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Abstract

Important variants of the Vertex Cover problem (among others, Con-

nected Vertex Cover, Capacitated Vertex Cover, and Maxi-

mum Partial Vertex Cover) have been intensively studied in terms of
polynomial-time approximability. By way of contrast, their parameterized
complexity has so far been completely open. We close this gap here by
showing that, with the size of the desired vertex cover as parameter, Con-

nected Vertex Cover and Capacitated Vertex Cover are both
fixed-parameter tractable while Maximum Partial Vertex Cover is
W[1]-complete. This answers two open questions from the literature. The
results extend to several closely related problems. Interestingly, although
the considered variants of Vertex Cover behave very similar in terms
of constant-factor approximability, they display a wide range of different
characteristics when investigating their parameterized complexities.

1 Introduction

Given an undirected graph G = (V, E), the NP-complete Vertex Cover prob-
lem is to find a set C ⊆ V with |C| ≤ k such that each edge in E has at least
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one endpoint in C. In some sense, Vertex Cover could be considered the
Drosophila of fixed-parameter algorithmics [22, 37]:

1. There is a long list of continuous improvements on the combinatorial ex-
plosion with respect to the parameter k when solving the problem exactly.
The currently best exponential bound is below 1.28k [9, 38, 16, 40, 14, 17].

2. Vertex Cover has been a benchmark for developing sophisticated data
reduction and problem kernelization techniques [1, 24].

3. It was the first parameterized problem where the usefulness of interleaving
depth-bounded search trees with problem kernelization was proven [39].

4. Restricted to planar graphs, it was—besides Dominating Set—one of the
central problems for the development of “subexponential” fixed-parameter
algorithms and the corresponding theory of relative lower bounds [3, 5, 13].

5. Vertex Cover served as a testbed for algorithm engineering in the realm
of fixed-parameter algorithms [1, 2, 4, 15].

6. Studies of Vertex Cover led to new research directions within parame-
terized complexity such as counting [8], enumerating [25, 21], parallel pro-
cessing [2, 15], and using “vertex cover structure” as a general strategy to
solve parameterized problems [42].

This probably incomplete list gives an impression of how important Vertex

Cover was and continues to be for the whole field of parameterized complexity.
However, research to date in this field appears to have neglected a closer investi-
gation of recent significant generalizations and variants of Vertex Cover which
so far only been studied in the context of their polynomial-time approximability.
We close this gap here by providing several first-time parameterized complexity
results, which also answer two open questions from the literature.

We are only aware of two papers that perform somewhat related research.
First, Nishimura, Ragde, and Thilikos [41] also study variants of Vertex Cover.
However, they follow a completely different route: Whereas we study concrete
problems such as Capacitated Vertex Cover or Maximum Partial Ver-

tex Cover on general graphs, their interest lies in recognizing general classes of
graphs with a very special case of interest being the class of graphs with bounded
vertex covers (refer to [41] for details). Second, Bläser [10] shows that some par-
tial covering problems are fixed-parameter tractable when the parameter is the
number of objects covered instead of the size of the covering set.

This work deals with a whole list of vertex covering problems, all of them
possessing constant-factor (mostly factor-2) polynomial-time approximation al-
gorithms. Deferring their formal definitions to the next section, we now informally
describe the studied problems, known results, and our new results which are also
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Problem Result

Connected Vertex Cover 6kn + 4kn2 + n2 log n + nm Theorem 1

Tree Cover 6kk2n + 4kk2n2 + kn3 Theorem 3

Tour Cover 2kk2km Theorem 5

Capacitated Vertex Cover 1.2k2

+ n2 Theorem 7

Soft Capacitated Vertex Cover 1.2k2

+ n2 Corollary 11

Hard Capacitated Vertex Cover 1.2k2

+ n2 Corollary 11

Maximum Partial Vertex Cover W[1]-complete Theorem 14

Minimum Partial Vertex Cover W[1]-complete Theorem 15

Table 1: New parameterized complexity results for several NP-complete variants
of Vertex Cover treated in this work. The parameter k is the size of the
desired vertex cover, m denotes the number of edges, and n denotes the number
of vertices.

surveyed in Table 1. In our presentation, n denotes the number of vertices and m
denotes the number of edges of the input graph. The parameter k always denotes
the size of the vertex cover.

1. For Connected Vertex Cover one demands that the vertex cover set
be connected. This problem is known to have a factor-2 approximation [44].
We show that it can be solved in O(6kn + 4kn2 + n2 log n + nm) time. In
addition, we derive results for the closely related variants Tree Cover

and Tour Cover.1

2. For Capacitated Vertex Cover, the “covering capacity” of each graph
vertex is limited in that it may not cover all of its incident edges. This
problem has a factor-2 approximation [30]. Addressing an open problem
from [30], we show that Capacitated Vertex Cover can be solved
in O(1.2k2

+ n2) time using an enumerative approach. We also provide a
problem kernelization. Altogether, we thus show that Capacitated Ver-

tex Cover—including two variants with “hard” and “soft” capacities—is
fixed-parameter tractable.

3. For Maximum Partial Vertex Cover, one only wants to cover a spec-
ified number of edges (that is, not necessarily all of them) by at most k
vertices. This problem is known to have a factor-2 approximation [11]. An-
swering an open question from [6], we show that this problem appears to
be fixed-parameter intractable—it is W[1]-complete. The same is proven

1Improving upon our 6k ·nO(1) bounds for Connected Vertex Cover and Tree Cover,
Mölle et al. [36] very recently reported 3.24k · nO(1) algorithms for these two problems.
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for its minimization version.2

Interestingly, although all problems we consider in this work behave in more
or less the same way from the viewpoint of polynomial-time approximability—all
have factor-2 approximations—the picture becomes completely different from a
parameterized complexity point of view: Maximum Partial Vertex Cover

appears to be intractable and Capacitated Vertex Cover appears to be
significantly harder than Connected Vertex Cover.

