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ABSTRACT

Many weather radar networks in the world have now provided polarimetric radar data (PRD) that have the potential to
improve our understanding of cloud and precipitation microphysics, and numerical weather prediction (NWP). To realize
this potential, an accurate and efficient set of polarimetric observation operators are needed to simulate and assimilate the
PRD with  an  NWP model  for  an  accurate  analysis  of  the  model  state  variables.  For  this  purpose,  a  set  of  parameterized
observation  operators  are  developed  to  simulate  and  assimilate  polarimetric  radar  data  from  NWP  model-predicted
hydrometeor mixing ratios and number concentrations of rain, snow, hail, and graupel. The polarimetric radar variables are
calculated based on the T-matrix calculation of wave scattering and integrations of the scattering weighted by the particle
size  distribution.  The  calculated  polarimetric  variables  are  then  fitted  to  simple  functions  of  water  content  and  volume-
weighted mean diameter of the hydrometeor particle size distribution. The parameterized PRD operators are applied to an
ideal case and a real case predicted by the Weather Research and Forecasting (WRF) model to have simulated PRD, which
are compared with existing operators and real observations to show their validity and applicability. The new PRD operators
use less than one percent of the computing time of the old operators to complete the same simulations, making it efficient in
PRD simulation and assimilation usage.
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Article Highlights:

•  Develop  a  set  of  parameterized  forward  operators  to  simulate  and  assimilate  polarimetric  radar  data  with  numerical
weather predictions.

•  The forward operators are accurate and efficient in calculating polarimetric radar variables from model state parameters.
•  The operators have been implemented and tested on WRF with an ideal case and a real case to show its performance.

 

 
  

1.    Introduction

Many  weather  radar  networks  in  the  world  have  been
upgraded with dual-polarization capability and provide polari-
metric  radar  data (PRD) that  have the potential  to improve
cloud  microphysical  parameterization  and  numerical
weather  prediction  (NWP) (Zhang et  al.,  2019).  PRD have
been successfully used in severe weather observation/detec-
tion, hydrometeor classification (HC), and quantitative precip-
itation  estimation  (QPE)  (Doviak  and  Zrnić,  1993; Doviak
et  al.,  2000; Bringi  and  Chandrasekar,  2001; Zhang,  2016;

Ryzhkov  and  Zrnic,  2019).  Most  of  these  applications  are
observational  and  empirical,  which  is  not  optimal  because
of the many assumptions that  have to be made to facilitate
an  estimation/retrieval,  and  because  the  error  effects  have
not  been  taken  into  account  rigorously  in  the  estimation/
retrieval process. More importantly, PRD have not been suc-
cessfully  used  to  initialize  NWP  models  for  an  improved
quantitative  precipitation  forecast  (QPF).  Preliminary
research is being conducted in this area, but it  is still  in its
embryonic  stages  (Jung  et  al.,  2008b; Li  and  Mecikalski,
2010; Posselt et al., 2015; Carlin et al., 2017; Li et al., 2017;
Putnam et al., 2019).

One  way  to  optimally  use  PRD  is  to  assimilate  PRD
into NWP models to improve weather quantification and fore-
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casts.  This  is  an  important  goal  for  the  radar  meteorology
and NWP communities because PRD contain rich informa-
tion about clouds/precipitation microphysics: size, shape, ori-
entation, and composition of hydrometeors, which allow for
better  understanding,  representation,  and  parameterization
of  model  microphysics  and  model  initialization.  However,
even with PRD, the amount of independent information is lim-
ited  and  oftentimes  less  than  that  of  model  state  variables.
This is especially true for the double or multi-moment micro-
physics parameterization schemes, where there can be more
than a dozen microphysical state variables (Ferrier, 1994; Mil-
brandt  and  Yau,  2005a, b; Morrison  et  al.,  2005).  Hence,
NWP model  physics  constraints  are  still  needed.  Also,  the
PRD  analysis/retrieval  needs  to  be  compatible  with  the
NWP model so that the analysis can be used in model initializ-
ation to improve forecasts. To assimilate PRD in NWP mod-
els, a forward observation operator, also called a PRD simu-
lator, is needed to establish the relation between model phys-
ics state variables and polarimetric radar variables.

