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Abstract. Important generalizations of the Vertex Cover problem
(Connected Vertex Cover, Capacitated Vertex Cover, and Max-

imum Partial Vertex Cover) have been intensively studied in terms
of approximability. However, their parameterized complexity has so far
been completely open. We close this gap here by showing that, with
the size of the desired vertex cover as parameter, Connected Ver-

tex Cover and Capacitated Vertex Cover are both fixed-parameter
tractable while Maximum Partial Vertex Cover is W[1]-hard. This
answers two open questions from the literature. The results extend to
several closely related problems. Interestingly, although the considered
generalized Vertex Cover problems behave very similar in terms of
constant-factor approximability, they display a wide range of different
characteristics when investigating their parameterized complexities.

1 Introduction

Given an undirected graph G = (V,E), the NP-complete Vertex Cover prob-
lem is to find a set C ⊆ V with |C| ≤ k such that each edge in E has at least one
endpoint in C. In a sense, Vertex Cover could be considered the Drosophila
of fixed-parameter algorithmics [17, 25]:

1. There is a long list of continuous improvements on the combinatorial explo-
sion with respect to the parameter k when solving the problem exactly. The
currently best exponential bound is below 1.28k [8, 26, 14, 28, 12].

2. Vertex Cover has been a benchmark for developing sophisticated data
reduction and problem kernelization techniques [1, 19].

3. It was the first parameterized problem where the usefulness of interleaving
depth-bounded search trees and problem kernelization was proven [27].

4. Restricted to planar graphs, it was—besides Dominating Set—one of the
central problems for the development of “subexponential” fixed-parameter
algorithms and the corresponding theory of relative lower bounds [2, 4, 11].

5. Vertex Cover served as a testbed for algorithm engineering in the realm
of fixed-parameter algorithms [1, 3, 13].
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6. Studies of Vertex Cover led to new research directions within parameter-
ized complexity such as counting [7], parallel processing [13], or using “vertex
cover structure” as a general strategy to solve parameterized problems [30].

This probably incomplete list gives an impression of how important Vertex

Cover was and continues to be for the whole field of parameterized complexity.
However, research in this field to date appears to have neglected a closer inves-
tigation of recent significant generalizations and variants of Vertex Cover.
These appear in various application scenarios such as drug design [22] and have
so far only been studied in the context of their polynomial-time approximability.
We close this gap here by providing several first-time parameterized complexity
results, which also answers two open questions from the literature.

We are only aware of two papers that perform somewhat related research.
First, Nishimura, Ragde, and Thilikos [29] also study generalizations of Vertex

Cover. However, they follow a completely different route: Whereas we study
concrete problems such as Capacitated Vertex Cover or Maximum Par-

tial Vertex Cover on general graphs, their interest lies in recognizing general
classes of graphs with a very special case of interest being the class of graphs
with bounded vertex cover (refer to [29] for details). Second, Bläser [9] shows
that some partial covering problems are fixed-parameter tractable when the pa-
rameter is the number of objects covered instead of the size of the covering set.
(In this paper, as well as in the abovementioned studies, the parameter is always
the size of the covering set.)

We deal with a whole list of vertex covering problems, all of them possessing
constant-factor (mostly 2) polynomial-time approximation algorithms. Deferring
their formal definitions to the next section, we now informally describe the stud-
ied problems and the known and new results. In the presentation of our results, n

denotes the number of vertices and m denotes the number of edges of the input
graph. The parameter k always denotes the size of the vertex cover.

1. For Connected Vertex Cover one demands that the vertex cover set is
connected. This problem is known to have a factor-2 approximation [6]. We
show that it can be solved in O(6kn + 4kn2 + 2kn2 log n + 2knm) time. In
addition, we derive results for the closely related variants Tree Cover and
Tour Cover.

2. For Capacitated Vertex Cover, the “covering capacity” of each graph
vertex is limited in that it may not cover all of its incident edges. This problem
has a factor-2 approximation [22]. Addressing an open problem from [22], we

show that Capacitated Vertex Cover can be solved in O(1.2k2

+n2) time
using an enumerative approach. We also provide a problem kernelization.
Altogether, we thus show that Capacitated Vertex Cover—including
two variants with “hard” and “soft” capacities—is fixed-parameter tractable.

