Parameterized complexity of generalized domination problems on bounded tree-width graphs

Mathieu Chapelle

LIFO, University of Orléans, France

2nd Graph Decompositions Workshop CIRM, Luminy, France 22 octobre 2010

• Very few problems are known to be **W**-hard (*i.e.* not **FPT**) when parameterized by tree-width;

- Very few problems are known to be W-hard (*i.e.* not FPT) when parameterized by tree-width;
- Usual studied cases of ∃[σ, ρ]-Dominating Set are FPT when parameterized by tree-width;

- Very few problems are known to be W-hard (*i.e.* not FPT) when parameterized by tree-width;
- Usual studied cases of ∃[σ, ϱ]-Dominating Set are FPT when parameterized by tree-width;
 → Is it always FPT?

- Very few problems are known to be W-hard (*i.e.* not FPT) when parameterized by tree-width;
- Usual studied cases of ∃[σ, ρ]-Dominating Set are FPT when parameterized by tree-width;
 → Is it always FPT?
- We prove ∃[σ, ρ]-Dominating Set becomes W[1]-hard for (many) other cases when parameterized by tree-width.

1 Some definitions

2 FPT cases

3 W[1]-hardness

4 Conclusion

1 Some definitions

2 FPT cases

3 W[1]-hardness

4 Conclusion

Definition (FPT)

A problem \mathcal{P} is **FPT** parameterized by k if it can be solved in time $\mathcal{O}(f(k) \cdot p(n))$.

Definition (FPT)

A problem \mathcal{P} is **FPT** parameterized by k if it can be solved in time $\mathcal{O}(f(k) \cdot p(n))$.

Example: k-Vertex Cover parameterized by the size k of the vertex cover.

Definition (FPT)

A problem \mathcal{P} is **FPT** parameterized by k if it can be solved in time $\mathcal{O}(f(k) \cdot p(n))$.

Example: k-Vertex Cover parameterized by the size k of the vertex cover.

A problem \mathcal{P} which is not **FPT** is at least **W**[1]-hard.

Definition (FPT)

A problem \mathcal{P} is **FPT** parameterized by k if it can be solved in time $\mathcal{O}(f(k) \cdot p(n))$.

Example: k-Vertex Cover parameterized by the size k of the vertex cover.

A problem \mathcal{P} which is not **FPT** is at least **W**[1]-hard.

Example: k-Independent Set parameterized by the size k of the independent set.

Definition (FPT)

A problem \mathcal{P} is **FPT** parameterized by k if it can be solved in time $\mathcal{O}(f(k) \cdot p(n))$.

Example: k-Vertex Cover parameterized by the size k of the vertex cover.

A problem \mathcal{P} which is not **FPT** is at least **W**[1]-hard.

Example: k-Independent Set parameterized by the size k of the independent set.

Remark: To prove \mathcal{P} is W[1]-hard, take a W[1]-hard problem \mathcal{Q} and prove that $\mathcal{Q} \leq_{\text{fpt}} \mathcal{P}$.

Definition (dominating set)

- $D \subseteq V$ is a *dominating set* if, $\forall v \in V$:
 - $v \in D$; or
 - $\exists u \ (u \in D \land adj(u, v)).$

Definition (dominating set)

- $D \subseteq V$ is a *dominating set* if, $\forall v \in V$:
 - $v \in D$; or
 - $\exists u \ (u \in D \cap N(v)).$

Definition (dominating set)

 $D \subseteq V$ is a *dominating set* if, $\forall v \in V$:

- $v \in D \Rightarrow |D \cap N(v)| \ge 0$; or
- $v \notin D \Rightarrow |D \cap N(v)| \ge 1$.

Definition (dominating set)

 $D \subseteq V$ is a *dominating set* if, $\forall v \in V$:

- $v \in D \Rightarrow |D \cap N(v)| \in \{0, 1, 2, \ldots\};$ or
- $v \notin D \Rightarrow |D \cap N(v)| \in \{1, 2, 3, \ldots\}.$

Definition ($[\sigma, \varrho]$ -dominating set)

Let $\sigma, \varrho \subseteq \mathbb{N}$. $D \subseteq V$ is a $[\sigma, \varrho]$ -dominating set if, $\forall v \in V$:

- $v \in D \Rightarrow |D \cap N(v)| \in \sigma$; or
- $v \notin D \Rightarrow |D \cap N(v)| \in \varrho$.

