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Abstract. Given a graph G = (V,E) and an integer k, the Minimum
Membership Dominating Set (MMDS) problem seeks to find a dom-
inating set S ⊆ V of G such that for each v ∈ V , |N [v]∩S| is at most k.
We investigate the parameterized complexity of the problem and obtain
the following results about MMDS:

1. W[1]-hardness of the problem parameterized by the pathwidth (and
thus, treewidth) of the input graph.

2. W[1]-hardness parameterized by k on split graphs.
3. An algorithm running in time 2O(vc)|V |O(1), where vc is the size of

a minimum-sized vertex cover of the input graph.
4. An ETH-based lower bound showing that the algorithm mentioned

in the previous item is optimal.

1 Introduction

For a graph G = (V,E), a set S ⊆ V is a dominating set for G, if for each v ∈ V ,
either v ∈ S, or a neighbor of v in G is in S. The Dominating Set problem
takes as input a graph G = (V,E) and an integer k, and the objective is to
test if there is a dominating set of size at most k in G. The Dominating Set
problem is a classical NP-hard problem [14], which together with its variants,
is a well-studied problem in Computer Science. It is also known under standard
complexity theoretic assumption that, Dominating Set cannot admit any al-
gorithm running in time f(k) · |V |O(1) time, where k is the size of dominating
set.3 A variant of Dominating Set that is of particular interest to us in this
paper, is the one where we have an additional constraint that the number of
closed neighbors that a vertex has in a dominating set is bounded by a given
integer as input.4 As Dominating Set is a notoriously hard problem in itself,

3 More formally, in the framework of parameterized complexity (see Section 2 for
definitions), the problem is W[2]-hard, and thus we do not expect any FPT algorithm
for the problem, when parameterized by the solution size.

4 For a vertex v in a graph G = (V,E), the closed neighborhood of v in G, NG[v], is
the set {u ∈ V | {a, b} ∈ E} ∪ {v}.
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so naturally, the above condition does not make the problem any easier. The
above variant has been studied in the literature, and several hardness results are
known for it [20]. Inspired by such negative results, in this paper, we remove
the size requirement of the dominating set that we are seeking, and attempt
to study the complexity variation for such a simplification. We call this version
(to be formally defined shortly) of the Dominating Set problem as Minimum
Membership Dominating Set (MMDS, for short). For a graph G = (V,E), a
vertex u ∈ V and a set S ⊆ V , the membership of u in S is M(u, S) = |N [u]∩S|.
Next we formally define the MMDS problem.

Minimum Membership Dominating Set (MMDS)
Input: A graph G = (V,E) and a positive integer k.
Parameter: k.
Question: Does there exist a dominating set S of G such that
maxu∈V M(u, S) ≤ k?

We refer to a solution of MMDS as a k-membership dominating set (k-mds).
Unless, otherwise specified, for MMDS, by k we mean the membership. The term
“membership” is borrowed from a similar version of the Set Cover problem by
Kuhn et al. [19], that was introduced to model reduction in interference among
transmitting base stations in cellular networks.

Our results. We prove that the MMDS problem is NP-Complete and study
the problem in the realm of parameterized complexity.

Theorem 1. The MMDS problem is NP-complete on planar bipartite graphs for
k = 1.

This shows that the MMDS problem for the parameter k is Para-NP-hard, even
for planar bipartite graphs. In other words, for every polynomial time com-
putable function f , there is no O(nf(k))-time algorithm for the MMDS problem.
Further, our reduction also shows that the MMDS restricted to planar bipartite
graphs does not have a (2− ε) approximation for any ε > 0.

Having proved the NP-Completeness property of MMDS, we study the prob-
lem parameterized by the pathwidth and treewidth of the input graph. (Please
see Section 2 for formal definitions of treewidth and pathwidth). We note that
Dominating Set parameterized by the treewidth admits an algorithm running
in time 3tw|V |O(1) [5]. In contrast to the above, we show that such an algorithm
cannot exist for MMDS.

Theorem 2. MMDS is W[1]-hard when parameterized by the pathwidth of the
input graph.

We note that the pathwidth of a graph is at least as large as its treewidth, and
thus the above theorem implies that MMDS parameterized by the treewidth
does not admit any FPT algorithm. We prove Theorem 2 by demonstrating
an appropriate parameterized reduction from a well-known W[1]-hard problem
called Multi-Colored Clique (see [12] for its W[1]-hardness).



Next we study MMDS for split graphs, and prove the following theorem.

Theorem 3. MMDS is W[1]-hard on split graphs when parameterized by k.

We prove the above theorem by giving a parameterized reduction from Multi-
Colored Independent Set, which is known to be W[1]-hard [12]. Our reduc-
tion is inspired by the known parameterized reduction from Multi-Colored
Independent Set to Dominating Set, where we carefully incorporate the
membership constraint and remove the size constraint on the dominating set.
We would like to note that Dominating Set is known to be W[2]-complete for
split graphs [24].

Next we study MMDS parameterized by the vertex cover number of the
input graph and show that it admits an FPT algorithm.

Theorem 4. MMDS admits an algorithm running in time 2O(vc)|V |O(1), where
vc is the size of a minimum-sized vertex cover of the input graph.

We prove the above theorem by exhibiting an algorithm which is obtained
by “guessing” the portion of the vertex cover that belongs to the solution, and
for the remainder of the portion, solving an appropriately created instance of
Integer Linear Programming.

To complement our Theorem 4, we obtain a matching algorithmic lower
bound as follows.

Theorem 5. Assuming ETH, MMDS does not admit an algorithm running in
time 2o(vc)|V |O(1), where vc is the size of a minimum-sized vertex cover of the
input graph.

Related works. Kuhn et al. [19] introduced the “membership” variant, in a
spirit similar to what we have, for the Set Cover problem, called Minimum
Membership Set Cover (MMSC, for short). For the above problem, they
obtained several results, including NP-completeness, an O(lnn) approximation
algorithm, and a matching approximation hardness result. A special case of the
MMSC problem is studied in [8] where the collection of sets have consecutive
ones property. In such a set system, the problem is shown to be polynomial-time
solvable. Narayanaswamy et al. [6] and recently, Mitchell and Pandit [21] have
studied the dual of the MMSC problem which is the Minimum Membership
Hitting Set (MMHS) problem in various geometric settings.

