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Abstract
Graph Burning asks, given a graph G = (V , E) and an integer k, whether there
exists (b0, . . . , bk−1) ∈ V k such that every vertex in G has distance at most i from
some bi . This problem is known to be NP-complete even on connected caterpillars
of maximum degree 3. We study the parameterized complexity of this problem and
answer all questions byKare andReddy [IWOCA2019] about the parameterized com-
plexity of the problem. We show that the problem is W[2]-complete parameterized
by k and that it does not admit a polynomial kernel parameterized by vertex cover
number unless NP ⊆ coNP/poly. We also show that the problem is fixed-parameter
tractable parameterized by clique-width plus the maximum diameter among all con-
nected components. This implies the fixed-parameter tractability parameterized by
modular-width, by treedepth, and by distance to cographs. Using a different tech-
nique, we show that parameterization by distance to split graphs is also tractable. We
finally show that the problem parameterized by max leaf number is XP.

Keywords Graph burning · Parameterized complexity · Fixed-parameter tractability

1 Introduction

Bonato, Janssen, and Roshanbin [8, 9] introduced Graph Burning as a model of
information spreading. This problem asks to burn all the vertices in a graph in the
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following way: we first pick a vertex and set fire to the vertex; at the beginning of each
round, the fire spreads one step along edges; at the end of each round, we pick a vertex
and set fire to it; the process finishes when all vertices are burned. The objective in
the problem is to minimize the number of rounds (including the first round for just
picking the first vertex) to burn all the vertices. The minimum number of rounds that
can burn a graph G in such a process is the burning number of G, which is denoted by
b(G). Given a graph G and an integer k, Graph Burning asks whether b(G) ≤ k.

In other words, the burning number of G can be defined as the minimum length k
of a sequence (b0, . . . , bk−1) of vertices of G such that every vertex in G has distance
at most i from some bi . We call such a sequence a burning sequence. Note that in
this definition, bi is the vertex we set fire in the (k − i)th round. It is also useful to
introduce the generalized neighborhood of vertices. For a vertex v of a graph G, let
Nd [v] be the set of vertices with distance at most d in G. For example, N0[v] contains
only v, N1[v] is the closed neighborhood N [v] of v, and N2[v] = ⋃

u∈N [v] N [u]. With
this terminology, a sequence (b0, . . . , bk−1) of vertices of G = (V , E) is a burning
sequence of G = (V , E) if and only if

⋃
0≤i≤k−1 Ni [bi ] = V .

Note that although Graph Burning is a recent concept, Alon [1] studied the same
problem in 1992 as a message transmitting problem on hypercubes motivated by a
practical application originated from Intel. Alon [1] showed that the n-dimensional
hypercube has burning number �n/2�+1. This line of research was followed by a few
groups of authors [28, 30, 38] and primarily focused on highly symmetric networks.

1.1 PreviousWork

As a model of information spreading, it is important to know how fast the information
can spread under the model in the worst case. This question can be answered by
finding the maximum burning number of graphs of n vertices. The literature is rich
in this direction. In the very first papers [8, 9], it is shown that b(G) ≤ 2�√n� − 1
for every connected graph G of order n and conjectured that b(G) ≤ �√n� holds.
Note that the connectivity requirement is essential here as an edgeless graph of order
n needs n rounds. Some improvements of the general upper bound and studies on
special cases are done [3, 6, 7, 11, 15, 20, 27, 34–37, 39, 40, 45], but the conjecture
of b(G) ≤ �√n� for general connected graphs remains unsettled. The current best
upper bound is �(−3 + √

24n + 33)/4� ≈ √
1.5n [34].

The computational complexity of Graph Burning has been studied intensively as
well. It is shown thatGraph Burning is NP-complete on trees of maximum degree 3,
spiders, and linear forests [2]. The NP-completeness result is further extended to
connected caterpillars of maximum degree 3 [35], which form subclasses of connected
interval graphs, connected permutation graphs, and connected unit disk graphs. On the
other hand, Graph Burning admits a 3-approximation algorithm for general graphs
[10], that is, given a graph G, the algorithm finds a burning sequence of G with length
at most 3 · b(G) in polynomial time. Recently, the problem has been shown to be
APX-hard [41]. Algorithms with approximation factors parameterized by path-length
and tree-length are known as well [31].
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Kare and Reddy [32] initiated the study on parameterized complexity of Graph
Burning. They showed thatGraph Burning on connected graphs is fixed-parameter
tractable parameterized by distance to cluster graphs and by neighborhood diversity.
The parameterized complexity with respect to the natural parameter k, the burning
number, remained open. Recently, Janssen [29] has generalized the problem to directed
graphs and has shown that the directed version is W[2]-complete parameterized by k
even on directed acyclic graphs. It was mentioned in [29] that the original undirected
version parameterized by k was still open.

