectonic inversion of

the Cuenca basin (Hungerbühler et al., 2002; Steinmann et

al., 1999). Based on a compilation of mineral cooling ages

available for the Cuenca basin, Steinman et al. (1999) esti-

mated a mean rock uplift rate of ca. 0.7 mm yr−1 and a cor-

responding surface uplift of ca. 0.3 mm yr−1 from 9 Ma to

present. Uplift patterns are assumed to be reflected in the

river steepness and not explicitly simulated in this paper.

The Paute basin is characterized by a tropical mountain

climate (Muñoz et al., 2018). Despite the presence of moun-

tain peaks up to ca. 4600 m (Fig. 1), the region is free of per-

manent snow and ice (Celleri et al., 2007). The region’s pre-

cipitation is regulated by its proximity to the Pacific Ocean

(ca. 60 km distance), the seasonal shifting of the Intertrop-

ical Convergence Zone (ITCZ) and the advection of conti-

nental air masses sourced in the Amazon basin, giving rise to

an orographic precipitation gradient along the eastern flank

of the Eastern Cordillera (Bendix et al., 2006). Total annual

precipitation is highly variable within the Paute basin and

ranges from ca. 800 mm in the center of the basin up to ca.

3000 mm in the eastern parts of the catchment (Celleri et al.,

2007; Mora et al., 2014).

2.2 Lithological strength

The erodibility map was developed using an empirical, hy-

brid classification method: it combines information on the

lithological composition (Aalto et al., 2006) and the age of

non-igneous formations assuming higher degrees of diagen-

esis and increased lithological strength for older formations

(see Kober et al., 2015). Adding age information to evalu-

ate lithological strength has advantages because lithostrati-

graphic units are typically composed of different lithologies

but mapped as a single entity because of their stratigraphic

age. The lithological erodibility (LE) is calculated as

LE =
2

7
L′

L′
=

{

(LA+LL)
3

, non-igneous rocks
LL
2
, igneous rocks.

(7a)

LA is a dimensionless erodibility index based on strati-

graphic age (Fig. 2a), and LL is a dimensionless erodibil-

ity index based on lithological strength (Table 3), similar to

the erodibility indices published by Aalto (2006). Note that

LA varies between 1 (Carboniferous) and 6 (Quaternary),

whereas LL ranges between 2 (e.g., granite) and 12 (e.g.,

unconsolidated colluvial deposits). The lithological strength

thus has a double weight, resulting in L′ values ranging be-

tween 1 and 6. For igneous rocks, only LL is considered,

assuming that the lithological strength of igneous rocks re-

mains constant over time. For river incision parameters to

be comparable to other published ranges, LE is finally scaled

around 1 by multiplying L′ with 2/7. LE therefore ranges be-

tween 2/7 and 12/7. A description of the lithological units,

the age of the formations and their lithological strength (LA,

LL and LE) is provided in Supplement Table S3.

Using Eq. (7), we developed the erodibility map of

Ecuador (Fig. S1) and the Paute catchment (Fig. 2c) based on

the 1M geological map of Ecuador (Egüez et al., 2017). The

lithological erodibility values were compared with field mea-

surements (n= 9) of bedrock rheology by Basabe (1998). An

overview of measured lithological strength values is provided

in Table S4 (e.g., uniaxial compressive strength). Figure 2b

shows good agreement (R2 = 0.77) between the lithological

erodibility index,LE, and the measured uniaxial compressive

strength.

https://doi.org/10.5194/esurf-8-447-2020 Earth Surf. Dynam., 8, 447–470, 2020
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Figure 2. Development of empirical lithological erodibility index (LE) and its application to the Paute catchment. (a) Proposed lithological

erodibility index based on lithological age (LA). Detailed sub-classifications per lithology can be found in Table S1. (b) Field measurements

of uniaxial compressive strength (Basabe, 1998; Table S4) versus the empirical erodibility index calculated using Eq. (7). Note that two of

the nine observations overlap on this plot. (c) Spatial distribution of LE in the Paute catchment. The underlying topographic map is based on

the 30 m SRTM v3 DEM (Farr et al., 2007). The lithological erodibility map for Ecuador was used to delineate different lithostratigraphic

units and is based on the 1M geological map of Ecuador (Egüez et al., 2017; see also Fig. S1 in the Supplement). The map is produced with

Topo Toolbox (Schwanghart and Scherler, 2014).

2.3 CRN-derived denudation rates

Catchment-wide denudation rates are derived from in situ

produced 10Be concentrations in river sand. At the outlet

of 30 sub-catchments (Fig. 1, Table 2), fluvial sediments

were collected. We refer to Vanacker et al. (2015) for de-

tails on sample processing and derivation of CRN denudation

rates taking into account altitude-dependent production, at-

mospheric scaling and topographical shielding (Dunai, 2000;

Norton and Vanacker, 2009; Schaller et al., 2002). CRN con-

centrations are not corrected for snow or ice coverage be-

cause there is no evidence of glacial activity during the in-

tegration time of CRN-derived denudation rates (Vanacker

et al., 2015). Three data points were excluded from model

optimization runs: two catchments with a basin area smaller

than 0.5 km2 (MA1 and SA) and one catchment with an ex-

ceptionally low 10Be concentration that can be attributed to

recent landslide activity (NG-SD; see Vanacker et al., 2015).

2.4 River morphology

Based on a gap-filled SRTM v3 digital elevation model

(DEM) with 1 arcsec resolution (Farr et al., 2007), we cal-

culate river steepness for all channels with drainage ar-

eas > 0.5 km2 and average it over 500 m reaches. The opti-

mized concavity θ for the Paute catchment (0.42; Text S1) is

close to the frequently used value of 0.45, so we fix concav-

ity to the reference value of 0.45 and report river steepness

as normalized river steepness (ksn) in the remainder of this

paper. The spatial pattern of ksn values (Fig. 3) is a result

of the transient geomorphic response to river incision initi-

ated at the Andes Amazon transition zone (Vanacker et al.,

2015). To evaluate the extent to which transient river fea-

tures influence simulated denudation rates, chi plots (χ ) for

all studied sub-catchments are calculated following Royden

and Perron (2013) and given in the Supplement (Text S1;

Fig. S4; Royden and Perron, 2013).

To constrain the value of kw used in the process-based in-

cision models (Eqs. 4 and 6), we calibrate the relationship

between bankfull river width (Wb) and discharge (Leopold

and Maddock, 1953):

Wb = kwQ
ωb
, (8)

in which kw (L1−3ωb tωb ) and ωb are scaling parameters regu-

lating the interaction between mean annual discharge Q and

incision rates (Eq. 4). We constrain kw by analyzing down-

stream variations in bankfull channel width for a fraction of

the river network (see Scherler et al., 2017). River sections

are selected based on the availability of high-resolution op-

tical imagery in Google Earth, and river width was derived

using the ChanGeom toolset (Fisher et al., 2013; Fig. S5).

The power-law fit betweenQ andW yields a value of 0.43

for the scaling exponent, ωb, with an R2 of 0.51 (Fig. 4).