The problem Perfect Code is a variant of Dominating Set where (in
addition to the size constraint) we require the membership of each vertex in the
dominating set to be exactly one. Perfect Code is another well-studied variant
of Dominating Set, see for instance [1,13,15,16,17,18,22,2]. Telle [25,26] studied
a variant of Dominating Set where two vectors σ, ρ are additionally given as
input, and the membership of vertices in the dominating set and outside this set
needs to be determined by σ and ρ, respectively. They obtained several results
with respect to parameterized complexity of the above variant of Dominating
Set. Also, Chapelle [3] studied the above variant with respect to treewidth as



the parameter and gave an algorithm running in time ktw|V |O(1), where tw is
the treewidth of the input graph. MMDS with membership constraint k, is the
same as [σ, ρ]-Dominating Set, when σ = [0, k − 1] and ρ = [1, k], thus the
problem also admits such an algorithm.

Chellali et al. [4] introduced a version called [j, `]-Dominating Set, where
we seek a dominating set where the membership of each vertex is at least j
and at most `. They studied the above problem for the viewpoint of combina-
torial bounds on special graph classes like claw-free graphs, P4-free graphs, and
caterpillars, for restricted values of j and `. Recently Meybodi et al. [20] studied
the problems [1, j]-Dominating Set and [1, j]-Total Dominating Set in the
realm of parameterized complexity. Though these problems involve constrained
membership, unlike MMDS, they require a membership constraint only on the
open neighborhood of vertices.

2 Preliminaries

We recall in this section some notations and definitions used throughout this
article. For any two positive integers x and y, by [x, y] we mean the set {x, x+
1, . . . , y}, and by [x] we mean [1, x]. We assume that all our graphs are simple and
undirected. Given a graph G = (V,E), n represents the number of vertices, and
m represents the number of edges. We denote an edge between any two vertices u
and v by uv. For a subset S ⊆ V , by G[S] we mean the subgraph of G induced by
S, and by G−S we mean G[V \S]. For every vertex u ∈ V , by N(u) we mean open
neighborhood of u, and by N [u] we mean closed neighborhood of u. Similarly,
for any set S ⊆ V , N(S) =

⋃
u∈S N(u) \ S and N [S] =

⋃
u∈S N [u]. Other than

this, we follow the standard graph-theoretic notations based on Diestel [7]. We
refer to the recent books of Cygan et al. [5] and Downey and Fellows [10] for
detailed introductions to parameterized complexity.
Treewidth and pathwidth. For an undirected graph G = (V,E), a tree decom-
position of G is a pair (T , X), where T is a tree and X = {Xi ⊆ V | i ∈ V (T )}
such that

–
⋃

i∈V (T )Xi = V ,

– for each edge uv ∈ E, there exists a node i ∈ V (T ) such that u, v ∈ Xi, and
– for each u ∈ V , the set of nodes {i ∈ V (T ) | u ∈ Xi} induces a connected

subtree in T .

The width of a tree decomposition (T , X) is maxi∈V (T )(|Xi| − 1). The treewidth
of G is the minimum width over all possible tree decompositions of G. A tree
decomposition (T , X) is said to be a path decomposition if T is a path. The path-
width of a graph G is the minimum width over all possible path decompositions
of G. Let pw(G) and tw(G) denote the pathwidth and treewidth of the graph
G, respectively. The pathwidth of a graph G is one less than the minimum clique
number of an interval supergraph H which contains G as an induced subgraph.
It is well-known that the maximal cliques of an interval graph can be linearly



ordered such that for each vertex, the maximal cliques containing it occur con-
secutively in the linear order. This gives a path decomposition of the interval
graph. A path decomposition of the graph G is the path decomposition of the
interval supergraph H which contains G as an induced subgraph. In our proofs
we start with the path decomposition of an interval graph and then reason about
the path decomposition of graphs that are constructed from it.

3 The MMDS problem on planar bipartite graphs is
NP-complete

We show that the MMDS problem is NP-hard for k = 1 even when restricted to
planar bipartite graphs. The NP-hardness is proved by a reduction from Pla-
nar Positive 1-in-3 SAT as follows. Let φ be a boolean formula with no
negative literals on n variables X = {x1, x2, . . . , xn} having m clauses C =
{C1, C2, . . . , Cm}. Further we consider the restricted case when the graph en-
coding the variable-clause incidence is planar. Such a boolean formula is nat-
urally associated with a planar bipartite graph Gφ = (C ∪ X,E) where X =
{x1, x2, . . . , xn}, C = {C1, C2, . . . , Cm} and E = {(xi, Cj) | variable xi appears
in the clause Cj}.

PP1in3SAT (Planar Positive 1-in-3 SAT)
Input : A boolean formula φ(X) without negative literals and that Gφ
is planar
Decide: Does there exist an assignment of values a1, a2, . . . , an to the
variables x1, x2, . . . , xn such that exactly one variable in each clause is
set to true?

It is known that PP1in3SAT is NP-complete [23]. A reduction from PP1in3SAT
to the MMDS problem is shown to prove that the MMDS problem is NP-hard.

Proof: [Proof of Theorem 1 ] Given a set S, we can check the feasibility of the set
S to the instance (G, k) of the MMDS problem in polynomial time. Therefore,
the MMDS problem is in NP. To prove that the MMDS problem is NP-hard,
we present a reduction from PP1in3SAT. Let φ be a positive 3-CNF formula
such that Gφ is planar. Now, construct a bipartite graph Ĝφ as follows. For
each vertex xi ∈ Gφ, add an additional vertex x̂i and connect this vertex to the

corresponding xi using an edge. Let X̂ = {x̂1, x̂2, . . . , x̂n}. The resultant graph
Ĝφ =

(
((X ∪ X̂)∪C), E ∪ {(xi, x̂i), 1 ≤ i ≤ n}

)
is also a planar graph. We show

that φ is satisfiable if and only if Ĝφ has a dominating set which hits the closed
neighborhood of each vertex exactly once. Given a set S, we can check the fea-
sibility of the set S to the instance (G, k) of the MMDS problem in polynomial
time. Therefore, the MMDS problem is in NP. To prove that the MMDS problem
is NP-hard, we present a reduction from PP1in3SAT. Let φ be a positive 3-CNF
formula such that Gφ is planar. Now, construct a bipartite graph Ĝφ as follows.



For each vertex xi ∈ Gφ, add an additional vertex x̂i and connect this vertex

to the corresponding xi using an edge. Let X̂ = {x̂1, x̂2, . . . , x̂n}. The resultant
graph Ĝφ =

(
((X ∪ X̂) ∪ C), E ∪ {(xi, x̂i), 1 ≤ i ≤ n}

)
is also a planar graph.

We show that φ is satisfiable if and only if Ĝφ has a dominating set which hits
the closed neighborhood of each vertex exactly once.