For further information about the previous studies, see the comprehensive survey
by Bonato [5].

1.2 Our Results

In the literature, the input graph of Graph Burning is sometimes assumed to be con-
nected (e.g. in [32]). InGraph Burning, the disconnected case would be nontrivially
more complex than the connected case. For example, while the burning number of a
path of n vertices is known to be �√n� [8, 9], Graph Burning is NP-complete on
disjoint unions of paths [2]. In this paper, we do not assume the connectivity of input
graphs. All positive results in this paper hold on possibly disconnected graphs, while
all negative results hold even on connected graphs.

Our study in this paper is inspired by Kare and Reddy [32] and Janssen [29]. We
generalize the results in [32] and solve all open problems on parameterized com-
plexity in [32]. In Sect. 2, we present fixed-parameter algorithms. We show that
Graph Burning is fixed-parameter tractable parameterized by clique-width plus
the maximum diameter among all connected components. This implies that Graph
Burning is fixed-parameter tractable parameterized by modular-width, by treedepth,
and by distance to cographs. We also show that Graph Burning is fixed-parameter
tractable parameterized by distance to split graphs. The complexity parameterized by
distance to cographs and by distance to split graphs were explicitly asked in [32].
The fixed-parameter tractability parameterized by modular-width generalizes the one
parameterized by neighborhood diversity in [32]. In Sect. 3, we present some nega-
tive results. We show that Graph Burning parameterized by the natural parameter
k is W[2]-complete. This settles the main open problem in this line of research [29,
32]. As a byproduct, we also show that Graph Burning parameterized by vertex
cover number does not admit a polynomial kernel unless NP ⊆ coNP/poly. This also
answers a question in [32]. Finally, in Sect. 4, we show that Graph Burning is in
XP parameterized by the max leaf number and by the maximum diameter among all
connected components. See Fig. 1 for a summary of the results.

We assume that the reader is familiar with the basic terms and concepts in the
parameterized complexity theory. See some textbooks in the field (e.g., [14, 18]) for
definitions.We omit the definitions of most of the graph parameters in this paper as we
do not explicitly need them. We only need the definition of the vertex cover number
of a graph: it is the minimum size of a vertex subset (called a vertex cover) such that
each edge in the graph has at least one endpoint in the set. We refer the readers to [44]
for the definitions of other graph parameters and the hierarchy among them.
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Fig. 1 Graph parameters and the complexity of Graph Burning. Our results in this paper are on the
parameterswith the dark background.Connections between twoparameters imply the existence of a function
in the one above (being in this sensemore general) that lower-bounds the one below. “Themaximumdiameter
of the components” is shortened as “max diameter”

2 Fixed-Parameter Tractability

Wefirst observe thatGraph Burning is expressible as a first order logic (FO) formula
of length depending only on k.

The syntax of FO of graphs includes (i) the logical connectives ∨, ∧, ¬, ⇔, ⇒, (ii)
variables for vertices, (iii) the quantifiers ∀ and ∃ applicable to these variables, and
(iv) the following binary relations: equality of variables, and adj(u, v) for two vertex
variables u and v, which means that u and v are adjacent. If G models an FO formula
ϕ with no free variables, then we write G |� ϕ.

The following formula dist≤d(v,w) is true if and only if the distance between v

and w is at most d:

dist≤d(v,w) := ∃u0, . . . , ud (u0 = v) ∧ (ud = w)

∧
⎛

⎝
∧

0≤i<d

(ui = ui+1) ∨ adj(ui , ui+1)

⎞

⎠ .

Clearly, dist≤d(v,w) has length depending only on d. Now we define the formula
ϕk such that G |� ϕk if and only if (G, k) is a yes instance of Graph Burning as
follows:

ϕk := ∃v0, . . . , vk−1 ∀u
∨

0≤i≤k−1

dist≤i (u, vi ).

It is known that on nowhere dense graph classes, testing an FO formula ψ is fixed-
parameter tractable parameterized by |ψ |, where |ψ | is the length of ψ [25]. (See [25]
for the definition of nowhere dense graph classes.) Since ϕk is an FO formula of length
depending only on k, the following holds.
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Observation 2.1 Graph Burning on nowhere dense graph classes parameterized by
k is fixed-parameter tractable.

For an n-vertex graph G of clique-width at most cw and for a one-sorted monadic-
second order logic formula (an MSO1 formula, for short) ψ , one can check whether
G |� ψ in time O( f (|ψ |, cw) · n3), where f is a computable function [13, 43]. Since
an FO formula is an MSO1 formula and the length of ϕk depends only on k, we can
observe the following fact.

