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Abstract

Optical methods like spectroscopic ellipsometry are sensitive to struc-
tural properties of semiconductor films such as crystallinity or grain size.
The imaginary part of the dielectric function is proportional to the joint
density of electronic states. Consequently, the analysis of the dielectric func-
tion around the critical point energies provides useful information about the
electron band structure and all related parameters like the grain structure,
band gap, temperature, composition, phase structure, carrier mobility, etc.
In this work an attempt is made to present a selection of the approaches to
parameterize and analyze the dielectric function of semiconductors, as well
as some applications.
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1. Introduction

Optical methods, especially polarimetric techniques like ellipsometry, are
capable of measuring structural properties of semiconductors [1, 2]. Ellipsom-
etry (and most reflection-based optical methods) can measure nanocrystals
in thin layers of optical quality having interfaces that are planar on the scale
of several nanometers. The electronic structure of crystalline semiconductors
changes strongly with the variation of long range order in the crystal lattice.
The imaginary part of the dielectric function measured by ellipsometry is
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related to the electronic structure (joint density of states), and it is largely
influenced by crystallinity around the critical point energies corresponding
to transition energies between parallel bands of the Brillouin zone, revealing
high absorption. There is a broad range of material properties that can be
determined based on the analysis of the dielectric function, as shown in Fig.
1 [3].

Characteristic critical point energies are 3.4 and 4.2 eV in Si. A spectral
range covering these photon energies can easily be measured by standard
ellipsometric hardware, usually including the photon energy range of 1.5-
5.0 eV and being capable of acquiring accurate and reliable spectra. While
the dielectric functions of most single-crystalline semiconductors are avail-
able in the literature, the largest problem of measuring non-single-crystalline
semiconductors is the requirement of appropriately modeling the dielectric
function. There have been numerous approaches like effective medium or
oscillator models investigated in the literature used in versatile applications
from polycrystalline thin films [4] through ion implanted semiconductors [5, 6]
to porous or nanocrystalline structures [7, 8, 9, 10]. There is a trade off be-
tween the robustness and the number of fitted parameters used in the optical
models. Oscillator models are more accurate, but the large number of fit pa-
rameters requires experience, a systematic fitting approach or sophisticated
parameter search procedures to avoid getting in local minima.

Another source of error is a possible lateral and vertical inhomogeneity
of thin films, which are not taken into account in first order. The most
general problem is the vertical non-uniformity, which is characteristic of most
deposited thin films. It doesn’t only mean a surface and interface roughness
or an interface layer of nucleation, but in some cases also a gradual change of
properties in the vertical direction, as in most polycrystalline films [11, 12]. A
depth scan can be performed by fitting in different wavelength ranges (e.g. for
Si the smallest wavelength is fixed at the position for the largest absorption,
and the longest wavelength of the range is gradually increased to increase
the penetration depth), utilizing the fact that the optical penetration depth
changes to a great extent as a function of wavelength around the critical
point energies [13].

2. Effective medium methods

Effective medium methods are the most widely used and robust ways to
describe the dielectric function of not only semiconductors but any other
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Figure 1: Scheme of an ellipsometric measurement. Optical models are constructed to
determine optical properties and layer thicknesses. The reflectance and transmittance
is not measured directly, but they can be determined from the optical models using the
best-fit parameters. There is a large number of material properties that can be determined
from the optical properties. Due to the high sensitivity of ellipsometry to the dielectric
function (10−3-10−4), material properties with small influence on the optical properties
can also be measured. (Reproduced from Ref. [3].)

composite structures consisting of distinct phases that can be described by
their bulk dielectric functions and that are smaller than the wavelength of
illumination [4, 14]. The effective dielectric function (ǫ) can be calculated
from the dielectric functions of the components (ǫa, ǫb, ...) and their volume
fractions (fa, fb, ...) by the equation

ǫ− ǫh
ǫ+ 2ǫh

= fa
ǫa − ǫh
ǫa + 2ǫh

+ fb
ǫb − ǫh
ǫb + 2ǫh

, (1)

where ǫh denotes the dielectric function of the host. If b represents a dilute
phase then we can choose ǫh = ǫa, which leads to the Maxwell Garnett
expression:

