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In brief

e Very few problems are known to be W-hard (i.e. not FPT)
when parameterized by tree-width;

e Usual studied cases of J[o, g]-Dominating Set are FPT when
parameterized by tree-width;
— Is it always FPT?

e We prove J[o, p]-Dominating Set becomes W/[1]-hard for
(many) other cases when parameterized by tree-width.
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Parameterized complexity

Definition (FPT)
A problem P is FPT parameterized by k if it can be solved in time

O(f(k) - p(n)).
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Parameterized complexity

Definition (FPT)
A problem P is FPT parameterized by k if it can be solved in time
O(F(K) - p(n)).

Example: k-Vertex Cover parameterized by the size k of the
vertex cover.

A problem P which is not FPT is at least W/[1]-hard.

Example: k-Independent Set parameterized by the size k of the
independent set.

Remark: To prove P is W[1]-hard, take a W([1]-hard problem Q
and prove that Q <g,; P.
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Generalized domination

Definition ([o, g]-dominating set)

Let 0,0 CN. D C Vis a [0, o|-dominating set if, Vv € V:
eveD=|DNN(v)| €o;or
e vé D= |DNN(v)| <o

o and p fix some constraints on the neighborhood of every vertex:
e o constraints the neighborhood of vertices which are in D.

e 0 constraints the neighborhood of vertices which are not in D.

Remark: We usually suppose that 0 ¢ o, as otherwise D = () would
be a trivial [0, o]-dominating set.
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Generalized domination

Definition (selected vertex, satisfied vertex)

Let D C V be a [0, o]-dominating set.
ue Vis selected if ue D.
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Generalized domination

Definition (selected vertex, satisfied vertex)

Let D C V be a [0, o]-dominating set.
u € V is selected if u e D.
v € V is satisfied if:

eveD= |DNNW) €aq;
ev¢g D= |DNN()| €o.
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Dominating Set can be solved in O*(3") time.

Recall that Dominating Set is [0, o]-Dominating Set with
o=1{0,1,2,.. and o= {1,2,3,...}.

Theorem [van Rooij, Bodlaender, Rossmanith, 2009]

Jlo, o]-Dominating Set can be solved in O*(s™) time if o and o
are finite or cofinite, where s is the minimum number of states
needed to represents o and o.
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More cases

Using Courcelle’s theorem:
If o and p are finite or cofinite, then J[o, o]-Dominating Set is
expressible in MSOL,. Hence it is FPT when parameterized by
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More cases

Theorem [C., 2008-2010]

Jlo, o]-Dominating Set can be solved in O*(s™) time if o and o
are ultimately periodic, where s is (almost) the minimum number of
states needed to represents o and o.

Ideas of the proof:

Represent o and o with finite unary-language automata;
Apply dynamic programming on a (nice) tree-decomposition of
the input graph;

Encode the number of selected neighbors of each vertex using
the corresponding state in one of the automata;

Use fast subset convolution to fasten the join operation.
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Some W[1]-hard cases

Theorem [C., 2010]

If o contains arbitrary large gaps between two consecutive elements
and p is cofinite (and an additional technical constraint on o), then
J[o, o]-Dominating Set is W(1]-hard parameterized by tree-width.
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Some W[1]-hard cases

Theorem [C., 2010]

If o contains arbitrary large gaps between two consecutive elements
and p is cofinite (and an additional technical constraint on o), then
J[o, o]-Dominating Set is W[1]-hard parameterized by tree-width.

Given o and o, we will reduce k-Capacitated Dominating Set to
J[o, o]-Dominating Set.

k-Capacitated Dominating Set is W[1]-hard when parameterized
by the tree-width of the input graph and the size k of the expected
solution.
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Capacitated domination

Definition (capacitated dominating set)
Let G =(V,E), cap: V — N.
(S,dom) is a capacitated dominating set of G, with S C V and
Vv € V,dom(v) C N(v), if:
e S is a dominating set of G (in the classical sense);
e Vv eS§, |[dom(v)| < cap(v);
e Vv ¢S, dom(v)=0.

k-Capacitated Dominating Set: search S C V such that |S| < k.
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Some functions on o

“o contains arbitrary large gaps between two consecutive elements”

We define some functions on o

e [_(x,q), the minimum element p € o s.t. there is a gap of
length at least x before p, and p > g;

e [, (x,q), the minimum element p € o s.t. there is a gap of
length at least x after p, and p > g;

e I9(g), the minimum element p € o s.t. p> gq.
Technical constraint: We suppose that there exists a polynomial

po such that a gap of length ¢ exists at distance p,(t) in o.
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any selected vertex to be satisfied;

edge-selection (£): encodes the domination function dom;
satistiability (S): allows any non-selected vertex to be satisfied;
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Gadget force (F): forces a given vertex to be selected.
< neighbor in H

clique with min o vertices — Q= < forced vertex

clique with «y , vertices —

clique with 3, , vertices —

Gadget domination (D): forces G to have a dominating set.

edge-vertex in I(G) - [0 <+ original-vertex v in I(G)

neighbor of v in G —
clique with min o vertices — (@I

< forced vertices

(1, minc) — mino forced vertices —
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The gadgets
Gadget edge-selection (£): encodes the domination function dom.

<+ neighbor in I(GQ)

« edge-vertex in I(G)
— — (1,90 + 1) — 1 forced vertices
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The gadgets
Gadget edge-selection (£): encodes the domination function dom.

<+ neighbor in I(GQ)

« edge-vertex in I(G)
— A —T_(1,q90+1)—1 forced vertices

Gadget satisfiability (S): allows any non-selected vertex to be
satisfied.

To(qo) forced vertices

©f <« qo choosable vertices

O < original-vertex in I(G)
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The gadgets

Gadget capacity (C): encodes the capacity function cap, and allows
any selected vertex to be satisfied.

Fo(go + 1) — 1 forced vertices

I+ (degg(v) + qo, cap(v)) — cap(v) — 1 forced vertices
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The gadgets

Gadget /imitation (L): encodes the parameter k.

T ([V(G)|, k) — k forced vertices

Fo(qo) — 1 forced vertices
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Correctness

Correctness of the reduction:

e Each gadget has small tree-width (at most mino + 1).
— tw(H) = f(tw(G))
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when o contains arbitrary large gaps between two consecutive
elements and g is cofinite (and an additional constraint on o).

And now?
o W([t]-completeness;
e Other cases of [0, o] (e.g. recursive with bounded gaps);

And voila!
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