The value of this exponent lies within the range of published

values of 0.23–0.63 (Fisher et al., 2012; Kirby and Ouimet,

2011). To maintain a dimensionally consistent stream power
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Table 2. Characteristics of the sub-catchments studied in this paper. IDs correspond to the numbers indicated in Fig. 1. The 10Be cosmogenic

nuclide erosion rates were derived from Vanacker et al. (2015)a. Coordinates are given in decimal degrees in the WGS84 datum, LE is the

average lithological index for the catchment, ksn is the normalized catchment average steepness, PRIDW and RRIDW are respectively the

downscaled catchment average precipitation and runoff, and k is the optimized discharge variability coefficient (see Eq. 9).

ID Sample Latitude Longitude Area 10Be erosion LE ksn PRIDW RRIDW k
◦ ◦ km2 mm ka−1 m0.9 m yr−1 m yr−1

1 BQ −2.94 −78.93 186.3 53 ± 4 1.44 41.78 1.06 0.55 1.18

2 CH −3.22 −78.74 86 88 ± 8 0.34 187.79 1.59 0.87 0.87

3 CJ −2.92 −78.88 19.5 95 ± 11 1.43 60.45 1.02 0.54 1.04

4 DE2 −2.77 −78.93 39.1 105 ± 9 1.61 80.96 1.14 0.58 1.04

5 JA21 −2.89 −78.89 276 50 ± 4.5 1.45 48.96 1.05 0.55 1.19

6 MAR −3.04 −78.95 49.8 30 ± 2 1.43 35.97 1.07 0.56 1.08

7 NA1 −2.70 −78.92 57.1 142 ± 18 1.54 96.36 1.04 0.53 1.05

8 NA4 −2.67 −78.90 4.9 222 ± 33 1.69 69.19 0.87 0.44 1.11

9 NG-DW −2.73 −78.40 686.8 163 ± 16 0.57 184.21 2.25 1.33 0.92

10 NG-SDb −2.73 −78.39 3.3 3959 ± 3801 0.89 231.84 2.62 1.60 0.91

11 NG-UP −2.78 −78.46 679.1 179 ± 16 0.55 176.77 2.21 1.31 0.91

12 PA −2.52 −78.56 424.4 229 ± 26 1.13 142.61 1.14 0.60 1.16

13 PAL −2.65 −78.61 6.2 318 ± 32 0.69 192.24 1.89 1.11 0.88

14 PT-BM −2.65 −78.46 6.8 219 ± 22 0.60 236.09 2.50 1.51 0.91

15 PT-QP −2.61 −78.57 3.4 216 ± 20 0.52 231.77 2.01 1.16 0.94

16 PT-SD −2.61 −78.46 11.1 399 ± 53 0.60 210.28 2.52 1.51 0.93

17 QU −2.99 −78.92 16.7 77 ± 8 1.43 55.32 1.02 0.53 1.17

19 RG1_2 −2.96 −78.89 0.9 26.5 ± 2 1.43 48.87 1.01 0.53 1.13

20 RG2 −2.94 −78.91 29.2 61 ± 6 1.44 53.96 1.01 0.53 1.12

21 RGD1 −2.94 −78.80 2.2 30 ± 3 0.64 105.63 1.03 0.55 1.14

18 RGST −2.97 −78.90 20.2 28 ± 2 1.42 45.55 1.00 0.52 1.08

22 SAb −2.96 −78.93 0.5 152 ± 19 1.49 0.04 1.05 0.55 1.16

23 SF1_2 −2.89 −78.77 84 72 ± 7 0.56 110.46 1.42 0.78 0.83

24 SF2 −2.98 −78.69 1.3 118 ± 9 0.50 147.45 1.60 0.89 0.80

25 SI1b −3.16 −78.81 0.6 10 ± 1 0.29 57.09 1.34 0.72 0.95

26 SI2 −3.14 −78.81 18.3 30 ± 3 0.58 70.42 1.38 0.74 0.99

27 SI3 −3.14 −78.81 49.2 88 ± 11 1.30 43.63 1.28 0.68 1.03

28 SI5 −3.00 −78.81 6 3.4 ± 0.3 0.90 86.62 0.99 0.53 1.09

29 TI11 −3.01 −78.57 62.1 125 ± 11 0.33 142.87 1.97 1.13 0.84

30 TI2 −3.01 −78.61 21 57 ± 7 0.33 151.34 1.86 1.06 0.83

a Catchment MA1 from Vanacker et al. (2015) is not listed because its area (< 0.1 km2) did not allow us to accurately calculate the catchment properties

listed here. b Catchments excluded from model optimization runs (see text).

model, ωb was fixed to a value of 0.55. When doing so, the

fit remains good (R2 = 0.5) and we obtained a kw value of

3.7 m−0.65 s0.55 that is used in the remainder of the paper.

2.5 Runoff variability

Evaluating the role of spatial and temporal runoff variability

(Eqs. 5 and 6) requires estimates of catchment-specific runoff

(R, spatial variability) and discharge (temporal variability).

Although measured runoff data and discharge records are

available for the Paute basin (Molina et al., 2007; e.g., Mora

et al., 2014; Muñoz et al., 2018), the monitoring network

of existing hydrological stations does not capture the spa-

tial variability present in the different sub catchments of the

6530 km2 Paute basin (Fig. 1). To estimate runoff variability

for all 30 sub-catchments, we use hydrological data derived

in the framework of the Earth2Observe Water Resource Re-

analysis project (WRR2; Schellekens et al., 2017) available

from 1979 to 2014. Specifically, we use the hydrological data

calculated with the global water model WaterGAP3 (Water –

Global Assessment and Prognosis: Alcamo et al., 2003; Döll

et al., 2003) at a spatial resolution of 0.25◦ and a daily tem-

poral resolution (http://www.earth2observe.eu, last access:

19 May 2020). Uncertainties associated with the WaterGAP3

data originate from hydrological model assumptions and spa-

tially distributed input data (Beck et al., 2017). We revisit

the impact of uncertainties in the climatological data on our

model runs in the Discussion section of this paper. In the

following paragraphs, we explain how we derive (i) a high-

resolution runoff map by spatially downscaling these coarse

data and (ii) catchment-specific magnitude frequency distri-
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Figure 3. Normalized steepness (ksn) for the Paute basin. Calcu-

lated ksn values for the Paute basin are overlain with a hillshade

map (based on the 30 m SRTM v3 DEM; Farr et al., 2007). The

highest values can be observed in two major knickzones located in

the lower part of the Paute basin. In these zones, topographic reju-

venation started and a transient incision pulse has propagated from

east to west (see also Fig. S3). The map is produced with Topo Tool-

box (Schwanghart and Scherler, 2014).

Figure 4. River width (W ) as a function of the mean annual

discharge (Q). W represents bankfull channel width for a se-

lected number of river sections. These were digitized in Google

Earth using the ChanGeom toolset (Fisher et al., 2013; Fig. S5).

Mean annual water discharges (Q) were derived from the down-

scaled RRIDW WRR2 WaterGAP3 data (available from http://www.

earth2observe.eu; see Sect. 2.4).

Figure 5. Calibration of the precipitation (P ) versus runoff curve

(R). Mean annual runoff versus the mean annual precipitation for

all WaterGAP3 pixels in Ecuador (0.25◦; 1979–2014; WaterGAP3

data available from http://www.earth2observe.eu).

butions of discharge (pdf_Q∗) characterizing the temporal

variability of runoff.

2.5.1 Spatial runoff patterns

A global hydrological reanalysis dataset such as WaterGAP

provides daily runoff data over several decades and makes

our methodology transferable to other regions. However, a

spatial resolution of 0.25◦ is insufficient to represent highly

variable regional trends in water cycle dynamics over moun-

tainous regions (Mora et al., 2014) and in small catchments.