ǫ− ǫa
ǫ+ 2ǫa

= fb
ǫb − ǫa
ǫb + 2ǫa

. (2)

If the volume fraction of the components are comparable, it may not be clear,
which component whould be the host medium. In this case a self-consistent
choice is ǫh = ǫ resulting in the Bruggeman expression:

0 = fa
ǫa − ǫ

ǫa + 2ǫ
+ fb

ǫb − ǫ

ǫb + 2ǫ
. (3)
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Figure 2: Measured (angle of incidence of 75◦) and fitted ellipsometric spectra of a 100-nm
polycrystalline Si film deposited on oxidized (100 nm) Si using low pressure chemical vapor
deposition at a temperature of 640◦C. At the top of the figure the assumed layer structure
and two possible optical models depending on the grain structure are shown. In this fit
Model 2 has been used.

A typical example of the Bruggeman effective medium theory is the mod-
eling of polycrystalline materials, which can usually be considered as a com-
position of certain phases like single-crystalline Si (c-Si), amorphous Si (a-Si),
fine-grained polycrystalline Si (nc-Si) and voids (vacuum, i.e. a refractive in-
dex of n = 1) for polycrystalline Si [15, 11, 16], as shown in Fig. 2.

3. Analytical models

If the assumption that the investigated film has distinct phases is not
valid, or if there is no reliable reference dielectric function for the components,
the effective medium approach fails. Analytical models describe the dielectric
function with parameterized functions derived from physical principles like
the generalized oscillator model [17], the model dielectric function [18] or
the Forouhi-Bloomer model [19], or providing mathematical line shapes such
as the Kim-Garland model [20], the Johs-Herzinger model [21] or the B-
spline model [22]. While the advantage of the effective medium models is
that they describe the optical properties with few parameters and that they
allow the determination of volume fractions of known phases, the major
advantage of analytical parameterizations is that their fitted parameters can
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be related to numerous derived physical properties that are highly relevant
in semiconductor technology and materials science (see Fig. 1).

3.1. Lorentz oscillators

A general and usual approach to fit the dielectric function is to use a set
of Lorentz oscillators:

ǫL(E) = ǫL,∞ +
n

∑

i=1

A2
i,L

(E2
i,L − E2)− iΓL, E

, (4)

where E, AL, ΓL and EL denote the photon energy, the amplitude, the
broadening and the oscillator energy, respetcively. This method is often used
to have a smooth analytical representation of the dielectric function which
allows the accurate determination of peak positions and broadenings [23]
or serves as a starting point for further analysis [24]. This method has been
extended with Gaussian broadening to achieve a better fit on metal films [25].
It has been shown by numerous investigations that the broadening parameter
of the critical point features is proportional to the grain size [24, 9].

If the size of nanocrystal inclusions is so small that the band structure gets
close to that of amorphous semiconductors, the Tauc-Lorentz method can be
applied [26, 27]. This approach combines (i.e. calculates the convolution of)
Lorentz oscillators and the quadratic Tauc gap,

ǫ2,T (E) =
ATE0,TΓT (E − Eg,T )

2

(E2 − E2
g,T )

2 + Γ2
TE

2
Θ(E − Eg,T ), (5)

where Θ(x < 0) = 0, Θ(x ≥ 0) = 1, AT , ΓT , Eg,T and E0,T are the ampli-
tude, broadening, band gap and the peak energy in the joint density of states,
respectively. The corrected expression for the real part of the dielectric func-
tion is given in Ref. [28]. The Tauc-Lorentz method has been proven to be
useful for modeling amorphous semiconductors. This way a quadratic behav-
ior is assumed at the band edge while the simplicity of the combination of
Lorentz oscillators is maintained. In the model a Kramers-Kronig consistent
analytical formula is constructed for the real part of the dielectric function.
This provides simplicity for the computational adaptation of the model, and
at the same time provides a powerful concept, because well-defined numerical
information (like the band gap) can be determined for the investigated thin
film. This is the reason for the popularity of this model which leads to its
application as an empirical model even for non-amorphous materials [29, 30].
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The absorption formula of the Tauc-Lorentz model near to the band edge
has been refined using the Cody-Lorentz model

