
 Open access Journal Article DOI:10.1007/S10951-018-0581-1

Parameterized complexity of a coupled-task scheduling problem — Source link

Stéphane Bessy, Rodolphe Giroudeau

Published on: 01 Jun 2019 - Journal of Scheduling (Springer US)

Topics: Parameterized complexity, Vertex cover, Job shop scheduling and Polynomial kernel

Related papers:

 Isomorphic Coupled-Task Scheduling Problem with Compatibility Constraints on a Single Processor

 Total Completion Time Minimization for Scheduling with Incompatibility Cliques

 Approximation algorithms for energy, reliability and makespan optimization problems

Useful Structures and How to Find Them: Hardness and Approximation Results for Various Variants of the Parallel
Task Scheduling Problem

 Parametrized complexity for single machine scheduling with forbidden start and completion times

Share this paper:

View more about this paper here: https://typeset.io/papers/parameterized-complexity-of-a-coupled-task-scheduling-
3i74vq75rh

https://typeset.io/
https://www.doi.org/10.1007/S10951-018-0581-1
https://typeset.io/papers/parameterized-complexity-of-a-coupled-task-scheduling-3i74vq75rh
https://typeset.io/authors/stephane-bessy-2vazpeb171
https://typeset.io/authors/rodolphe-giroudeau-46944d366t
https://typeset.io/journals/journal-of-scheduling-2yu85ez6
https://typeset.io/topics/parameterized-complexity-1oecopd8
https://typeset.io/topics/vertex-cover-2m8ji9rv
https://typeset.io/topics/job-shop-scheduling-14p5wd9o
https://typeset.io/topics/polynomial-kernel-3gfqs8ud
https://typeset.io/papers/isomorphic-coupled-task-scheduling-problem-with-4ze6sjphzd
https://typeset.io/papers/total-completion-time-minimization-for-scheduling-with-13pig4snxm
https://typeset.io/papers/approximation-algorithms-for-energy-reliability-and-makespan-1obsh28inx
https://typeset.io/papers/useful-structures-and-how-to-find-them-hardness-and-547jva15hj
https://typeset.io/papers/parametrized-complexity-for-single-machine-scheduling-with-3mrj6o9qe9
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/parameterized-complexity-of-a-coupled-task-scheduling-3i74vq75rh
https://twitter.com/intent/tweet?text=Parameterized%20complexity%20of%20a%20coupled-task%20scheduling%20problem&url=https://typeset.io/papers/parameterized-complexity-of-a-coupled-task-scheduling-3i74vq75rh
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/parameterized-complexity-of-a-coupled-task-scheduling-3i74vq75rh
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/parameterized-complexity-of-a-coupled-task-scheduling-3i74vq75rh
https://typeset.io/papers/parameterized-complexity-of-a-coupled-task-scheduling-3i74vq75rh

HAL Id: lirmm-02133404
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02133404

Submitted on 3 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameterized complexity of a coupled-task scheduling
problem

Stéphane Bessy, Rodolphe Giroudeau

To cite this version:
Stéphane Bessy, Rodolphe Giroudeau. Parameterized complexity of a coupled-task scheduling prob-
lem. Journal of Scheduling, Springer Verlag, 2019, 22 (3), pp.305-313. ฀10.1007/s10951-018-0581-1฀.
฀lirmm-02133404฀

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02133404
https://hal.archives-ouvertes.fr

Noname manuscript No.

(will be inserted by the editor)

Parameterized Complexity of a coupled-task scheduling

problem

S. Bessy · R. Giroudeau

Received: date / Accepted: date

Abstract In this article, we investigate the parameterized complexity of coupled-task

scheduling in the presence of compatibility constraint given by a compatibility graph.

In this model, each task contains two sub-tasks delayed by an idle time, and a sub-

task of a task can be performed during the idle time of another one if, and only if,

the two tasks are compatible. We consider a parameterized version of the scheduling

problem: is there a schedule in which at least k coupled-tasks possess a completion

time before a fixed due date? It is known that this problem is NP-complete ([23] and

[24]), and we prove that it is fixed-parameter tractable (FPT) if the total duration time

of each task is bounded by a constant, whereas the problem becomes W[1]-hard if it

is not the case. We also show that in the former case the problem does not admit a

polynomial kernel under some standard complexity assumptions. Moreover, we obtain

also an FPT algorithm when the problem is parameterized by the size of a vertex

cover of the compatibility graph.

Keywords Coupled-task scheduling model · FPT algorithms · W[1]-hardness ·

Kernel lower bound

1 Introduction

Scheduling problems are in the mainstream of operations research, industrial engineer-

ing, manufacturing systems and computer science. More particularly, scheduling theory

deals with executing a set of constrained tasks on a set of machines/processors. Here

we focus on a single machine scheduling problem. The problems on a single machine

are considered central in scheduling theory due to the historic nature and since the

simplest type of scheduling models and a special case of all other more complex envi-

ronments. Various examples of scheduling questions lead to NP-complete problems on

which classical algorithmic tools have been used to find acceptable solutions: approx-

imation algorithms, randomized algorithms, exact algorithms with exponential time,

S. Bessy · R. Giroudeau
LIRMM UMR 5506, rue Ada,
34392 Montpellier Cedex 5 - France
E-mail: {bessy,girou}@lirmm.fr

2 S. Bessy, R. Giroudeau

etc (see the following references for a general presentation of scheduling models: [2], [7]

and [13]). In this paper we present parameterized algorithms for a specific scheduling

problem, the coupled-task scheduling problem. A problem parameterized by some inte-

ger k is said to be fixed-parameter tractable (FPT for short) whenever there exists a

constant c such that it can be solved in time f(k) · nc, where f is a function, on an

instance with size n and parameter k. An algorithm to solve the problem with such a

running time is called an FPT algorithm. However, for some problems, like the W[1]-
hard problems, there is no hope to find FPT algorithms under standard assumptions

in complexity theory. We refer to [9], [11] or [18] for parameterized algorithms theory.