Observation 2.2 Graph Burning parameterized by clique-width + k is fixed-
parameter tractable.

We extend this observation in a nontrivial way to show the main result of this section.
To this end, it is useful to generalize ϕk as follows. For nonempty I = {i1, . . . , i|I |} ⊆
{0, . . . , k−1}, let ϕI be a formula that means that there are vertices bi1 , . . . , bi|I | such
that

⋃
i j∈I Ni j [bi j ] = V , which can be expressed as follows:

ϕI := ∃vi1, . . . , vi|I | ∀u
∨

1≤ j≤|I |
dist≤i j (u, vi j ).

Clearly, checking G |� ϕI is still fixed-parameter tractable parameterized by clique-
width + k.

Theorem 2.3 Graph Burning is fixed-parameter tractable parameterized by clique-
width plus the maximum diameter among all connected components.

Proof Let (G, k) be an instance of Graph Burning, where G has n vertices. Let
C1, . . . ,Cp be the connected components of G and dmax be the maximum diameter of
the components. We assume that k ≥ p since otherwise (G, k) is a trivial no instance.
By Observation 2.2, we can also assume that dmax < k.

Observe that if a component Cq contains bi for some i ≥ dmax, then Ni [bi ] =
V (Cq). Hence the problem is equivalent to finding a sequence (b0, . . . , bdmax−1) that
burns as many connected components as possible. That is, we want to find a maxi-
mum cardinality subset C ⊆ {C1, . . . ,Cp} and a sequence (b0, . . . , bdmax−1) such that⋃

0≤i≤dmax−1 Ni [bi ] = ⋃
Cq∈C V (Cq). It holds that p − |C| ≤ k − dmax if and only if

(G, k) is a yes instance.
We reduce this problem to Disjoint Sets. Given a universe U , a subset family

S ⊆ 2U , and an integer t , Disjoint Sets asks whether there are t pairwise-disjoint
subsets in S. Let U = {0, 1, . . . , dmax − 1} ∪ {c1, . . . , cp} and S = {I ∪ {cq} |
I ⊆ {0, . . . , dmax − 1}, Cq |� ϕI , 1 ≤ q ≤ p}. Clearly, picking I ∪ {cq} into the
solution for the Disjoint Set instance corresponds to burning Cq with {bi | i ∈ I },
and vice versa. We set t = p − k + dmax. Note that t ≤ dmax as k ≥ p. Using
the color-coding technique, it can be shown that Disjoint Sets is solvable in time
2O(t ·maxS∈S |S|)(|S| + |U |)O(1) [18, Disjoint r - Subsets] (see also [16, Bounded
Rank Disjoint Sets]). In our instance, t · maxS∈S |S| ≤ dmax(dmax + 1) holds.

For each q ∈ {1, . . . , p} and for each I ⊆ {0, . . . , dmax − 1}, we can test whether
Cq |� ϕI in time O( f (dmax + cw) · n3) for some computable function f , where cw is
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the clique-width of G, because |ϕI | depends only on dmax. Thus, S can be constructed
in time O( f (dmax + cw) · n3 · p · 2dmax). Since |S| ≤ 2dmax · p, the last step of solving
Disjoint Sets can be done in time 2O(d2max)(2dmax · p+ (dmax+ p))O(1). Since p ≤ n,
the total running time is g(dmax + cw) · nO(1) for some computable function g. This
completes the proof. ��

The definition of modular-width [23] implies that every connected component of
a graph of modular-width at most w has both diameter and clique-width at most w.
It is known that every connected component of a graph of treedepth at most d has
diameter at most 2d [42] and its clique-width is bounded by a function of treedepth
(or even smaller treewidth) [12]. Therefore, Theorem 2.3 implies the fixed-parameter
tractability with respect to these parameters.

Corollary 2.4 Graph Burning is fixed-parameter tractable parameterized by
modular-width.

Corollary 2.5 Graph Burning is fixed-parameter tractable parameterized by
treedepth.

For a graph class C and a graph G, the distance from G to C is defined as the
minimum integer k such that by removing at most k vertices from G, one can obtain
a member of C.

Let C be a graph class with constants c and d such that each graph in C has clique-
width at most c and each connected component of each member of C has diameter at
most d. Observe that a graph of distance at most k to C has clique-width at most c · 2k
since after a removal of a single vertex, the clique-width remains at least half of the
original clique-width [26]. Observe also that each connected component of a graph of
distance at most k to C has diameter less than (k + 1)(d + 2). Thus, by Theorem 2.3,
Graph Burning is fixed-parameter tractable parameterized by distance to C. This
observation can be applied immediately to cographs that are known to be the P4-free
graphs and the graphs of clique-width at most 2.