Therefore, we downscale the Ecuadorian WaterGAP3 data

to a resolution of 2.5 km by amalgamating rain gauge data

with the reanalysis product. The procedure consisted of the

following steps and is presented in Figs. 5 and 6.

The relationship between precipitation (P ) and runoff (R)

is constrained from the fit between monthly mean values for

P and R available for all Ecuadorian WaterGAP 0.25◦ pixels

(Fig. 5).

A high-resolution mean annual precipitation map (PRIDW)

is calculated by downscaling the WaterGAP precipita-

tion data (P ) using a series of rain gauge observations

(338 stations, 1990–2013) from the Ecuadorian national

meteorological service (INAMHI; available from http://

www.serviciometeorologico.gob.ec/biblioteca/, last access:

19 May 2020). A residual inverse distance weighting

(RIDW) method is applied to amalgamate mean annual

gauge data with the mean annual WaterGAP3 precipitation

map. First, the differences between the gauge and WaterGAP

data are interpolated using an IDW method (Fig. S6). Sec-

ond, the resulting residual surface is added back to the orig-
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Figure 6. Downscaling of WRR2 WaterGAP3 rainfall and runoff products to high-resolution regional maps. (a) WRR2 WaterGAP3 precip-

itation (P ) at the original resolution of 0.25◦. (b) Corresponding runoff (R) at the original resolution of 0.25◦. (c) Downscaled precipitation

(PRIDW) at a resolution of 2500 m, and (d) corresponding downscaled runoff (RRIDW) at a resolution of 2500 m. WaterGAP3 data were

derived from earth2observe.eu. The underlying hillshade maps are based on the 30 m SRTM v3 DEM (Farr et al., 2007). The maps are

produced with Topo Toolbox (Schwanghart and Scherler, 2014).

inal P data. A similar approach is often applied to integrate

gauge data with satellite products, and we refer to the litera-

ture for further details on its performance (e.g., Dinku et al.,

2014; Manz et al., 2016). Figure 6a shows P for the Paute re-

gion, and Fig. 6c shows its downscaled equivalent (PRIDW).

Daily precipitation data (12 784 daily grids between 1979

and 2014) are downscaled to 2.5 km using the ratio between

PRIDW and P , thereby assuming that the mean annual cor-

rection for precipitation also holds for daily precipitation pat-

terns.

The relationship between P andR (Fig. 5) is used to derive

daily runoff values from the downscaled precipitation data

for every day between 1979 and 2014.

The mean annual runoff map for the Paute basin is shown

in Fig. 6b and its downscaled equivalent in Fig. 6d. Mean

annual values are further used to calculate mean catchment

runoff (R) and the discharge variability (next paragraph)

for every sub-catchment described in Table 2. The mean

catchment-specific runoff averaged for all catchments equals

0.82 ± 0.35 m yr−1.

2.5.2 Frequency magnitude distribution of orographic

discharges

Runoff variability is typically cast in terms of spatial

runoff variability (Sect. 2.4.1). However, the temporal pattern

of runoff might also influence river incision and is typically

represented by discharge magnitude frequency distributions.

Constraining the shape of these distributions is important be-

cause the number of large storm events determines the fre-

quency with which thresholds for river incision to occur are

exceeded (see Sect. 1.2.2 and references therein).

The probability distribution of discharge magnitudes con-

sists of two components: at low discharges, the frequency

of events increases exponentially with increasing discharge

(Lague et al., 2005), whereas at high discharge, the fre-

quency of events decreases with increasing discharge follow-

ing a power-law distribution (Molnar et al., 2006). An inverse

gamma distribution captures this hybrid behavior and can be

written as (Crave and Davy, 2001; Lague et al., 2005)
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pdf
(

Q∗
)

=
kk+1

Ŵ (k+ 1)
e
− k
Q∗Q∗−(2+k), (9)

in which Ŵ is the gamma function and k is a discharge vari-

ability coefficient; k represents the scale factor of the in-

verse gamma distribution and (k+ 1) the shape factor. Pre-

vious studies used a single average k value to characterize

regional discharge: DiBiase and Whipple (2011) use a con-

stant k value for the San Gabriel Mountains, whereas Scher-

ler et al. (2017) use a constant k value for high and low

discharge but distinguish between eastern Tibet and the Hi-

malaya. However, given the strong variation in temporal pre-

cipitation regimes in the Paute basin (Celleri et al., 2007;

Mora et al., 2014), we explicitly evaluated the role of tempo-

ral runoff variability by calculating catchment-specific dis-

charge distributions from the WRR2 WaterGAP dataset.

Daily variations in discharge at the sub-catchment outlets

(Fig. 1) were calculated by weighing flow accumulation with

runoff (RRIDW; see Sect. 5.1.1). For every catchment, the

complementary cumulative distribution function (CCDF) of

the daily discharge was fitted through the observed discharge

distribution as

CCDF
(

Q∗
)

= Ŵ
(

k/Q∗,k+ 1
)

, (10)

where Ŵ is the lower incomplete gamma function. Figure S7

illustrates the fit between the WaterGAP-derived discharge

distribution and the optimized CCDF for one of the catch-

ments. Site-specific discharge variability values (k) are calcu-

lated for all catchments and listed in Table 2. The obtained k

values range between 0.8 and 1.2 with a mean of 1.01±0.12.

3 Methods

The presented river incision models (A-SPM, R-SPM and

ST-SPM in Sect. 1.2) all depend on river steepness, ksn,

which is known to correlate well with ECRN (DiBiase et al.,

2010; Ouimet et al., 2009; Scherler et al., 2017; Vanacker et

al., 2015). Moreover, ECRN integrates over time spans that

average out temporal fluctuations of denudation rates and

over spatial extents that are sufficient to average out the er-

ratic nature of hillslope processes. Therefore, ECRN can be

used to constrain models of river incision provided a set of

assumptions that we first describe below.

3.1 CRN-derived denudation rates to calibrate river

incision

The use of CRN-derived denudation rates to calibrate river

incision relies on three main assumptions, summarized

by Scherler et al. (2017). A first assumption is that the

catchment-wide denudation rates derived from CRN are rep-

resentative for long-term fluvial incision. Positive correla-

tions between river steepness, ksn, and CRN-derived denuda-

tion rates support this assumption (Vanacker et al., 2015),

except for very small catchments where CRN-derived de-

nudation rates are sensitive to the occurrence of deep-seated

landslides during which material shielded at depth is sup-

plied to the river (Niemi et al., 2005; Yanites et al., 2009).

A second assumption when using CRN data to calibrate river

incision models is that the sediment cosmogenic nuclide bud-

get is at steady state at the catchment scale so that the input

of CRN via in situ production equals the export of CRN via

sediment export and radioactive decay. Given the size of the

studied basins, this assumption seems to be reasonable. A

third assumption, in particular when using the process-based

R-SPM and ST-SPM, is that the runoff data used to calibrate

the incision parameters are uniform within the sampled sub-

catchments and representative of the time span over which

CRN data integrate (1–100 kyr). This is a challenging as-

sumption given that available hydrological data only cover

the recent past. While spatial patterns of runoff, mainly con-

trolled by orographic precipitation, could be assumed to be

broadly similar over the integration time of CRN-derived de-

nudation, this is not necessarily true for the temporal varia-

tion in runoff. We will revisit the validity and implications

of these three assumptions in the Discussion section of this

paper.