So far, the radar reflectivity operators have been estab-
lished mostly based on the 6th moment of raindrop size distri-
bution  (DSD)  or  hydrometeor  particle  size  distribution
(PSD) and used to simulate radar observations and to assimil-
ate radar data (Smith et al.,  1975; Ferrier et al.,  1995; Sun,
2005; Gao  and  Stensrud,  2012; Pan  et  al.,  2016).  These
reflectivity operators were developed based on the approxima-
tion of Rayleigh scattering by hydrometeors where the radar
cross-section  is  proportional  to  the  square  of  the  particle
volume  (i.e.,  the  6th  power  of  the  diameter)  and  are  valid
only  for  small  spherical  particles.  These  operators  are
overly simplified, and do not provide polarimetric radar vari-
ables and cannot accurately represent polarimetric radar signa-
tures  of  hydrometeors  in  the  ice  and  mixture  phases  (e.g.,
snow/hail/graupel)  nor  the  melting  process  when  non-
Rayleigh scattering (resonance effects) occurs or non-spher-
ical particles are present.

Recently,  PRD  simulators  have  been  developed  based
on  the  numerical  integration  of  T-matrix  calculations  for
wave  scattering  from  hydrometeors  (Waterman,  1965;
Vivekanandan  et  al.,  1991; Zhang  et  al.,  2001; Jung  et  al
2008a, 2010; Ryzhkov et  al.,  2011);  The computer code in
the Fortran language for the PRD operators, documented in
Jung et al. (2010), is posted on the University of Oklahoma
website  (http://arps.ou.edu/downloadpyDualPol.html).  Sci-
entists  from  Stony  Brook  University  and  Brookhaven
National  Laboratory  also  developed  a  Cloud  Resolving
Model  Radar  Simulator  (CR-SIM)  and  made  it  available
(http://radarscience.weebly.com/radar-simulators.html).
Another operator, called the POLArimetric Radar Retrieval
and Instrument Simulator  (POLARRIS),  was developed by
the Colorado State University and NASA scientists (https://
cloud.gsfc.nasa.gov/POLARRIS/)  (Matsui  et  al.,  2019).
These PRD simulators are successful in generating realistic
polarimetric signatures such as ZDR arc, ρhv ring and so forth
that  have  been  observed  (Kumjian  and  Ryzhkov,  2008).
However, these simulators are used, for the most part,  as a
black-box by most NWP modelers, and it is difficult to under-

stand  what  insights/information  they  could  bring  to  under-
standing the physical states and processes they simulate and
to  make  adjustments  on  NWP  models  based  on  these
insights.  Furthermore,  the  simulators  are  computationally
expensive and difficult to use in data assimilation (DA), espe-
cially  in  variational  assimilation where the first  derivatives
of  the  variables  are  needed  as  well.  To  have  a  successful
DA  of  PRD,  the  PRD  operator  needs  to  be  accurate,  effi-
cient,  differentiable, and compatible with the model micro-
physical  parameterization  schemes.  This  motivates  us  to
derive a set of parameterized PRD simulators to link NWP
model  state  variables  and  radar  variables  for  efficient  DA
use.

This  paper is  organized as follows.  Section 2 provides
the fundamentals concerning microphysics models and para-
meterization schemes about particle size, shape, orientation,
and  composition  as  well  as  their  effects  on  polarimetric
radar variables. Section 3 describes the procedure to derive
parameterized  polarimetric  radar  operators  for  rain,  snow,
hail, and graupel, including the function form and fitting coef-
ficients.  Section  4  shows  the  testing  results  with  NWP
model  simulations  for  ideal  and  real  cases.  Section  5  con-
cludes with a summary and discussion. 

2.    Microphysics  models  and  parameteriza-
tion

Single moment and double moment microphysics para-
meterization  schemes  are  commonly  used  in  NWP models
(Lin et al.,  1983; Ferrier, 1994; Milbrandt and Yau, 2005a,
b; Morrison et al., 2005). In a single moment NWP model,
hydrometeor  mixing  ratios,  which  are  directly  related  to
water contents, are the only prognostic variable for hydromet-
eor physics, from which all other integral parameters, includ-
ing the number concentration and radar reflectivity, are repres-
ented.  In  a  double  moment  microphysics  scheme,  both  the
number concentration and the hydrometeor mixing ratio are
prognostic  variables.  Based on these variables,  a  two-para-
meter  DSD/PSD  is  determined/represented,  along  with  all
other  physics  variables  and  microphysical  processes.  For  a
given two-parameter DSD/PSD model, the hydrometeor mix-
ing ratio and the number concentration can be converted to
a mass-weighted diameter and water content.

Let the DSD/PSD of hydrometeors be exponentially dis-
tributed, represented by 

N(D) = N0 exp(−ΛD) , (1)

Λ

where D (mm) is the particle diameter, N0 (m−3 mm−1) is the
intercept parameter and  (mm−1) is the slope parameter.

