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What is 1-planarity?

A graph is 1-planar if it can be drawn in the plane (vertices as
points, edges as curves disjoint from non-incident vertices) so that
each edge is crossed at most once (in one point, by one edge)

E.g. K2,7 is planar, K3,6 is 1-planar, and K4,5 is not 1-planar
[Czap and Hudák 2012]



History and properties

Original application of
1-planarity: simultaneously
coloring vertices and faces of
planar maps [Ringel 1965]

1-planar graphs have:

◮ At most 4n − 8 edges
[Schumacher 1986]

◮ At most n − 2 crossings
[Czap and Hudák 2013]

◮ Chromatic number ≤ 6
[Borodin 1984]

◮ Sparse shallow minors

[Nešeťril and Ossona de

Mendez 2012]



Computational complexity of 1-planarity

NP-complete ...
[Grigoriev and Bodlaender 2007;

Korzhik and Mohar 2013]

even for planar + one edge
[Cabello and Mohar 2012]

But that shouldn’t stop us
from seeking exponential or
parameterized algorithms for
instances of moderate size
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Reduction from Cabello and Mohar [2012]



A naive exponential-time algorithm

1. Check that #edges ≤ 4n − 8

2. For each pairing of edges
◮ Replace each pair by K1,4

◮ Check if result is planar
◮ If so, return success

3. If loop terminated normally,
return failure

Time dominated by #pairings (telephone numbers)

≈ mm/2−o(m) [Chowla et al. 1951]

E.g. the 9 edges of K3,3 have 2620 pairings
Graphs with 18 edges have approximately a billion pairings



Parameterized complexity

NP-hard ⇒ we expect time to be (at least) exponential

But exponential in what?

Maybe something smaller than instance size

Goals:

◮ Find a parameter p defined from inputs that is often small

◮ Find an algorithm with time O(f (p)nc)

◮ f must be computable and c must be independent of p

If possible, then the problem is fixed-parameter tractable



Cyclomatic number

Remove a spanning tree, count
remaining edges ⇒ m − n + 1

Often ≪ n for social networks
(if closing cycles is rare) and
utility networks (redundant
links are expensive)

HIV transmission network
[Potterat et al. 2002]

n = 243 cyclomatic# = 15
[Bannister et al. 2013]



A hint of fixed-parameter tractability

For any fixed bound k on cyclomatic number,
all properties preserved when degree ≤ 2 vertices are suppressed
(e.g. non-1-planarity) can be tested in linear time

Proof idea:

◮ Delete degree-1 vertices

◮ Partition into paths of
degree-2 vertices

◮ Find O(k)-tuple of path
lengths

◮ Check vs O(1) minimal
forbidden tuples

Every set of O(1)-tuples of
positive integers has O(1)
minimal tuples [Dickson 1913]

But don’t know how to find minimal tuples or construct drawing

Not FPT because dependence on k isn’t explicit and computable



Kernelization

Suppose sufficiently long paths of degree-2 vertices – longer than
some bound ℓ(k) – are indistinguishable with respect to 1-planarity

= =

Leads to a simple algorithm:

◮ Delete degree-1 vertices

◮ Compress paths longer than ℓ(k) to length exactly ℓ(k),
giving a kernel of size O(k · ℓ(k))

◮ Apply the naive algorithm to the resulting kernel

◮ Uncompress paths and restore deleted vertices,
updating drawing to incorporate restored vertices

FPT: Running time O(n + naive(kernel size))



Rewiring

Suppose that path p is crossed by t other paths, each ≥ t times

Then can reconnect near p, remove parts of paths elsewhere so:

◮ Each other path crosses p at most once

◮ Crossings on other paths do not increase



How long is a long path?

In a crossing-minimal 1-planar drawing, with q degree-two paths:

◮ No path crosses itself

◮ No path has 2(q − 1)! or more crossings
...else we have a rewirable sequence of crossings

Path length longer than #crossings does not change 1-planarity

q ≤ 3k − 3 ⇒ ℓ(k) ≤ 2(3k − 4)!− 1 ⇒ FPT



FPT algorithms for other parameters

◮ k-almost-tree number:
max cyclomatic number of
biconnected components

◮ Vertex cover number: min size of
a vertex set that touches all edges

“the Drosophila of fixed-parameter
algorithmics” [Guo et al. 2005]

◮ Tree-depth: min depth of a tree
such that every edge connects
ancestor-descendant

Kernelization for vertex
cover

For vertex cover and tree-depth, existence of a finite set of
forbidden subgraphs follows from known results [Nešeťril and

Ossona de Mendez 2012]; difficulty is making dependence explicit



Negative results

NP-hard for graphs of bounded treewidth, pathwidth, or bandwidth

Reduction from
satisfiability with
three parts:
substrate (black),
variables (blue),
and clauses (red) Some of the gadgets



Conclusions

Results:

◮ First algorithmic investigation of 1-planarity

◮ Semi-practical exact exponential algorithm (18-20 edges)

◮ Impractical but explicit FPT algorithms

◮ Hardness results for other natural parameters

For future research:

◮ Make usable by reducing dependence on parameter

◮ Parameterize by feedback vertex set number?
Would unify vertex cover and cyclomatic number

◮ Use similar kernelization for cyclomatic number / almost-trees
in other graph drawing problems [Bannister et al. 2013]
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