Let A = {a1, a2, . . . an} be a satisfying assignment for φ, such that exactly one
variable is set to true in each clause. For the graph Ĝφ , construct a set S ⊆ V
such as S =

{
{xi|ai = 1, ai ∈ A} ∪ {x̂i | ai = 0, ai ∈ A}, 1 ≤ i ≤ n

}
.

Clearly, S is a dominating set for Ĝφ. Consider a clause vertex c ∈ C. Let the
three variable vertices adjacent to c be x, y and z, out of which only one will be
assigned value 1 by the satisfying assignment. Without loss of generality, let this
be y. The vertex y will dominate c and ŷ, and vertices x and z will be dominated
by x̂ and ẑ respectively. Therefore, the S is an MMDS of Ĝφ for membership
parameter k = 1.

To prove the reverse direction, let S be a dominating set for Ĝφ such that the
closed neighborhood of each vertex is intersected exactly once by S. Since the
membership of each vertex in S is 1, it follows that, for each clause c ∈ C, c /∈ S,
and exactly one neighbor of c is in S. Therefore, for each i, either xi ∈ S or x̂i ∈ S
Consider the truth assignment A for φ as follows: For each xi ∈ S, assign ai = 1,
and for each xi /∈ S, assign ai = 0. As there is exactly one vertex x ∈ S from
every c ∈ C, only one literal from every clause will be satisfied by A, and thus
A is a satisfying assignment for φ. Hence, the MMDS problem is NP-complete
for k = 1 even on planar bipartite graphs. ut
Remark: The reduction also shows that the MMDS problem does not have a
polynomial time (2−ε) approximation algorithm unless P = NP. This is because
such an algorithm can solve the MMDS problem for k = 1. Also, we believe
that starting with the hardness of planar 3-SAT variants in which each variable
occurs exactly 3 times [23], our reduction shows that the MMDS problem on
planar bipartite graphs of maximum degree 4 is NP-complete.

4 W[1]-hardness with respect to pathwidth

We prove Theorem 2 by a reduction from the Multi-Colored Clique prob-
lem to the MMDS problem. It is well-known that the Multi-Colored Clique
problem is W[1]-hard for the parameter solution size [9].

Multi-Colored Clique
Input: A positive integer k and a k-colored graph G.
Parameter: k
Question: Does there exists a clique of size k with one vertex from each
color class?



Let (G = (V,E), k) be an instance of the Multi-Colored Clique problem.
Let V = (V1, . . . , Vk) denote the partition of the vertex set V . By a partition, we
mean the set of all vertices of same color. We assume, without loss of generality,
|Vi| = n for each i ∈ [k]. We usually use n to denote number of vertices in the
input graph. However, we use n here to denote the number of vertices in each
color class. For each 1 ≤ i ≤ k, let Vi = {ui,` | 1 ≤ ` ≤ n}.

4.1 Gadget based reduction from Multi-Colored Clique

For an input instance (G, k) of the Multi-Colored Clique problem, the
reduction outputs an instance (H, k′) of the MMDS problem where k′ = n+ 1.
The graph H is constructed using two types of gadgets, D and I (illustrated in
Figure 1). The gadget I is the primary gadget and the gadget D is secondary
gadget that is used to construct the gadget I.
Gadget of type D. For two vertices u and v, the gadget Du,v is an interval
graph consisting of vertices u, v and n + 2 additional vertices that form an
independent set. The vertices u and v are adjacent, and both u and v are adjacent
to every other vertex. We refer to the vertices u and v as heads of the gadget
Du,v. Intuitively, for any feasible solution S, and for any gadget Du,v, either u
or v should be in S. Otherwise, remaining n + 2 vertices must be in S which
contradicts the optimality of S because membership for both u and v is at least
n+ 2.

Observation 6 The pathwidth of the gadget D is two. Indeed, it is an interval
graph with maximum clique of size three and thus, by definition, has pathwidth 2.

Gadget of type I. Let n ≥ 1 be an integer. The gadget has two vertices h1
and h2, and two disjoint sets: A = {a1, . . . , an} and D = {d1, . . . , dn}. For each
i ∈ [n], vertices ai and di are connected by the gadget Dai,di . Let h2 and h1 be
two additional vertices which are adjacent. The vertices in the sets A and D are
adjacent to h2 and h1, respectively. For each 1 ≤ i ≤ n, ai and h1 are connected
by the gadget Dai,h1

, and di and h2 are connected by the gadget Ddi,h2
. In the

reduction a gadget of type I is denoted by the symbol I and an appropriate
subscript.

Claim 7 The pathwidth of a gadget type I is at most four.

Proof: We observe that the removal of the vertices h1 and h2 results in a graph
in which for each i ∈ [n], there is a connected component consisting ai and di
which are the heads of a gadget of type D and they are both adjacent to n+ 2
vertices of degree 1. Each component is an interval graph with a triangle as the
maximum clique and from Observation 6 is of pathwidth 2. Let (T ′, X ′) be the
path decomposition of I −{h1, h2} with width two. Thus adding h1 and h2 into
all the bags of the path decomposition (T ′, X ′) gives a path decomposition for
the gadget I, and thus the pathwidth of the gadget I is at most 4. ut
In the following parts, when we refer to a gadget we mean the primary gadget I
unless the gadget D is specified. For each vertex and edge in the given graph, our
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h1 h2
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Fig. 1. To the left is the type-I gadget for n = 4 and to the right is the type-D gadget.
The zigzag edges between vertices u and v represent the gadget Du,v.

reduction has a corresponding gadget in the instance output by the reduction.
Description of the reduction. For 1 ≤ i < j ≤ k, let Ei,j denote the set of
edges with one end point in Vi and the other in Vj , that is Ei,j = {xy | x ∈
Vi, y ∈ Vj}.
For each vertex and edge in G, the reduction uses a gadget of type I. For each
1 ≤ i < j ≤ k, the graph H has an induced subgraph Hi corresponding to Vi, and
has an induced subgraph Hi,j for the edge set Ei,j . We refer to Hi as a vertex-
partition block and Hi,j as an edge-partition block. Inside block Hi, there is a
gadget of type I for each vertex in Vi, and in the block Hi,j is a gadget for each
edge in Ei,j . For a vertex ui,x, Ix denotes the gadget corresponding to ui,x in the
partition Vi, and for an edge e, Ie denotes the gadget corresponding to e. Finally,
the blocks are connected by the connector vertices which we describe below. We
next define the structure of a block which we denote by B. The definition of the
block applies to both the vertex-partition block and the edge-partition block.
A block B consists of the following gadgets, additional vertices, and edges.