For a hydrometeor species x, a NWP model with a two-
moment  microphysics  scheme  usually  predicts  the  number
concentration (Nt,x) and mixing ratio (qx) which is related to
water content by Wx = ρaqx, with ρa as the air density. Express-
ing the DSD/PSD parameters of Λx and N0x in terms of the
predicted variables, we have 
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Λx =

(

πρxNt,x

ρaqx

)1/3

, (2)
 

N0x =
ρaqxΛx

4

πρx

, (3)

where  the  hydrometeor  particle  density  is ρx.  Once  the
DSD/PSD  parameters  are  found,  all  integral  physical
states/processes are ready to be calculated. Ignoring the trun-
cation effects, the DSD/PSD moment is 

Mn =

∫

DnN(D)dD = N0Λ
−(n+1)

Γ(n+1) , (4)

Dmand  the  mass/volume-weighted  diameter  is  also  com-
monly used and can be defined using DSD/PSD moments as 

Dm,x ≡ M4x/M3x = 4/Λx = 4

(

ρaqx

πρxNt,x

)1/3

, (5)
 

Zx ≡ M6x = 11.25×103 ρaqx

πρx

Dm,x
3 . (6)

γx = qr/(qr+qx)

We  choose  to  parameterize  radar  variables  in  term  of
Dm,x (mm) and Wx=ρaqx (g m−3). In the case of a melting pro-
cess,  species  such  as  melting  snow,  hail,  and  graupel,  the
hydrometeor particle density ρx (g cm−3) is given as a func-
tion  of  the  percentage  of  melting  (Jung  et
al., 2008a), 

ρx = ρdx(1−γ2
x)+ρwγ

2
x , (7)

where ρdx is the density of dry snow, hail, or graupel, and ρw

is the density of water. The shape and orientation of hydromet-
eor particles also follow the modeling and representation doc-
umented  in Jung  et  al.  (2008a),  except  for  the  mean  axis
ratio and standard deviation of the canting angles, which is
described in the next section. 

3.    Parameterized PRD operators

A dual-polarization weather radar measures reflectivity
factor (also called reflectivity: Z or ZH), Doppler radial velo-
city (vr), spectrum width (σv), differential reflectivity (ZDR),
co-polar correlation coefficient (ρhv),  and differential phase
(ϕDP) and/or a half of its range derivative – specific differen-
tial  phase  (KDP).  While  radial  velocity  and spectrum width
represent  mean  and  random  dynamic  motion  projected  in
the  beam  directions,  the  other  four  polarimetric  measure-
ments  represent  clouds/precipitation  microphysics:  size,
shape, orientation, composition/density, temperature, and so
forth.  Next,  we  describe  how  the  microphysical  informa-
tion is reflected in wave scattering and hydrometeor PSD.

Zh,v mm6 m−3

The effective radar reflectivity measures the integrated
radar scattering cross-section in a unit volume. After normaliz-
ation,  the  radar  reflectivity  factor  ( )  is
expressed by 

Zh,v =
4λ4

π4|Kw|
2

∫

|shh,vv(π,D)|2N(D)dD , (8)

m−3 mm−1 λ

Kw = (εw−1)/(εw+2)

shh,vv (π, D)

where  the  equivalent  diameter D is  in  mm,  and N(D)
( )  is  the  PSD,  is  the  radar  wavelength  (mm),

 is  the  dielectric  constant  factor  of
water,  and  (mm)  is  the  backscattering  amp-
litude at the horizontal or vertical polarization.

D < (λ/16)

Zh,v→ (|Kx|
2/|Kw|

2)Zx

In  the  Rayleigh  scattering  regime  where  particle  sizes
are  spherical  and  much  smaller  than  a  wavelength  [e.g.,

 for  raindrops],  Eq.  (8)  reduces  to
 with  the  reflectivity  factor  for  spe-

cies x, and Zx=M6x is widely used in radar meteorology and
NWP/DA communities  (Smith  et  al.,  1975, Ferrier,  1994).
However, the above simplification is not always valid, espe-
cially  for  melting  snow,  hail,  and  graupel  at  S-band,  and
higher frequency bands such as C- and X-bands.

ZHThe reflectivity factor for horizontal polarization  rep-
resented in decibels (dBZ) is: 

ZH = 10log(Zh) . (9)

The differential reflectivity (dB), representing the differ-
ence  in  radar  reflectivity  between  horizontal  and  vertical
polarized  waves,  depends  on  the  shape  and  orientation  as
well  as  composition  of  hydrometeors.  It  is  defined  as  the
ratio of reflectivity between the horizontal and vertical polariz-
ations: 

ZDR = 10log

(

Zh

Zv

)

= 10log(Zdr) . (10)

Specific differential phase (o km−1) is the phase differ-
ence  between  the  horizontally  and  vertically  polarized
waves across a unit distance 

KDP =
180λ

π
×10−3

∫

Re[shh(0,D)− svv(0,D)]N(D)dD ,

(11)

shh,vv (0,D)where  in  (mm)  is  the  forward  scattering  amp-
litude at  the horizontal  or  vertical  polarization,  and Re(…)
denotes the real part of the scattering amplitudes.