3. For Maximum Partial Vertex Cover, one only wants to cover a specified
number of edges (that is, not necessarily all) by at most k vertices. This
problem is known to have a factor-2 approximation [10]. Answering an open
question from [5], we show that this problem appears to be fixed-parameter
intractable—it is W[1]-hard. The same is proven for its minimization version.
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Problem Result

Connected Vertex Cover 6k
n + 4k

n
2 + 2k

n
2 log n + 2k

nm Thm. 2

Tree Cover (2k)k · km Cor. 3

Tour Cover (4k)k · km Cor. 3

Capacitated Vertex Cover 1.2k
2

+ n
2 Thm. 5

Soft Capacitated Vertex Cover 1.2k
2

+ n
2 Thm. 10

Hard Capacitated Vertex Cover 1.2k
2

+ n
2 Thm. 10

Maximum Partial Vertex Cover W[1]-hard Thm. 11
Minimum Partial Vertex Cover W[1]-hard Cor. 12

Table 1. New parameterized complexity results for some NP-complete generalizations
of Vertex Cover shown in this work. The parameter k is the size of the desired vertex
cover, m denotes the number of edges, and n denotes the number of vertices.

Summarizing, we emphasize that our main focus is on deciding between fixed-
parameter tractability and W[1]-hardness for all of the considered problems.
Interestingly, although all considered problems behave in more or less the same
way from the viewpoint of polynomial-time approximability—all have factor-2
approximations—the picture becomes completely different from a parameterized
complexity point of view: Maximum Partial Vertex Cover appears to be in-
tractable and Capacitated Vertex Cover appears to be significantly harder
than Connected Vertex Cover. Table 1 surveys all of our results.

2 Preliminaries and Previous Work

Parameterized complexity is a two-dimensional framework for studying the com-
putational complexity of problems.1 One dimension is the input size n (as in clas-
sical complexity theory) and the other one the parameter k (usually a positive
integer). A problem is called fixed-parameter tractable (fpt) if it can be solved
in f(k)·nO(1) time, where f is a computable function only depending on k. A core
tool in the development of fixed-parameter algorithms is polynomial-time pre-
processing by data reduction rules, often yielding a reduction to a problem kernel.
Here the goal is, given any problem instance x with parameter k, to transform
it into a new instance x′ with parameter k′ such that the size of x′ is bounded
by some function only depending on k, (x, k) has a solution iff (x′, k′) has a
solution, and k′ ≤ k. A formal framework to show fixed-parameter intractabil-
ity was developed by Downey and Fellows [17] who introduced the concept of
parameterized reductions. A parameterized reduction from a parameterized lan-
guage L to another parameterized language L′ is a function that, given an in-
stance (x, k), computes in time f(k) · nO(1) an instance (x′, k′) (with k′ only
depending on k) such that (x, k) ∈ L⇔ (x′, k′) ∈ L′. The basic complexity class
for fixed-parameter intractability is W[1] as there is good reason to believe that
W[1]-hard problems are not fixed-parameter tractable [17].

1 For a more detailed introduction see, e.g., [17, 19, 24].
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In this work, we consider three directions of generalizing Vertex Cover

(VC), namely demanding that the vertices of the cover must be connected (Sec-
tion 3), introducing covering capacities for the vertices (Section 4), and relaxing
the condition that all edges in the graph must be covered (Section 5). Our cor-
responding parameterized complexity results are summarized in Table 1, the
formal definitions of the problems follow.

Connected Vertex Cover: Given a graph G = (V,E) and an inte-
ger k ≥ 0, determine whether there exists a vertex cover C for G containing
at most k vertices such that the subgraph of G induced by C is connected.

This problem is NP-complete and approximable within 2 [6]. Two variants are
derived by introducing a weight function w : E → R

+ on the edges and requiring
that the cover must induce a subgraph with a certain structure and minimum
weight.