The originality of our work is that, up to our knowledge, very few results concerning

parameterized complexity on scheduling problems have been shown (most of them are

W[1]-hard) and no such results are known for the coupled-task scheduling problem.

The coupled-task scheduling problem. The coupled-task scheduling problem consists of

executing n tasks A = {A1, . . . , An} on a single machine. Each task Ai possess two

sub-tasks, the first ai and the second bi, separated by a exact idle time li. This model

of scheduling was introduced first by Shapiro in [21], motivated by an application to

production scheduling, transportation, and radar operations (the first task models a

send of information, the idle time is the delay to receive an answer and the second task

is the treatment of it). Concerning the task-allocation on a single machine it is possible

to interleave some of them. A task Ai interleaves with a task Aj if one of the sub-tasks

aj or bj is processed during the idle time li of the task Ai. Moreover, there are usually

two types of constraints on the tasks. The first one is actual processing times of the

subtasks {a1, b1, · · · , an, bn} and the idle times {l1, . . . , ln}. We will abusively denote

also by ai (resp. bi) the duration of the subtask ai (resp. bi), and we assume that we

have ai > 0 and bi > 0 for all i = 1, . . . , n. The other type of constraints on the tasks

come from their possible heterogeneity. Indeed it is possible that some tasks could not

interleave with some other tasks. It occurs when several tasks need to use a resource,

different from the processor, available sequentially (this model is proposed in [23] and

motivated by data acquisition and processing in a mono-processor torpedo used for

underwater exploration). In order to represent these constraints, a compatibility graph

Gc = (A, Ec) is introduced, where the set of Gc-vertices is the set A of coupled-tasks

and [Ai, Aj] ∈ Ec if, and only if, the two coupled-tasks Ai and Aj can be interleaved.

An example of a coupled-task schedule is depicted in Figure 11.

0 1 2 3 4 5 6 7 8 9 10 11 141312 15 16

A1A2 A3 a1 b1a2 b2 a3 b3

l1

l2 l3

Compatibility graph Gc A schedule

Fig. 1 A coupled-task schedule consistent with a compatibility graph such that A1 =
(1, 4, 2), A2 = (2, 3, 1) et A3 = (3, 5, 1).

As all processing time are integers, we use a discrete time for the starting time of each

task. Thus, in Figure 1, the schedule starts at time 0 and ends at time 16. Remark

1 In all the figures, the two sub-tasks of a single task are colored with the same pattern.

Parameterized Complexity of a coupled-task scheduling problem 3

that this schedule is optimal, as it is not possible to interleave the task A2 and the task

A3 because the corresponding vertices in Gc are not adjacent. Given a schedule of the

tasks, the makespan, denoted by Cmax is the completion time of the last task of the

schedule. The aim of the problem is to produce a shortest schedule (i.e. to minimize

the makespan) according to compatibility constraint. In scheduling theory, a problem

is categorized by its machine environment, job characteristics and objective function.

Using the classical notation scheme α|β|γ2 proposed in [13], our problem will be defined

as 1|(ai, li, bi),Gc|Cmax. The decision version we are interested in is more precisely the

following.

Coupled-Tasks Scheduling Problem (CTS Problem):

Instance: A set A = {A1, . . . , An} of n coupled-tasks with associated pro-

cessed and idle times (ai, li, bi)1≤i≤n and with compatibility graph Gc and an

integer Cmax.

Question: Is there a schedule for the tasks that obeys the compatibilities

given by Gc with a makespan at most Cmax?

We also pay attention to some restrictive versions of the CTS Problem. If every

involved subtask takes one unit of time and every idle time has same duration (i.e.

ai = bi = 1 and li = lj for every i, j ∈ {1, . . . , n}) we will refer to the problem as the

unit CTS Problem. Moreover, let L ≥ 2 be a fix integer. If every task of the instance

has total duration bounded by L (i.e. we have ai+ li+bi ≤ L for every i = 1, . . . , n) we

say that the problem is L-bounded and will refer it as the L-bounded CTS Problem.

Finally combining the two previous notions, if every involved subtask takes one unit

of time and every idle time has duration L− 2 exactly (i.e. ai = bi = 1 and li = L− 2
for every i = 1, . . . , n) we will refer to the problem as the L-unit CTS Problem. In

this paper, we study this problem from the parameterized complexity point of view.

We will precise later the different parameters retained.