The  co-polar  correlation  coefficient  is  the  representa-
tion  of  the  similarity  between  the  horizontally  and  vertic-
ally polarized signals, whose reduction is mainly caused by
the  randomness  of  the  differential  scattering  phase  of  the
hydrometeors in the resolution volume, written as 

ρhv =

∫

s∗
hh

(π,D)svv(π,D)N(D)dD
[∫

|shh(π,D)|2N(D)dD
∫

|svv(π,D)|2N(D)dD
]1/2
.

(12)

In principle, polarimetric radar variables are readily calcu-
lated  from  Eqs.  (8−12)  with  NWP  model  output  through
PSD and the scattering amplitudes, shh/svv, which can be calcu-
lated using the T-matrix method. This is done for the polari-
metric radar operators released on-line (Jung et al., 2010, Mat-
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sui et al., 2019). In practice, however, this is neither conveni-
ent nor efficient for DA use which requires the operators to
be differentiable for fast calculation. It would be more con-
venient  if  the  operators  can  be  represented  directly  by
model state variables using a simple function form.

For rain, the polarimetric radar variables have recently
been represented in mixing ratio and mass/volume-weighted
diameter (Mahale et al., 2019). Raindrops are assumed to be
spheroid  with  the  axis  ratio  given  by  Eq.  (2.16)  in Zhang
(2016). Using the T-matrix calculated scattering amplitudes,
shh/svv, in Eqs. (8−12), polarimetric variables are calculated
for  a  unit  water  content  (W= ρaqr =1  g  m−3)  and  a  set  of
mass/volume-weighted mean diameters (Dm), with the expo-
nentially  distributed  DSDs.  The  calculated  radar  variables
are  then  fitted  to  polynomial  functions  of Dm,  derived  in
Mahale et al. (2019), which are duplicated here: 

Zh ≈W
(

−0.3078+20.87Dm+46.04D2
m−

6.403D3
m+0.2248D4

m

)2
, (13)

 

Zdr ≈1.019−0.1430Dm+0.3165D2
m−

0.06498D3
m+0.004163D4

m , (14)
 

KDP ≈W
(

0.00926−0.0870Dm+0.1994D2
m−

0.02824D3
m+0.001772D4

m

)

, (15)
 

ρhv ≈0.9987+0.008289Dm−0.01160D2
m+

0.003513D3
m−0.0003187D4

m , (16)

where the units of W = ρaqr are g m−3 and qr is the mixing
ratio for rain. This allows for quick calculations of polarimet-
ric  radar  variables  from  NWP  model  outputs  (qr, Nt).  The
reason for  choosing this  form for  Eq.  (13)  is  to  reduce the
number  of  terms/coefficients  to  simplify  the  calculation  of
reflectivity,  which  already  requires  the  higher-order  terms
of Dm.

In the case of mixtures such as snow, hail, and graupel,
the  calculations  and  parameterizations  are  more  complic-
ated  than  those  of  rain  because  of  the  increased  variability
in  density  during  the  melting  stage  and  irregular  shape,  as
well as the orientation of the particles. Because most NWP
models  do  not  predict  the  density  during  the  melting  pro-
cess,  we estimate the percentage of melting from the relat-
ive  rain  mixing  ratio  and  the  density  with  Eq.  (7).  For  a
given  species x,  polarimetric  radar  variables  are  calculated
for a set of the volume-weighted mean diameter at a given per-
centage of melting, and then parameterized as a function of
the volume-weighted mean diameter (Dm) as follows 

Zh(x) ≈ Zx

[

aZ0(γx)+aZ1(γx)Dm+aZ2(γx)D2
m+aZ3(γx)D3

m

]2
,

(17)
 

Zdr(x) ≈ ad0(γx)+ad1(γx)Dm+ad2(γx)D2
m , (18)

 

KDP(x) ≈ ρaqx[aK0(γx)+aK1(γx)Dm+aK2(γx)D2
m]/ρx ,

(19)
 

ρhv(x) ≈ aρ0(γx)+aρ1(γx)Dm+aρ2(γx)D2
m . (20)

γx

γx

Since the fitting coefficients  depend on the percentage
of  melting,  the  above  calculation  and  fitting  procedure  is
done for different percentages of melting ( ). Then, the coef-
ficients  of  the  radar  variables  are  further  represented  by  a
polynomial function of  

ax,m(γx) =

N
∑

n=1

cx,mnγ
n
x . (21)