Corollary 2.6 Graph Burning is fixed-parameter tractable parameterized by dis-
tance to cographs.

Nowwe consider the distance to split graphs. A graph is a split graph if its vertex set
can be partitioned into a clique and an independent set. For a graphG = (V , E), which
is not necessarily a split graph, a subset S ⊆ V is a split-deletion set if G − S is a split
graph. Then the distance to split graphs fromG is equal to the minimum size of a split-
deletion set. It is known that the split graphs are exactly the (2K2,C4,C5)-free graphs
[21]. This characterization implies that when designing an algorithm parameterized
by distance d to split graphs, we can assume that a split-deletion set of minimum
size is given since a standard bounded-search tree algorithm finds such a set in time
5d · nO(1), where 5 is the maximum order of the forbidden induced subgraphs.

Theorem 2.7 Graph Burning is fixed-parameter tractable parameterized by dis-
tance to split graphs.
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Fig. 2 The partition of the vertex
set in the proof of Theorem 2.7

Proof Let (G, k) be an instance of Graph Burning and S be a minimum split-
deletion set of G = (V , E). We denote |S| by s. Let (K , I ) be a partition of V − S,
where K is a clique and I is an independent set. It is well known that such a partition
can be found in linear time by greedily adding a vertex of minimum degree in G − S
into I . We further partition I into three subsets IK , IS , I∅ in such a way that I∅ is the
set of degree-0 vertices in G, IS is the set of vertices in I \ I∅ that have neighbors only
in S, and IK = I \ (I∅ ∪ IS). Note that each vertex in IS has at least one neighbor in
S and each vertex in IK has at least one neighbor in K (and possibly some neighbors
in S). See Fig. 2.

First observe that if k ≥ s+|I∅|+3, then (G, k) is a yes instance: take two vertices
arbitrarily as b0 and b1, one vertex in K as b2, and all the vertices in S ∪ I∅ as the rest
of a burning sequence. Hence, in the following, we assume that k < s + |I∅| + 3.

We now reduce the number of vertices in IS . For a nonempty subset S′ ⊆ S, let
JS′ ⊆ IS be the set of vertices whose neighborhood is exactly S′. Since the pairwise
distance between vertices in JS′ is 2, a burning sequence does not need four or more
vertices in JS′ . Thus,we can remove all but three vertices in JS′ andobtain an equivalent
instance. We apply this reduction to all subsets S′ ⊆ S and denote the reduced subset
of IS by I ∗

S . Note that |I ∗
S | < 3 · 2|S|.

We then remove all vertices in I∅ and obtain an equivalence instance of a slightly
generalized problem. Observe that if (G, k) is a yes instance, then there is a burning
sequence (b0, . . . , bk−1) of G such that the set of first |I∅| vertices {b0, . . . , b|I∅|−1}
is I∅: we need to take every isolated vertex into a burning sequence, but even b0 is
good enough to burn an isolated vertex. Hence, the problem can be reduced to the
one for finding a sequence (b|I∅|, b|I∅|+1, . . . , bk−1) of vertices in V \ I∅ such that⋃

|I∅|≤i≤k−1 Ni [bi ] = V \ I∅. We denote by (G ′, k, |I∅|) the obtained instance of the
new problem, where G ′ = G[K ∪ S ∪ I ∗

S ].
To solve the reduced problem, we first guess which vertices in S ∪ I ∗

S appear in
(b|I∅|, b|I∅|+1, . . . , bk−1) and where they are placed in the sequence. The number of
candidates of such a guess depends only on s as |S ∪ I ∗

S |k−|I∅| < (s + 3 · 2s)s+3. The
vacant slots of (b|I∅|, b|I∅|+1, . . . , bk−1) after the guess tell us which bi belongs to K ∪
IK . If there are at most three vertices in K ∪ IK that appear in (b|I∅|, b|I∅|+1, . . . , bk−1),
then we try all O(n3) combinations to complete the sequence. Otherwise, we guess
from O(n) candidates the vertex in K∪ IK that appears in (b|I∅|, b|I∅|+1, . . . , bk−1) and
has the largest index. Since the index of the guessed vertex in (b|I∅|, b|I∅|+1, . . . , bk−1)

is at least 3 and K ∪ IK induces a connected split graph, which has diameter at most
3, the guessed vertex in K ∪ IK burns all vertices in K ∪ IK .