– The block B corresponding to the vertex-partition block Hi for any i ∈ [k]
is as follows: for each ` ∈ [n], add a gadget I` to the vertex-partition block
Hi, to represent the vertex ui,` ∈ Vi.

– The block B corresponding to the edge-partition gadget Hi,j for any 1 ≤ i <
j ≤ k is as follows: for each e ∈ Ei,j , add a gadget Ie in the edge-partition
block Hi,j , to represent the edge e.

– In addition to the gadgets, we add (n+1)(n+3)+2 vertices to the block B as
follows (See Figure 2 in appendix): Let C(B) denote the set {f, f ′, c1, c2, . . . ,
cn+1, b1, b2, . . . , b(n+1)(n+2)}, which is the set of additional vertices that are
added to the block B. Let C ′(B) denote the subset {c1, c2, . . . , cn+1}. For
each gadget I in B, and for each t ∈ [n], at in I is adjacent to f , and the
vertex f is adjacent to f ′. Further, the vertex f ′ is adjacent to each vertex cp
for p ∈ [n+ 1]. Finally, for each p ∈ [n+ 1] and (p−1)(n+ 2) < q ≤ p(n+ 2),
cp is adjacent to bq.

Next, we introduce the connector vertices to connect the edge-partition blocks
and vertex-partition blocks. Let R = {rii,j , sii,j , r

j
i,j , s

j
i,j | 1 ≤ i < j ≤ k} be the



C(Hi)

f

A

I1 I2 In

Fig. 2. Illustration of a vertex block Hi for some i ∈ [k]. An edge block Hi,j for some
1 ≤ i < j ≤ k will have |Ei,j |-many internal gadgets.

connector vertices. The blocks are connected based on the following exclusive
and exhaustive cases, and is illustrated in Figure 3:
For each i ∈ [k], each i < j ≤ k and each ` ∈ [n], the edges are described below.

– for each 1 ≤ t ≤ `, the vertex at in the gadget I` of Hi is adjacent to the
vertex sii,j

– for each ` ≤ t ≤ n, the vertex at in the gadget I` of Hi is adjacent to the
vertex rii,j

For each i ∈ [k], each 1 ≤ j < i and each ` ∈ [n],

– for each 1 ≤ t ≤ `, the vertex at in the gadget I` of Hi is adjacent to the
vertex sij,i

– for each ` ≤ t ≤ n, the vertex at in the gadget I` of Hi is adjacent to the
vertex rij,i

For each 1 ≤ i < j ≤ k, and for each e = ui,xuj,y ∈ Ei,j ,

– for each 1 ≤ t ≤ x, the vertex at in the gadget Ie of Hi,j is adjacent to the
vertex rii,j

– for each x ≤ t ≤ n, the vertex at in the gadget Ie of Hi,j is adjacent to the
vertex sii,j

– for each 1 ≤ t ≤ y, the vertex at in the gadget Ie of Hi,j is adjacent to the

vertex rji,j
– for each y ≤ t ≤ n, the vertex at in the gadget Ie of Hi,j is adjacent to the

vertex sji,j

This completes construction of the graph H with O(mn2) vertices and O(mn3)
edges. We next bound the pathwidth of the graph H as a polynomial function
of k.

Claim 8 The pathwidth of a block B is at most five.
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Fig. 3. An illustration of the connector vertices sii,j , rii,j , sji,j and rji,j connect the
blocks Hi and Hi,j , and, Hj and Hi,j for some 1 ≤ i < j ≤ k. The edge e represented
in the gadget Ie is ui,xuj,y ∈ Ei,j .

Proof: If we remove the vertex f from the block B, then the resulting graph
is a disjoint collection of gadgets and a tree of height two. We know that the
pathwidth of a gadget is four from Claim 7, and the pathwidth of a tree of height
two is two. Let (T ′, X ′) be a path decomposition of B − {f} with pathwidth
four. Thus adding f into all bags of (T ′, X ′) gives a path decomposition for the
block B, and thus the pathwidth of the block is at most five. ut

Lemma 1. The pathwidth of the graph H is at most 4
(
k
2

)
+ 5.

Proof: Removal of the connector vertices from H results in a collection of disjoint
blocks. From Claim 8, the pathwidth of a block is five. Let (T ′, X ′) be a path
decomposition of H − R with pathwidth five. Therefore, adding all connector
vertices to the path decomposition (T ′, X ′) gives a path decomposition for the
graph H with pathwidth at most 4

(
k
2

)
+ 5. ut

Properties of a feasible solution for the MMDS instance (H, k′). Let
S be a feasible solution for the MMDS instance (H, k′). We state the following
properties of the set S. In all the arguments below, we crucially use the property
that for each u ∈ V (H), M(u, S) ≤ n+ 1.

Claim 9 For each block B in the graph H, C ′(B) ⊆ S.

Proof: By construction of graph H, for each 1 ≤ p ≤ n+ 1, the vertex cp must
be in the set S since it has n+ 2 vertices of degree one as neighbors. Otherwise,
its membership will be at least n+ 2, contradicting that S is a feasible solution
for (H, k′). Hence the claim. ut

Claim 10 For each block B in H, the vertices f and f ′ in B are not in the set
S.



Proof: We know that f is made adjacent to f ′, and f ′ is adjacent to each vertex
in C ′(B). From Claim 9, we know that C ′(B) is a subset of S. Thus, n + 1
neighbors of f ′ is in S. If either f or f ′ is in the set S, then M(f ′, S) is n + 2.
This contradicts the feasibility of the set S. Hence the claim. ut

Claim 11 For each gadget of type I in each block B in the graph H, either
A ∩ S = A or A ∩ S = ∅.

Proof: We prove this by contradiction. Assume that ∅ ( A ∩ S ( A. Let J =
{j ∈ [n] | aj ∈ S}, that is J is the index of the elements in A ∩ S. Note that by
our premise J is non-empty and it is not all of [n]. Since J is a strict subset of
[n], we observe that the vertex h1 is in S. This is because, for each i ∈ [n]\J , h1
and ai is connected by the gadget of type D. If both ai and h1 are not in S, then
the n + 2 neighbours in the gadget of type D containing the edge {ai, h1} will
be in S, and thus M(ai, S) and M(h1, S) are both at least n+ 2. This violates
the hypothesis that for each u ∈ V (H), M(u, S) ≤ n+ 1. We now consider two
cases, one in which the vertex h2 is in S and the other in which h2 is not in S.
First, we consider h2 ∈ S. For each i ∈ [n], by using the same argument which
we used for ai and h1, it follows that at least one of the ai or di is in the set S
since ai and di are both in a gadget of type D. Therefore, for each i ∈ [n] \ J ,
the vertex di is in S. That is |D∩S| ≥ n−|J |. Consequently, using the fact that
h1 ∈ S and the premise that h2 ∈ S, it follows that the membership of h1 is

M(h1, S) ≥ |A ∩ S|+ |D ∩ S|+ 2 ≥ |J |+ n− |J |+ 2 ≥ n+ 2.