For snow, the percentage of melting and the snow dens-
ity is defined in Eq. (7) with ρdx = 0.1 g cm−3 and ρw = 1.0
g cm−3. The shape of snowflakes is assumed to be spheroid
with an axis ratio of 0.7, changed from 0.75 which was used
in Jung et al. (2008a). They are oriented at a mean angle of
zero  and  standard  deviation  of  30  degrees,  which  is
increased  from the  standard  deviation  of  20  degrees  previ-
ously used. The purpose for these changes in shape and orient-
ation of snowflakes is to allow a large dynamic range of ρhv

and ZDR.  The  calculated  radar  variables  of  snow for  a  unit
snow  water  content  (Ws = ρaqs =  1  g  m−3)  and  the  fitted
curves  are  plotted  as  a  function  of  the  volume-weighted
mean  diameter  for  a  variety  of  melting  percentages.  These
are shown in Fig. 1. The fitting coefficients are provided in
Table 1.

Zh ≈ 0.0027Z

Zh,v ≈ (|Ks|
2/|Kw|

2)Z ≈ (0.0021/0.93)Z ≈

εs = 1.143

As shown in Fig. 1a, the reflectivity factor increases as
the  volume-weighted  diameter  and  the  melting  percentage
increase,  which  is  to  be  expected  because  of  the  enhanced
wave  scattering  due  to  the  increased  particle  size  and
increased dielectric constant of melting. The Rayleigh scatter-
ing  results  of  the  black  lines  are  plotted  for  dry  snow
(lower)  and wet  snow (upper)  as  a  reference,  showing that
the  Rayleigh  scattering  approximation  is  almost  valid  for
dry snow for the S-band. In this case, only the first term (0th
order term of Dm) is the main contributor to the reflectivity
factor, yielding , which is close to that of Ray-
leigh  scattering. 
0.0023Z (for  the  dry  snow density  of  0.1  g  cm−3 and  with
the dielectric  constant  of ).  The latter  formulation
has been used for DA in the NWP community, which is not
valid  for  melting  snow.  There  can  be  a  two-order  (20  dB)
increase of reflectivity for melting snow, which is well-repres-
ented  by  (17)  but  is  not  correctly  represented  by  the
Rayleigh scattering approximation previously used.

Figure 1b shows the calculation and fitting results of dif-
ferential reflectivity Zdr and ZDR. For dry snow, there is very
little  increase in Zdr/ZDR because of  the  low dielectric  con-
stant.  As  the  melting  percentage  increases, Zdr increases,
and  the  lines  represented  by  (18)  fit  well  with  the  calcula-
tions. The calculation and fitting results of specific differen-
tial  phase  (KDP)  are  shown  in Fig.  1c.  It  is  noted  that  the
dependence on volume-weighted mean diameter is not very
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important, and the dependence on the melting percentage is
not monotonic (first increases, and then decreases). Figure 1d
shows  the  results  for  the  co-polar  correlation  coefficient,
which  indicates  a  general  decreasing  trend  as  the  size  and
the melting percentage increase. There are some discrepan-
cies in the fitting represented by (20), but the overall trend fol-
lowed the calculations. σ = 60◦(1−0.8γh,g)

For hail and graupel, the procedure of deriving the para-
meterized  operator  is  the  same  as  that  for  snow  described
above except for using different density and canting angle.
The densities of ρh = 0.917 g cm−3 and ρg = 0.5 g cm−3 are
used  for  hail  and  graupel,  respectively.  The  mean  canting
angle is assumed to be zero, and the standard deviation fol-
lows ,  identical  to  that  in Jung  et  al.

Table 1.   Fitted coefficients for snow at canting angle of 30 degrees.

c0 c1 c2 c3

Zh aZ0 0.0524 1.698 1.185 −2.063
aZ1 −0.001886 −0.02846 −0.02812 −0.006190
aZ2 −0.00004009 0.006846 −0.03071 0.04697
aZ3 0.00000485 −0.0003777 0.001649 −0.002278

Zdr ad0 1.018 0.8789 −0.0736 −0.2990
ad1 0.001432 −0.02274 0.2280 −0.1841
ad2 0.0004199 0.0000723 −0.001305 −0.002658

KDP aK0 0.001180 0.1465 4.006 −3.356
aK1 0.001650 −0.07655 0.3985 −0.2848
aK2 −0.00007765 0.002322 −0.01327 0.006620

ρhv
aρ0 0.9975 −0.01015 −0.009316 0.001187
aρ1 0.0001041 0.01452 −0.05034 0.02961
aρ2 −0.0000137 −0.001039 0.002712 −0.001391

 

 

Fig. 1. Calculated (scattered points) and fitted (solid lines) polarimetric radar variables of snow as functions of the volume-
weighted mean diameter for a variety of melting percentages: (a) reflectivity (Zh, dBZ), (b) differential reflectivity (Zdr, dB),
(c) specific differential phase (KDP, º km−1), and (d) co-polar correlation coefficient (ρhv). The solid black lines for dry snow
(lower) and wet snow (upper) in (a) are the results of reflectivity for Rayleigh scattering approximation.