Tree Cover: Given a graph G = (V,E) with edges weighted with pos-
itive real numbers, an integer k ≥ 0, and a real number W > 0, deter-
mine whether there exists a subgraph G′ = (V ′, E′) of G with |V ′| ≤ k and
∑

e∈E′ w(e) ≤W such that V ′ is a vertex cover for G and G′ is a tree.2

The closely related problem Tour Cover differs from Tree Cover only in
that the edges in G′ should form a closed walk instead of a tree. Note that a
closed walk can contain repeated vertices and edges. Both Tree Cover and
Tour Cover were introduced in [6] where it is shown that Tree Cover is
approximable within 3.55 and Tour Cover within 5.5. Könemann et al. [23]
improved both approximation factors to 3.

Section 4 considers the Capacitated Vertex Cover (CVC) problem and
related variants. Here, each vertex v ∈ V is assigned a capacity c(v) ∈ N

+ that
limits the number of edges it can cover when being part of the vertex cover.

Definition 1. Given a capacitated graph G = (V,E) and a vertex cover C for G.
We call C capacitated vertex cover if there exists a mapping f : E → C which
maps each edge in E to one of its two endpoints such that the total number of
edges mapped by f to any vertex v ∈ C does not exceed c(v).

Capacitated Vertex Cover: Given a vertex-weighted (with positive real
numbers) and capacitated graph G, an integer k ≥ 0, and a real num-
ber W ≥ 0, determine whether there exists a capacitated vertex cover C

for G containing at most k vertices such that
∑

v∈C w(v) ≤W .

The CVC problem was introduced by Guha et al. [22] who also give a factor-2
approximation algorithm. Two special flavors of CVC exist in the literature that
arise by allowing “copies” of a vertex to be in the capacitated vertex cover [22,
15, 20]. In that context, taking a vertex l times into the capacitated vertex cover
causes the vertex to have l times its original capacity. The number of such copies
is unlimited in the Soft Capacitated Vertex Cover (Soft CVC) problem
while it may be restricted for each vertex individually in the Hard Capacitated

Vertex Cover (Hard CVC) problem. For unweighted Hard CVC, the best

2
Tree Cover is equivalent to Connected Vertex Cover for unweighted graphs.
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known approximation algorithm achieves a factor of 2 [20]. The weighted version
Hard CVC is at least as hard to approximate as Set Cover [15].

Section 5 considers a third direction of VC generalizations besides connect-
edness and capacitation. In the Maximum Partial Vertex Cover problem,
we relax the condition that all edges must be covered.

Maximum Partial Vertex Cover: Given a graph G = (V,E) and two in-
tegers k ≥ 0 and t ≥ 0, determine whether there exists a vertex subset V ′ ⊆ V

of size at most k such that V ′ covers at least t edges.

This problem was introduced by Bshouty and Burroughs [10] who showed it to
be approximable within 2. Further improvements can be found in [21]. Note that
Maximum Partial Vertex Cover is fixed-parameter tractable with respect
to the parameter t [9]. In case of Minimum Partial Vertex Cover we are
asked for a vertex subset with at least k vertices covering at most t edges.

3 Connected Vertex Cover and Variants

In this section we show that Connected Vertex Cover is fixed-parameter
tractable with respect to the size of the connected vertex cover. More precisely,
it can be solved by an algorithm running in O(6kn + 4kn2 + 2kn2 log n + 2knm)
time where n and m denote the number of vertices and edges in the input graph
and k denotes the size of the connected vertex cover. We modify this algorithm
to also show the fixed-parameter tractability for two variants of Connected

Vertex Cover, namely Tree Cover and Tour Cover.
We solve Connected Vertex Cover by using the Dreyfus-Wagner algo-

rithm as a subprocedure for computing a Steiner minimum tree in a graph [18].
For an undirected graph G = (V,E), a subgraph T of G is called a Steiner tree
for a subset K of V if T is a tree containing all vertices in K such that all
leaves of T are elements of K. The vertices of K are called the terminals of T .
A Steiner minimum tree for K in G is a Steiner tree T such that the number
of edges contained in T is minimum. Finding a Steiner minimum tree leads to
an NP-complete problem. The Dreyfus-Wagner algorithm computes a Steiner
minimum tree for a set of at most l terminals in O(3ln + 2ln2 + n2 log n + nm)
time [18].