Summarizing, we emphasize that our main focus is on deciding between fixed-
parameter tractability and W[1]-hardness for all of the considered problems. It is
conceivable that run-time improvements on our initial algorithms may come up
in future research.

2 Preliminaries and Previous Work

We consider three types of Vertex Cover (VC) variants, namely demanding
that the vertices of the cover must be connected (Section 3), introducing capacities
for the vertices (Section 4), and relaxing the condition that all edges in the graph
must be covered (Section 5). In this section, we first give a brief overview about
parameterized complexity and parameterized reductions. This is followed by the
formal definitions for the considered problems and an overview of some known
results (mainly in the area of polynomial-time approximation). An overview of
our results is provided in Table 1.

Parameterized complexity is a two-dimensional framework for studying the
computational complexity of problems.3 One dimension is the input size n (as
in classical complexity theory) and the other one the parameter k (usually a
positive integer). A problem is called fixed-parameter tractable (fpt) if it can be
solved in f(k) ·nO(1) time, where f is a computable function only depending on k.
A core tool in the development of fixed-parameter algorithms is polynomial-time
preprocessing by data reduction rules, often yielding a reduction to a problem
kernel. Here the goal is, given any problem instance x with parameter k, to
transform it into a new instance x′ with parameter k′ such that the size of x′ is
bounded by some function only depending on k, the instance (x, k) has a solution
iff (x′, k′) has a solution, and k′ ≤ k.

A formal framework to show fixed-parameter intractability was developed by
Downey and Fellows [22] who introduced the concept of parameterized reduc-
tions. A parameterized reduction from a parameterized language L to another
parameterized language L′ is a function that, given an instance (x, k), computes
in time f(k) · nO(1) an instance (x′, k′) (with k′ only depending on k) such that

2Parameterized hardness results for the two Partial Vertex Cover problems have also
been independently announced by Cai [12].

3For more detailed introductions see [22, 26, 37].
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(x, k) ∈ L ⇔ (x′, k′) ∈ L′. The basic complexity class for fixed-parameter in-
tractability is W[1] as there is good reason to believe that W[1]-hard problems
are not fixed-parameter tractable [22].

As mentioned above, we consider three variants of Vertex Cover (VC) on
undirected graphs. The first variant demands connectedness of the cover and is
dealt with in Section 3.

Connected Vertex Cover: Given a graph G = (V, E) and an
integer k ≥ 0, determine whether there exists a vertex cover C for G
containing at most k vertices such that the subgraph of G induced
by C is connected.

This problem is NP-complete and polynomial-time approximable within a factor
of two [7]. Two variants are derived by introducing a weight function w : E →

�+

on the edges and requiring that the cover induce a subgraph with a certain
structure and minimum weight.

Tree Cover: Given a graph G = (V, E) where each edge is weighted
by a positive real number, an integer k ≥ 0, and a real number W > 0,
determine whether there exists a tree T = (V ′, E ′) with V ′ ⊆ V ,
|V ′| ≤ k, E ′ ⊆ E, and

∑

e∈E′ w(e) ≤W such that V ′ is a vertex cover
for G.

Note that Tree Cover is equivalent to Connected Vertex Cover for un-
weighted graphs. The closely related problem Tour Cover differs from Tree

Cover only in that the edges in G′ should form a closed walk (which may con-
tain repeated vertices and edges) instead of a tree. Both Tree Cover and
Tour Cover were introduced in [7] where it is shown that Tree Cover is
polynomial-time approximable within factor 3.55 and Tour Cover within fac-
tor 5.5. Könemann et al. [34] improved both approximation factors to 3.

Section 4 considers the Capacitated Vertex Cover (CVC) problem and
related variants. Here, the graph is capacitated, meaning that each vertex v ∈ V
is assigned an integer capacity c(v) ≥ 1 that limits the number of edges it can
cover when being part of the vertex cover.

Definition 1. Given a capacitated graph G = (V, E) and a vertex cover C for G,
we call C capacitated vertex cover if there exists a mapping f : E → C which
maps each edge in E to one of its two endpoints such that the total number of
edges mapped by f to any vertex v ∈ C does not exceed c(v).

Capacitated Vertex Cover: Given a vertex-weighted (with pos-
itive real numbers) and capacitated graph G, an integer k ≥ 0,
and a real number W ≥ 0, determine whether there exists a ca-
pacitated vertex cover C for G containing at most k vertices such
that

∑

v∈C w(v) ≤W .
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Note that solving CVC becomes equivalent to solving VC if every vertex has a
capacity that is at least its degree. Two special flavors of CVC exist in the liter-
ature that arise by allowing “copies” of a vertex to be in the capacitated vertex
cover [19, 27, 30]. In that context, taking a vertex x-times into the capacitated
vertex cover causes the vertex to have x-times its original capacity. The number
of such copies is unlimited in the Soft Capacitated Vertex Cover (Soft

CVC) problem while it may be restricted for each vertex individually in the
Hard Capacitated Vertex Cover (Hard CVC) problem. Soft CVC was
introduced by Guha et al. [30] who also give a factor-2 polynomial-time approx-
imation algorithm. For unweighted Hard CVC, the best known polynomial-
time approximation algorithm also achieves a factor of 2 [27]. The weighted
version Hard CVC is at least as hard to approximate as Set Cover [19], so no
constant-factor polynomial-time approximation algorithm can be expected for it.4

Section 5 considers a third type of VC variant besides demanding connected-
ness and introducing capacities—we relax the condition that all edges must be
covered.

Maximum Partial Vertex Cover: Given a graph G = (V, E)
and two integers k ≥ 0 and t ≥ 0, determine whether there exists a
vertex subset V ′ ⊆ V of size at most k such that V ′ covers at least t
edges.

This problem was introduced by Bshouty and Burroughs [11] who showed it to
be polynomial-time approximable within a factor of two. Depending on the max-
imum degree of the input graph, this approximation factor can be somewhat im-
proved [31]. Note that Maximum Partial Vertex Cover is fixed-parameter
tractable with respect to the parameter t [10]. We also consider the corresponding
minimization problem Minimum Partial Vertex Cover where we are asked
for a vertex subset with at least k vertices covering at most t edges.