This contradicts the feasibility of S.
Next we consider the case that h2 is not in S. For each i ∈ [n], di is in S since
di and h2 are in a gadget of type D. Then, the N [h1] = (A ∩ S) ∪ D ∪ {h1}.
Further, we know that J is a non-empty set, and thus, the membership of h1 is

M(h1, S) ≥ |A ∩ S|+ |D|+ 1 ≥ |J |+ n+ 1 ≥ n+ 2.

Therefore, our assumption that that A ( S and A∩S 6= ∅ is wrong. Therefore,
either the set A is completely included in the set S or completely excluded from
the set S. ut

Claim 12 For each block B in the graph H, there exists a unique gadget of type
I in the block B such that the set A in the gadget is in S.

Proof: The vertices f and f ′ in B are not in the solution S due to Claim 10.
The Claim 11 states that either the set A in any gadget is completely included
in the set S or completely excluded in the set S. If for each gadget in B, the
set A is not in S then the vertex f is not dominated by S. This contradicts the
feasibility of S. If the set A of at least two gadgets in the block B are in the set
S, then the membership of f will be 2n > n+ 1. This contradicts the feasibility
of S. Thus, there exists an unique gadget I in each block such that the set A in
I is in S. ut
Using these properties in the following two lemmas, we prove the correctness of
the reduction.



Lemma 2. If (G, k) is a YES-instance of the Multi-Colored Clique prob-
lem, then (H, k′) is a YES-instance of the MMDS problem.

Proof: Let K = {ui,xi
| i ∈ [k]} be a k-clique in G. That is, for each i ∈ [k],

xi-th vertex of the partition Vi is in the clique. Now we construct a feasible
solution S for the instance (H, k′) of the MMDS problem. The set S consists of
the following vertices. For each i ∈ [k],

– for each ` ∈ [n] with ` 6= xi, add D ∪ {h1} in the gadget I` in the vertex-
partition block Hi to S, and

– in the gadget Ixi
in the vertex-partition block Hi, add A ∪ {h2} to S, and

– add C ′(Hi) to S.

For each 1 ≤ i < j ≤ k,

– for each edge e ∈ Ei,j with e 6= ui,xi
uj,xj

, add D ∪ {h1} in the gadget Ie the
edge-partition block Hi,j to S, and

– for the edge e = ui,xi
uj,xj

, add A∪ {h2} in the gadget Ie the edge-partition
block Hi,j to S, and

– add C ′(Hi,j) to S.

We show that S is a feasible solution to the MMDS problem in H for membership
value k′ = n+ 1.
First we show that the set S is a dominating set in H. In each gadget in each
block, we have added either D ∪ {h1} or A ∪ {h2} into S. Therefore, in every
gadget of type D at least one head is in S. That is, S dominates every vertex
which is part of some gadget of type D. Since every vertex in a gadget of type I
is part of some gadget of type D, the gadget of type I is dominated by S. Thus,
every gadget of type I is dominated by S.
Then we consider the vertices outside any gadget of type I. In any block B,
this is the set C(B). In each block B in H, from Claim 12, vertices in the set A
of exactly one gadget of type I is in S. Each of these vertices dominate f . All
other vertices in the block which are outside the gadgets are dominated by C ′(B)
which is a subset of S by definition. For 1 ≤ i < j ≤ k, consider a connector
vertex pair (sii,j , r

i
i,j) that connects the blocks Hi and Hi,j . Both vertices were

made adjacent to the vertices in the set A of each gadget in the block Hi. Since S
contains the set A in the gadget Ixi of Hi, both connector vertices are dominated.
Thus all the connector vertices are dominated by S. Therefore, S is a dominating
set of H.

Next we show that the membership of any vertex u ∈ V (H) in S is k′, that
is, we show that M(u, S) = n + 1. Observe that the vertices in any gadget of
type I are solely dominated by the vertices of S which are inside the gadget.
The maximum membership of n + 1 is achieved by the vertices h1 and h2 for
any gadget I. Therefore, the membership of any vertex in a gadget of type I is
n+ 1. In each block B, among the vertices C(B), the maximum membership of
value n+ 1 is achieved by the vertices f and f ′.
We next show crucially that the membership of the connector vertices is at most
n + 1. For each 1 ≤ i < j ≤ k, consider the edge e = ui,xiuj,xj ∈ Ei,j . By



construction of the set S, we picked the set A only from the gadgets Ie in Hi,j ,
Ixi

from Hi, and Ixj
from Hj . From the reduction and the definition of S, it is

clear that for all the other gadgets in a block, the vertices in S are not adjacent
to the connector vertices. Therefore, the M(sii,j , S) is xi + (n− xi + 1) = n+ 1,

and M(rii,j , S) is (n−xi + 1) +xi = n+ 1. Next, we consider the membership of

sji,j = xj+(n−xj+1) and the membership of rji,j is xj+(n−xj+1) = n+1. These
membership values can be seen clearly from Figure 3. Hence, the membership
of any vertex in V (H) is n+ 1. Thus, the instance (H, k′) is a YES-instance of
the MMDS problem. ut

Lemma 3. If (H, k′) is a YES-instance of the MMDS problem, then (G, k) is a
YES-instance of the Multi-Colored Clique problem.

Proof: Let S be a feasible solution to the instance (H, k′) of the MMDS problem.
For each i ∈ [k], let Ixi

be the unique gadget for some xi ∈ [n], where the set
A of Ixi is in S. For each 1 ≤ i < j ≤ k, let Ie be the unique gadget for some
e = ui,x′

i
uj,x′

j
∈ Ei,j , where the set A of Ie is in S. The existence of such gadgets

are ensured by Claim 12. Let K = {ui,xi
| i ∈ [k]}. We show that the set K is

a clique in G as follows. Observe that we picked one vertex from each partition
Vi for i ∈ [k]. Next we show that for each 1 ≤ i < j ≤ k, there is an edge
ui,xiuj,xj ∈ E(G). Let i, j ∈ [k] such that i < j. The vertex sii,j is adjacent to xi
vertices in Ixi

from Hi, and n− x′i + 1 vertices in Ie from Hi,j . The vertex rii,j
is adjacent to n− xi + 1 vertices in Ixi

from Hi, and x′i vertices in Ie from Hi,j .
Then, the membership of the connector vertices rii,j and sii,j in S are

M(rii,j , S) ≥ (n− xi + 1) + (x′i) ≥ n+ x′i − xi + 1 , and

M(sii,j , S) ≥ xi + (n− x′i + 1) ≥ n+ xi − x′i + 1.