Finally we fill the positions in (b|I∅|, b|I∅|+1, . . . , bk−1) that still remain vacant. Let
X ⊆ {|I∅|, . . . , k − 1} be the set of indices i for which no vertex is guessed as bi so
far, and let X = {|I∅|, . . . , k − 1} \ X . Let U = V (G ′) \ (

⋃
i∈X Ni [bi ]). Note that
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U ⊆ S ∪ I ∗
S . Our task is to find {bi | i ∈ X} ⊆ K ∪ IK such that U ⊆ ⋃

i∈X Ni [bi ].
This task can be seen as an instance (U ′,S, p) of Set Cover, where U ′ = U ∪ X ,
S = {(Ni [v] ∩ U ) ∪ {i} | v ∈ K ∪ IK , i ∈ X}, and p = |X | < k − |I∅| < s + 3.
Since Set Cover parameterized by |U ′| is fixed-parameter tractable [22,Lemma 2]
and |U ′| ≤ s + 3 · 2s + p, the theorem follows. ��

3 Fixed-Parameter Intractability

This section is devoted to the proofs of the following theorems.

Theorem 3.1 Graph Burning isW[2]-complete parameterized by k.

Theorem 3.2 Graph Burning does not admit a polynomial kernel parameterized by
vertex cover number unless NP ⊆ coNP/poly.

We present a reduction from Set Cover to Graph Burning that proves both
Theorems 3.1 and 3.2. Given a set U = {u1, . . . , un}, a family of nonempty subsets
S = {S1, . . . , Sm} ⊆ 2U \ {∅}, and a positive integer s, Set Cover asks whether
there exists a subfamily S ′ ⊆ S such that |S ′| ≤ s and

⋃
S∈S ′ S = U .

Let (U = {u1, . . . , un},S = {S1, . . . , Sm}, s) be an instance of Set Cover. We
construct an equivalent instance (G, k = s + 2) of Graph Burning. (See Fig. 3.)
We first construct s = k − 2 isomorphic graphs G2, . . . ,Gk−1 as follows. For each
i ∈ {2, 3, . . . , k − 1}, the vertex set of Gi is Ui ∪ Vi , where Ui = {u(i)

1 , . . . , u(i)
n } is a

clique and Vi = {v(i)
1 , . . . , v

(i)
m } is an independent set. In Gi , u

(i)
p and v

(i)
q are adjacent

if and only if u p ∈ Sq . From each Gi , we construct Hi by adding i +2 copies of a path
of i vertices and all possible edges between each vertex in Vi and one of the degree-1
vertices in each path. We then take the disjoint union of H2, H3, . . . , Hk−1 and add
U as a clique. For each i ∈ {2, 3, . . . , k − 1} and j ∈ {1, 2, . . . ,m}, we connect u(i)

j
and u j with a path of length i − 1 with i − 2 new inner vertices. Finally, we attach a
vertex w to a vertex in U , and a path (x, y, z) to the same vertex. We set V0 = {w}
and V1 = {x, y, z}. We denote the constructed graph by G.

Lemma 3.3 (U ,S, s) is a yes instance of Set Cover if and only if (G, k) is a yes
instance of Graph Burning.

Proof (�⇒) Assume that (U ,S, s) is a yes instance of Set Cover and S ′ ⊆ S is a
certificate; that is, |S ′| ≤ s and

⋃
S∈S ′ S = U . We assume without loss of generality

that |S ′| = s and S ′ = {S2, S3, . . . , Ss+1=k−1}. We set b0 = w, b1 = y, and bi = v
(i)
i

for 2 ≤ i ≤ k−1. We show that (b0, . . . , bk−1) is a burning sequence of G.
Clearly, N0[b0] = V0 and N1[b1] = V1. For 2 ≤ i ≤ k − 1, observe that Ni [bi ] =

Ni [v(i)
i ] includes all the vertices of Hi : the farthest vertices in i-vertex paths have

distance exactly i from v
(i)
i ; dist(v(i)

i , v
(i)
j ) = 2 for each j �= i as v

(i)
j and v

(i)
i share

a neighbor (an endpoint of a path of i vertices); dist(v(i)
i , u(i)

j ) ≤ 2 for every j since

v
(i)
i has at least one neighbor in the clique Ui as ∅ /∈ S. Moreover, Ni [v(i)

i ] includes
all inner vertices of the paths from Ui to U as dist(v(i)

i , u(i)
j ) ≤ 2 for every j . Finally,
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Fig. 3 The reduction from Set Cover to Graph Burning. The edges in the cliques U2, . . . ,Uk−1, and
U are omitted

u j ∈ Ni [v(i)
i ] if and only if u j ∈ Si : if u j ∈ Si , then v

(i)
i and u(i)

j are adjacent, and thus

dist(v(i)
i , u j ) ≤ 1+dist(u(i)

j , u j ) = i ; otherwise, v(i)
i and u(i)

j are not adjacent and thus

dist(v(i)
i , u j ) ≥ 1 + dist(u(i)

h �= j , u j ) > i . This implies that U ⊆ ⋃
2≤i≤k−1 Ni [v(i)

i ]
since

⋃
S∈S ′ S = U .