Related works. The coupled-task problem without compatibility constraints was first

investigated from an algorithmic point of view in [19]. From this pioneer article on

complexity, severals articles keep classifying in both modes (non cyclic and cyclic3). For

the non cyclic mode, we suggest the two following references [3] or [8] for more recent

results. A recent result given by [15], in cycle mode, propose a efficient polynomial-

time algorithm for the special case (a, L, b) (notice that in non cycle case the status

of this problem is unknown). The absence of compatibility constraints corresponds

to the case of a complete compatibility graph Gc. The model in which the complete

compatibility graph is relaxed has been studied in the framework of classic complexity

and approximation, mainly in [23] and [24]. Remark that for L = 2, the L-unit CTS

Problem is trivial, as there are no idle times and any permutation of the tasks is an

optimal scheduling. For L = 3, roughly speaking, any scheduling can be associated

with a matching on Gc (at most only one coupled-task Ai may be executed in the

idle time of the coupled-task Aj with [Ai, Aj] ∈ Ec), and the length of the schedule

will therefore depend on the size of the matching. Thus a maximum matching in the

compatibility graph leads to an optimal solution for the 3-unit CTS Problem, see [24]

for more details. In the same paper, the authors prove that for L ≥ 5 the L-unit CTS

Problem is NP-complete (the hardness for L = 4 is given in [23]), and so is the

L-unit CTS Problem for L ≥ 4 and also the CTS Problem. Thus, we assume

2 where α designates the environment processors, β the characteristics of the job and γ the
criteria.

3 In this problem multiple copies of a coupled-task are to be processed.

4 S. Bessy, R. Giroudeau

that L ≥ 4 for the rest of the paper. Concerning approximation algorithms, it is

shown in [23] that the 4-unit CTS Problem admits a polynomial 13
12 -approximation

algorithm. Whereas, in [24] a 4+L
4 -approximation algorithm is given for the general L-

unit CTS Problem. In the case of the graph Gc is a bipartite graph some new

results on complexity/approximation are proposed in [22]. Nevertheless, the status of

CTS Problem with Gc being a tree remains unknown.

As mentioned before, there are few results in the parameterized complexity ap-

proach for scheduling theory: on negative side, in [4] the authors prove the W[2]-
hardness for the precedence constrained k-processors scheduling. A contrario, in [10],

the authors give a positive answer to the question "Is there a one-processor sched-

ule for a set of unit-tasks in presence of precedence contraints admitting a individual

deadline, and contains no more than k late tasks (resp. on time) ?" Theses problems

are proven as W[1]-hard, but become FPT for bounded partial orders for the two

previous cases. In [25], the authors propose some FPT results for interval scheduling

based on an Independent Set formulation. Recently, in [17], the authors propose some

fixed-parameter algorithms for some classical scheduling problems as makespan mini-

mization, scheduling with job-dependent cost functions and scheduling with rejection.

As mentioned by Marx in [16] (pp. 86), an interesting parameterization for a

scheduling problem, which admits a polynomial-time algorithm to solve it, is to ask if

an instance of the problem admits a schedule with at most k-tasks late. The challenging

question here is to obtain an FPT algorithm for this parameterized version, avoiding

then all the O(nk) possible choices for the late tasks. However, this parameterization

could not fit to our problem, as for L ≥ 4, the L-unit CTS Problem is NP-complete

(i.e. there is no polynomial algorithm even for k = 0). Another natural way to param-

eterize a scheduling problem is used by Fellows and McCartin in [10]. They study a

scheduling problem dealing with simple tasks having a due date and a set of precedence

constraints. The corresponding optimization problem being NP-complete, they were

interested in a ’k tasks on time’ version of it. More precisely, they look for a set of k

tasks that could be scheduled according to precedence constraints and such that each

task ends before its due date. They obtain a W[1]-hardness result for this parameter-

ized problem.

Our contribution. To turn the CTS Problem into a parameterized problem, we were

inspired by the ’k tasks on time’ version used by Fellows and McCartin in [10]. Indeed,

we fix a due date d ∈ IN and try to find a schedule with a maximum number of

coupled-tasks executed before d. The parameter is then the number of tasks admitting

a completion time before d. Namely, we consider the following problem.

Coupled-Tasks Scheduling Tardy Problem (CTST Problem):

Instance: A set A = {A1, . . . , An} of n coupled-tasks with associated pro-

cessed and idle times (ai, li, bi)1≤i≤n, a compatibility graph Gc and a deadline

d ∈ IN.

Parameter: An integer k.

Question: Is there a schedule for the tasks that obeys the compatibilities given

by Gc and contains at least k tasks that are completed before the deadline d?

As for the CTS Problem, we also pay attention to the unit, L-bounded and L-unit

versions of the CTST Problem.

Section 2 is devoted to parameterized complexity results for the CTST Problem.

Using a parameterized reduction from the k-clique problem, we show that the

Parameterized Complexity of a coupled-task scheduling problem 5

CTST Problem is W[1]-hard. Whereas if L is fixed, the L-bounded CTST Prob-

lem is fixed-parameter tractable. We obtain this result using the color coding technique

(see [1]) and dynamic programming.

One of the standard method to design fixed-parameter algorithms is to obtain a ker-

nelization algorithm (or kernel) for the studied problem. A kernelization algorithm is a

polynomial-time algorithm that given an instance I with parameter k of a parameter-

ized problem computes an instance I ′ with parameter k′ such that (I, k) is a positive

instance if and only if (I ′, k′) is a positive instance of the problem, |I ′| 6 h(k) for

some computable function h(k) depending only on k and k′ 6 k. We say that the

kernel is a polynomial kernel if the function h(k) is a polynomial in k. It is well-known

that a decidable parameterized problem is FPT if and only if it has a kernelization

algorithm [18]. But this equivalence only yields kernels of super-polynomial size. To

design efficient fixed-parameter algorithms, a kernel of small size - polynomial (or even

linear) in k - is highly desirable. Using the cross composition technique developed by

Bodlaender et al. in [5], we prove that there is no hope to find a polynomial kernel for

the L-unit CTST Problem unless co−NP ⊆ NP/Poly.