Further, the membership of the vertices is at least one and at most n+1, that is
1 ≤M(rii,j , S),M(sii,j , S) ≤ n+1. Therefore, n+1 ≥ n+x′i−xi+1 =⇒ xi ≥ x′i
and n + 1 ≥ n + xi − x′i + 1 =⇒ x′i ≥ xi. Thus, we have xi = x′i. Similarly, we
will get xj = x′j . Therefore, by construction of the graph H, there is an edge
ui,xi

uj,xj
∈ E(G). Thus, the set K is a feasible solution for the instance (G, k)

of the Multi-Colored Clique problem. ut
Thus, we conclude the section with the proof of Theorem 2.

Proof: [Proof of Theorem 2 ] On an instance (G, k) of Multi-Colored Clique
the reduction constructs (H, k′ = n+ 1) in polynomial time. From Lemma 1 we
know that the pathwidth ofH is a quadratic function of k. Finally, from Lemma 2
and Lemma 3 it follows that the MMDS instance (H, k′) output by the reduction
is equivalent to the Multi-Colored Clique instance (G, k) that was input to
the reduction. Since Multi-Colored Clique is known to be W[1]-hard for the
parameter k, it it follows that the MMDS problem is W[1]-hard with respect to
the parameter pathwidth of the input graph. ut



5 W[1]-hardness in split graphs

In this section we prove that MMDS is W[1]-hard on split graphs when param-
eterized by the membership parameter k. We prove this result by demonstrating
a parameterized reduction from Multi-Colored Independent Set (MIS) to
Minimum Membership Dominating Set. Multi-Colored Independent
Set requires finding a colorful independent set of size k and is known to be
W[1]-hard for the parameter solution size [12]

Multi-Colored Independent Set
Input: A positive integer k, and a k-colored graph G.
Parameter: k
Question: Does there exist an independent set of size k with one vertex
from each color class?

Let (G = (V,E), k) be an instance of the Multi-Colored Independent
Set problem. Let V = (V1, . . . , Vk) be the partition of the vertex set V , where
vertices in set Vi belong to the ith color class, i ∈ [k]. We now show how to con-
struct a split graph H = (V ′∪V ′′, E′) such that if (G, k) is a YES instance, then
H has a dominating set with maximum membership k. V ′ refers to the clique
partition of H and V ′′ consists of the partition containing a set of independent
vertices.

Construction of graph H = (V ′ ∪ V ′′, E′):

u v

w

V1 V2 Vk

U1 U2 Uk

k + 1

xuv D12

Dpq

(
k
2

)

Fig. 4. Construction of graph H



For each vertex in V we introduce a vertex in the clique V ′ as in the input
instance. Additionally we add a vertex w to V ′. Edges are added among each pair
of vertices in V ′. The set V ′′ in H is an independent set, and it consists of a set of
vertices denoted by U , a set of vertex sets denoted by D = {Dpq | p, q ∈ [k], p <
q}. The vertex set U comprises a partition of k vertex sets, U = {Ui | i ∈ [k]},
and |Ui| = k + 1. For each edge between a vertex u ∈ Vp and v ∈ Vq in G, we
introduce a vertex xuv in the set Dpq. Thus, the vertex set of H, V (H) = V ′∪V ′′,
where V ′ induces a clique and V ′′ induces an independent set.
The remaining edges, other than those in clique V ′, are described as follows:
Vi]Ui forms a complete bipartite graph, vertex w is made adjacent to all vertices
in the set D, each vertex xuv ∈ Dpq is made adjacent to every vertex in Vp \ {u}
and Vq \ {v}. The above construction is depicted in Figure 4. Next we show
the correctness of the reduction from the instance (G, k) of MIS to the instance
(H, k) of MMDS.

Lemma 4. If (G, k) is a YES instance of the Multi-Colored Independent
Set problem then (H, k) is a YES instance of the MMDS problem.

Proof: Let (G, k) be a YES instance of Multi-Colored Independent Set ,
and S = {v1, . . . , vk} be a solution to (G, k) where vi ∈ Vi, i ∈ [k]. We show
that the vertices in V (H) that correspond to the set S, denoted by S′, form a
dominating set in H with membership value k. We start by showing that S′ is
a dominating set for H. Observe that since S′ ⊂ V ′ and V ′ induces a clique, S′

dominates all vertices in the set V ′. For each i ∈ [k], the vertex vi ∈ S′ domi-
nates all vertices in Ui, since Vi and Ui together form a complete bipartite graph.
Consider a vertex xuv ∈ Dpq where u ∈ Vp, v ∈ Vq, which represents the edge
(u, v) ∈ G. The vertex xuv is connected to every vertex in Vp \ {u} and Vq \ {v}.
Since S is an independent set, both u and v cannot belong to S. Without loss of
generality, let u ∈ S, then ∃v′v′∈S′ ∈ Vq \ {v} which dominates xuv. This holds
true for all vertices in the set {xuv ∈ Dpq | 1 ≤ p, q ≤ k, p 6= q}. Thus S′ is a
dominating set for H.

Secondly, we observe that the membership constraint k is satisfied by the dom-
inating set S due to the fact that |S| = k. It follows that for all vertices v in
H, N [v] ∩ S ≤ k. Hence it is proved that if (G, k) is a YES instance of the
Multi-Colored Independent Set problem then (H, k) is a YES instance of
the MMDS problem. ut

Lemma 5. If (H, k) is a YES instance of the MMDS problem then (G, k) is a
YES instance of the Multi-Colored Independent Set problem.

Proof: Let (H, k) be a YES instance and S be a feasible solution for MMDS in
the graph H with membership value k. Since S is a k membership dominating
set of H, S exhibits the following properties.

1. |S ∩ Vi| = 1, i ∈ [1, k].
At least one vertex from each of the sets Vi must belong to S. Otherwise



in order to dominate Ui, all k + 1 vertices from Ui need to be included in
S, thus violating the membership constraint for the vertices in Vi. Observe
that S contains exactly one vertex from each set Vi, i ∈ [k]. As the Vi’s are
a part of the clique V ′ in H, if more than one vertex from a Vi is included
in the solution, then |V ′ ∩S| > k and the membership constraint of vertices
in V ′ will be violated. Therefore exactly one vertex from each Vi is included
in S.