3.2 River incision models

In a first set of model runs, we evaluate the performance of

the area-based SPM (A-SPM) in predicting ECRN rates. To

account for rock strength variability Eq. (2) is rewritten as

E = ka LEk
n
sn, (11)

where ka (L1−2m T−1) is the erosional efficiency parameter

andLE is a dimensionless catchment mean lithological erodi-

bility value. Given its empirical nature, wherein the effect of

allogenic (e.g., runoff variability) and autogenic (e.g., inci-

sion thresholds and river width dynamics) controls of fluvial

processes is integrated within the empirical scaling parame-

ters (K , m and n), the A-SPM does not enable us to iden-

tify the role of spatial or temporal runoff variability and inci-

sion thresholds. Note that, at any point in the paper, litho-

logical heterogeneity within the Paute catchment is repre-

sented using the average values of LE for the individual sub-

catchments indicated with LE and listed in Table 2. If litho-

logical heterogeneity is not considered, LE is fixed to a value

of 1.

In a second set of model runs, we evaluate to what extent

more advanced SPMs can be used to understand the role of

these allogenic and autogenic processes. We start by evalu-

ating the performance of a runoff-based SPM (R-SPM). To

account for rock strength variability Eq. (6) is rewritten as

E =KLEk
n
sn. (12)

An overview of the parameter values required to solve the

R-SPM is given in Table 1. Only the value of kw is based
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on a regional calibration of the hydraulic geometry scaling

(see Sect. 2.3). Other parameters are set to theoretical val-

ues (reported by Deal et al., 2018; DiBiase and Whipple,

2011; Scherler et al., 2017). Actively incising bedrock chan-

nels are often covered by a layer of sediment (Shobe et al.,

2017). Therefore, we assume that river incision is scaled to

the bed shear stress as for bedload transport (Meyer-Peter and

Müller, 1948) and set a to 3/2 (see DiBiase and Whipple,

2011; Scherler et al., 2017). We use the Darcy–Weisbach re-

sistance relation and coefficients (α = β = 2/3) to calculate

shear stress exerted by the river flow on its bed and assume

a friction factor of 0.08, resulting in a flow resistance fac-

tor kt of 1000 kg m−7/3 s−4/3 (e.g., Tucker, 2004). The use

of Darcy–Weisbach friction coefficients in combination with

a = 3/2 results in a value for the slope exponent equal to

unity (n= 1; see Eq. 4). Based on these theoretical deriva-

tions, we fix n to unity when constraining the R-SPM. Note

that this contrasts with the first set of model runs (applica-

tion of the A-SPM) in which we allow n to vary. By fixing

n to unity, we want to verify whether spatial variations in

runoff (incorporated in K from Eq. 12) can explain varia-

tions in incision rates otherwise ascribed to nonlinear river

incision. The only parameter not fixed to a constant value is

the erosivity coefficient ke, which is optimized as described

in Sect. 3.3.

In a final set of model runs, we apply the Stochastic-

Threshold SPM (ST-SPM) to evaluate the role of temporal

precipitation variability and thresholds for incision (Eq. 4).

Here, we adjust the ST-SPM to account for rock strength

variability as

I =KLEQ
∗γ knsn −ψ. (13)

To derive long-term erosion rates (E), Eq. (13) is in-

tegrated over the probability density function of discharge

magnitudes (Eq. 5), which requires values for the lower

(Q∗
c ) and the upper (Q∗

m) limit of the integration interval.

Constraining Q∗
m is difficult based on observational records

alone as they might miss some of the most extreme flooding

events. However, when simulating incision rates over long

time spans and thus considering long return times of Q∗
m

(> 1000 years), the solution of Eq. (5) is insensitive to the

choice of Q∗
m (Lague et al., 2005). We therefore set Q∗

m to

infinity in all our model runs. The critical discharge (Q∗
c ) for

erosion to occur can be derived from Eq. (13) by setting I

equal to 0:

Q∗
c =

(

ψ

KstLEknsn

)
1
γ

. (14)

The impact of spatial variations in runoff and discharge

variability is evaluated by setting R and k to the sub-

catchment-specific values or the mean of these values (listed

in Table 2; Eq. 4). The parameters left free during optimiza-

tion are the erosivity coefficient ke and the critical shear

stress τ ∗
c . Parameter values of both variables are optimized

as described in Sect. 3.3.

3.3 Optimization of model parameters

We propose three metrics to evaluate the performance of the

river incision models. The first one is the commonly used

model error (ME),

ME =
∑i=nb

i=1

√

(

(Oi −Mi)

σi

)2

, (15)

where nb is the number of ECRN data points, Oi represents

the catchment-specific measured ECRN denudation rates, Mi

represents the catchment-specific modeled river incision and

σi represents the catchment-specific standard deviation of

ECRN. The advantage of the ME is that it explicitly incor-

porates the error on the analytical data (ECRN) by weighing

the model error with the analytical error. However, errors on

CRN data are heteroscedastic: they systematically increase

with increasing denudation rates. Although the ME thus pro-

vides a good metric to evaluate overall model performance,

the metric is not well suited to optimize model parameters

in an optimization procedure: too much weight will be given

on optimization of the model in the lower regime of the de-

nudation spectrum in which measured errors on ECRN are

low, whereas higher measured ECRN data will not be approx-

imated well because of large associated errors. To compen-

sate for the effect of heteroscedasticity we rescale values Oi ,

Mi and Ei using a logarithm with base 10 when calculating

ME (Herman et al., 2015). In this paper, ME will be used to

evaluate model performance but not to optimize model pa-

rameters.

A second metric is the coefficient of determination, R2:

R2
= 1 −

∑i=nb
i=1 (Oi − fi)

2

∑i=nb
i=1 (Oi −O)2

, (16)

where fi represents the fitted ECRN denudation rates. Con-

trary to ME,R2 evaluates the explained variance of the model

by giving all observations the same weight, regardless their

analytical error. However, when model parameters result in

an offset between simulated and observed data (i.e., the in-

tercept of the fit), this can still result in a high R2.

We therefore use the Nash–Sutcliffe model efficiency to

optimize model parameters (NS; Nash and Sutcliffe, 1970):

NS = 1 −

∑i=nb
i=1 (Oi −Mi)

2

(Oi −O)2
. (17)

The NS coefficient ranges between −∞ and 1, where 1 in-

dicates optimal model performance explaining 100 % of the

data variance. When NS = 0, the model is as good a predictor

of the mean of the observed data. When NS < = 0, the model

performance is unacceptably low. The NS coefficient was de-

veloped in the framework of hydrological modeling but has

been applied in a wide range of geomorphologic studies (e.g.,

Jelinski et al., 2019; Nearing et al., 2011).
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Table 3. Lithological erodibility index values based on the litholog-

ical strength (LL; Eq. 7). Detailed sub-classifications per lithology

can be found in Table S2.