In Section 3, we obtain an FPT result for the L-bounded CTST Problem param-

eterized by a structural invariant of the compatibility graph Gc. A vertex cover of a

graph G is a subset X of the vertices of G such that for all edge [u, v] of G we have u ∈ X

or v ∈ X. We prove that there exists an FPT algorithm for the L-unit CTST Prob-

lem when parameterized by a size of the vertex cover of Gc. More precisely, we obtain

a (non polynomial) kernel for this problem. We also argue that such an FPT algorithm

does not exist for the unit CTST Problem. Finally we conclude the paper by some

remarks and open questions.

2 Parameterized complexity results for the CTST Problem

In this section, we show that the status in term of parameterized complexity of the

CTST Problem changes if the problem is L-bounded or not. First, when it is not the

case we obtain the following negative result for the CTST Problem.

Theorem 1 The unit CTST Problem (and so the CTST Problem) is W[1]-hard
with respect to the parameter k, ie. it has no f(k)nO(k) time algorithm for any com-

putable function f (unless the W-hierarchy collapses at first level).

0

Deadline for the tasks
k tasks

kk − 1 2k. . .

.

1 2 k + 1 k + 2 2k − 1

lv1
lvk

Fig. 2 Description of the beginning of the schedule.

Proof We propose a parameterized reduction from the k-clique problem which is

known to be W[1]-hard (see [6]). Given an instance (G = (V,E), k) of this problem,

6 S. Bessy, R. Giroudeau

we provide an instance (A = {A1, . . . , An}, Gc, d) with parameter k′ of the unit CTST

Problem with k′ = k. We consider one coupled-task Av for each vertex v of G and

choose Gc = G. Then, we set av = bv = 1 and lv = k − 1 for every vertex v of G

and d = 2k. This transformation can be clearly computed in polynomial time on n.

We claim that G has a clique of size k if, and only if, ({A1, . . . , An}, Gc, d) admits a

schedule in which at least k coupled-tasks end before d. Indeed, assume that G contains

a clique C = {v1, . . . , vk} of size k. The coupled-tasks {Av1 , . . . , Avk} are processed

during [0, 2k] without idle time: for 1 ≤ i ≤ k, the starting time of the sub-task avi is

(i− 1) and for the sub-task bvi is (k + i − 1) (see Figure 2). All Avi -tasks interleave

into each other. These allocation respect the constraints since C is a clique, and all

coupled-tasks are completed at time 2k. Conversely, assume that ({A1, . . . , An}, Gc, d)
admits a schedule such that the completion time of a k coupled-tasks is at most 2k.

Since each coupled-task contains two sub-tasks with processing time equal to one, it

is clear that there is no idle time before the deadline. Hence, the only possibility to

schedule the k first coupled-tasks in this way is as described before. As all these tasks

must interleave, G has a clique of size k. �

Now, we fix an integer L ≥ 4 and we prove that the L-bounded CTST Problem

admits an FPT algorithm. For this, we use the color-coding technique developed by

Alon, Yuster and Zwick in [1].

Theorem 2 For every fixed L ≥ 4, there exists an FPT algorithm for the L-bounded

CTST Problem with running time O(2O(k)n2L log2 n).

Proof Consider an instance (A = {A1, . . . , An}, (ai, li, bi)1≤i≤n, Gc, d) with parameter

k of the L-bounded CTST Problem. We can presume that d < Lk, otherwise we

schedule the tasks in turn with no interleaving and answer yes to the problem. Following

the standard use of the color coding technique, we define a colored version of the

problem. Assume that the coupled-tasks are colored with colors {1, . . . , k}, we find a

feasible schedule of k coupled-tasks that are on time and that involves coupled-tasks

of all different colors. We will argue later that if a schedule forms a positive answer

for our initial problem, then it is possible to find ’quickly’ a coloring for which this

schedule will be a positive answer for the associated colored version.

To solve the colored version, we use dynamic programming in order to extend the

partial schedules of color tasks. Indeed, for this we need only informations on the

last L slots of time of the partial schedule under construction. Then, we can decide

how to add a new task in this schedule. More precisely, let S be a partial schedule of

{A1, . . . , An} respecting the compatibility constraints given by Gc. We focus on the

set T of tasks of S occupying one of the L− 1 last unit time slots of S . For these tasks

there are at most (L− 1)|T | ≤ LL possibilities: each of the last slot of time is used by

one task of T at most (see Figure 3 for an illustrative case with L = 4). Note that all

the configurations possibly do not occur, because of the shape of the tasks and of the

constraints on the tasks given by Gc.

We encode the behaviors of the tasks of T by an integer B of {1, . . . , (L− 1)|T |}.
We say that a schedule S has end (T , B, s) if the makespan of S is s and if the set of

tasks of S using one of the L last time slot of S is exactly T and have behavior B.

Finally, we say that a triple (T ′, B′, s′) fits with (T , B, s) if there exists a schedule S

which has end (T , B, s) and such that S ′ = S\ Ai has end (T ′, B′, s′), where Ai is the

last task of S . Remark that in the case T 6= {Ai} the penultimate task of S is the last

task of S ′ and that S and B constrain S ′ and B′. Remark also that s′ takes value in

Parameterized Complexity of a coupled-task scheduling problem 7

. . .

. . .

.

. . .

(configuration 0)

(configuration 2)

(configuration 1)

(configuration 3)

(configuration 4)

. . .