Definition ([σ, ρ]-dominating set)

Let $\sigma, \varrho \subseteq \mathbb{N}$. $D \subseteq V$ is a $[\sigma, \varrho]$ -dominating set if, $\forall v \in V$:

- $v \in D \Rightarrow |D \cap N(v)| \in \sigma$; or
- $v \notin D \Rightarrow |D \cap N(v)| \in \varrho$.

 σ and ϱ fix some constraints on the neighborhood of every vertex:

- σ constraints the neighborhood of vertices which are in D.
- ϱ constraints the neighborhood of vertices which are not in D.

Definition ([σ, ρ]-dominating set)

Let $\sigma, \varrho \subseteq \mathbb{N}$. $D \subseteq V$ is a $[\sigma, \varrho]$ -dominating set if, $\forall v \in V$:

- $v \in D \Rightarrow |D \cap N(v)| \in \sigma$; or
- $v \notin D \Rightarrow |D \cap N(v)| \in \varrho$.

 σ and ϱ fix some constraints on the neighborhood of every vertex:

- σ constraints the neighborhood of vertices which are in D.
- ϱ constraints the neighborhood of vertices which are not in D.

Remark: We usually suppose that $0 \notin \varrho$, as otherwise $D = \emptyset$ would be a trivial $[\sigma, \varrho]$ -dominating set.

Definition (selected vertex, satisfied vertex) Let $D \subseteq V$ be a $[\sigma, \varrho]$ -dominating set. $u \in V$ is *selected* if $u \in D$.

Definition (selected vertex, satisfied vertex)

- Let $D \subseteq V$ be a $[\sigma, \varrho]$ -dominating set.
- $u \in V$ is *selected* if $u \in D$.
- $v \in V$ is *satisfied* if:
 - $v \in D \Rightarrow |D \cap N(v)| \in \sigma;$
 - $v \notin D \Rightarrow |D \cap N(v)| \in \varrho$.

1 Some definitions

2 FPT cases

3 W[1]-hardness

4 Conclusion

Known results

Theorem [van Rooij, Bodlaender, Rossmanith, 2009] Dominating Set can be solved in $\mathcal{O}^*(3^{tw})$ time.

Known results

Theorem [van Rooij, Bodlaender, Rossmanith, 2009] Dominating Set can be solved in $\mathcal{O}^*(3^{tw})$ time.

Recall that **Dominating Set** is $[\sigma, \varrho]$ -Dominating Set with $\sigma = \{0, 1, 2, ...\}$ and $\varrho = \{1, 2, 3, ...\}$.

Known results

Theorem [van Rooij, Bodlaender, Rossmanith, 2009] Dominating Set can be solved in $\mathcal{O}^*(3^{tw})$ time.

Recall that Dominating Set is $[\sigma, \varrho]$ -Dominating Set with $\sigma = \{0, 1, 2, ...\}$ and $\varrho = \{1, 2, 3, ...\}$.

Theorem [van Rooij, Bodlaender, Rossmanith, 2009] $\exists [\sigma, \varrho]$ -Dominating Set can be solved in $\mathcal{O}^*(s^{tw})$ time if σ and ϱ are finite or cofinite, where s is the minimum number of states

needed to represents σ and ϱ .

Using Courcelle's theorem:

If σ and ϱ are finite or cofinite, then $\exists [\sigma, \varrho]$ -Dominating Set is expressible in MSOL₂. Hence it is FPT when parameterized by tree-width.

Using Courcelle's theorem:

If σ and ϱ are ultimately periodic, then $\exists [\sigma, \varrho]$ -Dominating Set is expressible in CMSOL. Hence it is FPT when parameterized by tree-width.

Using Courcelle's theorem:

If σ and ϱ are ultimately periodic, then $\exists [\sigma, \varrho]$ -Dominating Set is expressible in CMSOL. Hence it is FPT when parameterized by tree-width.

But the hidden constant is very huge.

Using Courcelle's theorem:

If σ and ϱ are ultimately periodic, then $\exists [\sigma, \varrho]$ -Dominating Set is expressible in CMSOL. Hence it is FPT when parameterized by tree-width.

But the hidden constant is very huge.

Theorem [C., 2008–2010]

 $\exists [\sigma, \varrho]$ -Dominating Set can be solved in $\mathcal{O}^*(s^{tw})$ time if σ and ϱ are ultimately periodic, where s is (almost) the minimum number of states needed to represents σ and ϱ .