3 Connected Vertex Cover and Variants

In this section we show that Connected Vertex Cover is fixed-parameter
tractable with respect to the size of the connected vertex cover. More precisely,
it can be solved by an algorithm running in O(6kn + 4kn2 + n2 log n + nm) time
where n and m denote the number of vertices and edges in the input graph and k
denotes the size of the connected vertex cover. We then modify this algorithm to
also show the fixed-parameter tractability of the closely related variants Tree

Cover and Tour Cover.

4Grandoni et al. [29] present a distributed approximation algorithm for weighted Hard

CVC which achieves an approximation factor of (2 + ε) for any ε > 0. However, this algorithm
does not necessarily run in polynomial time since its running time depends on the ratio of the
maximum to the minimum vertex weight in the graph.
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For solving Connected Vertex Cover, we use the Dreyfus-Wagner algo-
rithm for Steiner Minimum Tree as a subprocedure [23, 43].

Steiner Minimum Tree (Steiner Tree): Given a graph G =
(V, E) where each edge is weighted by a positive real number, a real
number W ≥ 0, and a subset K ⊆ V , determine whether there exists
a tree T = (V ′, E ′) with V ′ ⊆ V , E ′ ⊆ E, and K ⊆ V ′ such that
∑

e∈E′ w(e) ≤W .

The vertices in K are called the terminals of T and every subtree of G that
contains all vertices from K is called a Steiner tree for K in G. A Steiner mini-
mum tree for K in G is a Steiner tree T such that the weight of edges contained
in T is minimum. Steiner Tree is NP-complete [33]. The Dreyfus-Wagner
algorithm computes a Steiner minimum tree in O(3|K|n+2|K|n2 +n2 log n+nm)
time [23, 43].5

Our algorithm for Connected Vertex Cover consists of two steps:

1. Enumerate all minimal vertex covers with at most k vertices. If one of the
enumerated minimal vertex covers is connected, output it and terminate.

2. Otherwise, for each of the enumerated minimal vertex covers C, use the
Dreyfus-Wagner algorithm to compute a Steiner minimum tree with C as
the set of terminals. If one minimal vertex cover has a Steiner minimum
tree T with at most k − 1 edges (i.e., weight at most k − 1 as the graph is
unweighted), then return the vertex set of T as output; otherwise, there is
no connected vertex cover with at most k vertices.

Theorem 1. Connected Vertex Cover can be solved in O(6kn + 4kn2 +
n2 log n + nm) time.

Proof. The first step of the algorithm is correct since each connected vertex cover
(covc) contains at least one minimal vertex cover as a subset. For a given graph,
there are at most 2k minimal vertex covers with at most k vertices. We can
enumerate all such minimal vertex covers in O(2kn) time, i.e., the running time
of the first step is O(2kn).

The correctness of the second step follows directly from the following easy
to prove observation: For a set of vertices C, there exists a connected subgraph
of G with at most k vertices which contains all vertices in C iff there exists

5Mölle et al. [35] state an improvement of the running time to O((2 + ε)|K| · nO(1)) for
arbitrary ε > 0. This directly translates into an algorithm that solves Connected Vertex

Cover in O((4 + ε)k · nO(1)) time by Theorem 1. Despite this, we use the Dreyfus-Wagner
algorithm for two reasons: First, the algorithm in [35] is infeasible in practice since it has huge
constants hidden in the O-notation. Second, the recursion of the Dreyfus-Wagner algorithm
can easily be adapted to also solve Tree Cover, giving a more unified presentation here.
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a Steiner tree in G with C as the terminal set and at most k − 1 edges. By
applying the Dreyfus-Wagner algorithm to G with C as the terminal set, we
can easily find out whether there are k − |C| vertices from V \ C connecting C
and, hence, whether there is a covc with at most k vertices that contains C.
Since |C| < k, the second step can be done in O(2k ·(3kn+2kn2)+n2 log n+nm) =
O(6kn + 4kn2 + n2 log n + nm) time. (The O(n2 log n + nm) part in the running
time of the Dreyfus-Wagner algorithm is due to a calculation of the distance
matrix of the input graph [43], which only needs to be carried out once since G
is not modified.)

The algorithm for Connected Vertex Cover can be modified to solve
Tree Cover. While the basic idea is the same (enumerate all vertex covers
and—if necessary—add some vertices to form a tree cover), recall that the input
graph for Tree Cover is weighted and hence it is not sufficient to simply find a
Steiner minimum tree with a given vertex cover C as the set of terminal vertices:
There is the additional constraint that the tree may not contain more than k
vertices. Hence, we formulate the following modified Steiner Tree problem:

Steiner Minimum k-Tree (Steiner k-Tree): Given an instance
(G, W, K) of Steiner Tree and a positive integer k ≥ |K|, de-
termine whether there exists a Steiner tree for K in G of weight at
most W which contains at most k vertices.

Lemma 2. Steiner k-Tree can be solved in O(3|K|k2n+2|K|k2n2 +kn3) time.

Proof. To show the lemma, we adapt the dynamic programming recursions of
the Dreyfus-Wagner algorithm (closely following the presentation of Prömel and
Steger in [43, Lemma 5.5]) to include restrictions on the overall tree size.