Fig. 3 Examples of possible configurations with L = 4. The last task is represented by a black
pattern

{s−L, . . . , s−1}. For instance, we have s′ = s−1 if the sub-task bi of Ai has duration

one and just follows the last sub-task of the last task of S ′ as in configurations 2 and

3 in Figure 3. And we have s′ = s − L if Ai has total duration L and T = {Ai} as in

configuration 0 of Figure 3. Now, given X a set of colors (i.e. a subset of {1, . . . , k}),
a set T of at most L tasks, a behavior B for these tasks and a time s ≤ d, we set

Q[X,T , B, s] = 1 if there exists a partial schedule S of A that uses exactly one task

of each color of X and which has end (T , B, s). Otherwise, we set Q[X,T , B, s] = 0.
Then we dynamically compute all the values Q[X,T , B, s] by increasing the size of

X. If X has cardinality one, say X = {l}, we set Q[X, T , B, s] = 1 if, and only if, T
contains only one task which has color l, behavior B and total duration s. Now, assume

that we have computed all the values Q[X, T , B, s] with |X| ≤ p and consider an input

Q[X,T , B, s] with |X| = p+ 1. Then we set the following.

(⋆) Q[X, T , B, s] = max{Q[X \ {c}, T ′, B′, s′] : the last task of T has color c

and (T ′, B′, s′) fits with (T , B, s)}

Where the maximum runs over all the possible triples (T ′, B′, s′). It is clear that if

there exists a partial schedule S which uses exactly one task of each color of X, which

has end (T , B, s) and where its last task, Ai, has color c, then the end of S \Ai will fit

with (T , B, s) and S \Ai will use one task of each color of X \ {c}. So in this case, the

right part of the equality (⋆) is 1. Conversely if one of the value Q[X \ {c}, T ′, B′, s′]
used in (⋆) is 1, then we can extend the corresponding schedule with Ai.

Now, we answer yes to the colored version of the problem if one of the value Q[X,T , B, s]
with X = {1, . . . , k} is 1. Let us see how long could be the overall computation. The

number of values Q[X, T , B, s] to compute is bounded by 2k × nL ×LL × d, where we

bound the number of subsets of at most L tasks by nL. Thus, as we have d ≤ Lk, the

number of values Q[X,T , B, s] is finally at most k2kLL+1nL. Moreover, to compute

a value Q[X,T , B, s] with (⋆) we have to examine all the triples (T ′, B′, s′) which fit

with (T , B, s), agree with constraints given by Gc and with the colors constraints. We

roughly list all these triple but in FPT time. First, knowing the last task of (T , B), it

is possible to compute exactly s′ from s. We already argue that there is at most LLnL

possible choices for the couples (T ′, B′). Once such a couple is fix, we check that the

8 S. Bessy, R. Giroudeau

interleaves given by (T ′, B′) are compatible with the graph Gc, what can be done in

time O(L2) with the adjacency matrix of Gc. Then we check unit slot of time by unit

slot of time that (T ′, B′, s′) fits with (T , B, s), requiring O(L) time. Finally we have

to verify that the colors of the tasks of T ′ \ T are pairwise distinct, distinct from the

color of the tasks of T ′ ∩T and belong to X. This checking has to be done for at most

L tasks and so ask for a O(L) time.

For all, we can compute the right part of (⋆) in time O(L2).LLnL = O(nL) and an-

swering to the colored version of the problem could be done in time O(k2kn2L).
As usual when using color coding, to conclude we need a k-perfect family of hash func-

tions from {1, . . . , n} to {1, . . . , k}, that is a set of colorations such that for every subset

U of {1, . . . , n} of size k there exists one of these colorations which colors the elements

of U with k different colors. Schmidt and Siegal [20] explicitly provide such a family

of colorations of size 2O(k) log2 n which can be computed in time O(2O(k) log2 n) .

Finally we generate all these colorations of our initial set of tasks A and for every

coloration from this family, we run the previous dynamic programming algorithm. If

one of these computations give a positive answer then we answer positively to the L-

bounded CTST Problem on the initial instance. And if none of these algorithms

return a positive answer, then we answer negatively to the L-bounded CTST Prob-

lem on our starting instance. Indeed if a suitable schedule of k tasks would exist, then

one of the chosen coloration would have color these tasks with different colors and the

corresponding dynamic program would have answer positively on it.

Finally, we obtain a total time for the FPT algorithm of O(2O(k)n2L log2 n). �

Hereafter, we propose a new negative result in term of parameterized complexity. A

cross-composition4 is a polynomial-time algorithm that, given a sequence (x1, . . . , xt)
of t instances with the same size of an NP-complete problem A, computes an instance

(y, k) of a parameterized problem B such that k is a polynomial in |x1| + log t and

(y, k) is a positive instance of B if and only if there is some 1 ≤ i ≤ t such that xi is a

positive instance of A. Using the result proposed by Bodlaender et al. in [5], we know

that if a parameterized problem B admits such a cross-composition, then there is no

polynomial-size kernel for B unless co−NP ⊆ NP/poly.

In order to show the kernel lower bound, we propose a cross-composition from the

NP complete Hamiltonian Odd Bipartite Graph Problem where we ask if a

given bipartite graph with an odd number of vertices has a Hamiltonian path (it exists

a reduction from the NP-complete Hamiltonian Bipartite Graph Problem to this

problem).

Theorem 3 For every fixed L ≥ 4, the L-unit CTST Problem and the L-bounded

CTST Problem do not admit a polynomial kernel unless co−NP ⊆ NP/Poly with

respect to the parameter k.

