
Parameterized complexity of generalized

domination problems on bounded tree-width

graphs

Mathieu Chapelle

LIFO, University of Orléans, France

2nd Graph Decompositions Workshop

CIRM, Luminy, France

22 octobre 2010

1/23

In brief

• Very few problems are known to be W-hard (i.e. not FPT)

when parameterized by tree-width;

• Usual studied cases of ∃[σ, %]-Dominating Set are FPT when

parameterized by tree-width;

→ Is it always FPT?

• We prove ∃[σ, %]-Dominating Set becomes W[1]-hard for

(many) other cases when parameterized by tree-width.

1/23

In brief

• Very few problems are known to be W-hard (i.e. not FPT)

when parameterized by tree-width;

• Usual studied cases of ∃[σ, %]-Dominating Set are FPT when

parameterized by tree-width;

→ Is it always FPT?

• We prove ∃[σ, %]-Dominating Set becomes W[1]-hard for

(many) other cases when parameterized by tree-width.

1/23

In brief

• Very few problems are known to be W-hard (i.e. not FPT)

when parameterized by tree-width;

• Usual studied cases of ∃[σ, %]-Dominating Set are FPT when

parameterized by tree-width;

→ Is it always FPT?

• We prove ∃[σ, %]-Dominating Set becomes W[1]-hard for

(many) other cases when parameterized by tree-width.

1/23

In brief

• Very few problems are known to be W-hard (i.e. not FPT)

when parameterized by tree-width;

• Usual studied cases of ∃[σ, %]-Dominating Set are FPT when

parameterized by tree-width;

→ Is it always FPT?

• We prove ∃[σ, %]-Dominating Set becomes W[1]-hard for

(many) other cases when parameterized by tree-width.

2/23

1 Some de�nitions

2 FPT cases

3 W[1]-hardness

4 Conclusion

3/23

1 Some de�nitions

2 FPT cases

3 W[1]-hardness

4 Conclusion

4/23

Parameterized complexity

De�nition (FPT)

A problem P is FPT parameterized by k if it can be solved in time

O
(
f (k) · p(n)

)
.

Example: k-Vertex Cover parameterized by the size k of the

vertex cover.

A problem P which is not FPT is at least W[1]-hard.

Example: k-Independent Set parameterized by the size k of the

independent set.

Remark: To prove P is W[1]-hard, take a W[1]-hard problem Q
and prove that Q ≤fpt P.

4/23

Parameterized complexity

De�nition (FPT)

A problem P is FPT parameterized by k if it can be solved in time

O
(
f (k) · p(n)

)
.

Example: k-Vertex Cover parameterized by the size k of the

vertex cover.

A problem P which is not FPT is at least W[1]-hard.

Example: k-Independent Set parameterized by the size k of the

independent set.

Remark: To prove P is W[1]-hard, take a W[1]-hard problem Q
and prove that Q ≤fpt P.

4/23

Parameterized complexity

De�nition (FPT)

A problem P is FPT parameterized by k if it can be solved in time

O
(
f (k) · p(n)

)
.

Example: k-Vertex Cover parameterized by the size k of the

vertex cover.

A problem P which is not FPT is at least W[1]-hard.

Example: k-Independent Set parameterized by the size k of the

independent set.

Remark: To prove P is W[1]-hard, take a W[1]-hard problem Q
and prove that Q ≤fpt P.

4/23

Parameterized complexity

De�nition (FPT)

A problem P is FPT parameterized by k if it can be solved in time

O
(
f (k) · p(n)

)
.

Example: k-Vertex Cover parameterized by the size k of the

vertex cover.

A problem P which is not FPT is at least W[1]-hard.

Example: k-Independent Set parameterized by the size k of the

independent set.

Remark: To prove P is W[1]-hard, take a W[1]-hard problem Q
and prove that Q ≤fpt P.

4/23

Parameterized complexity

De�nition (FPT)

A problem P is FPT parameterized by k if it can be solved in time

O
(
f (k) · p(n)

)
.

Example: k-Vertex Cover parameterized by the size k of the

vertex cover.

A problem P which is not FPT is at least W[1]-hard.

Example: k-Independent Set parameterized by the size k of the

independent set.

Remark: To prove P is W[1]-hard, take a W[1]-hard problem Q
and prove that Q ≤fpt P.

5/23

Generalized domination

De�nition (dominating set)

D ⊆ V is a dominating set if, ∀v ∈ V :

• v ∈ D; or

• ∃u (u ∈ D ∧ adj(u, v)).

σ and % �x some constraints on the neighborhood of every vertex:

• σ constraints the neighborhood of vertices which are in D.

• % constraints the neighborhood of vertices which are not in D.