For a given instance (G, W, K, k) of Steiner k-Tree, a nonempty sub-
set X ⊆ K, and v ∈ V \ X, let sj(X ∪ {v}) denote the weight of a Steiner
minimum tree for X ∪ {v} that has at most j vertices. Furthermore, for two
vertices v, w ∈ V , let pj(v, w) denote the weight of the shortest path between v
and w that contains at most j vertices.6

We claim that the value sj can be computed recursively, i.e.,

sj(X ∪ {v}) = min
0≤i<j

(

min
{

min
w∈X
{pi+1(v, w) + sj−i(X)},

min
w∈V \X

{pi+1(v, w) + sj−i,w(X ∪ {w})}
}

)

,
(1)

where sj,v(X ∪ {v}) is defined as

sj,v(X ∪ {v}) := min
∅6=X′⊂X
0≤i<j

{si+1(X
′ ∪ {v}) + sj−i((X \X ′) ∪ {v})}. (2)

6We let sj , sj,v, and pj take a value of ∞ in the case that no corresponding tree (or path,
respectively) exists.
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In order to justify (1), assume that we have a Steiner tree T for X ∪ {v}
which contains at most j vertices. On the one hand, if v is an internal vertex
of T , then sj(X ∪ {v}) = sj,v(X ∪ {v}). This case is included in the recursion
since we allow v = w. On the other hand, if v is a leaf of T then two cases need to
be distinguished: Let w be the end of the longest path in T which starts at v and
where all internal vertices have degree two. In the first case, we have w ∈ X, i.e.,
there exists 0 ≤ i < j such that T can be decomposed into a Steiner minimum
tree for X with at most (j − i) vertices and a shortest path from w to v which
contains at most i+1 vertices. In the second case—which is captured by (2)—we
have w 6∈ X which directly implies that w has degree at least three. Hence, there
exists 0 ≤ i < j such that T can be decomposed into a Steiner minimum tree
for X with at most (j − i) vertices (in which w has degree at least two) and a
shortest path from w to v which contains at most i + 1 vertices.

To see the overall running time as claimed, note that pj(v, w) for all 1≤ j ≤ k
and v, w ∈ V can be computed in k · n3 time by successive matrix-multiplication
(see [20, Section 25.1] for details). As to the start of the recursion, we have for
all u, v ∈ V and 0 < j < k that sj({u, v}) = pj(u, v). It remains to evaluate (1)
and (2) for all X ⊆ K, j ≤ k and v ∈ V \ X. It is easy to verify that this
upper-bounds the number of additions and comparisons in (2) by 3|K|k2n and
that the number of tuples for which we have to evaluate (1) is upper-bounded
by 2|K|k2n.

Theorem 3. Tree Cover can be solved in O(6kk2n + 4kk2n2 + kn3) time.

Proof. With one exception to note, the algorithm is analogous to the algorithm
for Connected Vertex Cover: We invoke the adapted Dreyfus-Wagner al-
gorithm from Lemma 2 for every size-at-most-k vertex cover C enumerated in
Step 1. (This is even done when C is connected since with weighted edges, taking
additional vertices into a connected minimal vertex cover could result in a tree
cover with a smaller total edge weight.) Overall, the running time is bounded
by O(2km + 2k(3kk2n + 2kk2n2) + kn3) = O(6kk2n + 4kk2n2 + kn3).

The algorithm solving Tour Cover consists also of two steps: enumerating
all minimal vertex covers C with at most k vertices and adding at most k − |C|
vertices from V \C to C to form a minimum tour. Unfortunately, there appears to
be no easily conceivable adaption of the Dreyfus-Wagner algorithm that we could
make use of in the second step.7 For this reason, the next theorem (Theorem 5)
relies on an enumerative approach to establish the fixed-parameter tractability of
Tour Cover. To this end, we make use of the following lemma, a generalization
of a result by Goodman and Hedetniemi [28] to edge-weighted graphs.

7One reason for this is that the algorithm for Steiner k-Tree crucially relies on optimum
partial solutions being vertex-disjoint except for one designated vertex v. This is clearly not
true for a closed walk, where vertices can be used multiple times.
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Lemma 4. Given an n-vertex graph G = (V, E) and a weight function w : E →
�+,

every minimum-weight closed walk visiting all vertices in G traverses at most 2(n−
1) edges.

Proof. Instead of directly dealing with a walk W , we consider the traversal map-
ping fW : E → �0 which represents the number of times that an edge e ∈ E is
used by W . We argue that a mapping fW corresponds to a closed walk if and
only if the following two properties are satisfied:

1. The edges for which fW is nonzero induce a connected subgraph in G.

2. For every vertex, the sum of fW over all its adjacent edges is even.

Clearly, every closed walk satisfies these properties. To see that the converse
also holds true, consider the induced subgraph as described in Property 1 and
replicate every edge e ∈ E exactly fW (e) times. Then, the resulting graph is
an Eulerian multigraph and the corresponding Euler tour provides a closed walk
in G [32].

Properties 1 and 2 directly imply that a minimum-weight closed walk in G
traverses every edge at most twice. If this were not the case for some edge e ∈ E,
then we could decrease the value of the traversal mapping for e by two without
violating Property 1 or 2, thus obtaining a closed walk with less weight.

Consider a minimum-weight closed walk H visiting all vertices in G and let fH

be the corresponding traversal mapping. Clearly, H contains a spanning tree T =
(V, ET ) of G. Partition the edges used by H into four disjoint sets E1

T := {e ∈ ET :
fH(e) = 1}, E2

T := {e ∈ ET : fH(e) = 2}, E1
H\T := {e ∈ (E \ ET ) : fH(e) = 1},

and E2
H\T := {e ∈ (E \ET ) : fH(e) = 2}. Firstly, note that E2

H\T must be empty

if H is to have minimum weight because setting fH(e) = 0 for all edges in this
set still satisfies Properties 1 and 2 while yielding a smaller-weight closed walk.
Secondly, note that the graph induced by E2

T ∪E1
H\T does not contain any cycle;

if it were to contain a cycle C, then decreasing fH by one for each edge in C
would still satisfy Properties 1 and 2, yielding a smaller-weight closed walk. This
implies that |E2

T ∪E1
H\T | ≤ n− 1 and thus the number of edge traversals that H

makes is upper-bounded by

|E1
T |+ 2 · |E2

T |+ |E
1
H\T | = |E

1
T ∪E2

T |+ |E
2
T ∪ E1

H\T | ≤ 2(n− 1).

Theorem 5. Tour Cover can be solved in O(2kk2km) time.