Proof First let us focus on the L-unit CTST Problem.

We consider some instances G1, . . . , Gt of the Hamiltonian Odd Bipartite Graph

Problem with the same odd number of vertices denoted by n. Let L ≥ 4 be fixed, we

provide an instance I = (A = {A1, . . . , AN}, Gc, d) of the L-unit CTST Problem

with parameter k = n. We choose Gc to be the disjoint union of the graphs G1, . . . , Gt.

The integer N is then the number of vertices of Gc (i.e. N = tn) and we associate one

task Ai to each vertex of Gc. Finally, we set d = (n+1)(L+2)
2 , which is an integer since

4 Notice that the given definition, while restricted, is sufficient for your purpose.

Parameterized Complexity of a coupled-task scheduling problem 9

n is odd. We claim that I is a positive instance of the L-unit CTST Problem if, and

only if, Gc contains a path of length n, which will be the case if, and only if, one of Gi

contains an Hamiltonian path.

First remark the following. Consider three consecutive tasks Ai1 , Ai2 , Ai3 of any sched-

ule S of p tasks of I . The tasks Ai1 and Ai3 cannot interleave, otherwise as ai2 stands

between ai1 and ai3 , Ai1 , Ai2 and Ai3 must pairwise interleave, which is not possible

as Gc does not contain any clique of size three. Thus, the first task of S does not

interleave with the third task, which itself does not interleave with the fifth one, and

so on. So the makespan of the schedule S is at least ⌈p2 ⌉(L+ 2).
Now, assume that I is a positive instance and denote by S = (Ai1 , . . . , Aik) the corre-

sponding partial schedule of k (= n) tasks with makespan at most d. By the previous

remark, the makespan of S is at least ⌈k2 ⌉(L+2) = (n+1)(L+2)
2 = d. So, the makespan

of S is exactly d and two tasks with consecutive odd index in S are consecutive along

the time. More precisely, for every odd j ≤ n− 2, the sub-task aij+2
immediately fol-

lows the sub-task bij , and the task Aij+1
interleaves with Aij and Aij+2

. If we denote

by v1, . . . , vn the vertices of Gc respectively associated with the tasks Ai1 , . . . , Ain , it

means that v1 . . . vn is a path of Gc, and thus it exists a Hamiltonian path in one of

the Gis.

Conversely, if one of graph Gi has an Hamiltonian path, we schedule the corresponding

tasks of I as depicted previously.

Finally notice that the provided instance I = (A = {A1, . . . , AN}, Gc, d) is also an

instance of the L-bounded CTST Problem. Thus the result holds also for this prob-

lem.

�

3 A structural parameter for the CTS Problem

In this section, we focus on the L-bounded version of the original problem parameter-

ized by some structural parameter of the compatibility graph.

So, let (L,A = {A1, . . . , An}, Gc, Cmax) be an instance of the L-bounded CTS

Problem. If the compatibility graph Gc has no edges, then any permutation of the

tasks is an optimal scheduling. We extend this observation to obtain an FPT algorithm

for the CTS Problem with the size of a vertex cover of the graph Gc as parameter. The

vertex cover of a graph is usually considered as a ’large’ parameter in parameterized

complexity. However we will argue in the next section that it seems hard to obtain the

same kind of FPT algorithm according to some lower structural parameter for Gc (as

for instance, feedback vertex set or treewidth...).

The next lemma will be useful to design the FPT algorithm. A subset X of vertices

of a graph G are false twins if it forms an independent set of G and if all the vertices

of X have the same neighborhood in G.

Lemma 1 Let S be any schedule of the coupled-tasks A according to compatibility

graph Gc and p be a non negative integer. If there exists (2p+1) tasks Ai1 , . . . , Ai2p+1
of

A which corresponding vertices are false twins in Gc and have a common neighborhood

of size at most p in Gc, then one of the task Aij does not interleave with any task of

A in S.

10 S. Bessy, R. Giroudeau

Proof Denote by x1, . . . , x2p+1 the vertices of Gc respectively associated with the tasks

Ai1 , . . . , Ai2p+1
. Denote also by Y the common neighborhood of x1, . . . , x2p+1 in Gc,

and by Ai′1
, . . . , Ai′

l
, with l ≤ p, the coupled-task corresponding to the vertices of Y .

As {x1, . . . , x2p+1} forms an independent set of Gc, the tasks Ai1 , . . . , Ai2p+1
do not

interleave. So, a task Ai′j
can interleave with at most two tasks of {Ai1 , . . . , Ai2p+1

}.

Thus, as l ≤ p, there exists at least one task Aij which does not interleave with any

task of Ai′1
, . . . , Ai′

l
. Moreover, as xj has no neighbor in Gc \Y , Aj does not interleave

with any task of A. �

Theorem 4 For every fixed L ≥ 4, there exists an FPT algorithm for the L-bounded

CTS Problem parameterized by the size k of a vertex cover of Gc, with running time

O((k2kL3)! · Lk2kL3

+ n2).

Proof Let I = (L,A = {A1, . . . , An}, Gc, Cmax) be an instance of the L-bounded

CTS Problem. Notice that all tasks must be executed. Let also X be a vertex cover

of Gc with size k. The vertices of Gc \X form an independent set of Gc, and in partic-

ular their neighborhood is included in X. For each subset X′ of X, we compute the set

NX′ of vertices of G \X with neighborhood exactly X′. This could be done in linear

time in the size of Gc, i.e. in time5 O(n(Gc) + m(Gc)), using for instance partition

refinement, see [14]. By definition, every set NX′ is composed by false twins of Gc.