(⇐�) Assume that (G, k) is a yes instance of Graph Burning and (b0, . . . , bk−1)

is a burning sequence of G.
We first show that bi ∈ Vi for all 0 ≤ i ≤ k − 1. Let i ∈ {2, . . . , k − 1}. Assume

that we already know that b j ∈ Vj for i + 1 ≤ j ≤ k − 1. Since there are i + 2 paths
attached to Vi , at least one of them, say P , has no vertex in the remaining vertices
b0, . . . , bi . The degree-1 vertex in P has distance exactly i from every vertex in Vi
and distance at least i + 1 from every vertex not in V (P) ∪ Vi . Hence, bi ∈ Vi . Now
we know that bi ∈ Vi for 2 ≤ i ≤ k − 1. Let u j ∈ U be the vertex where V0 and V1
are attached to. For 2 ≤ i ≤ k − 1, we have dist(bi , u j ) ≥ i , and thus Ni [bi ] contains
no vertex in V0 ∪ V1. Since b0 covers only b0 itself, b1 = y and b0 = w hold.

For 2 ≤ i ≤ k − 1, let bi = v
(i)
hi
. Since N0[b0] = {w} and N1[b1] = {x, y, z},

we have U ⊆ ⋃
2≤i≤k−1 Ni [v(i)

hi
]. As we saw in the only-if case, u j ∈ Ni [v(i)

hi
] if

and only if u j ∈ Shi for 1 ≤ j ≤ n. This implies that Ni [v(i)
hi

] ∩ U = Shi , and thus
U = ⋃

2≤i≤k−1 Shi . Therefore, the subfamily {Sh2 , Sh3 , . . . , Shk−1} ⊆ S of at most
k − 2 = s subsets shows that (U ,S, s) is a yes-instance of Set Cover. ��
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Proof (Theorem 3.1) By Lemma 3.3, the construction of (G, k) from (U ,S, s)
described above is a parameterized reduction from Set Cover parameterized by s to
Graph Burning parameterized by k = s + 2. Since Set Cover is W[2]-complete
parameterized by s [17], the W[2]-hardness follows.

The membership to W[2] can be shown by the following reduction to Set Cover.
Let (G = (V , E), k) be an instance of Graph Burning. We set s = k, U =
V ∪ {0, 1, . . . , k − 1}, and S = {Ni [v] ∪ {i} | v ∈ V , 0 ≤ i ≤ k − 1}. This is just
an undirected version of the proof by Janssen [29], who showed the membership to
W[2] for Graph Burning on directed graphs, and the correctness can be shown in
the same way. ��
Proof (Theorem 3.2) The graph G constructed above has an independent set

⋃k−1
i=2 Vi .

The vertices not belonging to this independent set form a vertex cover of size 4+ (k−
1)|U |+∑

2≤i≤k−1(i(i+2)+(i−2)|U |), which is a polynomial in k = s+2 and |U |. By
Lemma 3.3, the construction of (G, k) from (U ,S, s) described above is a polynomial
parameter transformation [4] from Set Cover parameterized by |U | + s to Graph
Burning parameterized by vertex cover number. Since Set Cover parameterized by
|U |+ s does not admit polynomial kernels unless NP ⊆ coNP/poly [16], the theorem
holds. ��

The reduction above also shows theW[2]-hardness parameterized by diameter since
the diameter of a connected graph is smaller than the square of its burning number
[8, 9]. We further observe that the graph G in the reduction is P(4k−3)-free. That is,
G does not contain a path of 4k − 3 vertices as an induced subgraph. Let P be an
induced path in G. For i ∈ {2, . . . , k − 1}, let H ′

i be the graph consists of Hi and
the paths from Ui to U . Since U is a clique, there are at most two indices i such that
P intersects H ′

i − U . We can see that |V (P) ∩ V (H ′
i )| ≤ 2i + 1 for each i , and

thus |V (P)| ≤ 2(k − 1) + 1 + 2(k − 2) + 1 = 4k − 4. This implies the following
W[2]-hardness.
Corollary 3.4 Graph Burning on Pq-free graphs isW[2]-hard parameterized by q.

4 XP Algorithms

To complete the picture of parameterized complexity of Graph Burning (Fig. 1), we
present a couple of XP algorithms in this section. Recall that a parameterized problem
is slice-wise polynomial (or XP, for short) if it admits an algorithm of running time
O(n f (k)) for some computable function f , where n is the input size and k is the
parameter.