Remark: We usually suppose that 0 /∈ %, as otherwise D = ∅ would
be a trivial [σ, %]-dominating set.

5/23

Generalized domination

De�nition (dominating set)

D ⊆ V is a dominating set if, ∀v ∈ V :

• v ∈ D; or

• ∃u (u ∈ D ∩ N(v)).

σ and % �x some constraints on the neighborhood of every vertex:

• σ constraints the neighborhood of vertices which are in D.

• % constraints the neighborhood of vertices which are not in D.

Remark: We usually suppose that 0 /∈ %, as otherwise D = ∅ would
be a trivial [σ, %]-dominating set.

5/23

Generalized domination

De�nition (dominating set)

D ⊆ V is a dominating set if, ∀v ∈ V :

• v ∈ D ⇒ |D ∩ N(v)| ≥ 0; or

• v /∈ D ⇒ |D ∩ N(v)| ≥ 1.

σ and % �x some constraints on the neighborhood of every vertex:

• σ constraints the neighborhood of vertices which are in D.

• % constraints the neighborhood of vertices which are not in D.

Remark: We usually suppose that 0 /∈ %, as otherwise D = ∅ would
be a trivial [σ, %]-dominating set.

5/23

Generalized domination

De�nition (dominating set)

D ⊆ V is a dominating set if, ∀v ∈ V :

• v ∈ D ⇒ |D ∩ N(v)| ∈ {0, 1, 2, . . .}; or
• v /∈ D ⇒ |D ∩ N(v)| ∈ {1, 2, 3, . . .}.

σ and % �x some constraints on the neighborhood of every vertex:

• σ constraints the neighborhood of vertices which are in D.

• % constraints the neighborhood of vertices which are not in D.

Remark: We usually suppose that 0 /∈ %, as otherwise D = ∅ would
be a trivial [σ, %]-dominating set.

5/23

Generalized domination

De�nition ([σ, %]-dominating set)

Let σ, % ⊆ N. D ⊆ V is a [σ, %]-dominating set if, ∀v ∈ V :

• v ∈ D ⇒ |D ∩ N(v)| ∈ σ; or
• v /∈ D ⇒ |D ∩ N(v)| ∈ %.

σ and % �x some constraints on the neighborhood of every vertex:

• σ constraints the neighborhood of vertices which are in D.

• % constraints the neighborhood of vertices which are not in D.

Remark: We usually suppose that 0 /∈ %, as otherwise D = ∅ would
be a trivial [σ, %]-dominating set.

5/23

Generalized domination

De�nition ([σ, %]-dominating set)

Let σ, % ⊆ N. D ⊆ V is a [σ, %]-dominating set if, ∀v ∈ V :

• v ∈ D ⇒ |D ∩ N(v)| ∈ σ; or
• v /∈ D ⇒ |D ∩ N(v)| ∈ %.

σ and % �x some constraints on the neighborhood of every vertex:

• σ constraints the neighborhood of vertices which are in D.

• % constraints the neighborhood of vertices which are not in D.

Remark: We usually suppose that 0 /∈ %, as otherwise D = ∅ would
be a trivial [σ, %]-dominating set.

5/23

Generalized domination

De�nition ([σ, %]-dominating set)

Let σ, % ⊆ N. D ⊆ V is a [σ, %]-dominating set if, ∀v ∈ V :

• v ∈ D ⇒ |D ∩ N(v)| ∈ σ; or
• v /∈ D ⇒ |D ∩ N(v)| ∈ %.

σ and % �x some constraints on the neighborhood of every vertex:

• σ constraints the neighborhood of vertices which are in D.

• % constraints the neighborhood of vertices which are not in D.

Remark: We usually suppose that 0 /∈ %, as otherwise D = ∅ would
be a trivial [σ, %]-dominating set.

6/23

Generalized domination

De�nition (selected vertex, satis�ed vertex)

Let D ⊆ V be a [σ, %]-dominating set.

u ∈ V is selected if u ∈ D.

v ∈ V is satis�ed if:

• v ∈ D ⇒ |D ∩ N(v)| ∈ σ;
• v /∈ D ⇒ |D ∩ N(v)| ∈ %.

6/23

Generalized domination

De�nition (selected vertex, satis�ed vertex)

Let D ⊆ V be a [σ, %]-dominating set.

u ∈ V is selected if u ∈ D.

v ∈ V is satis�ed if:

• v ∈ D ⇒ |D ∩ N(v)| ∈ σ;
• v /∈ D ⇒ |D ∩ N(v)| ∈ %.

7/23

1 Some de�nitions

2 FPT cases

3 W[1]-hardness

4 Conclusion

8/23

Known results

Theorem [van Rooij, Bodlaender, Rossmanith, 2009]

Dominating Set can be solved in O∗(3tw) time.