Our algorithm for Connected Vertex Cover consists of two steps:

1. Enumerate all minimal vertex covers with at most k vertices. If one of the
enumerated minimal vertex covers is connected, then output it and terminate.

2. Otherwise, for each of the enumerated minimal vertex covers C, use the
Dreyfus-Wagner algorithm to compute a Steiner minimum tree with C as
the set of terminals. If one minimal vertex cover has a Steiner minimum
tree T with at most k − 1 edges, then return the vertex set of T as output;
otherwise, there is no connected vertex cover with at most k vertices.

Theorem 2. Connected Vertex Cover can be solved in O(6kn + 4kn2 +
2kn2 log n + 2knm) time.
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Proof. The first step of the algorithm is correct since each connected vertex cover
(covc) contains at least one minimal vertex cover. For a given graph, there are
at most 2k minimal vertex covers with at most k vertices. We can enumerate
all such minimal vertex covers in O(2k ·m) time. Then, the running time of the
first step is O(2k ·m).

The correctness of the second step follows directly from the following easy
to prove observation: For a set of vertices C, there exists a connected subgraph
of G with at most k vertices which contains all vertices in C iff there exists
a Steiner tree in G with C as the terminal set and at most k − 1 edges. By
applying the Dreyfus-Wagner algorithm on G with C as the terminal set, we
can easily find out whether there are k − |C| vertices from V \ C connecting C

and, hence, whether there is a covc with at most k vertices and containing C.
Since |C| < k, the second step can be done in O(2k·(3kn+2kn2+n2 log n+nm)) =
O(6kn + 4kn2 + 2kn2 log n + 2knm) time. ⊓⊔

The algorithm for Connected Vertex Cover can be modified to solve
Tree Cover and Tour Cover. The proof is omitted.

Corollary 3. Tree Cover and Tour Cover can be solved in O((2k)k · km)
and O((4k)k · km) time, respectively.

4 Capacitated Vertex Cover and Variants

In this section we present fixed-parameter algorithms for the CVC problem
and its variants Hard CVC and Soft CVC. In the case of CVC, the easiest
way to show its fixed-parameter tractability is to give a reduction to a problem
kernel. This is what we begin with here, afterwards complementing it with an
enumerative approach for further improving the overall time complexity.

Proposition 4. Given an n-vertex graph G = (V,E) and an integer k ≥ 0 as
part of an input instance for CVC, then it is possible to construct an O(4k ·k2)-
vertex graph G̃ such that G has a size-k solution for CVC iff G̃ has a size-k
solution for CVC. In the special case of uniform vertex weights, G̃ has only
O(4k · k) vertices. The construction of G̃ can be performed in O(n2) time.

Proof. We first assume uniform vertex weights, generalizing the approach to
weighted graphs at the end of the proof.

Let u, v ∈ V , u 6= v, and {u, v} 6∈ E. The simple observation that lies at
the heart of the data reduction rule needed for the kernelization is that if the
open neighborhoods of u and v coincide (i.e., N(u) = N(v)) and c(u) < c(v),
then u is part of a minimum capacitated vertex cover only if v is as well. We
can generalize this finding to a data reduction rule: Let {v1, v2, . . . , vk+1} ⊆ V

with the induced subgraph G[{v1, v2, . . . , vk+1}] being edgeless, and N(v1) =
N(v2) = · · · = N(vk+1). Call this the neighbor set. Then delete from G a vertex
vi ∈ {v1, v2, . . . , vk+1} which has minimum capacity. This rule is correct because
any size-k capacitated vertex cover C containing vi can be modified by replacing
vi with a vertex from {v1, v2, . . . , vk+1} which is not in C.
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Based on this data reduction rule, G̃ can be computed from G as claimed by
the following two steps:

1. Use the straightforward linear-time factor-2 approximation algorithm to find
a vertex cover S for G of size at most 2k′ (where k′ is the size of a minimum
vertex cover for G and hence k′ ≤ k). If |S| > 2k, then we can stop because
then no size-k (capacitated) vertex cover can be found. Note that V \ S

induces an edgeless subgraph of G.
2. Examining V \S, check whether there is a subset of k + 1 vertices that fulfill

the premises of the above rule. Repeatedly apply the data reduction rule until
it is no longer applicable. Note that this process continuously shrinks V \ S.