MAY 2021 ZHANG ET AL. 741

 

  



 

 

Fig. 2. Same as Fig. 1, but for hail.
 

 

Fig. 3. Same as Fig. 1, but for graupel.
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(2008a, 2010).  The calculated  and fitted  polarimetric  radar
variables  are  plotted  in Figs.  2 and 3 for  hail  and  graupel,
respectively. The fitting coefficients are provided in Tables 2
and 3.

As  shown  in Fig.  2a,  the  reflectivity  does  not  always
increase  as  the  volume-weighted  diameter  increases,  espe-
cially for high percentages of melting. This is because the res-
onance  scattering  occurs  at  around  3  cm  for  the  S-band.
Rayleigh scattering results are plotted as the black line, show-
ing  its  deviation  from  the  T-matrix  calculation,  while  also
indicating the limitation of the Rayleigh scattering approxima-
tion. It is interesting to note in Fig. 2c that the specific differ-
ential  phase  of  hail  decreases  as  the  volume-weighted  dia-
meter increases. As in Fig. 2d, the co-polar correlation coeffi-
cient  has  complex  behavior:  in  general,  a  median  percent-
age of melting and large sizes appear to be responsible for a
low value of ρhv.

Once the polarimetric radar variables for each species x
are calculated from Eqs. (13−20), the final variables for the
pixel containing multiple species are calculated by the summa-

tion as follows: 

Zh =

∑

Zh(x) , (22)
 

Zdr =

∑

Zh(x)
[
∑

Zh(x)/Zdr(x)
] , (23)

 

KDP =

∑

KDP(x) , (24)
 

ρhv =

∑

Zh(x)Z
−1/2

dr
(x)ρhv(x)

∑

Zh(x)Z
−1/2

dr
(x)

. (25)

While it is straightforward to calculate the aggregate val-
ues of Zh, Zdr, and KDP from their individual species, the calcu-
lation of the aggregate value of ρhv depends on the scatter-
ing  differential  phase,  which  can  cause  further  decorrela-
tion [see Eq. (4.86) of Zhang (2016)]. To simplify the calcula-

Table 2.   Fitted coefficients for hail.

c0 c1 c2 c3

Zh aZ0 0.4629 3.2277 −8.3043 6.112
aZ1 0.00378 −0.1122 0.9452 −0.7858
aZ2 −0.000945 0.00682 −0.0507 0.0399
aZ3 0.0000173 −0.000143 0.000798 −0.000592

Zdr ad0 1.0370 0.2936 1.2434 −0.2639
ad1 0.002237 0.05320 −0.1490 0.09126
ad2 0.00000585 −0.00138 0.00293 −0.00160

KDP aK0 0.0402 0.8951 2.3449 −1.0413
aK1 0.00111 0.0569 −0.2058 0.1062
aK2 −0.0000456 −0.00255 0.00389 −0.00201

ρhv
aρ0 0.9713 0.1725 −0.4710 0.3086
aρ1 0.00595 −0.0995 0.2258 −0.1325
aρ2 −0.000382 0.00356 −0.00725 0.00408

Table 3.   Fitted coefficients for graupel.

c0 c1 c2 c3

Zh aZ0 0.2929 3.381 −4.620 2.067
aZ1 −0.01265 0.1995 −1.287 1.304
aZ2 0.001222 −0.03455 0.1818 −0.1624
aZ3 −0.0000437 0.001026 −0.00546 0.004533

Zdr ad0 1.0166 0.6206 −0.7519 1.493
ad1 0.002259 −0.06280 0.4363 −0.3795
ad2 −0.0000423 0.004027 −0.02061 0.01564

KDP aK0 0.008892 0.8146 0.5967 0.5884
aK1 0.0007914 −0.04329 0.4235 −0.3595
aK2 −0.0000576 0.002299 −0.02054 0.01433

ρhv
aρ0 0.9922 −0.08531 0.2423 −0.1572
aρ1 0.001304 −0.007104 −0.02293 0.02548
aρ2 −0.0000917 −0.0009716 0.004021 −0.002807
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ρhv→ ρ
α
hv

tion,  the  scattering  differential  phase  is  neglected  in  Eq.
(25), but a power term α is introduced after the calculation
to  make  and  to  take  into  account  the  decorrela-
tion effects caused by the differential scattering phase differ-
ence among species. α is typically in the range of [1.2, 2.0]
and is assumed to be 1.5 in the example shown in the next sec-
tion.