Recall that Dominating Set is [σ, %]-Dominating Set with

σ = {0, 1, 2, . . .} and % = {1, 2, 3, . . .}.

Theorem [van Rooij, Bodlaender, Rossmanith, 2009]

∃[σ, %]-Dominating Set can be solved in O∗(stw
)
time if σ and %

are �nite or co�nite, where s is the minimum number of states

needed to represents σ and %.

8/23

Known results

Theorem [van Rooij, Bodlaender, Rossmanith, 2009]

Dominating Set can be solved in O∗(3tw) time.

Recall that Dominating Set is [σ, %]-Dominating Set with

σ = {0, 1, 2, . . .} and % = {1, 2, 3, . . .}.

Theorem [van Rooij, Bodlaender, Rossmanith, 2009]

∃[σ, %]-Dominating Set can be solved in O∗(stw
)
time if σ and %

are �nite or co�nite, where s is the minimum number of states

needed to represents σ and %.

8/23

Known results

Theorem [van Rooij, Bodlaender, Rossmanith, 2009]

Dominating Set can be solved in O∗(3tw) time.

Recall that Dominating Set is [σ, %]-Dominating Set with

σ = {0, 1, 2, . . .} and % = {1, 2, 3, . . .}.

Theorem [van Rooij, Bodlaender, Rossmanith, 2009]

∃[σ, %]-Dominating Set can be solved in O∗(stw
)
time if σ and %

are �nite or co�nite, where s is the minimum number of states

needed to represents σ and %.

9/23

More cases

Using Courcelle's theorem:

If σ and % are �nite or co�nite, then ∃[σ, %]-Dominating Set is

expressible in MSOL2. Hence it is FPT when parameterized by

tree-width.

But the hidden constant is very huge.

Theorem [C., 2008�2010]

∃[σ, %]-Dominating Set can be solved in O∗(stw
)
time if σ and %

are ultimately periodic, where s is (almost) the minimum number of

states needed to represents σ and %.

9/23

More cases

Using Courcelle's theorem:

If σ and % are ultimately periodic, then ∃[σ, %]-Dominating Set is

expressible in CMSOL. Hence it is FPT when parameterized by

tree-width.

But the hidden constant is very huge.

Theorem [C., 2008�2010]

∃[σ, %]-Dominating Set can be solved in O∗(stw
)
time if σ and %

are ultimately periodic, where s is (almost) the minimum number of

states needed to represents σ and %.

9/23

More cases

Using Courcelle's theorem:

If σ and % are ultimately periodic, then ∃[σ, %]-Dominating Set is

expressible in CMSOL. Hence it is FPT when parameterized by

tree-width.

But the hidden constant is very huge.

Theorem [C., 2008�2010]

∃[σ, %]-Dominating Set can be solved in O∗(stw
)
time if σ and %

are ultimately periodic, where s is (almost) the minimum number of

states needed to represents σ and %.

9/23

More cases

Using Courcelle's theorem:

If σ and % are ultimately periodic, then ∃[σ, %]-Dominating Set is

expressible in CMSOL. Hence it is FPT when parameterized by

tree-width.

But the hidden constant is very huge.

Theorem [C., 2008�2010]

∃[σ, %]-Dominating Set can be solved in O∗(stw
)
time if σ and %

are ultimately periodic, where s is (almost) the minimum number of

states needed to represents σ and %.

10/23

More cases

Theorem [C., 2008�2010]

∃[σ, %]-Dominating Set can be solved in O∗(stw
)
time if σ and %

are ultimately periodic, where s is (almost) the minimum number of

states needed to represents σ and %.

Ideas of the proof:

• Represent σ and % with �nite unary-language automata;

• Apply dynamic programming on a (nice) tree-decomposition of

the input graph;

• Encode the number of selected neighbors of each vertex using

the corresponding state in one of the automata;

• Use fast subset convolution to fasten the join operation.

10/23

More cases

Theorem [C., 2008�2010]

∃[σ, %]-Dominating Set can be solved in O∗(stw
)
time if σ and %

are ultimately periodic, where s is (almost) the minimum number of

states needed to represents σ and %.

Ideas of the proof:

• Represent σ and % with �nite unary-language automata;

• Apply dynamic programming on a (nice) tree-decomposition of

the input graph;

• Encode the number of selected neighbors of each vertex using

the corresponding state in one of the automata;

• Use fast subset convolution to fasten the join operation.

10/23

More cases

Theorem [C., 2008�2010]

∃[σ, %]-Dominating Set can be solved in O∗(stw
)
time if σ and %

are ultimately periodic, where s is (almost) the minimum number of

states needed to represents σ and %.