Theorem [C., 2008-2010]

 $\exists [\sigma, \varrho]$ -Dominating Set can be solved in $\mathcal{O}^*(s^{tw})$ time if σ and ϱ are ultimately periodic, where s is (almost) the minimum number of states needed to represents σ and ϱ .

Theorem [C., 2008-2010]

 $\exists [\sigma, \varrho]$ -Dominating Set can be solved in $\mathcal{O}^*(s^{tw})$ time if σ and ϱ are ultimately periodic, where s is (almost) the minimum number of states needed to represents σ and ϱ .

Theorem [C., 2008-2010]

 $\exists [\sigma, \varrho]$ -Dominating Set can be solved in $\mathcal{O}^*(s^{tw})$ time if σ and ϱ are ultimately periodic, where s is (almost) the minimum number of states needed to represents σ and ϱ .

Ideas of the proof:

• Represent σ and ϱ with finite unary-language automata;

Theorem [C., 2008-2010]

 $\exists [\sigma, \varrho]$ -Dominating Set can be solved in $\mathcal{O}^*(s^{tw})$ time if σ and ϱ are ultimately periodic, where s is (almost) the minimum number of states needed to represents σ and ϱ .

- Represent σ and ϱ with finite unary-language automata;
- Apply dynamic programming on a (nice) tree-decomposition of the input graph;

Theorem [C., 2008-2010]

 $\exists [\sigma, \varrho]$ -Dominating Set can be solved in $\mathcal{O}^*(s^{tw})$ time if σ and ϱ are ultimately periodic, where s is (almost) the minimum number of states needed to represents σ and ϱ .

- Represent σ and ϱ with finite unary-language automata;
- Apply dynamic programming on a (nice) tree-decomposition of the input graph;
- Encode the number of selected neighbors of each vertex using the corresponding state in one of the automata;

Theorem [C., 2008-2010]

 $\exists [\sigma, \varrho]$ -Dominating Set can be solved in $\mathcal{O}^*(s^{tw})$ time if σ and ϱ are ultimately periodic, where s is (almost) the minimum number of states needed to represents σ and ϱ .

- Represent σ and ϱ with finite unary-language automata;
- Apply dynamic programming on a (nice) tree-decomposition of the input graph;
- Encode the number of selected neighbors of each vertex using the corresponding state in one of the automata;
- Use fast subset convolution to fasten the join operation.

1 Some definitions

2 FPT cases

3 W[1]-hardness

4 Conclusion

Some W[1]-hard cases

Theorem [C., 2010]

If σ contains arbitrary large gaps between two consecutive elements and ϱ is cofinite (and an additional technical constraint on σ), then $\exists [\sigma, \varrho]$ -Dominating Set is W[1]-hard parameterized by tree-width.

Some W[1]-hard cases

Theorem [C., 2010]

If σ contains arbitrary large gaps between two consecutive elements and ϱ is cofinite (and an additional technical constraint on σ), then $\exists [\sigma, \varrho]$ -Dominating Set is W[1]-hard parameterized by tree-width.

Given σ and ρ , we will reduce k-Capacitated Dominating Set to $\exists [\sigma, \rho]$ -Dominating Set.

Some W[1]-hard cases

Theorem [C., 2010]

If σ contains arbitrary large gaps between two consecutive elements and ϱ is cofinite (and an additional technical constraint on σ), then $\exists [\sigma, \varrho]$ -Dominating Set is W[1]-hard parameterized by tree-width.

Given σ and ρ , we will reduce k-Capacitated Dominating Set to $\exists [\sigma, \rho]$ -Dominating Set.

k-Capacitated Dominating Set is W[1]-hard when parameterized by the tree-width of the input graph and the size k of the expected solution.

Definition (capacitated dominating set) Let G = (V, E), cap : $V \to \mathbb{N}$.

Definition (capacitated dominating set) Let G = (V, E), cap : $V \to \mathbb{N}$. (S, dom) is a *capacitated dominating set* of G,

Definition (capacitated dominating set) Let G = (V, E), cap : $V \to \mathbb{N}$. (S, dom) is a *capacitated dominating set* of G, with $S \subseteq V$ and $\forall v \in V, \text{dom}(v) \subseteq N(v)$, if:

Definition (capacitated dominating set) Let G = (V, E), cap : $V \to \mathbb{N}$. (S, dom) is a *capacitated dominating set* of G, with $S \subseteq V$ and $\forall v \in V, \text{dom}(v) \subseteq N(v)$, if:

• S is a dominating set of G (in the classical sense);