While physically-based PRD operators are derived and
provided, it is worthwhile to assess the error covariance for
DA  use.  The  observation  error  covariance R of  PRD  con-
tains  both  measurement  errors  and  observation  operator
errors.  The  measurement/estimation  errors  due  to  finite
samples are well-studied and understood (Doviak and Zrnic
1993, Bringi and Chandrasekar, 2001; Zhang, 2016). The typ-
ical  values  of  these  errors  for  a  well-calibrated  weather
radar are listed in the center  column of Table 4.  The oper-
ator errors are more complicated, which depend on microphys-
ical modeling in DSD/PSD, shape, orientation, composition,
truncation, temperature,  etc.,  and can be larger than that of
measurements  (Andrić  et  al.,  2013).  Based  on  the  results
shown in Figs.  1−3 and  our  experience  in  running  simula-
tions,  the  typical  values  are  given  in  the  right  column  of
Table 4. It is noted that the operator errors are usually much
larger than those of the statistical errors in measurements. Fur-
thermore,  the  operator  errors  are  not  random  fluctuations
and cannot be easily mitigated by averaging. This makes the
usage  of  PRD  with  weak  polarimetric  signatures  difficult,
which will be addressed in a separate study. 

4.    Test with NWP simulations

To  test  the  derived  parametrized  PRD  operators,  we
apply them to an ideal case and a real case, described as fol-
lows. 

4.1.    Ideal case

In the idealized case, we use a non-hydrostatic, fully com-
pressible Advanced Research Weather Research and Forecast-
ing (WRF-ARW) model, version 3.8.1, for the simulation of
a supercell  storm in a three-dimensional space (Skamarock
et  al.,  2008).  The  horizontal  grid  spacing  is  1  km  with  80
grid points in both the east-west and north-south directions.
Vertically,  40  stretched  levels  up  to  20  km  above  ground
level (~50 hPa) are chosen. Open boundary conditions for lat-
eral and Rayleigh damping along the top boundary are used
for this idealized case.

The WRF-ARW is integrated for  two hours.  A sound-
ing  from  a  supercell  event  that  occurred  on  20  May  1977

Del City, Oklahoma is used for simulating the storm environ-
ment.  A thermal bubble is  added to the potential  temperat-
ure field to initiate convection (Weisman and Klemp, 1982;
Adlerman and Droegemeier, 2002; Noda and Niino, 2003).
This warm bubble of 3 K is centered at the location of (60 km,
5 km, 1.5 km) and has 10 km horizontal radius and 1.5 km
vertical  radius  inside  the  model  domain.  The  standard  1.5-
order TKE closure scheme is chosen for the turbulence para-
meterization.  A  two-moment  microphysics  scheme of Mil-
brandt and Yau (2005a, b) is adopted in this study.

During  the  two-hour  truth  simulation,  the  cloud  forms
around 10 min, rainwater appears at 15 min, ice hydromet-
eors  are  generated  at  20  min,  and  a  single  convective  cell
develops in the first 30 min (not shown). The storm reaches
its mature stage at 40 min, starts to split, and slightly weak-
ens. At two hours into the model integration, the right-split-
ting  cell  tends  to  dominate,  as  indicated  by  a  clear  hook
echo and strong updraft.

Four  polarimetric  radar  variables  of ZH, ZDR, KDP,  and
ρhv are calculated from the WRF model output after the 2-h
integration  using  the  numerical  integration  documented  in
Jung  et  al.  (2010) and  the  new  parameterized  operators
described above. For the horizontal reflectivity ZH (Fig. 4),
the general patterns are quite similar in both the horizontal
slice  and  the  vertical  slice.  Maximum  reflectivity  for  the
new operator is over 1 dB or slightly greater than that of the
numerical  integration  method.  The  reflectivity  values  are
slightly larger than those in the anvil area and the hook echo
looks sharper in the right moving cell for the new operator
(Fig. 4a, vs 4b).