Ideas of the proof:

• Represent σ and % with �nite unary-language automata;

• Apply dynamic programming on a (nice) tree-decomposition of

the input graph;

• Encode the number of selected neighbors of each vertex using

the corresponding state in one of the automata;

• Use fast subset convolution to fasten the join operation.

10/23

More cases

Theorem [C., 2008�2010]

∃[σ, %]-Dominating Set can be solved in O∗(stw
)
time if σ and %

are ultimately periodic, where s is (almost) the minimum number of

states needed to represents σ and %.

Ideas of the proof:

• Represent σ and % with �nite unary-language automata;

• Apply dynamic programming on a (nice) tree-decomposition of

the input graph;

• Encode the number of selected neighbors of each vertex using

the corresponding state in one of the automata;

• Use fast subset convolution to fasten the join operation.

10/23

More cases

Theorem [C., 2008�2010]

∃[σ, %]-Dominating Set can be solved in O∗(stw
)
time if σ and %

are ultimately periodic, where s is (almost) the minimum number of

states needed to represents σ and %.

Ideas of the proof:

• Represent σ and % with �nite unary-language automata;

• Apply dynamic programming on a (nice) tree-decomposition of

the input graph;

• Encode the number of selected neighbors of each vertex using

the corresponding state in one of the automata;

• Use fast subset convolution to fasten the join operation.

10/23

More cases

Theorem [C., 2008�2010]

∃[σ, %]-Dominating Set can be solved in O∗(stw
)
time if σ and %

are ultimately periodic, where s is (almost) the minimum number of

states needed to represents σ and %.

Ideas of the proof:

• Represent σ and % with �nite unary-language automata;

• Apply dynamic programming on a (nice) tree-decomposition of

the input graph;

• Encode the number of selected neighbors of each vertex using

the corresponding state in one of the automata;

• Use fast subset convolution to fasten the join operation.

11/23

1 Some de�nitions

2 FPT cases

3 W[1]-hardness

4 Conclusion

12/23

SomeW[1]-hard cases

Theorem [C., 2010]

If σ contains arbitrary large gaps between two consecutive elements

and % is co�nite (and an additional technical constraint on σ), then
∃[σ, %]-Dominating Set is W[1]-hard parameterized by tree-width.

Given σ and %, we will reduce k-Capacitated Dominating Set to

∃[σ, %]-Dominating Set.

k-Capacitated Dominating Set is W[1]-hard when parameterized

by the tree-width of the input graph and the size k of the expected

solution.

12/23

SomeW[1]-hard cases

Theorem [C., 2010]

If σ contains arbitrary large gaps between two consecutive elements

and % is co�nite (and an additional technical constraint on σ), then
∃[σ, %]-Dominating Set is W[1]-hard parameterized by tree-width.

Given σ and %, we will reduce k-Capacitated Dominating Set to

∃[σ, %]-Dominating Set.

k-Capacitated Dominating Set is W[1]-hard when parameterized

by the tree-width of the input graph and the size k of the expected

solution.

12/23

SomeW[1]-hard cases

Theorem [C., 2010]

If σ contains arbitrary large gaps between two consecutive elements

and % is co�nite (and an additional technical constraint on σ), then
∃[σ, %]-Dominating Set is W[1]-hard parameterized by tree-width.

Given σ and %, we will reduce k-Capacitated Dominating Set to

∃[σ, %]-Dominating Set.

k-Capacitated Dominating Set is W[1]-hard when parameterized

by the tree-width of the input graph and the size k of the expected

solution.

13/23

Capacitated domination

De�nition (capacitated dominating set)

Let G = (V ,E), cap : V → N.

(S , dom) is a capacitated dominating set of G , with S ⊆ V and

∀v ∈ V , dom(v) ⊆ N(v), if:

• S is a dominating set of G (in the classical sense);

• ∀v ∈ S , |dom(v)| ≤ cap(v);

• ∀v /∈ S , dom(v) = ∅.

k-Capacitated Dominating Set: search S ⊆ V such that |S | ≤ k .

13/23

Capacitated domination

De�nition (capacitated dominating set)

Let G = (V ,E), cap : V → N.
(S , dom) is a capacitated dominating set of G ,

with S ⊆ V and

∀v ∈ V , dom(v) ⊆ N(v), if:

• S is a dominating set of G (in the classical sense);

• ∀v ∈ S , |dom(v)| ≤ cap(v);

• ∀v /∈ S , dom(v) = ∅.

k-Capacitated Dominating Set: search S ⊆ V such that |S | ≤ k .