LL

Igneous 2–3

Metamorphic (igneous) 2

Metasedimentary 2–4

Strong sedimentary 4

Weak sedimentary 10–12

Unconsolidated 12

4 Comparing model results with CRN-derived

denudation rates

In the following sections, we compare simulated erosion

rates, obtained with the river incision models presented

in Eqs. (11)–(13), with measured CRN-derived denudation

rates. We start with the use of the A-SPM (Eq. 11) to eval-

uate the extent to which lithological variability controls de-

nudation rates. Once the impact of lithological heterogene-

ity on river incision is clarified, we evaluate whether runoff

variability and incision thresholds can explain variations in

ECRN-derived denudation rates. To this end, two river inci-

sion models are evaluated (the R-SPM and ST-SPM, pre-

sented in Eqs. 12 and 13, respectively). The optimized pa-

rameters and model performance of all model scenarios are

listed in Table 4. Best-fit results of a selected number of

model runs are presented in Figs. 7 and 8. An overview of

model fits for all the scenarios listed in Table 4 is given in

Figs. S8, S9 and S10.

4.1 Area-based stream power model

In a first set of model runs we evaluate the use of an area-

based stream power model (A-SPM) to explain observed

variations in CRN-derived denudation rates (ECRN). We op-

timize river incision parameters for four scenarios (Table 4:

A-SPM scenarios 1–4): in the first two scenarios, the slope

exponent, n, is left as a free parameter. In the second two

scenarios, the slope parameter is fixed to unity (n= 1). Fig-

ure 7 illustrates both the ksn −ECRN (Fig. 7a and b) and cor-

responding EMod−ECRN relationships, wherein EMod repre-

sents the simulated river incision (Fig. 7c and d).

In A-SPM scenario 1 (Table 4, Fig. 7c), we assume a spa-

tially uniform erodibility (LE fixed to 1 in Eq. 11) and leave

the erosion efficiency coefficient (K ′) and the slope parame-

ter n as free parameters during model optimization. The op-

timized fit between simulated erosion (E; Eq. 2) and ECRN

is shown in Fig. 7c. The optimized fit results in a high de-

gree of data scattering, resulting in an NS model efficiency

of 0.5, an R2 of 0.5, an ME of 3.25, and optimized values

for K ′ and n of respectively 0.73 m0.1 s−1 and 1.07. The fit

between ksn and ECRN (Fig. 7a) or simulated river incision
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Figure 7. Best fit between CRN-derived erosion rates (ECRN) and river steepness index (ksn) or modeled river incision (EMod) using the

Area-Based Stream Power Model (A-SPM). (a) Measured ECRN versus ksn (Table 2). Observations are colored according to the average

lithological erodibility of the sub-catchment (LE). Low values for LE represent strong rocks that are resistant to erosion. High values for

LE represent weak rocks that are susceptible to erosion. (b) Measured ECRN divided by LE versus ksn (Table 2). By correcting the ECRN

values for lithological heterogeneity, the ksn −ECRN relationship becomes significantly nonlinear (n= 1.63 ± 0.5). (c) A-SPM scenario 1

(see Table 4). Modeled erosion rates for catchments consisting of strong rocks (blue) are mostly overpredicted and plot below the 1 : 1 line.

Modeled erosion rates for catchments consisting of weak rocks (red) are mostly underpredicted and plot above the 1 : 1 line. (d) A-SPM

scenario 2 (Table 4) in which spatially variable lithological erodibility is explicitly accounted for. A complete overview of all best model fits

for A-SPM scenarios 1–4 is given in Fig. S8.

and measured denudation rates (Fig. 7c) hints at the exis-

tence of a correlation between ECRN and river incision rates.

The fit shown in Fig. 7c illustrates that modeled erosion rates

for catchments with a low mean erodibility index (high re-

sistance to erosion) are mostly overpredicted (plotting below

the 1 : 1 line), whereas modeled erosion rates of catchments

with a high erodibility index are mostly underpredicted (plot-

ting above the 1 : 1 line).

In A-SPM scenario 2 (Table 4, Fig. 7d), we quantify the

impact of varying lithology by using sub-catchment-specific
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460 B. Campforts et al.: Parameterization of river incision models

values for the lithological erodibility (LE in Eq. 11) and leav-

ing ka and n as free optimization parameters. The optimized

fit between simulated river incision (E, Eq. 11) and ECRN

is shown in Fig. 7d. Optimization results in an NS model

efficiency of 0.73, an R2 of 0.73, an ME of 2.23, and opti-

mized values for ka and n of respectively 0.07 m0.1 s−1 and

1.63. Considering lithological erodibility strongly reduces

data scatter surrounding the fit. The importance of litholog-

ical strength in controlling the A-SPM and the ksn −ECRN

relation (Fig. 7b) confirms that strong metamorphic and plu-

tonic rocks erode at slower rates than lithologies that are less

resistant to weathering such as volcaniclastic deposits. The

erodibility index appears to provide an appropriate scaling of

relative rock strength: analysis of residuals did not reveal any

significant relation of residuals with lithology. When using

spatially variable, sub-catchment-specific lithological erodi-

bility values (LE) (Fig. 7d), the n coefficient of the SPM is

considerably larger than unity (n= 1.63) and the ksn −ECRN

relationship becomes nonlinear (Fig. 7b), corroborating ear-

lier empirical findings (DiBiase et al., 2010; Harel et al.,

2016; Lague, 2014; Whittaker and Boulton, 2012). To eval-

uate the impact of a variable n exponent on the performance

of the empirical A-SPM, we executed two more model opti-

mizations.

In A-SPM scenario 3 (Table 4, Fig. S8c), we assume a

spatially uniform lithology and erodibility (LE fixed to 1 in

Eq. 11), fix n to 1 and only leave K ′ to be optimized as a

free model parameter. With an NS model efficiency of 0.5,

an R2 of 0.5, an ME of 3.2 and an optimized value for K ′

of 1.00 m0.1 s−1, the model fit and performance are similar to

the values obtained in scenario 1.

In A-SPM scenario 4 (shown in Table 4, Fig. S8d),

lithological variability is considered (using sub-catchment-

specific values for LE in Eq. 11), n is fixed to 1 and K ′ is a

free model parameter. With an NS model efficiency of 0.51,

an R2 of 0.56, an ME of 3.05 and an optimized value for K ′

of 1.4 m0.1 s−1, the model performance is much lower than

when leaving the slope exponent n as a free parameter (A-

SPM scenario 2).

The results from the four scenarios show that a nonlin-

ear relationship between river steepness (ksn, representing

river incision rates) and ECRN is unveiled when the litholog-

ical heterogeneity is explicitly taken into account (Fig. 7b).

Likewise, a nonlinear river incision model (A-SPM scenario

2; Fig. 7d) in which lithological heterogeneity is considered

outperforms the other evaluated A-SPM scenarios (Table 4).

4.2 Runoff-based and stochastic-threshold stream

power models

The previous analysis shows that the explanatory power of

the A-SPM model, and therefore the ksn −ECRN relation-

ship, improves when considering spatial variations in lithol-

ogy. Moreover, when considering variations in lithological

erodibility, river incision is found to be nonlinearly depen-

dent on the channel slope (S), with n= 1.63. In a next step

we evaluate whether this nonlinear relation can be explained

by spatial and/or temporal rainfall variability and/or the ex-

istence of thresholds for river incision (Table 4: R-SPM sce-

narios 1–2 and ST-SPM scenarios 1–8; Fig. 8).

4.2.1 Runoff-Based SPM (R-SPM)

In a first set of model runs, we evaluate the performance of

the Runoff-Based Stream Power Model (R-SPM Eq. 12) to

evaluate the role of spatially variable runoff using catchment-

specific values for mean runoff (R derived from the Water-

GAP data; reported in Table 2 and shown in Fig. 6).