Definition (capacitated dominating set) Let G = (V, E), cap : $V \to \mathbb{N}$. (S, dom) is a *capacitated dominating set* of G, with $S \subseteq V$ and $\forall v \in V, \text{dom}(v) \subseteq N(v)$, if:

• S is a dominating set of G (in the classical sense);

•
$$\forall v \in S$$
, $|dom(v)| \leq cap(v)$;

Definition (capacitated dominating set) Let G = (V, E), cap : $V \to \mathbb{N}$. (S, dom) is a *capacitated dominating set* of G, with $S \subseteq V$ and $\forall v \in V, \text{dom}(v) \subseteq N(v)$, if:

• S is a dominating set of G (in the classical sense);

•
$$\forall v \in S$$
, $|\mathsf{dom}(v)| \leq \mathsf{cap}(v)$;

• $\forall v \notin S$, dom $(v) = \emptyset$.

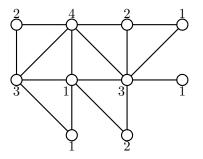
Definition (capacitated dominating set) Let G = (V, E), cap : $V \to \mathbb{N}$. (S, dom) is a *capacitated dominating set* of G, with $S \subseteq V$ and $\forall v \in V, \text{dom}(v) \subseteq N(v)$, if:

• S is a dominating set of G (in the classical sense);

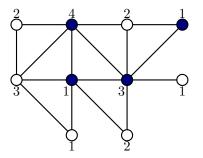
•
$$\forall v \in S$$
, $|\mathsf{dom}(v)| \leq \mathsf{cap}(v)$;

• $\forall v \notin S$, dom $(v) = \emptyset$.

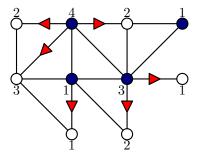
k-Capacitated Dominating Set: search $S \subseteq V$ such that $|S| \leq k$.



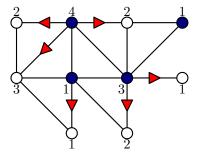
Input: A graph with capacities on vertices.



Input: A graph with capacities on vertices.

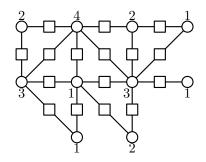


Input: A graph with capacities on vertices.

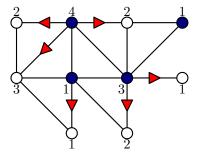


Input: A graph with capacities on vertices.

 \rightarrow

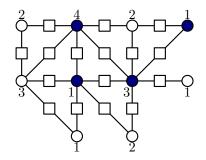


Transformation: The incidence graph.

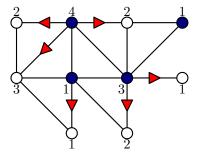


Input: A graph with capacities on vertices.

 \rightarrow

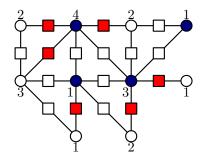


Transformation: The incidence graph.



Input: A graph with capacities on vertices.

 \rightarrow



Transformation: The incidence graph.

" σ contains arbitrary large gaps between two consecutive elements"

" σ contains arbitrary large gaps between two consecutive elements"

We define some functions on σ :

" σ contains arbitrary large gaps between two consecutive elements"

We define some functions on σ :

 Γ₋(x, q), the minimum element p ∈ σ s.t. there is a gap of length at least x before p, and p ≥ q;

" σ contains arbitrary large gaps between two consecutive elements"

We define some functions on σ :

- Γ₋(x, q), the minimum element p ∈ σ s.t. there is a gap of length at least x before p, and p ≥ q;
- Γ₊(x, q), the minimum element p ∈ σ s.t. there is a gap of length at least x after p, and p ≥ q;

" σ contains arbitrary large gaps between two consecutive elements"

We define some functions on σ :

- Γ₋(x, q), the minimum element p ∈ σ s.t. there is a gap of length at least x before p, and p ≥ q;
- Γ₊(x, q), the minimum element p ∈ σ s.t. there is a gap of length at least x after p, and p ≥ q;
- $\Gamma_0(q)$, the minimum element $p \in \sigma$ s.t. $p \ge q$.