13/23

Capacitated domination

De�nition (capacitated dominating set)

Let G = (V ,E), cap : V → N.
(S , dom) is a capacitated dominating set of G , with S ⊆ V and

∀v ∈ V , dom(v) ⊆ N(v), if:

• S is a dominating set of G (in the classical sense);

• ∀v ∈ S , |dom(v)| ≤ cap(v);

• ∀v /∈ S , dom(v) = ∅.

k-Capacitated Dominating Set: search S ⊆ V such that |S | ≤ k .

13/23

Capacitated domination

De�nition (capacitated dominating set)

Let G = (V ,E), cap : V → N.
(S , dom) is a capacitated dominating set of G , with S ⊆ V and

∀v ∈ V , dom(v) ⊆ N(v), if:

• S is a dominating set of G (in the classical sense);

• ∀v ∈ S , |dom(v)| ≤ cap(v);

• ∀v /∈ S , dom(v) = ∅.

k-Capacitated Dominating Set: search S ⊆ V such that |S | ≤ k .

13/23

Capacitated domination

De�nition (capacitated dominating set)

Let G = (V ,E), cap : V → N.
(S , dom) is a capacitated dominating set of G , with S ⊆ V and

∀v ∈ V , dom(v) ⊆ N(v), if:

• S is a dominating set of G (in the classical sense);

• ∀v ∈ S , |dom(v)| ≤ cap(v);

• ∀v /∈ S , dom(v) = ∅.

k-Capacitated Dominating Set: search S ⊆ V such that |S | ≤ k .

13/23

Capacitated domination

De�nition (capacitated dominating set)

Let G = (V ,E), cap : V → N.
(S , dom) is a capacitated dominating set of G , with S ⊆ V and

∀v ∈ V , dom(v) ⊆ N(v), if:

• S is a dominating set of G (in the classical sense);

• ∀v ∈ S , |dom(v)| ≤ cap(v);

• ∀v /∈ S , dom(v) = ∅.

k-Capacitated Dominating Set: search S ⊆ V such that |S | ≤ k .

13/23

Capacitated domination

De�nition (capacitated dominating set)

Let G = (V ,E), cap : V → N.
(S , dom) is a capacitated dominating set of G , with S ⊆ V and

∀v ∈ V , dom(v) ⊆ N(v), if:

• S is a dominating set of G (in the classical sense);

• ∀v ∈ S , |dom(v)| ≤ cap(v);

• ∀v /∈ S , dom(v) = ∅.

k-Capacitated Dominating Set: search S ⊆ V such that |S | ≤ k .

14/23

Ideas of the reduction

2 4 1

1

2

3

2

1

1

3

Input: A graph with capacities

on vertices.

Transformation: The

incidence graph.

14/23

Ideas of the reduction

2 4 1

1

2

3

2

1

1

3

Input: A graph with capacities

on vertices.

Transformation: The

incidence graph.

14/23

Ideas of the reduction

2 4 1

1

2

3

2

1

1

3

Input: A graph with capacities

on vertices.

Transformation: The

incidence graph.

14/23

Ideas of the reduction

2 4 1

1

2

3

2

1

1

3

2 4 1

1

2

3

2

1

1

3

Input: A graph with capacities

on vertices.
→ Transformation: The

incidence graph.

14/23

Ideas of the reduction

2 4 1

1

2

3

2

1

1

3

2 4 1

1

2

3

2

1

1

3

Input: A graph with capacities

on vertices.
→ Transformation: The

incidence graph.

14/23

Ideas of the reduction

2 4 1

1

2

3

2

1

1

3

2 4 1

1

2

3

2

1

1

3

Input: A graph with capacities

on vertices.
→ Transformation: The

incidence graph.

15/23

Some functions on σ

�σ contains arbitrary large gaps between two consecutive elements�

We de�ne some functions on σ:

• Γ−(x , q), the minimum element p ∈ σ s.t. there is a gap of

length at least x before p, and p ≥ q;

• Γ+(x , q), the minimum element p ∈ σ s.t. there is a gap of

length at least x after p, and p ≥ q;

• Γ0(q), the minimum element p ∈ σ s.t. p ≥ q.

Technical constraint: We suppose that there exists a polynomial

pσ such that a gap of length t exists at distance pσ(t) in σ.

15/23

Some functions on σ

�σ contains arbitrary large gaps between two consecutive elements�

We de�ne some functions on σ:

• Γ−(x , q), the minimum element p ∈ σ s.t. there is a gap of

length at least x before p, and p ≥ q;

• Γ+(x , q), the minimum element p ∈ σ s.t. there is a gap of

length at least x after p, and p ≥ q;

• Γ0(q), the minimum element p ∈ σ s.t. p ≥ q.