Let us refine again this partition. Each task Ai = (ai, li, bi) has total duration at most

L, and the values ai, bi and li totally determines the time behavior of Ai. So there

are at most L3 possibilities for these values. Thus for each values (ai, li, bi), the set

NX′,(ai,li,bi) contains the tasks of NX′ with time behavior (ai, li, bi). As the possible

values for (ai, li, bi) are known, we can perform this partition of NX′ in linear time.

Now if, for a subset X′ of X and fixed values (ai, li, bi), we have |NX′,(ai,li,bi)| > 2k,

then by Lemma 1 (|NX′,(ai,li,bi)| − 2k) coupled-tasks corresponding to some vertices

of NX′,(ai,li,bi) do not interleave with any other coupled-tasks of A in any schedule.

Therefore, to design an optimal schedule for the problem, since all the coupled-tasks

corresponding to the vertices of NX′,(ai,li,bi) are identical, |NX′,(ai,li,bi)|−2k arbitrar-

ily coupled-tasks can be selected and allotted at the beginning of the schedule in the

following way: not interleaving, consecutive and in any order. We also reduce the value

Cmax by (|NX′,(ai,li,bi)| − 2k)(ai + li + bi). We repeat this routine for every subset

X′ of X and every values (ai, li, bi) with |NX′,(ai,li,bi)| > 2k. Once a coupled-task

is executed at the beginning of the schedule, we can remove it from the instance I .

So, we obtain an equivalent instance I ′ containing at most 2k · 2k · L3 tasks with an

objective makespan C′
max: I ′ forms a kernel for the problem, with exponential size and

computed in time O(n2).
Now, we solve exhaustively the problem on I ′. For instance, we can fix an order for the

coupled-tasks and execute them in this order. Once a partial schedule is build, there is

L possibilities to allot the sub-task ai of the next task (L−1 for a possible interleaving

with the previous tasks plus 1 if the task Ai does not interleave with its previous task).

So, for each order on the tasks, we compute in time O(L2k2kL3

) the optimal schedule

for I ′ with tasks in the fixed order. Finally, the optimal schedule for I ′ is found in time

O((k2kL3)! · Lk2kL3

). �

5 n(Gc) (resp. m(Gc)) represents the number of vertices (resp. edges).

Parameterized Complexity of a coupled-task scheduling problem 11

If the total duration of the tasks is not bounded, it is not possible to have such an

FPT algorithm. Indeed in this case the CTS Problem is NP-complete even if Gc is

a star (that is Gc has a vertex cover of size one).

Lemma 2 The CTS Problem restricted to the instances with compatibility graph

being a star is an NP-complete problem.

Proof We use a reduction from the subset sum problem. An instance of subset sum

is a set S of integers and a target integer value t. A positive answer to the problem

is a subset S′ of S with
∑

s∈S′ s = t. It is known that the subset sum problem

is an NP-complete problem (see [12] for instance). Let (S, t) be an instance of the

subset sum problem. We denote by {s1, . . . , sn} the elements of S. We consider

the following instance of the CTS Problem. The task A has two sub-tasks with

duration 1 and an idle time of length 2t. To every element si of S we associate a task

Ai with two sub-tasks of duration si and no idle time. The graph Gc on the vertex

set {A,A1, . . . , An} is a star with center A and leaves {A1, . . . , An}. Finally we set

Cmax = 2(
∑

si∈S si) + 2 and we claim that ({A,A1, . . . , An}, Gc, Cmax) is a positive

instance of the CTS Problem if and only if (S, t) is a positive instance of the subset

sum problem. Indeed, assume that ({A,A1, . . . , An}, Gc, Cmax) is a positive instance

of the CTS Problem. As the sum of the duration of all the sub-tasks of the tasks

{A,A1, . . . , An} is exactly Cmax, it means that these tasks can be schedule without

idle time. In particular the set {Ai : i ∈ I ′} of tasks filling the idle time of A has

total duration exactly 2t. So the corresponding set S′ = {si : i ∈ I ′} has total value

t and (S, t) is a positive instance of the subset sum problem. Conversely we produce

similarly an optimal schedule of {A,A1, . . . , An} from a solution to the subset sum

problem. �

4 Concluding remarks and open problems

In this article, we propose positive results for a coupled-task scheduling problem in

presence of compatibility constraint. Note that in scheduling theory few positive results

exist for parameterized complexity, mainly because most of known problems are W[1]-
hard when parameterized by standard parameters. One of the motivation in designing

FPT algorithms is to obtain efficient algorithms for small value of the parameter.

Unfortunately the obtained algorithms, specially Theorem 2, seem not be practically

useful. It is interesting to know the existence of such FPT algorithms, but for practical

purpose it could be challenging to have smaller functions of the parameter in the

running time of these algorithms.