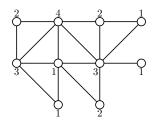
" σ contains arbitrary large gaps between two consecutive elements"

We define some functions on σ :

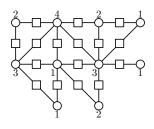
- Γ₋(x, q), the minimum element p ∈ σ s.t. there is a gap of length at least x before p, and p ≥ q;
- Γ₊(x, q), the minimum element p ∈ σ s.t. there is a gap of length at least x after p, and p ≥ q;
- $\Gamma_0(q)$, the minimum element $p \in \sigma$ s.t. $p \ge q$.

Technical constraint: We suppose that there exists a polynomial p_{σ} such that a gap of length t exists at distance $p_{\sigma}(t)$ in σ .

Let G be an instance of k-Capacitated Dominating Set.

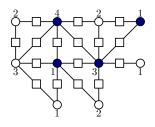


Let G be an instance of k-Capacitated Dominating Set. We start with I(G), incidence graph of G, and add some gadgets:



Let G be an instance of k-Capacitated Dominating Set. We start with I(G), incidence graph of G, and add some gadgets:

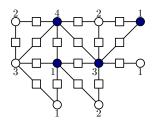
domination (\mathcal{D}) : forces G to have a dominating set;



Let G be an instance of k-Capacitated Dominating Set. We start with I(G), incidence graph of G, and add some gadgets:

domination (\mathcal{D}) : forces G to have a dominating set;

capacity (C): encodes the capacity function cap, and allows any selected vertex to be satisfied;

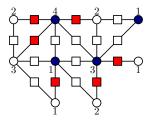


Let G be an instance of k-Capacitated Dominating Set. We start with I(G), incidence graph of G, and add some gadgets:

domination (\mathcal{D}) : forces G to have a dominating set;

capacity (C): encodes the capacity function cap, and allows any selected vertex to be satisfied;

edge-selection (\mathcal{E}): encodes the domination function dom;



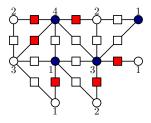
Let G be an instance of k-Capacitated Dominating Set. We start with I(G), incidence graph of G, and add some gadgets:

domination (\mathcal{D}) : forces G to have a dominating set;

capacity (C): encodes the capacity function cap, and allows any selected vertex to be satisfied;

edge-selection (\mathcal{E}): encodes the domination function dom;

satisfiability (S): allows any non-selected vertex to be satisfied;

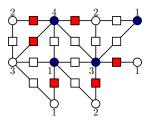


Let G be an instance of k-Capacitated Dominating Set. We start with I(G), incidence graph of G, and add some gadgets:

domination (\mathcal{D}) : forces G to have a dominating set;

capacity (C): encodes the capacity function cap, and allows any selected vertex to be satisfied:

edge-selection (\mathcal{E}): encodes the domination function dom; satisfiability (S): allows any non-selected vertex to be satisfied; *limitation* (\mathcal{L}) : encodes the parameter k;



Let G be an instance of k-Capacitated Dominating Set. We start with I(G), incidence graph of G, and add some gadgets:

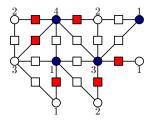
domination (\mathcal{D}) : forces G to have a dominating set;

capacity (C): encodes the capacity function cap, and allows any selected vertex to be satisfied;

- edge-selection (E): satisfiability (S): limitation (L):
- edge-selection (\mathcal{E}): encodes the domination function dom;

satisfiability (S): allows any non-selected vertex to be satisfied; limitation (\mathcal{L}): encodes the parameter k;

force (\mathcal{F}) : forces a given vertex to be selected.

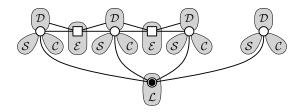


Let G be an instance of k-Capacitated Dominating Set. We start with I(G), incidence graph of G, and add some gadgets:

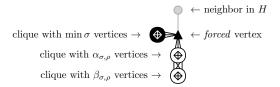
domination (\mathcal{D}) : forces G to have a dominating set;

- capacity (C): encodes the capacity function cap, and allows any selected vertex to be satisfied;
- edge-selection (E): en satisfiability (S): all limitation (L): en
- edge-selection (\mathcal{E}): encodes the domination function dom;
 - satisfiability (S): allows any non-selected vertex to be satisfied; limitation (\mathcal{L}): encodes the parameter k;

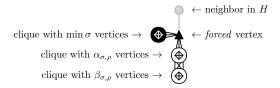
force (\mathcal{F}) : forces a given vertex to be selected.



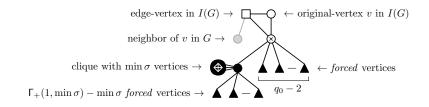
Gadget force (\mathcal{F}) : forces a given vertex to be selected.