Technical constraint: We suppose that there exists a polynomial

pσ such that a gap of length t exists at distance pσ(t) in σ.

15/23

Some functions on σ

�σ contains arbitrary large gaps between two consecutive elements�

We de�ne some functions on σ:

• Γ−(x , q), the minimum element p ∈ σ s.t. there is a gap of

length at least x before p, and p ≥ q;

• Γ+(x , q), the minimum element p ∈ σ s.t. there is a gap of

length at least x after p, and p ≥ q;

• Γ0(q), the minimum element p ∈ σ s.t. p ≥ q.

Technical constraint: We suppose that there exists a polynomial

pσ such that a gap of length t exists at distance pσ(t) in σ.

15/23

Some functions on σ

�σ contains arbitrary large gaps between two consecutive elements�

We de�ne some functions on σ:

• Γ−(x , q), the minimum element p ∈ σ s.t. there is a gap of

length at least x before p, and p ≥ q;

• Γ+(x , q), the minimum element p ∈ σ s.t. there is a gap of

length at least x after p, and p ≥ q;

• Γ0(q), the minimum element p ∈ σ s.t. p ≥ q.

Technical constraint: We suppose that there exists a polynomial

pσ such that a gap of length t exists at distance pσ(t) in σ.

15/23

Some functions on σ

�σ contains arbitrary large gaps between two consecutive elements�

We de�ne some functions on σ:

• Γ−(x , q), the minimum element p ∈ σ s.t. there is a gap of

length at least x before p, and p ≥ q;

• Γ+(x , q), the minimum element p ∈ σ s.t. there is a gap of

length at least x after p, and p ≥ q;

• Γ0(q), the minimum element p ∈ σ s.t. p ≥ q.

Technical constraint: We suppose that there exists a polynomial

pσ such that a gap of length t exists at distance pσ(t) in σ.

15/23

Some functions on σ

�σ contains arbitrary large gaps between two consecutive elements�

We de�ne some functions on σ:

• Γ−(x , q), the minimum element p ∈ σ s.t. there is a gap of

length at least x before p, and p ≥ q;

• Γ+(x , q), the minimum element p ∈ σ s.t. there is a gap of

length at least x after p, and p ≥ q;

• Γ0(q), the minimum element p ∈ σ s.t. p ≥ q.

Technical constraint: We suppose that there exists a polynomial

pσ such that a gap of length t exists at distance pσ(t) in σ.

16/23

The reduction
Let G be an instance of k-Capacitated Dominating Set.

We start with I (G), incidence graph of G , and add some gadgets:

domination (D): forces G to have a dominating set;

capacity (C): encodes the capacity function cap, and allows

any selected vertex to be satis�ed;

edge-selection (E): encodes the domination function dom;

satis�ability (S): allows any non-selected vertex to be satis�ed;

limitation (L): encodes the parameter k ;

force (F): forces a given vertex to be selected.

2 4 1

1

2

3

2

1

1

3

16/23

The reduction
Let G be an instance of k-Capacitated Dominating Set.

We start with I (G), incidence graph of G , and add some gadgets:

domination (D): forces G to have a dominating set;

capacity (C): encodes the capacity function cap, and allows

any selected vertex to be satis�ed;

edge-selection (E): encodes the domination function dom;

satis�ability (S): allows any non-selected vertex to be satis�ed;

limitation (L): encodes the parameter k ;

force (F): forces a given vertex to be selected.

2 4 1

1

2

3

2

1

1

3

16/23

The reduction
Let G be an instance of k-Capacitated Dominating Set.

We start with I (G), incidence graph of G , and add some gadgets:

domination (D): forces G to have a dominating set;

capacity (C): encodes the capacity function cap, and allows

any selected vertex to be satis�ed;

edge-selection (E): encodes the domination function dom;

satis�ability (S): allows any non-selected vertex to be satis�ed;

limitation (L): encodes the parameter k ;

force (F): forces a given vertex to be selected.

2 4 1

1

2

3

2

1

1

3

16/23

The reduction
Let G be an instance of k-Capacitated Dominating Set.

We start with I (G), incidence graph of G , and add some gadgets:

domination (D): forces G to have a dominating set;

capacity (C): encodes the capacity function cap, and allows

any selected vertex to be satis�ed;

edge-selection (E): encodes the domination function dom;

satis�ability (S): allows any non-selected vertex to be satis�ed;

limitation (L): encodes the parameter k ;

force (F): forces a given vertex to be selected.

2 4 1

1

2

3

2

1

1

3

16/23

The reduction
Let G be an instance of k-Capacitated Dominating Set.