Proof. Our algorithm for Tour Cover is analogous to the one for Tree Cover

which was presented in the last theorem, replacing only the step that solves
Steiner k-Tree. More precisely, for a given vertex cover C = {v1, . . . , vK}
(where K ≤ k) of the input graph G = (V, E), we now face the task of finding a
set Ĉ = {vK+1, . . . , vk} (which can be empty) such that C ∪ Ĉ induces a tour of
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minimum weight in G. We now show how a brute-force approach can solve this
task in O(k2km) time, which then yields the overall running time as claimed.

From Lemma 4 it is easy to see that a minimum weight tour that visits k
vertices in a weighted graph traverses at most 2(k−1) edges. Hence, the minimum
tour that we seek for solving Tour Cover can be coded as a tour word of
length 2k − 1 over the alphabet {v1, . . . , vK} ∪ {vK+1, . . . , vk}. Given one of
these at most k2k−1 different tour words, it is straightforward to check in O(m)
time whether it represents a valid tour in the input graph and to assign vertices
from V \C to {vK+1, . . . , vk} in such a way that the weight of the resulting tour
is minimized:

1. We can w.l.o.g. assume that the tour word starts and stops with v1 (since
this vertex must be visited by the represented tour anyway). Also, we
assume the tour word to be “cut short” after the point where its represented
tour has visited all vertices in C and returned to v1.

2. If two vertices from {v1, . . . , vK} are adjacent in the tour word, we can check
in O(m) time whether they are connected by an edge in G and determine
the weight of that edge.

3. No two vertices from {vK+1, . . . , vk} must be adjacent in the tour word
since the vertices in V \ C are an independent set in G. Hence, for every
vertex v̂ ∈ {vK+1, . . . , vk}, the given tour word explicitly defines a set of
edges from v̂ to vertices in C that are traversed in the represented tour. It
is possible in O(m) time to check whether there exists a vertex in V \ C
that has the required neighborhood for v̂. If more than one such vertex
exists, we choose the one that minimizes the cost of the represented tour.

Using a brute-force approach to enumerate all possible tour words for at
most 2k vertex covers of the input graph, we can thus upper-bound the over-
all running time needed to solve Tour Cover by O(2kk2km).

4 Capacitated Vertex Cover and Variants

In this section we present fixed-parameter algorithms for the Capacitated Ver-

tex Cover (CVC) problem and its variants Hard CVC and Soft CVC. In
the case of CVC, the easiest way to show its fixed-parameter tractability is to
give a reduction to a problem kernel. This is what we begin with here, afterwards
complementing this result with an enumerative approach for further improving
the overall time complexity.

Theorem 6. Given an n-vertex graph G = (V, E) and an integer k ≥ 0 as part
of an input instance for CVC, it is possible to construct an O(4k · k2)-vertex
graph G̃ such that G has a size-k solution for CVC iff G̃ has a size-k solution for
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CVC. In the special case of uniform vertex weights, G̃ has only O(4k ·k) vertices.
The construction of G̃ can be performed in O(n2) time.

Proof. We first assume uniform vertex weights, generalizing the approach to
weighted graphs at the end of the proof.

Let u, v ∈ V , u 6= v, and {u, v} 6∈ E. The simple observation that lies at the
heart of the data reduction rule needed for the kernelization is that if the open
neighborhoods of u and v coincide (i.e., N(u) = N(v)) and c(u) < c(v), then u is
part of a minimum capacitated vertex cover only if v is as well. We can generalize
this finding to a data reduction rule: Let the vertices {v1, v2, . . . , vk+1} ⊆ V form
an independent set in G such that N(v1) = N(v2) = · · · = N(vk+1). Call this the
neighbor set. Then delete from G a vertex vi ∈ {v1, v2, . . . , vk+1} which has mini-
mum capacity. This rule is correct because any size-k capacitated vertex cover C
containing vi can be modified by replacing vi with a vertex from {v1, v2, . . . , vk+1}
which is not in C.

Based on this data reduction rule, G̃ can be computed from G as claimed by
the following two steps:

1. Use the straightforward linear-time factor-2 approximation algorithm8 to
find a vertex cover S for G of size at most 2k′ (where k′ is the size of a
minimum (not necessarily capacitated) vertex cover for G and hence k′ ≤
k). If |S| > 2k we can stop, because then no size-k (capacitated) vertex
cover can be found. Note that V \ S induces an edgeless subgraph of G.

2. Examining V \ S, check whether there is a subset of k + 1 vertices that
fulfill the premises of the above rule. Repeatedly apply the data reduction
rule until it is no longer applicable. Note that this process continuously
shrinks V \ S.

The above computation is clearly correct. The number of all possible neighbor
sets can be at most 22k (the number of different subsets of S). For each neighbor
set, there can be at most k neighboring vertices in V \S; otherwise, the reduction
rule would apply. Hence we can have at most 22k · k vertices in the remaining
graph G̃.

The generalization to non-uniform vertex weights works as follows: Again,
we compute a vertex cover S for the input graph of size at most 2k. Then,
the vertices in V \ S may have maximum vertex degree 2k and a capacity of
a vertex in V \ S greater than 2k can—without any harm—be replaced by a
capacity of 2k. Therefore, without loss of generality, one may assume that the
maximum capacity of vertices in V \ S is 2k. We then have to modify the
data reduction rule as follows. If there are vertices v1, v2, . . . , v2k2+1 ∈ V with

8Note that the approximation factor refers to the cardinality and not to the weight of the
cover.

12



N(v1) = N(v2) = · · · = N(v2k2+1), partition them into subsets of vertices with
equal capacity. There are at most 2k such sets; if one of these contains more
than k vertices, delete a vertex with maximum weight. Altogether, we thus end
up with a problem kernel of 22k · 2k2 = O(4k · k2) vertices.

It remains to justify the polynomial running time. First, note that the trivial
factor-2 approximation algorithm runs in O(|E|) = O(n2) time. Second, exam-
ining the common neighborhoods can be done in O(n2) time by successively
partitioning the vertices in V \ S according to their neighborhoods.