Gadget force (\mathcal{F}) : forces a given vertex to be selected.



Gadget domination (\mathcal{D}) : forces G to have a dominating set.



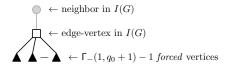
Gadget *edge-selection* (\mathcal{E}): encodes the domination function dom.

$$\leftarrow \text{ neighbor in } I(G)$$

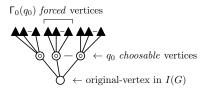
$$\leftarrow \text{ edge-vertex in } I(G)$$

$$\leftarrow \Gamma_{-}(1, q_{0} + 1) - 1 \text{ forced vertices}$$

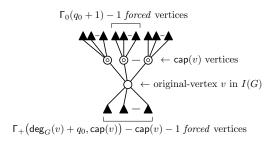
Gadget *edge-selection* (\mathcal{E}): encodes the domination function dom.



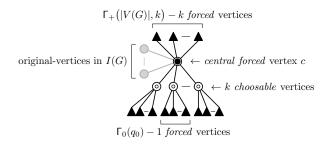
Gadget satisfiability (S): allows any non-selected vertex to be satisfied.



Gadget capacity (C): encodes the capacity function cap, and allows any selected vertex to be satisfied.



Gadget *limitation* (\mathcal{L}) : encodes the parameter k.



Correctness of the reduction:

• Each gadget has small tree-width (at most min σ + 1). $\rightarrow tw(H) = f(tw(G))$

Correctness of the reduction:

- Each gadget has small tree-width (at most min σ + 1). $\rightarrow tw(H) = f(tw(G))$
- The number of added vertices depends only on $k \leq n, \sigma$ and ϱ . $\rightarrow |V(H)| = g(|V(G)|)$

Correctness of the reduction:

- Each gadget has small tree-width (at most min σ + 1). $\rightarrow tw(H) = f(tw(G))$
- The number of added vertices depends only on $k \le n$, σ and ϱ . $\rightarrow |V(H)| = g(|V(G)|)$
- *H* admits a $[\sigma, \varrho]$ -dominating set iff *G* admits a *k*-capacitated dominating set.

Correctness of the reduction:

- Each gadget has small tree-width (at most min σ + 1). $\rightarrow tw(H) = f(tw(G))$
- The number of added vertices depends only on $k \leq n, \sigma$ and ϱ . $\rightarrow |V(H)| = g(|V(G)|)$
- *H* admits a $[\sigma, \varrho]$ -dominating set iff *G* admits a *k*-capacitated dominating set.

Theorem [C., 2010]

If σ contains arbitrary large gaps between two consecutive elements and ϱ is cofinite (and an additional technical constraint), then $\exists [\sigma, \varrho]$ -Dominating Set is W[1]-hard parameterized by tree-width. 1 Some definitions

2 FPT cases

3 W[1]-hardness

 $\exists [\sigma, \varrho]$ -Dominating Set is FPT parameterized by tree-width, when σ and ϱ are ultimately periodic.

 $\exists [\sigma, \varrho]$ -Dominating Set is FPT parameterized by tree-width, when σ and ϱ are ultimately periodic.

 $\exists [\sigma, \varrho]$ -Dominating Set is W[1]-hard parameterized by tree-width, when σ contains arbitrary large gaps between two consecutive elements and ϱ is cofinite (and an additional constraint on σ).

 $\exists [\sigma, \varrho]$ -Dominating Set is FPT parameterized by tree-width, when σ and ϱ are ultimately periodic.

 $\exists [\sigma, \varrho]$ -Dominating Set is W[1]-hard parameterized by tree-width, when σ contains arbitrary large gaps between two consecutive elements and ϱ is cofinite (and an additional constraint on σ).

And now?

- **W**[t]-completeness;
- Other cases of $[\sigma, \varrho]$ (*e.g.* recursive with bounded gaps);

•

 $\exists [\sigma, \varrho]$ -Dominating Set is FPT parameterized by tree-width, when σ and ϱ are ultimately periodic.

 $\exists [\sigma, \varrho]$ -Dominating Set is W[1]-hard parameterized by tree-width, when σ contains arbitrary large gaps between two consecutive elements and ϱ is cofinite (and an additional constraint on σ).

And now?

- **W**[t]-completeness;
- Other cases of $[\sigma, \varrho]$ (*e.g.* recursive with bounded gaps);

•

And voilà!