We start with I (G), incidence graph of G , and add some gadgets:

domination (D): forces G to have a dominating set;

capacity (C): encodes the capacity function cap, and allows

any selected vertex to be satis�ed;

edge-selection (E): encodes the domination function dom;

satis�ability (S): allows any non-selected vertex to be satis�ed;

limitation (L): encodes the parameter k ;

force (F): forces a given vertex to be selected.

2 4 1

1

2

3

2

1

1

3

16/23

The reduction
Let G be an instance of k-Capacitated Dominating Set.

We start with I (G), incidence graph of G , and add some gadgets:

domination (D): forces G to have a dominating set;

capacity (C): encodes the capacity function cap, and allows

any selected vertex to be satis�ed;

edge-selection (E): encodes the domination function dom;

satis�ability (S): allows any non-selected vertex to be satis�ed;

limitation (L): encodes the parameter k ;

force (F): forces a given vertex to be selected.

2 4 1

1

2

3

2

1

1

3

16/23

The reduction
Let G be an instance of k-Capacitated Dominating Set.

We start with I (G), incidence graph of G , and add some gadgets:

domination (D): forces G to have a dominating set;

capacity (C): encodes the capacity function cap, and allows

any selected vertex to be satis�ed;

edge-selection (E): encodes the domination function dom;

satis�ability (S): allows any non-selected vertex to be satis�ed;

limitation (L): encodes the parameter k ;

force (F): forces a given vertex to be selected.

2 4 1

1

2

3

2

1

1

3

16/23

The reduction
Let G be an instance of k-Capacitated Dominating Set.

We start with I (G), incidence graph of G , and add some gadgets:

domination (D): forces G to have a dominating set;

capacity (C): encodes the capacity function cap, and allows

any selected vertex to be satis�ed;

edge-selection (E): encodes the domination function dom;

satis�ability (S): allows any non-selected vertex to be satis�ed;

limitation (L): encodes the parameter k ;

force (F): forces a given vertex to be selected.

2 4 1

1

2

3

2

1

1

3

16/23

The reduction
Let G be an instance of k-Capacitated Dominating Set.

We start with I (G), incidence graph of G , and add some gadgets:

domination (D): forces G to have a dominating set;

capacity (C): encodes the capacity function cap, and allows

any selected vertex to be satis�ed;

edge-selection (E): encodes the domination function dom;

satis�ability (S): allows any non-selected vertex to be satis�ed;

limitation (L): encodes the parameter k ;

force (F): forces a given vertex to be selected.

D

S C E

D

S C

D

S C

L

D

S CE

17/23

The gadgets

Gadget force (F): forces a given vertex to be selected.

← forced vertexclique with minσ vertices →

← neighbor in H

clique with ασ,ρ vertices →

clique with βσ,ρ vertices →

Gadget domination (D): forces G to have a dominating set.

← original-vertex v in I(G)

q0 − 2

← forced vertices

edge-vertex in I(G) →

neighbor of v in G →

Γ+(1,minσ)−minσ forced vertices →

clique with minσ vertices →

17/23

The gadgets

Gadget force (F): forces a given vertex to be selected.

← forced vertexclique with minσ vertices →

← neighbor in H

clique with ασ,ρ vertices →

clique with βσ,ρ vertices →

Gadget domination (D): forces G to have a dominating set.

← original-vertex v in I(G)

q0 − 2

← forced vertices

edge-vertex in I(G) →

neighbor of v in G →

Γ+(1,minσ)−minσ forced vertices →

clique with minσ vertices →

18/23

The gadgets

Gadget edge-selection (E): encodes the domination function dom.

← neighbor in I(G)

← Γ−(1, q0 + 1)− 1 forced vertices

← edge-vertex in I(G)

Gadget satis�ability (S): allows any non-selected vertex to be

satis�ed.

← original-vertex in I(G)

← q0 choosable vertices

Γ0(q0) forced vertices

18/23

The gadgets

Gadget edge-selection (E): encodes the domination function dom.

← neighbor in I(G)

← Γ−(1, q0 + 1)− 1 forced vertices

← edge-vertex in I(G)

Gadget satis�ability (S): allows any non-selected vertex to be

satis�ed.

← original-vertex in I(G)

← q0 choosable vertices

Γ0(q0) forced vertices

19/23

The gadgets

Gadget capacity (C): encodes the capacity function cap, and allows

any selected vertex to be satis�ed.

← original-vertex v in I(G)

Γ+

(
degG(v) + q0, cap(v)

)
− cap(v)− 1 forced vertices

← cap(v) vertices

Γ0(q0 + 1)− 1 forced vertices

20/23

The gadgets

Gadget limitation (L): encodes the parameter k .

original-vertices in I(G) ← central forced vertex c

← k choosable vertices

Γ+
(
|V (G)|, k

)
− k forced vertices

Γ0(q0)− 1 forced vertices

21/23

Correctness

Correctness of the reduction:

• Each gadget has small tree-width (at most minσ + 1).