In R-SPM scenario 1 (Table 4, Fig. S9a), lithological vari-

ability is not considered (LE fixed to 1 in Eq. 12). With an NS

model efficiency of 0.49, an ME of 3.57 and an R2 of 0.51,

model performance is comparable to the regular A-SPM un-

der uniform lithology with n fixed to 1 (NS = 0.5). This il-

lustrates that studying spatial runoff variability is not feasible

when ignoring the confounding role of lithological erodibil-

ity in controlling denudation rates.

In R-SPM scenario 2 (Table 4, Fig. 8a), lithological vari-

ability is considered (using sub-catchment-specific values for

LE in Eq. 12). With an NS model efficiency of 0.7, an ME of

2.61 and an R2 of 0.75, model performance is close to that

of the regular A-SPM under uniform lithology with n≫ 1

(NS = 0.72). This model simulation therefore suggests that

spatial variations in runoff can account for the nonlinear-

ity in the ksn −ECRN relationship: while slope dependency

in the R-SPM is fixed to unity (see derivation in Eq. 4a–c),

the model is capable of explaining the spatial pattern in de-

nudation rates. This implies that orographic rainfall and thus

runoff gradient as shown in Fig. 6 influence the efficiency

of river incision. The offset between the R2 (0.75) and NS

(0.70) values can be attributed to the way in which these met-

rics work: whereas R2 evaluates the goodness of the linear

fit between modeled and measured observations, NS evalu-

ates the absolute differences between modeled and observed

denudation rates. Hence, for the NS model efficiency to be

high, observations must fit on the 1:1 line (Fig. 8a). How-

ever, most of the simulated values for low denudation rates

are overestimated when using the optimized parameter val-

ues of the R-SPM and plot below the 1 : 1 line (Fig. 8a).

Therefore, we conclude that the R-SPM performs well in pre-

dicting measured denudation rates but low denudation rates

are overestimated, resulting in an NS and ME value respec-

tively slightly lower and higher than those of the empirical

A-SPM. In the following section we evaluate whether intro-

ducing temporally variable runoff coefficients and/or incision

thresholds can further improve the performance of a river in-

cision model.
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Figure 8. Best fit between CRN-derived erosion rates (ECRN) and modeled river incision (EMod) using the Runoff-Based and Stochastic-

Threshold Stream Power Model. (a) R-SPM scenario 2 (Table 4) using the average lithological erodibility (LE) and runoff R values per

sub-catchment (both listed in Table 2). (b) ST-SPM scenario 7 (Table 4) using the average lithological erodibility (LE) and runoff (R) values,

as well as an incision threshold (τc = 14 Pa). Numbered observations in (b) correspond to catchment IDs as listed in Table 2 (see also the

discussion in Sect. 5). A complete overview of all best model fits for R-SPM scenarios 1–2 and ST-SPM scenarios 1–8 is given in Figs. S9

and S10, respectively.

4.2.2 Stochastic-Threshold SPM (ST-SPM)

In a final series of model runs, we use the Stochastic-

Threshold Stream Power Model (ST-SPM, Eq. 13) to eval-

uate the role of spatially variable runoff (catchment-specific

R; reported in Table 2 and shown in Fig. 6) in combination

with catchment-specific runoff variability (k; reported in Ta-

ble 2) and the presence of incision thresholds (τc in ψ in

Eqs. 4 and 10). Table 4 reports details on the different model

scenarios in which ST-SPM is optimized to the observed

ECRN data considering all possible combinations (4) of uni-

form or spatially variable catchment mean runoff (R) and

uniform or spatially variable catchment mean runoff variabil-

ity (k). For reference, the four scenarios include both uniform

and spatially variable lithological erodibility, LE (eight sce-

narios in total).

In ST-SPM scenarios 1–4 (Table 4, Fig. S10a–d), the ST-

SPM is optimized assuming a constant erodibility (LE fixed

to 1). Similar to what has been found for the R-SPM, model

performance is not any better compared to the use of a simple

A-SPM when not considering lithological variability. This

confirms that optimizing more complex river incision mod-

els (such as the ST-SPM) has little added value when the het-

erogeneity in environmental conditions (lithological hetero-

geneity) is not considered.

In ST-SPM scenarios 5 and 6 (Table 4, Fig. S10e–f), catch-

ment mean runoff (R) is fixed to the average value of all

catchments (0.82 m yr−1) in order to evaluate the role of

(i) variations in observed temporal runoff variability (k) and

(ii) optimized values for the incision threshold (τc). In sce-

nario 5, k is fixed to the average value for all catchments

(k = 1.01), whereas in scenario 6, k is set to the catchment-

specific values as listed in Table 2. Both scenarios (5 and 6)

perform well with an NS value equalling 0.71, indicating that

temporal runoff variability (k) is not influencing model per-

formance. Regardless of the lack of spatially variable runoff

(R), both scenarios perform as well as R-SPM scenario 2,

in which runoff variability was considered. The good perfor-

mance of ST-SPM scenarios 5 and 6 can be attributed to the

presence of an incision threshold (ψ>0 in Eq. 13) at which

τc is optimized to a value of ca. 30 Pa (Table 4). The fact that

the use of the ST-SPM with constant runoff values yields a

good model fit suggests that part of the nonlinear relationship

between river steepness, ksn, and ECRN can be attributed to

the presence of thresholds for river incision to occur (Lague,

2014).

ST-SPM scenarios 7 and 8 (Table 4, Figs. S10e–f and 8b)

are similar to scenarios 5 and 6, with the difference that

spatial runoff variability is considered by using catchment-

specific values for runoff (R; Table 2). Similarly to scenarios

5 and 6, using catchment-specific values for k does not im-

prove model performance, resulting in a similar model per-

formance for scenarios 7 and 8. Overall, ST-SPM scenarios

6 and 7 result in the highest model performance of all tested

scenarios, with an NS model efficiency of 0.75, an ME of

2.22 and 2.21, and an R2 of 0.75. The optimized model fit for

ST-SPM scenario 7 is shown in Fig. 8b and corresponds well

https://doi.org/10.5194/esurf-8-447-2020 Earth Surf. Dynam., 8, 447–470, 2020
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with the 1 : 1 line between modeled and observed denudation

rates. Optimized values for τc are ca. 14–15 Pa, which is in

the range but at the lower spectrum of earlier documented

values for critical shear stress (e.g., Shobe et al., 2018, report

τc values between 10 and 1000 Pa). Contrary to the R-SPM

with which low denudation rates are overestimated (Fig. 8a),

the ST-SPM does predict low denudation rates better due to

the consideration of an incision threshold that mainly influ-

ences simulated river denudation rates at the lower end of the

spectrum.

ST-SPM scenarios 7 and 8 have a model error (ME of 2.22

and 2.21, respectively) similar to the model error of A-SPM

scenario 2 (ME = 2.23). Hence, we conclude that an ST-SPM

considering spatial variations in runoff and simulating a criti-

cal threshold for river incision performs as well as an A-SPM

with the effect of allogenic (runoff variability) and autogenic

(incision thresholds) response cast in the lumped empirical

incision parameters. While the R-SPM and ST-SPM do not

necessarily predict spatial patterns in observed ECRN rates

better than an A-SPM, they do enable one to simulate the

effect of runoff variability and incision thresholds, therefore

providing an operational tool to simulate past and future cli-

mate changes. Note that differences in model performance

between R-SPM scenario 2 and ST-SPM scenarios 5–8 are

existent but not very pronounced. To evaluate the signifi-

cance of these differences, our analysis should be repeated

on larger datasets capturing a wider variability in denudation

rates and hydrology.