Clearly, a simple brute-force search within the reduced instance (with a size of
only O(4k · k2) vertices) already yields the fixed-parameter tractability of CVC.
However, this would require the exploration of O((4k · k2)k) = O(4k2

k2k) possible
solutions. As the next theorem shows, we can do much better concerning the
running time.

Theorem 7. Capacitated Vertex Cover can be solved in O(1.2k2

+ n2)
time.

The theorem is proven by first giving an algorithm to solve Capacitated

Vertex Cover and then analyzing its running time. The basic idea behind the
algorithm is as follows: Enumerate all minimal vertex covers C = {c1, . . . , ci} ⊆ V
for the input graph G = (V, E). Due to a possible lack of capacities, a minimal
vertex cover C is not necessarily a capacitated vertex cover for G. In the case
that C is not a capacitated vertex cover, we need to add some additional vertices
from V \ C to C in order to provide additional capacities. More precisely, since
for each vertex v ∈ (V \ C) all of its neighbors are in C, adding v can be seen
as “freeing” exactly one unit of capacity for as many as c(v) neighbors of v. Our
algorithm uses an exhaustive search approach based on this observation: It enu-
merates all possible patterns of capacity-freeing and, for each of these patterns,
computes the cheapest set of vertices from V \ C (if one exists) that matches it.

Definition 2. Given a graph G = (V, E) and a vertex cover C = {c1, . . . , ci} ⊆ V
for G, a capacity profile of length i is a binary string s = s[1] · · · s[i] ∈ {0, 1}i.
A vertex w ∈ V \ C is said to match a capacity profile s if it is incident to each
vertex cj ∈ C with s[j] = 1 and its capacity is at least the number of ones in s.

The concept of capacity profiles is illustrated in Figure 1. Using Definition 2,
the pseudocode shown in Figure 2 gives an algorithm for CVC.

Lemma 8. The algorithm for Capacitated Vertex Cover given in Figure 2
is correct.

Proof. Preprocessing the graph in line 01 is correct according to Theorem 6.
Since a capacitated vertex cover for a graph G = (V, E) is also a vertex cover,
its vertices can be partitioned into two sets C and Ĉ such that C is a minimal
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Capacity profile:

v1

c(v1) = 2

Match No matchMatch No matchNo match

v2 v3 v4 v5

c(v2) = 3 c(v3) = 3 c(v4) = 2 c(v5) = 3

1 01 1

Size-4 vertex cover:

Figure 1: An illustration for the concept of capacity profiles: In the above graph,
only the vertices v2 and v3 match the capacity profile 1101. All other vertices
lack either the neighborhood or the capacity to match this profile.

vertex cover for G. Assume the vertices in C to be ordered (arbitrarily but fixed).
Each vertex in Ĉ gives additional capacity to a subset of the vertices in C, i.e.,
for every ĉ ∈ Ĉ, we can construct a capacity profile sĉ where sĉ[j] = 1 if and only
if ĉ uses its capacity to cover the edge to the j-th vertex in C. The correctness
of the algorithm follows from its exhaustive nature: It tries all minimal vertex
covers, all possible combinations of capacity profiles and for each combination it
determines the cheapest possible set Ĉ such that C ∪ Ĉ is a capacitated vertex
cover for G.

Lemma 9. The algorithm for Capacitated Vertex Cover given in Figure 2
runs in O(1.2k2

+ n2) time.

Proof. The preprocessing in line 01 can be carried out in O(n2) time according to
Theorem 6. This leads to a new graph containing at most ñ := O(4k ·k2) vertices.
Line 02 of the algorithm causes the subsequent lines 03–07 to be called at most 2k

times (and causes only polynomial delay between two such calls). Due to [19], we
can decide in ñO(1) time whether a given vertex cover is also a capacitated vertex
cover (lines 03 and 07). For line 04, note that for a given 0 ≤ i < k there exist 2i

different capacity profiles of that length. Furthermore, it is well-known that given
a set A with |A| = a, there exist exactly

(

a+b−1
b

)

b-element multisets with elements

drawn from A. Hence, line 04 causes lines 05–07 to be executed
(

2i+(k−i)−1
k−i

)

times.
The delay between enumeration of two multisets can be kept constant. As it will
be shown in Lemma 10, line 06 takes ñO(1) time. Overall, the running time TCVC
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Algorithm: Capacitated Vertex Cover

Input: A capacitated and vertex-weighted graph G = (V, E), k ∈ �+, W ∈
�+

Output: “Yes” if G has a capacitated vertex cover of size at most k
with weight ≤W ; “No” otherwise

01 Perform the kernelization from Theorem 6 on G
02 for every minimal vertex cover C of G with size i ≤ k do
03 if C is a cap. vertex cover with weight ≤W then return “Yes”
04 for each multiset M consisting of (k − i) length-i capacity profiles do
05 remove the all-zero profiles from M

06 find the cheapest size-(k − i) set Ĉ ⊆ (V \ C) so that there exists

a bijective mapping f : Ĉ → M where each ĉ ∈ Ĉ matches

the capacity profile f(ĉ). Set Ĉ ← ∅ if no such set exists

07 if Ĉ 6= ∅, the weight of C ∪ Ĉ is ≤W , and C ∪ Ĉ is a
capacitated vertex cover for G then return “Yes”

08 return “No”

Figure 2: An algorithm that solves Capacitated Vertex Cover in
O(1.2k2

+ n2) time.

of the algorithm is thus bounded from above by

TCVC ≤ O(n2) + 2k · ñO(1) · max
1≤i<k

((

2i + (k − i)− 1

k − i

)

· ñO(1)

)

= O(n2) + 2k · max
1≤i<k

(

(2i + (k − i)− 1)!

(2i − 1)!(k − i)!

)

· ñO(1)

= O(n2) + 2k · max
1≤i<k

(

2i + (k − i)− 1

k − i
· . . . ·

2i

1

)

· ñO(1)

(∗)
< O(n2) + 2k · max

1≤i<k

(

(2i)k−i
)

· ñO(1)

≤ O(n2) + 2k ·
(

2(k2−1)/4
)

· ñO(1)

= O(n2) + 2k ·O(1.189k2

) · (4k · k2)O(1)

= O(n2 + 1.2k2

)

where (∗) is due to the fact that for all j ≥ 1, we have 2i+j−1
j

< 2i.