→ tw(H) = f
(
tw(G)

)

• The number of added vertices depends only on k ≤ n, σ and %.
→ |V (H)| = g

(
|V (G)|

)

• H admits a [σ, %]-dominating set i� G admits a k-capacitated

dominating set.

Theorem [C., 2010]

If σ contains arbitrary large gaps between two consecutive elements

and % is co�nite (and an additional technical constraint), then

∃[σ, %]-Dominating Set is W[1]-hard parameterized by tree-width.

21/23

Correctness

Correctness of the reduction:

• Each gadget has small tree-width (at most minσ + 1).

→ tw(H) = f
(
tw(G)

)

• The number of added vertices depends only on k ≤ n, σ and %.
→ |V (H)| = g

(
|V (G)|

)

• H admits a [σ, %]-dominating set i� G admits a k-capacitated

dominating set.

Theorem [C., 2010]

If σ contains arbitrary large gaps between two consecutive elements

and % is co�nite (and an additional technical constraint), then

∃[σ, %]-Dominating Set is W[1]-hard parameterized by tree-width.

21/23

Correctness

Correctness of the reduction:

• Each gadget has small tree-width (at most minσ + 1).

→ tw(H) = f
(
tw(G)

)

• The number of added vertices depends only on k ≤ n, σ and %.
→ |V (H)| = g

(
|V (G)|

)

• H admits a [σ, %]-dominating set i� G admits a k-capacitated

dominating set.

Theorem [C., 2010]

If σ contains arbitrary large gaps between two consecutive elements

and % is co�nite (and an additional technical constraint), then

∃[σ, %]-Dominating Set is W[1]-hard parameterized by tree-width.

21/23

Correctness

Correctness of the reduction:

• Each gadget has small tree-width (at most minσ + 1).

→ tw(H) = f
(
tw(G)

)

• The number of added vertices depends only on k ≤ n, σ and %.
→ |V (H)| = g

(
|V (G)|

)

• H admits a [σ, %]-dominating set i� G admits a k-capacitated

dominating set.

Theorem [C., 2010]

If σ contains arbitrary large gaps between two consecutive elements

and % is co�nite (and an additional technical constraint), then

∃[σ, %]-Dominating Set is W[1]-hard parameterized by tree-width.

22/23

1 Some de�nitions

2 FPT cases

3 W[1]-hardness

4 Conclusion

23/23

Conclusion

∃[σ, %]-Dominating Set is FPT parameterized by tree-width,

when σ and % are ultimately periodic.

∃[σ, %]-Dominating Set is W[1]-hard parameterized by tree-width,

when σ contains arbitrary large gaps between two consecutive

elements and % is co�nite (and an additional constraint on σ).

And now?

• W[t]-completeness;

• Other cases of [σ, %] (e.g. recursive with bounded gaps);

• . . .

And voilà!

23/23

Conclusion

∃[σ, %]-Dominating Set is FPT parameterized by tree-width,

when σ and % are ultimately periodic.

∃[σ, %]-Dominating Set is W[1]-hard parameterized by tree-width,

when σ contains arbitrary large gaps between two consecutive

elements and % is co�nite (and an additional constraint on σ).

And now?

• W[t]-completeness;

• Other cases of [σ, %] (e.g. recursive with bounded gaps);

• . . .

And voilà!

23/23

Conclusion

∃[σ, %]-Dominating Set is FPT parameterized by tree-width,

when σ and % are ultimately periodic.

∃[σ, %]-Dominating Set is W[1]-hard parameterized by tree-width,

when σ contains arbitrary large gaps between two consecutive

elements and % is co�nite (and an additional constraint on σ).

And now?

• W[t]-completeness;

• Other cases of [σ, %] (e.g. recursive with bounded gaps);

• . . .

And voilà!

23/23

Conclusion

∃[σ, %]-Dominating Set is FPT parameterized by tree-width,

when σ and % are ultimately periodic.

∃[σ, %]-Dominating Set is W[1]-hard parameterized by tree-width,

when σ contains arbitrary large gaps between two consecutive

elements and % is co�nite (and an additional constraint on σ).

And now?

• W[t]-completeness;

• Other cases of [σ, %] (e.g. recursive with bounded gaps);

• . . .

And voilà!

	Some definitions
	Parameterized complexity
	Generalized domination

	FPT cases
	Known results
	More cases

	W[1]-hardness
	The result
	Yet another definition
	Ideas of the reduction
	Some functions on
	The reduction
	Correctness

	Conclusion
	Conclusion