5 Discussion

5.1 Equilibrium between river incision and hillslope

denudation

In theory, rates of hillslope denudation equal rates of river

incision if landscapes are either in a steady state or if tran-

sient landscapes are characterized by rapid hillslope response

(e.g., threshold hillslopes). Steady-state landscapes can only

be achieved under stable climatic and tectonic settings that

prevail over millions of years. Such stability is rarely met in

tectonically active regions where landscapes continuously re-

spond to environmental perturbations (Armitage et al., 2018;

Bishop et al., 2005; Campforts and Govers, 2015).

The downstream reaches of the Paute catchment are a good

example of a transient landscape where a major knickzone

is propagating upstream, resulting in steep threshold topog-

raphy downstream of the knickzone (Fig. S3 and Vanacker

et al., 2015). Facing a sudden lowering of their base level

after river rejuvenation, soil production and linear hillslope

processes (Campforts et al., 2016) are no longer in equi-

librium with rapidly incising rivers (Fig. 15 in Hurst et al.,

2012). In steep topography, hillslopes may transiently evolve

to their mechanically limited threshold slope whereby any

further perturbation will result in increased sediment deliv-

ery through mass-wasting processes such as rockfall or land-

sliding (Bennett et al., 2016; Blöthe et al., 2015; Burbank

et al., 1996; Larsen et al., 2010; Schwanghart et al., 2018).

Given the erratic nature of landslides, not all threshold hill-

slopes will respond simultaneously to base-level lowering

depending on local variations in rock strength, hydrology,

land use and seismic activity (Broeckx et al., 2020; Guns and

Vanacker, 2014). Therefore, catchments in transient land-

scapes might experience hillslope denudation with highly

variable rates (Vanacker et al., 2020).

We argue that CRN-derived denudation rates in the Paute

basin both overestimate and underestimate long-term inci-

sion rates in these catchments. Overestimation may result

from the occurrence of recent, deep-seated landslide events,

that deliver sediments with a low CRN concentration to rivers

(Tofelde et al., 2018). Underestimation, in turn, may occur

if long-term hillslope lowering is accomplished by rare and

large landslides whose return periods exceed the integration

time of CRN-derived denudation rates (Niemi et al., 2005;

Yanites et al., 2009).

Longitudinal profiles of rivers draining to the knickzone in

the Paute catchment show marked knickpoints. This is partic-

ularly evident in catchments 9–16 (Fig. 1) where ksn values

are high (Fig. 2) and knickpoints appear in the longitudinal

profiles (Figs. S3 and S4). Simulated erosion rates for some

of these catchments deviate from CRN-derived denudation

rates (Fig. 8b; IDs 13, 14 and 16), whereas for others (e.g.,

IDs 9 and 11), predictions from the stochastic-threshold river

incision model show good agreement with ECRN data. For

catchments with a sufficiently large drainage area, modeled

incision rates correspond well withECRN (IDs 9 and 11 being

both ca. 700 km2), most likely because the mechanisms that

potentially cause overestimation and underestimation cancel

each other out at this scale. For smaller catchments (IDs 8,

13, 14 and 16 all being < 12 km2) there is a discrepancy be-

tween simulated river incision rates and ECRN.

Although river incision models can be used to simulate de-

nudation patterns in large transient catchments (> 10 km2),

there is a need to develop alternative approaches includ-

ing landslide mechanisms in long-term landscape evolution

models such as the TTLEM (Topo Toolbox Landscape Evo-

lution Model; Campforts et al., 2017) or Landlab (Hobley et

al., 2017).

5.2 Integration timescales of ECRN and ksn

Our analysis reveals the potential role of temporal and spatial

variations of rainfall in long-term landscape evolution. Inte-

gration times of CRN-derived denudation rates measured in

the Paute basin are of the order of 1.5–175 kyr. In contrast,

response times of longitudinal river profiles generally range

0.25–2.5 Myr (Campforts et al., 2017; Goren et al., 2014;

Snyder et al., 2003; Whipple, 2001; Wobus et al., 2006).

During thousand-year to million-year timescales, it is un-

likely that temporal rainfall distributions remain stationary.

Thus, there is little reason to assume that the hydrometeo-
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rological data that we inferred from 35 years of data fully

capture rainfall variability over the response times of river

profiles and hillslopes. Contrary to temporal variations, the

spatial patterns in orographic precipitation are characteristic

of the formation of a mountain range at geological timescales

(Garcia-Castellanos and Jiménez-Munt, 2015). In the south-

ern Ecuadorian Andes, moist air advection via the South

American low-level flow generates pronounced patterns of

orographic precipitation (Campetella and Vera, 2002). These

patterns might have persisted since at least the most recent

phase of Andean uplift in the Late Miocene (Spikings et

al., 2010; Spikings and Crowhurst, 2004). Present-day rain-

fall and runoff spatial gradients (Fig. 6) are thus deemed

to be informative for spatial patterns of discharge at longer

timescales (Sect. 3.1). The performance of the stream power

models underscores this interpretation. While accounting for

spatial patterns in runoff improves the performance of a

stochastic-threshold SPM (Table 4 and Sect. 4.2.2), incor-

porating proxies for temporal discharge variability leads to

no improvement of model performance (the role of k in

Sect. 4.2.2).

5.3 Impact of lithological heterogeneity on long-term

river incision rates

In all our simulations, model efficiency improves when in-

corporating rock strength variability (Table 4), which is con-

sistent with earlier studies (Lavé and Avouac, 2001; Stock

and Montgomery, 1999). In the absence of generally ac-

cepted metrics of erodibility, we employ an empirically de-

rived lithological erodibility index (LE; Eq. 7) based on the

age and lithological composition of stratigraphic units. Ow-

ing to its simplicity, this or a similar index can potentially be

applied at continental to global scales at which information

on rock physical properties is usually lacking the detail avail-

able at smaller spatial scales (Attal and Lavé, 2009; Nibourel

et al., 2015). Notwithstanding, river incision also depends on

other rock properties such as the density of bedrock frac-

tures, joints and other discontinuities (Whipple et al., 2000).

Fracture density has in turn been linked to spatial patterns of

seismic activity (Molnar et al., 2007). Given the limited vari-

ability of seismic activity within the Paute basin (Petersen et

al., 2018; Fig. S2), seismicity was not considered in our re-

gional analysis but could be considered when applying our

approach to other regions characterized by more spatial seis-

mic variability.