It remains to show the running time for line 06 of the algorithm.

Lemma 10. Given a weighted and capacitated n-vertex graph G = (V, E), a
vertex cover C for G of size i ≤ k, and a multiset M of k − i capacity profiles of

15



length i, it takes nO(1) time to find the cheapest size-(k − i) subset Ĉ ⊆ (V \ C)
(or determine that no such set Ĉ exists) such that there exists a bijective mapping
f : Ĉ →M where each ĉ ∈ Ĉ matches the capacity profile f(ĉ).

Proof. Finding Ĉ is equivalent to finding a minimum weight maximum bipartite
matching (that is, a bipartite matching of minimum weight among those of maxi-
mum cardinality) on the bipartite graph G′ = (V ′

1 , V
′
2 , E

′) where each vertex in V ′
1

represents a capacity profile from M , V ′
2 := V \C, and two vertices v ∈ V ′

1 , u ∈ V ′
2

are connected by an edge in E ′ if and only if the vertex represented by u matches
the profile represented by v (the weight of the edge is w(u)). Finding such a
matching is well-known to be solvable in polynomial time [20].

It is possible to solve Soft CVC and Hard CVC by adapting the CVC

algorithm: Observe that if we choose multiple copies of a vertex into the cover,
each of these copies will have its own individual capacity profile. Thus, only line 06

of the CVC algorithm has to be modified to solve Soft CVC and Hard CVC.

Corollary 11. Soft CVC and Hard CVC are solvable in O(1.2k2

+ n2) time.

Proof. First, observe that the kernelization for Capacitated Vertex Cover

(Theorem 6) also works for Soft CVC and Hard CVC since the crucial obser-
vation “if N(u) = N(v) and c(u) < c(v), then u is part of a minimum capacitated
vertex cover only if v is as well” still holds for these two problems. Hence, it only
remains to show how to change line 06 of the CVC algorithm.
For Soft CVC, the algorithm for line 06 as given in Lemma 10 can be replaced
by a simple greedy-strategy that always takes the cheapest candidate for each
profile. (In this way, the algorithm becomes faster than the original CVC algo-
rithm because we do not have to compute a bipartite matching.)
For Hard CVC, the same bipartite matching algorithm as in Lemma 10 can be
employed, with the modification that the vertex set V ′

2 in the bipartite graph G′

contains as many representatives of each vertex v ∈ V \ C as we are allowed to
make copies of it.

5 Maximum and Minimum Partial Vertex Cover

All Vertex Cover variants we studied in the previous two sections are known
to have a polynomial-time constant-factor approximation (mostly factor-2) and
all of them were shown to be fixed-parameter tractable. By way of contrast,
we now present a result where a variant that has a polynomial-time factor-2
approximation is shown to be fixed-parameter intractable. More precisely, we
show that Maximum Partial Vertex Cover (MaxPVC) is W[1]-complete
with respect to the size k of the partial vertex cover by showing containment in
W[1] and giving a parameterized reduction from the W[1]-complete Indepen-

dent Set problem [22]. With the solution size as parameter, we also show the
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W[1]-completeness of its minimization version MinPVC, employing a reduction
from Clique.

In order to show that MaxPVC and MinPVC both are in W[1], we use the
following “machine characterization” of W[1] by Chen, Flum, and Grohe [18].

Theorem 12 (Adapted from Definition 4 and Theorem 16 in [18]). For a
parameterized problem P, we have P ∈W[1] if and only if there exist a computable
function f , a polynomial p(n), and a nondeterministic RAM program deciding P

such that for every run of the program on an instance (x, k) (where |x| = n),

1. it performs at most f(k) · p(n) steps;

2. at most the first f(k) · p(n) registers are used;

3. at every point of the computation, no register contains numbers strictly
greater than f(k) · p(n);

4. all nondeterministic steps are among the last f(k) steps.

For more details on the computational model employed, we refer to [18].

Lemma 13. Both MaxPVC and MinPVC are contained in W[1].

Proof. Given a graph G = (V, E) and integers k, t as input, a nondeterministic
RAM program can decide if the corresponding instance of MaxPVC (MinPVC)
has a solution with respect to the parameter k in three steps:

1. Preprocess the graph by storing its adjacency matrix in n2 registers and
storing the degree of each vertex in n registers. This takes O(n2) time.

2. Guess k vertices to put into the cover. This takes O(k) time.

3. Let t′ be the sum of the degrees of all guessed vertices. This sum can be
calculated in O(k) time. For each possible (unordered) pair of the guessed
vertices, check whether they are connected by an edge. For each pair that
is connected, subtract 1 from t′. This check can be performed in O(k2) time
because in Step 1 we have stored the adjacency matrix in the registers of
the RAM and we can thus check for edges in constant time.9

9Actually, keeping the time constant for an edge-check requires a little more care: Assume
we have stored the adjacency matrix of G = (V, E) in n2 subsequent registers called adjacency

registers. Let V = {v1, . . . , vn}. Then, testing whether two vertices vi and vj are connected
by an edge in E requires indirect addressing of the (i · n + j)-th adjacency register. While
indirect addressing is allowed in the RAM model used in [18], this is problematic from a run-
time perspective because the RAM model does not allow for multiplication in constant time
but only addition, subtraction, and rounded division by two. Thus, in order to quickly perform
the indirect addressing of adjacency registers in Step 3, we need to pre-calculate the value i · n
for every vertex vi in Step 1 of the program. Clearly, this is doable in polynomial time.
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A Graph G MaxPVC instance G′ MinPVC instance G′′

K9

Figure 3: An illustration for the reductions given in the proofs of Theorems 14
and 15. For the given graph G, we wish to find an independent set of size two
and a clique of size three. By adding the white vertices to G, we obtain G′ as a
MaxPVC instance. The two circled vertices are a size-2 solution of MaxPVC

with t = 6 and correspond to a size-2 independent set in G. Graph G′′ is the
MinPVC instance (K9 denotes a clique of nine vertices), the three boxed vertices
are a size-3 solution of MinPVC with t := 6 and correspond to a size-3 clique
in G.