The above computation is clearly correct. The number of all possible neighbor
sets can be at most 22k (the number of different subsets of S). For each neighbor
set, there can be at most k neighboring vertices in V \S; otherwise, the reduction
rule would apply. Hence, in the worst case we can have at most 22k ·k vertices in
the remaining graph G̃. The generalization to non-uniform vertex weights works
as follows: We have |S| ≤ 2k. Hence, the vertices in V \ S may have maximum
vertex degree 2k and the capacity of a vertex in V \S greater than 2k without any
harm can be replaced by capacity 2k. Therefore, without loss of generality, one
may assume that the maximum capacity of vertices in V \S is 2k. We then have
to modify the reduction rule as follows. If there are vertices v1, v2, . . . , v2k2+1 ∈ V

with N(v1) = N(v2) = . . . = N(v2k2+1), partition them into subsets of vertices
with equal capacity. There are at most 2k of these sets. If such a set contains
more than k vertices, delete the vertex with maximum weight. Altogether, we
thus end up with a problem kernel of 22k · 2k2 = O(4k · k2) vertices.

It remains to justify the polynomial running time. First, note that the trivial
factor-2 approximation algorithm runs in time O(|E|) = O(n2). Second, exam-
ining the common neighborhoods can be done in O(n2) time by successively
partitioning the vertices in V \ S according to their neighborhoods. ⊓⊔

Clearly, a simple brute-force search within the reduced instance (with a size
of only O(4k · k2) vertices) already yields the fixed-parameter tractability of

CVC, albeit in time proportional to
(

4k·k2

k

)

. As the next theorem shows, we can
do much better concerning the running time.

Theorem 5. The CVC problem can be solved in O(1.2k2

+ n2) time.

The theorem is proved by first giving an algorithm to solve Capacitated

Vertex Cover and then proving its running time. The basic idea behind the
algorithm is as follows: We start with a minimal vertex cover C = {c1, . . . , ci} ⊆
V for the input graph G = (V,E). Due to lack of capacities, C is not necessarily
a capacitated vertex cover for G. Hence, if C is not a capacitated vertex cover,
we need to add some additional vertices from V \ C to C in order to provide
additional capacities. More precisely, since for each vertex v ∈ (V \ C) all of
its neighbors are in C, adding v can be seen as “freeing” exactly one unit of
capacity for as many as c(v) neighbors of v. The algorithm uses an exhaustive
search approach based on this observation by enumerating all possible patterns
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of capacity-freeing and for each pattern computing the cheapest set of vertices
from V \ C (if one exists) that matches it.

Definition 6. Given a graph G = (V,E) and a vertex cover C = {c1, . . . , ci} ⊆
V for G. A capacity profile of length i is a binary string s = s[1] . . . s[i] ∈ {0, 1}i.
A vertex w ∈ V \C is said to match a capacity profile s if it is incident to each
vertex cj ∈ C with s[j] = 1 and its capacity is at least the number of ones in s.

Using Definition 6, the following pseudocode gives an algorithm for CVC.

Algorithm: Capacitated Vertex Cover

Input: A capacitated and vertex-weighted graph G = (V,E), k ∈ N
+, W ∈ R

+

Output: “Yes” if G has a capacitated vertex cover of size at most k

with weight ≤W ; “No” otherwise

01 Perform the kernelization from Proposition 4 on G

02 for every minimal vertex cover C of G with size i ≤ k do

03 if C is a cap. vertex cover with weight ≤W then return “Yes”
04 for every multiset M of (k − i) capacity profiles of length i do

05 remove the all-zero profiles from M

06 find the cheapest set Ĉ ⊆ (V \ C) so that there exists a

bijective mapping f : Ĉ →M where each ĉ ∈ Ĉ matches

the capacity profile of f(ĉ). Set Ĉ ← ∅ if no such set exists

07 if Ĉ 6= ∅, the weight of Ĉ is ≤W , and C ∪ Ĉ is a
capacitated vertex cover for G then return “Yes”

08 return “No”

Lemma 7. The given algorithm for Capacitated Vertex Cover is correct.