ǫ2,C(E) =
E1,C

E
exp

(

E − Et,C

Eu,C

)

Θ(Et,C − E) + ǫ2,TΘ(E − Et,C), (6)

where Et,C is the demarcation energy between the exponential Urbach tail
transition (αC [E] = α0,Cexp[E/Eu,C ], with α being the absorption coeffi-
cient), ǫ2,T is the Tauc-Lorentz expression from eq. 5, and E1,C is the ampli-
tude. The Cody-Lorentz method was suggested and the analytical formula for
the real part of the dielectric function was derived by Ferlauto and coworkers
[31].

3.2. Forouhi-Bloomer model

The Forouhi-Bloomer model [19] derived from quantum mechanical con-
siderations takes the form of

nF (E) = nF (∞) +
B0,FE + C0,F

E2 − BFE + CF

, (7)

kF (E) =
AF (E − Eg,F )

2

E2 − BFE + CF

, (8)

where

B0,F =
AF

QF

(

−
B2

F

2
+ Eg,FBF − E2

g,F + CF

)

, (9)

and

C0,F =
AF

QF

(

(E2
g,F + CF )

BF

2
− 2Eg,FCF

)

, (10)

which uses only 5 fit parameters (AF , BF , CF , Eg,F and nF (∞), QF =
0.5(4CF−B2

F )
1/2) for both nF and kF in a relatively simple but also Kramers-

Kronig consistent way. This method is suited for the description of amor-
phous semiconductors, which has later been improved by McGahan [32] and
Jellison [26].

3.3. Generalized oscillator model

The generalized oscillator model [17] applies a set of oscillators for the
critical points described by

ǫG(E) = CG − AGe
iΦG(E − E0,G + iΓG)

l, (11)
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where CG, AG, ΦG, E0,G, and ΓG denote the offset, amplitude, phase, thresh-
old energy and broadening, respectively. The exponent l has the value of -0.5
for one-dimensional, 0 for two-dimensional and +0.5 for three-dimensional
critical points. Discrete excitons are represented by l = −1. The most
effective way of applying this method is to fit the derivative of the dielec-
tric function, because this way the effect of surface non-idealities (especially
when caused by low-dispersion overlayers) on the line shape of critical point
features can be decreased significantly. Besides the determination of the tem-
perature dependence of the critical point features of different semiconductors
[33, 17, 34], the generalized oscillator model has also been applied for various
semiconductors, e.g. for CdTe [35].

3.4. Model dielectric function

Model dielectric functions have been derived by Adachi for a range of
semiconductors from electronic band structure calculations [18, 36]. Kramers-
Kronig-consistent expressions have been provided for each critical point. In
case of Si, the most characteristic transitions of a two-dimensional M0-type
E1

ǫA(E) = −B
−2
A ln(1− χ2

1,A) (12)

with

χ1,A =
E + iΓA

E1,A

, (13)

and a two-dimensional M2-type E2

ǫA(E) = −F
−2
A ln

1− χcl,A

1− χ2m,A

, (14)

with

χ2m,A =
E + iΓA

E2,A

, χcl,A =
E + iΓL

Ecl,A

, (15)

are completed with several damped harmonic oscillators (eq. 4) for the E1

excitonic and the two-dimensional (M2) E2 transitions. In eqs. 12 and 14
BA and FA denote oscillator amplitudes, ΓA and ΓL denote the broaden-
ing parameters. The applications of this powerful method range from ion
implanted materials [37, 38] to porous Si (see Ref. [9] and Fig. 3).
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Figure 3: Pseudo dielectric function of a porous Si layer created by anodic etching in bulk
single-crystalline Si with a resistivity of 0.03 Ωcm, a nominal thickness of 550 nm and a
nominal size of nanocrystals of 6 nm fitted using different optical models. Model ”13”
denotes a one-layer optical model with 3 fitted parameters: the thickness, the volume
fraction of fine-grained polycrystalline Si and voids in an effective medium mixture with
single-crystalline Si. Model ”39” uses 3 layers with the same components as that of
Model ”13”, whereas Model ”3e” stands for the fit using the model dielectric function.
(Reproduced from Ref. [9].)
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Figure 4: Johs-Herzinger critical point feature composition using four component polyno-
mials [21].