In the case of MaxPVC, it remains to output “yes” if t′ ≥ t and “no” otherwise.
For MinPVC, we output “yes” if t′ ≤ t and “no” otherwise. Clearly, the
described program meets the requirements of Theorem 12 and hence we have
established that MaxPVC ∈W[1] and MinPVC ∈W[1].

It remains to show the W[1]-hardness for MaxPVC and MinPVC. For Max-

PVC, we employ a parameterized reduction from the W[1]-complete Indepen-

dent Set problem [22].

Independent Set: Given a graph G = (V, E) and an integer k ≥ 0,
determine whether there is a vertex subset I ⊆ V with at least k
vertices such that the subgraph of G induced by I contains no edge.

With independent set , we denote a set of mutually nonadjacent vertices in a
given graph.

Theorem 14. Maximum Partial Vertex Cover is W[1]-complete with re-
spect to the size of the cover.

Proof. Containment in W[1] has been shown in Lemma 13. To show W[1]-
hardness, we give a parameterized reduction from Independent Set to Max-

PVC. Given an input instance (G = (V, E), k) of Independent Set, let deg(v)
denote the degree of a vertex v in G. We construct a new graph G′ = (V ′, E ′) in
the following way: For each vertex v ∈ V we insert |V | − 1− deg(v) new vertices
into G and connect each of these new vertices with v. Thus, all vertices in V
have degree |V |−1 in G′. Figure 3 gives an example for this construction. In the
following, we show that a size-k independent set in G one-to-one corresponds to
a size-k partial vertex cover in G′ which covers at least t := k · (|V | − 1) edges.
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First, a size-k independent set in G also forms a size-k independent set in G′.
Moreover, each of these k vertices has exactly |V | − 1 incident edges. Then,
these k vertices form a partial vertex cover that covers k · (|V | − 1) edges.

Second, if we have a size-k partial vertex cover in G′ which covers k · (|V |−1)
edges, then we know that none of the newly inserted vertices in G′ can be in this
cover. Hence, this cover contains k vertices from V . Moreover, a vertex in G′

can cover at most (|V | − 1) edges and two adjacent vertices can cover no more
than 2|V |−3 edges. Therefore, no two vertices in the partial vertex cover can be
adjacent, which implies that it forms a size-k independent set in G.

In the case of Minimum Partial Vertex Cover (MinPVC), we wish
to choose at least k vertices such that at most t edges are covered. Through
a parameterized reduction from the W[1]-complete Clique problem [22], it is
possible to show—analogously to MaxPVC—that MinPVC is also W[1]-hard.

Clique: Given a graph G = (V, E) and an integer k ≥ 0, determine
whether there is a vertex subset K ⊆ V with at least k vertices such
that the subgraph of G induced by K forms a complete graph.

A complete graph is called a clique. The reduction works in a similar way as
the reduction in the proof above.

Theorem 15. Minimum Partial Vertex Cover is W[1]-complete with re-
spect to the size of the cover.

Proof. Containment in W[1] has been shown in Lemma 13. To show W[1]-
hardness, we give a parameterized reduction from Clique to MinPVC. Given a
Clique-instance (G = (V, E), k), we construct a graph G′ = (V ′, E ′) as described
in the proof of Theorem 14. In addition, we add a clique consisting of k · (|V |−1)
new vertices into G′, with V ′′ denoting the vertex set of this clique. Then, we
insert edges between all pairs of vertices in V ′ \ V and V ′′. The resulting graph
is denoted by G′′, Figure 3 gives an example for the construction. We now show
that a size-k clique in G one-to-one corresponds to a size-k partial vertex cover
in G′′ which covers at most t := k · (|V | − 1)− k · (k − 1)/2 edges.

On the one hand, it is easy to verify that each size-k clique C of G cov-
ers k · (|V | − 1)− k · (k − 1)/2 edges in G′′. On the other hand, if there exists a
partial vertex cover C with k vertices that covers k · (|V |−1)−k · (k−1)/2 edges
in G′′, then none of the vertices in C can be in V ′′ ∪ (V ′ \ V ) since all vertices
in V ′′∪ (V ′ \V ) have at least degree k · (|V |−1) in G′′. Thus, all vertices in C are
from V . Since each vertex in V has exactly |V | − 1 incident edges, the number
of edges in the subgraph of G induced by C is k · (k − 1)/2. Hence, the vertices
in C form a size-k clique of G.
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6 Conclusion

We extended the parameterized complexity picture for natural variants and gen-
eralizations of Vertex Cover. Table 1 in Section 2 summarizes our new results.
Notably, whereas the fixed-parameter tractability of Vertex Cover immedi-
ately follows from a simple search tree strategy, this does not appear to be the
case for all of the problems studied here.

Our fixed-parameter tractability results clearly generalize to cases where the
vertices have real weights ≥ c for some given constant c > 0 and the parameter
becomes the weight of the desired vertex cover (see [40] for corresponding studies
for weighted Vertex Cover).

It is a task for future research to significantly improve on the presented worst-
case running times (exponential factors in parameter k).10 In particular, it would
be interesting to learn more about the amenability of the considered problems to
problem kernelization by (more) efficient data reduction techniques.

Besides the significant interest in the studied problems on their own, we want
to mention one more feature of our work that lies a little aside. Adding our results
to the already known large arsenal of facts about Vertex Cover, this problem
can be even better used and understood as a seed problem for parameterized com-
plexity as a whole: New aspects now directly related to vertex covering by means
of our results are issues such as enumerative techniques, dynamic programming,
or parameterized intractability. This might be of particular use when learning
or teaching parameterized complexity through basically one natural and easy to
grasp problem—Vertex Cover—and its “straightforward” variants.
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