Proof. Preprocessing the graph in line 01 is correct according to Proposition 4.
Since a capacitated vertex cover for a graph G = (V,E) is also a vertex cover,
its vertices can be partitioned into two sets C and Ĉ such that C is a minimal
vertex cover for G. Each vertex in Ĉ gives additional capacity to a subset of the
vertices in C, i.e., for every ĉ ∈ Ĉ, we can construct a capacity profile sĉ where
sĉ[j] = 1 if and only if ĉ uses its capacity to cover the edge to the j-th vertex
in C. The correctness of the algorithm follows from its exhaustive nature: It tries
all minimal vertex covers, all possible combinations of capacity profiles and for
each combination determines the cheapest possible set Ĉ such that C ∪ Ĉ is a
capacitated vertex cover for G. ⊓⊔

Lemma 8. The given algorithm for CVC runs in O(1.2k2

+ n2) time.

Proof. The preprocessing in line 01 can be carried out in O(n2) time according
to Proposition 4. This leads to a new graph containing at most ñ = O(4k · k2)
vertices. Line 02 of the algorithm can be executed in O(2k)·ñO(1) time and causes
the subsequent lines 03–07 to be called at most 2k times. Due to [15, Lemma 1],
we can decide in ñO(1) time whether a given vertex cover is also a capacitated
vertex cover (lines 03 and 07). For line 04, note that for a given 0 ≤ i ≤ k
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there exist 2i different capacity profiles of that length. Furthermore, it is well-
known that given a set A where |A| = a, there exist exactly

(

a+b−1
b

)

b-element
multisets with elements drawn from A. Hence, line 04 causes lines 05–07 to be

executed
(

2i+(k−i)−1
k−i

)

times. The delay between enumeration of two multisets

can be kept constant. As it will be shown in Lemma 9, line 06 takes ñO(1) time.
Overall, the running time of the algorithm is bounded from above by

O(n2) + 2k · max
1≤i≤k

(

2i + (k − i)− 1

k − i

)

· ñO(1).

With some effort, we can bound this number by O(n2 + 1.2k2

). ⊓⊔

It remains to show the running time for line 06 of the algorithm.

Lemma 9. Given a weighted, capacitated graph G = (V,E), a vertex cover C

of G of size i ≤ k for G, and a multiset M of k − i capacity profiles of length i.
Then, it takes nO(1) time to find the cheapest set Ĉ ⊆ (V \C) so that there exists
a bijective mapping f : Ĉ → M where each ĉ ∈ Ĉ matches the capacity profile
of f(ĉ) or determine that no such set Ĉ exists.

Proof. Finding Ĉ is equivalent to finding a minimum weight maximum bipartite
matching on the bipartite graph G′ = (V ′

1 , V ′
2 , E′) where each vertex in V ′

1

represents a capacity profile from M , V ′
2 = V \C, and two vertices v ∈ V ′

1 , u ∈ V ′
2

are connected by an edge in E′ if and only if the vertex represented by u matches
the profile represented by v (the weight of the edge is w(u)). Finding such a
matching is well-known to be solvable in polynomial time [16]. ⊓⊔

It is possible to solve Soft CVC and Hard CVC by adapting the above
algorithm for CVC: Observe that if we choose multiple copies of a vertex into
the cover, each of these copies will have its own individual capacity profile.
Thus, only line 06 of the CVC algorithm has to be adapted to solve Soft CVC

and Hard CVC. The proof is omitted.

Corollary 10. Soft CVC and Hard CVC are solvable in O(1.2k2

+n2) time.