We saw in the previous section that Graph Burning is W[2]-hard parameter-
ized by the maximum diameter of the components. The following simple observation
complements this fact by placing it into XP.

Observation 4.1 Graph Burning is XP parameterized by the maximum diameter
among all connected components.
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Proof Let (G, k) be an instance of Graph Burning, n be the number of vertices inG,
and dmax be the maximum diameter of the components of G. As observed in the proof
of Theorem 2.3, the problem is equivalent to finding a sequence (b0, . . . , bdmax−1) that
burns as many connected components as possible. We try all possible sequences of
dmax vertices in G and find the one that burns the maximum number of components.
Since there are at most ndmax such sequences, this algorithm runs in time nO(dmax). ��

We now turn to the main result of this section, which is on max leaf number. The
max leaf number of a connected graph is the maximum integer � such that the graph
has a spanning tree with � leaves. For disconnected graphs, the max leaf number is the
sum of those of its connected components. It is known that the bandwidth of a graph is
upper-boundedby the twice of itsmax leaf number [44]. SinceGraph Burning isNP-
complete already on caterpillars of maximum degree 3 [27, 35], which have bandwidth
at most 2, it would be important to see how the problem changes its complexity when
parameterized by max leaf number.

In the rest of this section, we show that the burning number of G can be computed
in time nO(�2), where � is the max leaf number of G, yielding that Graph Burning
is XP parameterized by max leaf number.

Theorem 4.2 Graph Burning is XP parameterized by max leaf number.

Proof Let (G, k) be an instance of Graph Burning, where G = (V , E) is an n-
vertex graph of max leaf number �. It is known that such a graph is a subdivision
of a graph H with at most 4� − 2 vertices [19, 33]. Thus, the edge set E of G can
be partitioned into edge-disjoint paths P1, . . . , Pp with p ≤ (4�−2

2

)
such that for

1 ≤ i ≤ p, every internal vertex of Pi has degree exactly 2 in G. We call each end
vertex of Pi a connection point. Note that such a partition with the minimum number
of paths can be computed in polynomial time (while computing a spanning tree with
� leaves is NP-hard [24]). Let P = {P1, . . . , Pp} be such a partition.

In the following, we assume that the burning number ofG is at least (4�−2)(4�−3)
as otherwise we can compute b(G) in time nO(�2) by checking all possible burning
sequences. For a burning sequence B = (b0, . . . , bk−1) of G, we call bi the i th source
of B for each 0 ≤ i ≤ k − 1.

Let B = (b0, . . . , bk−1) be a burning sequence of G and let P = (v1, . . . , vt ) be a
path in G whose internal vertices have degree exactly 2 in G. Assume that B contains
at least one vertex vi ′ of P as the i th source of B (i.e., bi = vi ′ ). We say that bi is
left-effective for P (with respect to B) if for every v j ′ contained in B as the j th source
(i.e., b j = v j ′ ), it holds that i − i ′ ≥ j − j ′. Similarly, bi is right-effective for P
(with respect to B) if it satisfies i + i ′ ≥ j + j ′ for any v j ′ contained in B as the j th
source (i.e., b j = v j ′). Intuitively, if the fire starting at a vertex in P burns a vertex
u /∈ V (P), then at least one of the left- and right-effective vertices for P burns u as
well. If P contains at least one vertex bi in B, it also contains (possibly identical)
left- and right-effective vertices with respect to B. Note that for a path P , there can be
more than one left-effective vertices (and also right-effective vertices). Let x and y be
(possibly identical) left- and right-effective vertices for P , respectively. Observe that
for every vertex z ∈ (V (B) ∩ V (P)) \ {x, y} and v ∈ V (G) \ V (P), if v is burned by
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z, then v is also burned by at least one of x and y. This simple observation plays a key
role in the following discussion.

The idea of our algorithm is as follows. For each path P ∈ P , we guess at most
two vertices of a burning sequence B = (b0, . . . , bk−1) for its left- and right-effective
vertices. If these guesses are correct for B, the vertices “unburned” by the effective
vertices induce a disjoint union of O(�2) paths, and the remaining problem is easy to
solve by dynamic programming.

To be precise, we first select a subset S of vertices of G such that for each P ∈ P ,
|V (P) ∩ S| ≤ 2. Clearly, we have |S| ≤ (4� − 2)(4� − 3) and hence the number of
possible subsets is nO(�2). For such S, we also consider an assignment to a burning
sequence, which is defined by an injection γ from S to {0, 1, . . . , k − 1}. We say that
(S, γ ) is correct for B if (1) for every P ∈ P with V (P) ∩ S �= ∅, S contains at least
one left-effective vertices and at least one right-effective vertices for P , and (2) every
vertex in S is left- or right-effective for some P ∈ P . The key to our XP algorithm is
the following claim.

