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In brief

• Very few problems are known to be W-hard (i.e. not FPT)

when parameterized by tree-width;

• Usual studied cases of ∃[σ, %]-Dominating Set are FPT when

parameterized by tree-width;

→ Is it always FPT?

• We prove ∃[σ, %]-Dominating Set becomes W[1]-hard for

(many) other cases when parameterized by tree-width.
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Parameterized complexity

De�nition (FPT)

A problem P is FPT parameterized by k if it can be solved in time

O
(
f (k) · p(n)

)
.

Example: k-Vertex Cover parameterized by the size k of the

vertex cover.

A problem P which is not FPT is at least W[1]-hard.

Example: k-Independent Set parameterized by the size k of the

independent set.

Remark: To prove P is W[1]-hard, take a W[1]-hard problem Q
and prove that Q ≤fpt P.
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Generalized domination

De�nition (dominating set)

D ⊆ V is a dominating set if, ∀v ∈ V :

• v ∈ D; or

• ∃u (u ∈ D ∧ adj(u, v)).

σ and % �x some constraints on the neighborhood of every vertex:

• σ constraints the neighborhood of vertices which are in D.

• % constraints the neighborhood of vertices which are not in D.

Remark: We usually suppose that 0 /∈ %, as otherwise D = ∅ would
be a trivial [σ, %]-dominating set.
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Generalized domination

De�nition (selected vertex, satis�ed vertex)

Let D ⊆ V be a [σ, %]-dominating set.

u ∈ V is selected if u ∈ D.

v ∈ V is satis�ed if:

• v ∈ D ⇒ |D ∩ N(v)| ∈ σ;
• v /∈ D ⇒ |D ∩ N(v)| ∈ %.
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Known results

Theorem [van Rooij, Bodlaender, Rossmanith, 2009]

Dominating Set can be solved in O∗(3tw) time.

Recall that Dominating Set is [σ, %]-Dominating Set with

σ = {0, 1, 2, . . .} and % = {1, 2, 3, . . .}.

Theorem [van Rooij, Bodlaender, Rossmanith, 2009]

∃[σ, %]-Dominating Set can be solved in O∗(stw
)
time if σ and %

are �nite or co�nite, where s is the minimum number of states

needed to represents σ and %.
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More cases

Using Courcelle's theorem:

If σ and % are �nite or co�nite, then ∃[σ, %]-Dominating Set is

expressible in MSOL2. Hence it is FPT when parameterized by

tree-width.

But the hidden constant is very huge.

Theorem [C., 2008�2010]

∃[σ, %]-Dominating Set can be solved in O∗(stw
)
time if σ and %

are ultimately periodic, where s is (almost) the minimum number of

states needed to represents σ and %.
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• Encode the number of selected neighbors of each vertex using

the corresponding state in one of the automata;

• Use fast subset convolution to fasten the join operation.
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SomeW[1]-hard cases

Theorem [C., 2010]

If σ contains arbitrary large gaps between two consecutive elements

and % is co�nite (and an additional technical constraint on σ), then
∃[σ, %]-Dominating Set is W[1]-hard parameterized by tree-width.

Given σ and %, we will reduce k-Capacitated Dominating Set to

∃[σ, %]-Dominating Set.

k-Capacitated Dominating Set is W[1]-hard when parameterized

by the tree-width of the input graph and the size k of the expected

solution.
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Capacitated domination

De�nition (capacitated dominating set)

Let G = (V ,E ), cap : V → N.

(S , dom) is a capacitated dominating set of G , with S ⊆ V and

∀v ∈ V , dom(v) ⊆ N(v), if:

• S is a dominating set of G (in the classical sense);

• ∀v ∈ S , |dom(v)| ≤ cap(v);

• ∀v /∈ S , dom(v) = ∅.

k-Capacitated Dominating Set: search S ⊆ V such that |S | ≤ k .
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Some functions on σ

�σ contains arbitrary large gaps between two consecutive elements�

We de�ne some functions on σ:

• Γ−(x , q), the minimum element p ∈ σ s.t. there is a gap of

length at least x before p, and p ≥ q;

• Γ+(x , q), the minimum element p ∈ σ s.t. there is a gap of

length at least x after p, and p ≥ q;

• Γ0(q), the minimum element p ∈ σ s.t. p ≥ q.

Technical constraint: We suppose that there exists a polynomial

pσ such that a gap of length t exists at distance pσ(t) in σ.
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The reduction
Let G be an instance of k-Capacitated Dominating Set.

We start with I (G ), incidence graph of G , and add some gadgets:

domination (D): forces G to have a dominating set;

capacity (C): encodes the capacity function cap, and allows

any selected vertex to be satis�ed;

edge-selection (E): encodes the domination function dom;

satis�ability (S): allows any non-selected vertex to be satis�ed;

limitation (L): encodes the parameter k ;

force (F): forces a given vertex to be selected.
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The gadgets

Gadget force (F): forces a given vertex to be selected.

← forced vertexclique with minσ vertices →

← neighbor in H

clique with ασ,ρ vertices →

clique with βσ,ρ vertices →

Gadget domination (D): forces G to have a dominating set.

← original-vertex v in I(G)

q0 − 2

← forced vertices

edge-vertex in I(G) →

neighbor of v in G →

Γ+(1,minσ)−minσ forced vertices →

clique with minσ vertices →
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The gadgets

Gadget edge-selection (E): encodes the domination function dom.

← neighbor in I(G)

← Γ−(1, q0 + 1)− 1 forced vertices

← edge-vertex in I(G)

Gadget satis�ability (S): allows any non-selected vertex to be

satis�ed.

← original-vertex in I(G)

← q0 choosable vertices

Γ0(q0) forced vertices
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The gadgets

Gadget capacity (C): encodes the capacity function cap, and allows

any selected vertex to be satis�ed.

← original-vertex v in I(G)

Γ+

(
degG(v) + q0, cap(v)

)
− cap(v)− 1 forced vertices

← cap(v) vertices

Γ0(q0 + 1)− 1 forced vertices
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The gadgets

Gadget limitation (L): encodes the parameter k .

original-vertices in I(G) ← central forced vertex c

← k choosable vertices

Γ+
(
|V (G)|, k

)
− k forced vertices

Γ0(q0)− 1 forced vertices
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Correctness

Correctness of the reduction:

• Each gadget has small tree-width (at most minσ + 1).

→ tw(H) = f
(
tw(G )

)

• The number of added vertices depends only on k ≤ n, σ and %.
→ |V (H)| = g

(
|V (G )|

)

• H admits a [σ, %]-dominating set i� G admits a k-capacitated

dominating set.

Theorem [C., 2010]

If σ contains arbitrary large gaps between two consecutive elements

and % is co�nite (and an additional technical constraint), then

∃[σ, %]-Dominating Set is W[1]-hard parameterized by tree-width.
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Conclusion

∃[σ, %]-Dominating Set is FPT parameterized by tree-width,

when σ and % are ultimately periodic.

∃[σ, %]-Dominating Set is W[1]-hard parameterized by tree-width,

when σ contains arbitrary large gaps between two consecutive

elements and % is co�nite (and an additional constraint on σ).

And now?

• W[t]-completeness;

• Other cases of [σ, %] (e.g. recursive with bounded gaps);

• . . .

And voilà!
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