3.5. Polynomial-based models

3.5.1. Kim-Garland model

Kim et al. developed a model which describes the dielectric function
around the critical points using polynomials [39, 20]. They have also shown
that using a Gaussian broadening allows a significantly better fit also to the
derivatives, than using a Lorentzian broadening. The use of this approach
has been demonstrated for GaAs [39] as well as for AlxGa1−xAs [20].

3.5.2. Johs-Herzinger generalized critical point model

The Johs-Herzinger generalized critical point model uses the same ap-
proach as the Kim-Garlan model, but in an improved way. It has been
introduced at the 2nd International Conference on Ellipsometry in 1997 and
published in Ref. [21]. It has been demonstrated on the example of fitting
the dielectric function of Hg1−xCdxTe thin films (Fig. 4). This method uti-
lizes four polynomials to provide a general empirical description of all kinds
of critical point features. Finally, a Gaussian broadening is defined for each
of them. It results in a large number of fit parameters. Therefore, the use
of this method requires much experience and a careful analysis to fix as
much parameters as possible at physically reasonable values. The real part
of the dielectric function is calculated using look-up tables and therefore the
analytic implementation of the model is problematic – it is bound to the
proprietary software of the Woollam Co. The applications of this method
span a wide range from Si [40, 16] to ZnO [41].
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3.5.3. B-spline model

If the layer thicknesses and optical properties in a structure are known
except for one layer, the real and imaginary parts of the dielectric function
of that unknown layer can be determined by direct numerical inversion at
each wavelength independently [42]. The advantage of this method is that
no dispersion model is required and fine details of the absorption features
can be characterized. However, the dielectric function calculated this way
is usually scattered and easily jumps into unphysical results because of the
large sensitivity on the correctness of all fixed thicknesses and optical con-
stants, and because of the effect caused by the wavelength dependence of the
penetration depth and the vertical inhomogeneity of the investigated layers.

The idea of using splines is connected to the assumption that the dielectric
function can be considered smooth in a narrow wavelength range. Then the
data in these ranges can be coupled by fitting polynomial spline functions.
The method has been suggested and first applied by Zettler et al. [43],
which has been developed further by Johs and Hale [22] using B-splines (”B”
stands for basis) that has a range of theoretical and practical advantages
over simple polynomial splines. Using B-splines, control points can be set
arbitrarily, which allow to distinguish between spectral ranges of low and
high dispersion.

As an example, the B-spline fit of the dielectric function of Au is shown
in Fig. 5. The distance between the nodes were set to 0.2 eV. Increasing
this value reduces the number of fitted parameters significantly, but the fine
details of the spectrum cannot be followed so accurately as in case of a high
node resolution. This parameter can manually be adjusted, and in some
cases the model is robust enough to involve the layer thickness as well (as a
fit parameter) together with a high-resolution B-spline fit on the dielectric
function.

Figure 6 shows an example of fitting a 50-nm ZnO layer (sputtered on a
single-crystallin Si substrate) using the B-spline model, the Johs-Herzinger
model and the Tauc-Lorenz model [44]. The number of fitted parameters
are almost the same for the Johs-Herzinger and the Tauc-Lorentz models (6
and 5 respectively), while the B-spline model uses much more parameters,
therefore the measured and fitted curves are almost identical (similar to the
case of Fig. 5). The detailes of the analysis will be given in Ref. [44].
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Figure 5: B-spline fit on Au. The dots represent the control points with a resolution of
0.2 eV. The dashed lines show the dielectric functions fitted using the B-splines. The solid
gray curves denote the measured spectra from the Woollam database. The measured and
fitted spectra are coincident, with differences smaller than the linewidth.