5 Maximum and Minimum Partial Vertex Cover

All the Vertex Cover variants we studied in the previous sections are known
to have a polynomial-time constant-factor approximation (mostly factor 2). All
of them were shown to be fixed-parameter tractable. By way of contrast, we now
present a result where a variant that has a polynomial-time factor-2 approxima-
tion is shown to be fixed parameter intractable. More precisely, we show that
Maximum Partial Vertex Cover (MaxPVC) is W[1]-hard with respect to
the size k of the partial vertex cover by giving a parameterized reduction from
the W[1]-complete Independent Set problem [17] to MaxPVC. With the so-
lution size as parameter, we also show the W[1]-hardness of its minimization
version MinPVC by a reduction from Clique.
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Independent Set: Given a graph G = (V,E) and an integer k ≥ 0, deter-
mine whether there is a vertex subset I ⊆ V with at least k vertices such
that the subgraph of G induced by I contains no edge.

An independent set in a graph is a set of pairwise nonadjacent vertices.

Theorem 11. Maximum Partial Vertex Cover is W[1]-hard with respect
to the size of the cover.

Proof. We give a parameterized reduction from Independent Set to Max-

PVC. Given an input instance (G = (V,E), k) of Independent Set. For
every vertex v ∈ V , let deg(v) denote the degree of v in G. We construct a
new graph G′ = (V ′, E′) in the following way: For each vertex v ∈ V we in-
sert |V | − deg(v) new vertices into G and connect each of these new vertices
with v. In the following, we show that a size-k independent set in G one-to-one
corresponds to a size-k partial vertex cover in G′ which covers t := k · |V | edges.

Firstly, a size-k independent set in G also forms a size-k independent set
in G′. Moreover, each of these k vertices has exactly |V | incident edges. Then,
these k vertices form a partial vertex cover covering k · |V | edges. Secondly, if we
have a size-k partial vertex cover in G′ which covers k · |V | edges, then we know
that none of the newly inserted vertices in G′ can be in this cover. Hence, this
cover contains k vertices from V . Moreover, a vertex in G′ can cover at most |V |
edges and two adjacent vertices can cover only 2|V | − 1 edges. Therefore, no
two vertices in this partial vertex cover can be adjacent, which implies that this
partial cover forms a size-k independent set in G. ⊓⊔

In Minimum Partial Vertex Cover (MinPVC), we wish to choose at
least k vertices such that at most t edges are covered. Through a parameterized
reduction from the W[1]-complete Clique problem [17], it is possible to show
analogously to MaxPVC that MinPVC is also W[1]-hard. This reduction works
in a similar way as the reduction in the proof above. The proof is omitted.

Corollary 12. Minimum Partial Vertex Cover is W[1]-hard with respect
to the size of the cover.

6 Conclusion

We extended and completed the parameterized complexity picture for natural
variants and generalizations of Vertex Cover. Notably, whereas the fixed-
parameter tractability of Vertex Cover immediately follows from a simple
search tree strategy, this appears not to be the case for all of the problems studied
here. Table 1 in Section 2 summarizes our results, all of which, to the best of
our knowledge, are new in the sense that no parameterized complexity results
have been known before for these problems. Our fixed-parameter tractability
results clearly generalize to cases where the vertices have real weights ≥ c for
some given constant c > 0 and the parameter becomes the weight of the desired
vertex cover (see [28] for corresponding studies for Vertex Cover). Our work
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also complements the numerous approximability results for these problems. It is
a task for future research to significantly improve on the presented worst-case
running times (exponential factors in parameter k). In particular, it would be
interesting to learn more about the amenability of the considered problems to
problem kernelization by (more) efficient data reduction techniques.

Besides the significant interest (with numerous applications behind) in the
studied problems on their own, we want to mention one more feature of our
work that lies a little aside. Adding our results to the already known large
arsenal of facts about Vertex Cover, this problem can be even better used
and understood as a seed problem for parameterized complexity as a whole: New
aspects now related to vertex covering by means of our results are issues such as
enumerative techniques or parameterized reduction. This might be of particular
use when learning or teaching parameterized complexity through basically one
natural and easy to grasp problem—Vertex Cover—and its “straightforward”
generalizations.
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nected Vertex Cover.
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