2. w /∈ S.
The vertex w is part of the clique V ′ and S already contains k vertices from
V ′ and any more vertices from V ′ will violate the membership constraint of
vertices in V ′.

3. |Ui ∩ S| = 0, i ∈ [1, k].
Every vertex in Ui, i ∈ [1, k] is already dominated by a vertex in the cor-
responding Vi, and has membership value 1. If a vertex from Ui, i ∈ [1, k]
is included in S, all vertices in Vi will have membership k + 1 leading to a
violation of the membership constraint for them.

4. |S ∩Dpq| = 0, p, q ∈ [1, k], p < q.
Every vertex xuv ∈ Dpq is adjacent to Vp \ u and Vq \ v, u ∈ Vp, v ∈ Vq. As
V ′ ∩ S = k, adding any vertex xuv ∈ Dpq to S will violate the membership
constraint of vertices in Vp \u and Vq \v. Even if |Vp| = 1 or |Vq| = 1, adding
xuv to S will violate the membership constraint of w ∈ V ′.

It follows from the above properties of S that S contains a vertex from each of
the vertex sets Vi, i ∈ [k]. Let S = {v1, v2, . . . , vk | vi ∈ Vi, 1 ≤ i ≤ k}. We now
prove that the vertices corresponding to S in G, say S′, form an independent
set. Suppose not. This implies that ∃vi, vj ∈ S such that vivj ∈ E(H). Without
loss of generality, let vi ∈ Vi, vj ∈ Vj . Consider the vertex xvivj ∈ Dij . Due to
the construction of graph H, the vertex xvivj is not adjacent to vi and vj , and
hence not dominated. This is a contradiction to the fact that S is a dominating
set for H. Therefore, vertices vi, vj ∈ S, i, j ∈ [1, k] cannot have an edge between
them. Hence it is proved that S′ is a solution of size k for the given instance of
Multi-Colored Independent Set implying that (G, k) is a YES instance.

ut

Proof: [Proof of Theorem 3 ] Lemma 4 and Lemma 5 along with the fact that
Multi-Colored Independent Set is W[1]-hard [12] proves that MMDS is
W[1]-hard parameterized by k, the membership. ut

6 Parameterizing MMDS by Vertex cover

First, we show that MMDS is FPT parameterized by vertex cover number, vc.
We then show that conditioned on the truth of the ETH, MMDS does not have
a subexponential algorithm in the size of vertex cover.



6.1 MMDS is FPT parameterized by vertex cover

In order to design an FPT algorithm parameterized by the size of a vertex cover
of the input graph, we construct an FPT-time Turing reduction from MMDS
to Integer Linear Programming (ILP, See Appendix for formal definition). In
the reduced instance the number of constraints is at most twice the size of
a minimum vertex cover. We then use the recent result by Dvořák et al. [11]
which proves that ILP is FPT parameterized by the number of constraints. The
following theorem directly follows from Corollary 9 of [11].

Integer Linear Programming
Input : A matrix A ∈ Zm×` and a vector b ∈ Zm.
Parameter : m
Question : Is there a vector x ∈ Z` such that A · x ≤ b?

Theorem 13 (Corollary 9, [11]). ILP is FPT in the number of constraints
and the maximum number of bits for one entry.

FPT time Turing reduction from MMDS to ILP: Let (G, k) be the input
instance of MMDS. Compute a minimum vertex cover of G, denoted by C, in
time FPT in |C| [5]. Let I denote the maximum independent set V \ C. The
following lemma is crucial to the correctness of the reduction.

Lemma 6. Let D be a k membership dominating set of G. Let C1 = D∩C, I1 =
I \ (N(C1)∩ I), and R = N(C1)∩ I ∩D. Then, I1 ⊆ D, and C \ (N [C1]∪N(I1))
is dominated by R.

Proof: The outline is that I1 cannot be dominated by any other vertex other
than by itself. Further, R ⊆ D is the the only vertices which can dominate
C \ (N [C1] ∪N(I1)). Hence the lemma. ut

As a consequence of this lemma, it is clear that the choice of C1 immediately
fixes I1. Thus, to compute the set D, the task is to compute R. We pose this
problem as the constrained MMDS problem. A CMMDS problem instance is a
4-tuple (G, k,C,C1) where C is a vertex cover and C1 is a subset of C. The
decision question is whether there is a k membership dominating set D of G
such that D ∩ C = C1. From Lemma 6, we know that given an instance of
(G, k,C,C1), we know that C1 immediately fixes I1 ⊆ I = V \ C. Thus, to
compute D, we need to compute R as defined in Lemma 6. We now describe
the ILP formulation to compute R once C1 (and thus I1) is fixed. Since R is a
subset of I \I1, it follows that the variables correspond to vertices in I \I1 which
do not already have k neighbors in C1; we use Ie to denote this set. It can be
immediately checked if C1 ∪ I1 can be part of a feasible solution- we check that
for no vertex is the intersection of its closed neighborhood greater than k. We
now assume that this is the case, and specify the linear constraints. The linear
constraints in the ILP are associated with the vertices in C. For each vertex in
C there are at most two constraints- if v is in C \ (N [C1]∪N(I1)), then at least



one neighbor and at most k neighbors from Ie must be chosen into R. On the
other hand, for v ∈ (N [C1] ∩C) ∪N(I1), we have the constraint that at most k
neighbors must be in C1 ∪ I1 ∪ R. The choice of variables in Ie does not affect
any other vertex in I, and thus there are no costraints among the vertices in
I. To avoid notation, we assume that an instance of CMMDS(G, k,C,C1), also
denotes the ILP.

Lemma 7. The CMMDS problem on an instance (G, k,C,C1) can be solved in
time which is FPT in the size of the vertex cover.

Proof: Since the instance (G, k,C,C1) uniquely specifies the ILP for the choice
of R, it follows that this ILP has O(|C|) constraints. From Theorem 13, we know
that the ILP can be specified in FPT time with |C| as the parameter, and this
proves the Lemma. ut

Proof: [Proof of Theorem 4 ] Given an input instance (G, k) of MMDS, we
first compute a minimum vertex cover C in FPT time (in size of the cover as
the parameter) using any of the well-known methods (see the book by Cygan
et al. [5], for example). Let I = V \ C be the independent set. Now we iterate
through each subset C1 of C, and check if it can be extended to a k membership
dominating set D such that D ∩ C = C1. For each such C1, we know from
Lemma 6 that I1 = I \ (N(C1)∩ I) must be added to the solution, if one exists.
For each subset C1 ⊆ C, we assume that C1∪I1 goes into the solution set. Then,
we solve CMMDS on the instance (G, k,C,C1) to check if there is an R ⊆ Ie
such that C1 ∪ I1 ∪ R in a k membership dominating set. From Lemma 7, we
know that this check can be solved in FPT time. It thus follows that MMDS is
FPT when parameterized by the size of vertex cover. ut

6.2 Lower bound assuming ETH

We show that there is no sub-exponential-time parameterized algorithm for
MMDS when the parameter is the vertex cover number, using a reduction from
3-SAT. By the ETH, we know that 3-SAT does not have a sub-exponential-time
algorithm, and thus the reduction proves the lower bound for MMDS.