Figure 6: Fitted Ψ and ∆ ellipsometric spectra (top graph) and the resulting imagi-
nary part of the dielectric function (ǫ2 on the bottom graph) using the B-spline, the
Johs-Herzinger and the Tauc-Lorentz models on a 50-nm ZnO film deposited on a single-
crystalline Si substrate using sputtering. The mean squared errors of the fits are shown
in parentheses.
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4. Line shape analysis

To determine the band edge features (i.e. band gap energy) a common
approach is to analyze the imaginary part of the dielectric function as a
function of the photon energy in a range close to the expected band gap. For
this approach the dielectric function of the layer has to be determined either
by direct numerical inversion from bulk or thin film models, or by fitting
the dielectric function with some high resolution empirical models like the
B-spline method. In some cases just the pseudo dielectric function is used
neglecting the effect of surface and bottom interfaces.

As soon as accurate dielectric function data are determined, the line shape
can be fitted by relevant functions, like fitting a quadratic line shape [45] or
equivalently, by applying a semi-logarithmic Tauc plot of α1/2 ∝ E in which
the intersection of a linear fit with the photon energy axis provides the band
gap [46, 47, 48, 49].

The systematic change of the optical properties can also be investigated
by recording the peak positions of the imaginary part of the dielectric func-
tion or its derivatives. The analysis of the correlation of this change with
certain process parameters can provide insight into the processes or directly
enable the determination of key physical parameters of the system.

An interesting application of this concept is a method suggested by Asp-
nes et al. [50] for the determination of excitation areas induced by energetic
ions implanted into GaAs. The assumption is that the tracks of impinging
ions are located randomly on the sample surface, so the probability of further
amorphization by the next ion is proportional to the remaining crystalline
fraction. Consequently, Poisson statistics apply, and the relative decrease
in amplitude is exp(−Fa), where F is the fluence and a is the projected
size. The application of the method has been demonstrated for different
semiconductors including Si, CdTe [51] and SiC [52].

5. Vertical inhomogeneity

Thin films are in most cases non-uniform on the scale of ellipsometric
sensitivity in the vertical direction. This doesn’t only mean transition and
roughness regions at the layer boundaries, but also some vertical gradients of
structural and optical properties as can be revealed e.g. in polycrystalline Si
[12, 13]. Fig. 7 shows the extinction coefficient (k) of an approximately 500
nm thick deposited polycrystalline silicon layer, and the optical penetration
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Figure 7: Extinction coefficient (k) of low pressure chemical vapor deposited polycrys-
talline silicon as a function of the wavelength. The optical penetration depth is also
plotted, calculated by OPD=λ/(4πk). A transmission electron microscopy image of the
polycrystalline silicon layer is shown on the right-hand side.

depth calculated directly from k. At the wavelength corresponding to the
peak of k (∼300 nm) the penetration depth is approximately 5 nm, and
the bottom interface is visible only for wavelengths above ∼550 nm. The
penetration depth increases rapidly when increasing the wavelength from 300
nm to 500 nm. Consequently, the structure seen by the illuminating light will
be different depending on the wavelength (optical properties integrated over
different depths). In each case, a vertically changing structure is integrated
over the layer thickness or down to the penetration depth depending on the
wavelength.

The wavelength dependent penetration depth is an important issue which
should be kept in mind especially for polycrystalline semiconductors, for
which both the dispersion and the vertical non-uniformity is large. The
wavelength dependent penetration depth is not just a disturbing effect, but
it can be used for a depth scan when systematically investigating the fitted
model parameters as a function of the wavelength range [41].

Conclusions

In this article an attempt was made to summarize some of the methods
known for the author that have been successfully used for the parameteri-
zation of the dielectric function of semiconductor nanocrystals. There is no
method that can be selected as the best for all applications. The success of
parameterization depends on the choice of most suitable method with the
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least possible parameters. A proper approach is most probably to start with
most robust models which use the lowest number of fit parameters, and to
refine the model with more sophisticated approaches using some of the pa-
rameters determined from the previous approaches as starting parameters
or to help to define reasonable ranges for the parameter search. If none of
the parameterizations result in an acceptable fit, the B-spline model or the
direct numerical inversion could be the best choice, however these can also
lead to non-physical results if the layer is inhomogeneous, anisotropic or de-
polarizing. These effects can be checked when using rotating compensator or
generalized Muller matrix ellipsometry.
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