Incorporating spatial patterns of rock strength not only

reduces the scatter surrounding the modeled river incision

versus ECRN-derived denudation rates, but also controls the

degree of nonlinearity between river steepness (ksn) and de-

nudation rates, expressed by the slope exponent n in the A-

SPM (Fig. 7). Omitting rock strength variability results in a

ksn −ECRN relation that is close to linear in the Paute catch-

ment (with n= 1.07). This contradicts other studies in which

lithology was assumed to be uniform and n has been reported

Figure 9. Comparison of model performance for four selected river

incision models. (a) Nash–Sutcliffe model efficiency (NS) for dif-

ferent model scenarios without (grey bars) or with (red bars) consid-

ering lithological heterogeneity; (b) the corresponding model error

(ME). The A-SPM model scenario corresponds to the Area-Based

Stream Power Model (see Fig. 7). It performs well when lithological

heterogeneity is considered and all parameters are freely calibrated,

resulting in a slope steepness exponent (n; see Eq. 1) of 1.63 (for

a full overview of model parameters, see Table 4). In an A-SPM

scenario in which n is fixed to 1, the model performance strongly

deteriorates. In the R-SPM and ST-SPM models, n is fixed to the

theoretically derived value of 1. The R-SPM model explicitly incor-

porates runoff variability (see Fig. 8a), and the ST-SPM model also

includes an incision threshold (see Fig. 8b). Both models perform

well when lithological heterogeneity is accounted for. Overall, the

best model performance (highest NS and smallest ME) is obtained

under the ST-SPM scenario in which lithological and runoff vari-

ability, as well as river incision thresholds, are considered.

to be larger than 1 (e.g., DiBiase et al., 2010; Lague, 2014;

Whittaker and Boulton, 2012).

5.4 Impact of runoff variability on long-term river incision

rates

The A-SPM performs well in explaining ECRN when lithol-

ogy is considered and n ≫ 1 (Fig. 9; high NS model effi-

ciency, low ME). For n= 1, the performance of the A-SPM

is low. The result is consistent with earlier studies reporting

n≫ 1 (e.g., DiBiase et al., 2010; Harel et al., 2016; Ouimet

et al., 2009; Scherler et al., 2014), which Lague (2014) at-

tributes to discharge variability and incision thresholds. We

tested this hypothesis using the R-SPM and ST-SPM. Our
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464 B. Campforts et al.: Parameterization of river incision models

results underscore the fact that the nonlinear relationship be-

tween ksn and ECRN can be attributed to the spatial variabil-

ity of mean annual runoff. Figure 9 shows that the R-SPM

(in which n is fixed to the theoretically obtained value of 1)

performs better than an A-SPM when n is fixed to 1. In tec-

tonically active regions, steep river reaches often spatially co-

incide with the edge of the mountain range over which mean

annual rainfall rates are highest. Accordingly, if variations

in runoff are not considered, the effects of orographic pre-

cipitation will be partly accommodated by a nonlinear rela-

tionship between river steepness and denudation rates. The

R-SPM accounts for this effect but results in an underesti-

mation of low river incision rates (Fig. 8a). Moreover, the

model error (Fig. 9b) shows that the R-SPM does not per-

form as well as the A-SPM. In a final set of model runs, we

apply the ST-SPM with the explicit simulation of a thresh-

old, which improves model performance, especially for low

denudation rates, resulting in an overall model error equal to

the one obtained with the A-SPM with n≫ 1 (Fig. 9). This

finding points to the potentially important role of thresholds

for river incision to occur.

The model performance of the ST-SPM equals the perfor-

mance of an empirical A-SPM with a slope exponent ≫ 1

(Fig. 9). Our interpretation is that (i) spatial variations in

runoff and (ii) the incision thresholds are the causes of an

observed nonlinear relation between ksn and ECRN. With a

seemingly equal model performance, one could wonder what

the benefit of the more complex ST-SPM model is over a

simple, nonlinear A-SPM. The aim of using an ST-SPM is,

however, beyond fitting observed denudation rates: we want

to identify to what extent the system is forced by internal

allogenic dynamics such as the presence of incision thresh-

olds or external autogenic forces such as runoff variability.

The use of the ST-SPM illustrated that both processes can

be accounted for in a quantitative way so that future studies

can explicitly consider their role when reconstructing past

landscape response to external perturbations (e.g., climate

change).

To further explore the interdependency between incision

thresholds and spatial runoff variability, our approach can be

applied to CRN datasets covering regions characterized by

more pronounced rainfall gradients (e.g., in Chile: Carretier

et al., 2018). Accounting for spatial variations in temporal

discharge distributions (with k characterizing the stochastic

flood occurrence) did not improve or deteriorate model per-

formance (ST-SPM scenario 8 in Table 4). This is likely due

to data limitations: the necessary data to characterize tempo-

ral variations in discharge within a given catchment over a

timescale that is relevant for CRN-derived denudation rates

are, at present, not available.

Our finding that spatial patterns in precipitation are re-

lated to river incision patterns corroborate findings in Hawaii

(Ferrier et al., 2013), the Himalaya (Scherler et al., 2017)

and in the Andes (Sorensen and Yanites, 2019). Sorensen

and Yanites (2019) evaluated the role of latitudinal rainfall

variability in the Andes in erosional efficiency using a set

of numerical landscape evolution model runs. They show

that erosion efficiency in tropical climates at low latitudes,

where the Paute basin is located, is well captured by the spa-

tial pattern of mean annual precipitation and thus runoff. At

higher latitudes (25–50◦) where mean annual precipitation

decreases but erosivity is still high due to the intensity of

storms (Sorensen and Yanites, 2019), river erosivity is likely

better captured by spatial patterns in storm magnitude and

frequency.

6 Conclusions

Numerous studies report a nonlinear relationship between

channel steepness and CRN-derived denudation rates. Based

on the growing mechanistic understanding of river incision

processes, this nonlinear relationship is often attributed to in-

cision thresholds. Rainfall variability controls the frequency

of river discharges that exceed incision thresholds. Although

the dynamic interplay between stochastic runoff and incision

thresholds theoretically results in a nonlinear relationship be-

tween channel steepness and denudation rates, coupling the-

ory with field data has been challenging. We address this is-

sue in the Paute basin where we scrutinize the relationship

between CRN-derived denudation rates and river incision us-

ing three different stream power models. We show that litho-

logical variability obscures the relationship between channel-

steepness-based river incision and CRN-derived denudation

rates.

In order to account for rock strength variability, which for

the Paute basin is mainly ascribed to variations in lithologi-

cal strength in the study area, we propose the use of an em-

pirical lithological strength index that is based on the lithol-

ogy and age of lithostratigraphic units. Including lithological

variability in the models increases the correlation between

river steepness and denudation rates and reveals a nonlin-

ear relation, which we seek to explain using a stochastic-

threshold SPM (ST-SPM). Using a downscaled version of a

hydrological reanalysis dataset, we show that the combina-

tion of spatially varying runoff and incision thresholds ex-

plains the observed nonlinear relationship. We do not detect,

however, an impact of temporal discharge patterns on river

incision. We attribute this to the integration time of CRN data

and response times of river longitudinal profiles, which ex-

tend beyond the timescales at which discharge distributions

can be assumed to be stationary.

Our study shows the potential of an ST-SPM to infer re-

gional and, potentially, continental to global differences in

rainfall variability. However, we emphasize that its applica-

tion needs to account for confounding environmental vari-

ables such as rock strength. Simplified process representa-

tion of stream-power-based incision models (e.g., lack of

sediment–bedrock interactions) might explain part of the re-

maining scatter between predicted and measured denuda-
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tion rates. However, residual analysis shows that most of the

remaining scatter occurs in small transient catchments (up

to 10 km2) where sporadic mass-wasting processes on hill-

slopes likely obscure the relation between measurements and

predictions. Elucidating this relation further could potentially

be fostered by dynamic numerical landscape evolutions mod-

els that explicitly simulate the coupling between transient

river adjustment and hillslope response.

Data availability. All data used in this paper are freely available

from the referenced agencies. The hydrological data used in this
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