Claim Let B = (b0, . . . , bk−1) be a burning sequence of G, S ⊆ V (B), and
γ : S → {0, 1, . . . , k − 1}. If (S, γ ) is correct for B, then each component in
G[V \ (

⋃
v∈S Nγ (v)[v])] is a subpath of P for some P ∈ P that has no connection

points.

Proof (Claim) We show that each connection point u is burned by some vertex in
S under assignment γ , that is, u ∈ ⋃

v∈S Nγ (v)[v]. Suppose to the contrary that
u /∈ ⋃

v∈S Nγ (v)[v] for a connection point u on a path P ∈ P . As B is a burning
sequence ofG, there is bi ∈ V (B)with u ∈ Ni [bi ]. Let P ′ ∈ P be the path containing
bi . Then, S contains at least one left-effective vertex and at least one right-effective
vertex for P ′. By the definition of effective vertices, at least one of them also burns u,
contradicting to the choice of u. Thus,

⋃
v∈S Nγ (v)[v] contains all connection points

in G and hence each remaining component is a subpath of P . ��
The claim above ensures that if (S, γ ) is correct for a burning sequence B =

(b0, . . . , bk−1), then the set of the remaining vertices R := V \ (
⋃

v∈S Nγ (v)[v])
induces a disjoint union of paths. Moreover, as |S ∩ V (P)| ≤ 2 for each P ∈ P , there
are at most 3p paths in G[R]. LetR = {P ′

1, . . . , P
′
p′ } be the vertex-disjoint paths that

form G[R]. The remaining task is to burn those paths by appropriately selecting the
i th source of B for each i ∈ {0, . . . , k−1} \ {γ (v) | v ∈ S}. Since S contains left- and
right-effective vertices for each path inP (if they exist), the fire starting at a vertex on a
path P ∈ R does not spread to a vertex on another path P ′ ∈ R. Thus, we can assume
that the i th source of B is selected from R for each i ∈ {0, . . . , k−1}\{γ (v) | v ∈ S}.

To solve the remaining task, it suffices to give an algorithm that given a disjoint
union of paths P1, . . . , Pt and a set of indices I ⊆ {0, . . . , k − 1}, decides if there
is a set {bi | i ∈ I } of |I | vertices such that

⋃
i∈I Ni [bi ] covers all vertices in the

paths. If such a covering exists, then we say that the pair (I , {P1, . . . , Pt }) is feasible.
For each 1 ≤ i ≤ |I |, we denote by qi the i th smallest element in I and by Ii the
set of smallest i elements in I , i.e., Ii = {q1, . . . , qi }. For each 1 ≤ i ≤ t , let ni be
the number of vertices in Pi . Let P = {P1, . . . , Pt }. Observe that (I ,P) is feasible
if and only if so is (I|I |−1,Pi ) for some i ∈ {1, . . . , t}, where Pi is obtained from P
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by replacing the path Pi ∈ P with a path of ni − 2q|I | − 1 vertices as bq|I | can cover
2q|I | +1 consecutive vertices in a path. (If ni −2q|I | −1 ≤ 0, then we just remove Pi .)
This observation leads to the following dynamic programming algorithm.We compute
opt(i; �1, . . . , �t ) that indicates whether (Ii , {P ′

1, . . . , P
′
t }) is feasible, where each P ′

j
is a path of � j vertices. (We allow � j to be nonpositive when P ′

j is an empty graph
with no vertex.) Clearly, (I ,P) is feasible if and only if opt(|I |; n1, . . . , nt ) is true.
By the above observation, we have the following recurrence:

opt(0; �1, . . . , �t ) =
{
true if �i ≤ 0 for all 1 ≤ i ≤ t,

false otherwise,

opt(i; �1, . . . , �t ) =
∨

1≤ j≤t

opt(i − 1; �1, . . . , � j−1, � j − 2qi − 1, � j+1, . . . , �t ).

We can evaluate this recurrence in time nO(�2) since max1≤i≤t ni ≤ n and t ∈ O(�2).
This completes the proof. ��

5 Conclusion

Westudied the parameterized complexity of Graph Burning andpresented an almost
complete picture of the complexity hierarchy with respect to important structural
parameters (see Fig. 1). One missing piece in the picture is the complexity of the
problem parameterized by max leaf number. We showed that it is XP, but we do not
know whether it is fixed-parameter tractable.

Another question is on approximation. It is known that Graph Burning admits
a 3-approximation algorithm [10] but it is APX-hard [41]. It would be natural to ask
whether it admits a better approximation.

Finally, we recall that the following conjecture is still open: “b(G) ≤ �√n� for
every connected n-vertex graph G.”
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