Proof: [Proof of Theorem 5 ] Let φ be a boolean formula on n variables X =
{x1, x2, . . . , xn} having m clauses C = {C1, C2, . . . , Cm}. We construct a graph
G = (V,E) from the input formula φ such that φ has a satisfying assignment if
and only if G has a k membership dominating set.
Construction of graph G
We construct a variable gadget and a clause gadget. For each variable xi, 1 ≤
i ≤ n in φ, create two vertices vxi and vxi

, denoting its literals, with an edge
between them. Make both vxi and vxi adjacent to k + 1 degree-two vertices
labelled aji : 1 ≤ j ≤ k + 1 and another set of k − 1 vertices bji : 1 ≤ j ≤ k − 1.

Each bji is in turn adjacent to k + 1 pendant vertices dti,j : 1 ≤ t ≤ k + 1. This
completes the variable gadget for a variable xi.
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Fig. 5. Construction for reduction from 3-SAT to MMDS.

For each clause Cl : 1 ≤ l ≤ m, create a vertex vCl
. For each clause Cl, make vCl

adjacent to a vertex Y . Y is again connected to k more vertices uq : 1 ≤ q ≤ k.
Each uq is in turn adjacent to k + 1 pendant vertices rpq : 1 ≤ p ≤ k + 1. This is
the clause gadget for graph G.
Finally, create edges between clause vertices and those literal vertices which are
in the clause. The reduction is illustrated in Figure 5.

Claim 14 The vertex cover number of graph G is (n+ 1)(k + 1).

Proof: A minimum vertex cover of graph G contains
{
vxi

, vxi
| 1 ≤ i ≤ n

}
,{

bji | 1 ≤ j ≤ k − 1, 1 ≤ i ≤ n
}

, Y and
{
uq | 1 ≤ q ≤ k

}
to cover all edges.

Therefore |V C(G)| = 2n + n(k − 1) + k + 1 = (n + 1)(k + 1). When k is O(1),
|V C(G)| = O(n). ut

Lemma 8. If φ has a satisfying assignment then G has a dominating set with
membership value k.

Proof: Let A : {xi|i ∈ [n]} → {0, 1} be a satisfying assignment for φ. Now, we
construct a feasible solution S for the MMDS problem as follows.

– For each i ∈ [n],

• add vxi if A[xi] = 1 or vxi if A[xi] = 0 to S.

• add {bji | 1 ≤ j ≤ k − 1} to S.

– Add {uq | 1 ≤ q ≤ k} to S.



We claim that S is a dominating set for G and has membership at most k.
First, we show that S is a dominating set. In the variable gadget, exactly one
among vxi or vxi , and all of bji ’s are in S. They dominate all other vertices in the
variable gadget. It is given that A is a satisfying assignment. i.e, for each clause
Cl, there is at least one literal assigned 1. Therefore each vertex vCl

is dominated
by the vertex corresponding to the literal assigned 1 in Cl. The vertices Y and
{rpq | p ∈ [k + 1], q ∈ [k]} are dominated by {uq : q ∈ [k]}.
Next we show that the membership of any vertex in G is at most k. In each vari-
able gadget, maximum membership of k is attained by the vertices vxi and vxi .
Each clause vertex has membership at most 3. Vertex set Y has the maximum
membership of k in clause gadget. ut

Lemma 9. If G has a dominating set with membership value k, then φ has a
satisfying assignment.

Proof: Let S be feasible solution for MMDS in graph G. Then S has the following
properties:

– In every variable gadget for a variable xi, 1 ≤ i ≤ n,
• {bji | 1 ≤ j ≤ k − 1} must be there in S. If there is any bji /∈ S, all
dti,j : 1 ≤ t ≤ k + 1 should be included in S which will violate the

membership property by making the membership of bji to be k + 1.

• Either vxi
or vxi

must be there in S, in order to dominate {aji | 1 ≤ j ≤
k + 1}. Note that both vxi

and vxi
together cannot be there in S since

it violates the membership property of both vertices.
– {uq : 1 ≤ q ≤ k} ∈ S. If any uq /∈ S, all rpq : 1 ≤ p ≤ k + 1 must be included

in S which violates the membership property for uq.
– {vCl

, 1 ≤ l ≤ m} /∈ S, since inclusion of any clause vertex vCl
violates the

membership property for vertex Y .
– Out of the three literal vertices in any clause Cl, atleast one will be included

in S in order to dominate corresponding clause vertex vCl
.

It follows from the above properties that atleast one literal vertex from every
clause will be included in S and assigning 1 to those literals makes a satisfying
assignment for the boolean formula φ. ut
From Lemma 8 and Lemma 9, it follows that the 3-SAT can be reduced to
MMDS parameterized by vertex cover number. Therefore a 2o(vc(G))nO(1) algo-
rithm for MMDS will give a 2o(n) algorithm for 3-SAT which is a violation of
ETH. Hence it is proved that there is no sub-exponential algorithm for MMDS
when parameterized by vertex cover number. ut

7 Conclusion

In this paper we study the parameterized complexity of the Minimum Mem-
bership Dominating Set problem, which requires finding a dominating set
such that each vertex in the graph is dominated minimum possible times. We



start our analysis by showing that in spite of having no constraints on the size of
the solution, unlike Dominating Set, MMDS turns out to be W[1]-hard when
parameterized by pathwidth (and hence treewidth). We further show that the
problem remains W[1]-hard for split graphs when the parameter is the size of
the membership. For general graphs we prove that MMDS is FPT when param-
eterized by the size of vertex cover. Finally, we show that assuming ETH, the
problem does not admit a sub-exponential algorithm when parameterized by the
size of vertex cover, thus showing our FPT algorithm to be optimal. There are
many related open problems that are yet to be explored. One such problem is
analyzing the complexity of MMDS in chordal graphs. Other directions involve
structural parameterization of MMDS with respect to other parameters such
as maximum degree, distance to bounded degree graphs, bounded genus and
maximum number of leaves in a spanning tree. We have got an idea from an
anonymous reviewer from IPEC 2021 that a W[2] hardness could be proved. We
are working on it.
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