It is possible to extend our main result, Theorem 2, to a more general version of

the CTS Problem. In the Generalized CTS Problem, every tasks Ai contains

severals sub-tasks ai1, . . . , a
i
ni

and for every j = 1, . . . , ni − 1, the sub-task aij+1 must

be executed exactly after an idle time lij succeeding the end of the sub-task aij . To

interleave now at a certain position, two tasks must have linked corresponding ver-

tices in the compatibility graph and no sub-task have to overlap in this position. The

Generalized CTST Problem asks if there exists a schedule of the tasks Ai which

contains at least k tasks executed before a given due time. For a constant L, we say

that the problem is L-bounded if the total duration of every tasks is bounded by L

(i.e. for every i we have ai1+ li1+ai2+ · · ·+ lini−1+aini
≤ L). In the proof of Theorem 2

12 S. Bessy, R. Giroudeau

to run the dynamic programming we use the fact that when L is fixed there is a finite

number of possible kind of tasks and a finite number of possible kind of interaction

between tasks. As this remark still holds in the case of tasks with several sub-tasks we

obtain the following.

Theorem 5 For every fixed L ≥ 4, there exists an FPT algorithm for the L-bounded

Generalized CTST Problem.

However the Generalized CTS Problem does not appear in the literature and

is probably less worthy of interest than the (standard) CTS Problem.

Finally, for the CTST Problem, it could also be interesting to choose other (and

lower) structural parameter of the graph Gc in order to design a better FPT algorithm

than the one given by Theorem 4. However, it seems hard to choose a parameter

like the tree-width or the size of a feedback vertex set of Gc because, the status of

CTS Problem is unknown to be polynomialy solvable or NP-complete when Gc is a

tree. A possible candidate could be the distance to a forest of path. Let define ν(G) as

the minimal cardinality of a set X of vertices of G such that every connected component

of G \X is a path. So, an interesting question could be to know if the CTS Problem

admits an FPT algorithm when it is parameterized by ν?

References

1. N. Alon, R. Yuster and U. Zwick. Color-coding. Journal ACM, 42(4):844–856, 1995.
2. J. Blazewicz, K.H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz. Handbook on Scheduling.

Springer, 2007.
3. J. Blazewicz, G. Pawlak, M. Tanas, and W. Wojciechowicz. New algorithm for coupled-

tasks scheduling, a survey. RAIRO-Operation Research, 46:335–353, 2012.
4. H.L. Bodlaender and M.R. Fellows. W [2]-hardness of precedence constrained k-processor

scheduling. Operations Research Letters, 18(2):93–97, 1995.
5. H.L. Bodlaender, B.M.P. Jansen, and S. Kratsch. Cross-composition: A new technique

for kernelization lower bounds. STACS, pages 165-176, 2011.
6. L. Cai, J. Chen, R.G. Downey, and M.R. Fellows. On the parameterized complexity of

short computation and factorisation. Archive for Mathematical Logic, 36:321–337, 1997.
7. B. Chen, C.N. Potts, and G.J. Woeginger. Handbook of Combinatorial Optimization

(volume 3), Chapter A review of machine scheduling: Complexity, Algorithms and Ap-
proximability. Kluwer Academic Publishers, 1998.

8. A. Condotta and N. V. Shakhlevich. Scheduling coupled-operations jobs with exact
time-lags. Discrete Applied Mathematics, 160:2370–2388, 2012.

9. R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in
Computer Science, Springer 2013.

10. M. R. Fellows and C. McCartin. On the parametric complexity of schedules to minimize
tardy tasks. Theoretical Computer Sciences, 2(298):317–324, 2003.

11. J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science; An EATCS Series. 2006.

12. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

13. R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling theory: a survey. Annals of
Discrete Mathematics, 5:287–326, 1979.

14. M. Habib, C. Paul, L. Viennot Partition refinement techniques: an interesting algorithmic
tool kit. International Journal of Foundations of Computer Science, 10(2):147–170, 1999.

15. V. Lehoux-Lebacque, N. Brauner and G. Finke. Identical coupled task scheduling: poly-
nomial complexity of the cycle cas. Journal of Scheduling, 18(6): 631-644, 2015.

16. D. Marx. Fixed-parameter tractable scheduling problems. Report from Dagsthul Seminar,
11091,1(2): pp.86, 2011.

Parameterized Complexity of a coupled-task scheduling problem 13

17. M. Mnich, and A. Wiese. Scheduling and Fixed-Parameter Tractability. Mathematical
Programming, 154(1-2): 533-562, 2015.

18. R. Niedermeier. Invitation to Fixed Parameter Algorithms. Volume 31 of Oxford Lectures
Series in Math. and its Applications. Oxford University Press, 2006.

19. A.J. Orman and C.N. Potts. On the complexity of coupled-task scheduling. Discrete
Applied Mathematics, 72:141–154, 1997.

20. J.P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe hash functions.
SIAM Journal of Computing, 19(5):775–786, 1990.

21. R.D. Shapiro. Scheduling coupled-tasks. Naval Research Logistics Quarterly, 20:489–498,
1980.

22. G. Simonin, B. Darties, R. Giroudeau, and J.-C. König. Coupled-tasks in presence of
bipartite compatibilities graphs In Third International Symposium on Combinatorial
Optimization, LNCS, No. 8596 pages 161–172, 2014.

23. G. Simonin, R. Giroudeau and J.-C. König. Approximating a coupled-task scheduling
problem in the presence of compatibility graph and additional tasks. International Jour-
nal of Planning and Scheduling, 1(4):285–300, 2013.

24. G. Simonin, B. Darties, R. Giroudeau, and J.-C. König. Theoretical aspects of schedul-
ing coupled-tasks in presence of compatibility graph. Algorithmic Operations Research,
7(1):1–12, 2012.

25. R. Van Bevern, M. Mnich, R. Niedermeier and M. Weller. Interval Scheduling and
Colorful Independent Sets. Journal of Scheduling, 18(5): 449-469, 2015.