The range for the differential reflectivity ZDR has slight
differences,  but  the  general  patterns  are  still  quite  similar,
and  they  all  look  reasonable  (Fig.  5).  It  is  difficult  to  say
which one is more reasonable. The calculated specific differ-
ential  phase  fields  (KDP)  for  both  methods  are  also  very
close,  the  values  at  middle  levels  (around  4−5  km)  by  the
new operator are greater than that of the numerical integra-
tion  method  (Fig.  6b vs 6d).  There  are  some  differences
between the two sets of calculated co-polar correlation coeffi-
cients  (ρhv),  especially  in  the  lower  values  associated  with
the hail  and melting snow area. But in general,  two sets of
operators are comparable (Fig. 7). 

4.2.    Real case

To more systematically examine the performance of the
new  parameterized  operators  in  comparison  with  the  old
numerical  integration method,  a  real  data  case is  presented
as follows. A volatile weather event occurred across north-
central  Kansas  during  the  afternoon  of  May 1,  2018.  Mul-
tiple supercells spawned a dozen tornadoes including a long
track  EF-3,  though  no  injuries  or  fatalities  were  reported.
The  event  was  observed  by  several  operational  WSR-88D
radars.  Here  we  give  an  example  of  the  event  detected  by
the KUEX radar in Hastings, Nebraska.

As with the idealized case, the WRF model is used for
the simulation of this multiple supercell event. The microphys-
ics used is the same as described earlier. The horizontal grid

Table 4.   Measurement and operator errors of PRD.

Variable Range Measurement error Operator error

ZH(dBZ) 0~70 1.0 5.0
ZDR(dB) 0~6 0.2 0.5

KDP(º km−1) 0~4 0.3 0.5
ρhv 0.8~1 0.01 0.03
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spacing is 1.5 km with 500 grid points in both the east-west
and north-south directions. Vertically, 50 stretched levels up
to  20  km above  ground  level  (~50  hPa)  are  chosen.  Radar
measured radial velocity data and reflectivity data are assimil-
ated into the WRF model through a variational data assimila-
tion scheme (Gao et al., 2012) with a rapid cycle (every 15
minutes) for two hours from 1900 UTC to 2100 UTC, then
a one hour forecast is launched. The reflectivity forecast res-
ult at 2200 UTC is compared with the radar reflectivity obser-
vations which are interpolated to model grid points for easy
comparison. Since the radar best observed this event in the
middle  levels,  radar  observations  at  5  km  above  ground
level (AGL) are presented for this real data case.

Figure 8 represents the observed and the simulated hori-
zontal reflectivity ZH at 2200 UTC May 1, 2018, during this
event.  The ZH observations show a squall  line with several
embedded supercells over Nebraska and Kansas, with a max-

imum  reflectivity  of  66  dBZ (Fig.  8a).  The  vertical  slice
though the model location at x = 155 km shows two super-
cells  extended  over  10  km  above  ground  level,  though  an
obvious “cone of silence” exists (Fig. 8b). When examining
the  simulations,  high  values  of ZH with  comparable  values
are also present  close to  the radar  observations in  both old
operators and new operators. Both sets of operators cover a
wider  area  than  in  the  observations.  The  storm  cell  line  is
more reasonable along southwest-northeast direction for the
new  parameterized  operators  (Fig.  8e)  than  that  of  the  old
operators in central  Nebraska (Fig.  8c).  The vertical exten-
sion  of  the  two supercells  is  also  well  simulated,  though  a
weak  spurious  cell  exists  in  between  two  major  supercells
(Fig. 8d vs 8f).

In  agreement  with  areas  of  large ZH values  for  the
storms, observed ZDR mostly reaches between 1.0 to 5.0 dB
and most  of  the  strong signals  are  limited  to  below 15 km

 

 

Fig. 4. Simulated PRD horizontal reflectivity (ZH) from WRF model simulation with numerical integration (a, b, referred to
as “Old”, hereinafter) and the new parameterized operators (c, d, referred to as “New” hereinafter). The first column is for
horizontal reflectivity at 2 km above ground level; the second column is a vertical slice through line AB in Fig. 4a.
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AGL, though there are outliers that may push the maximum
ZDR up  to  7.9  dB  (Figs.  9a, b).  For  the  simulations,  the
range of values for ZDR in most areas are close to the observa-
tions for both the new and old operators in the area where sim-
ulated  storms  exist.  It  looks  most  values  related  to  the
model  simulation for  the new operators  are between 1.0 to
4.0 dB (Figs. 9c−9f) which better matches the reflectivity of
the storm cores (Fig. 8c−8f). In the vertical direction, the sim-
ulated,  relatively  large  values  for ZDR are  also  limited  to
below 8 km AGL. In terms of separation of storm cells, the
simulated ZDR cores  (Fig.  9f)  better  match  the  reflectivity
cores  (Fig.  8f)  using  the  new operators  compared  to  using
the old operators (Fig. 9d vs 8d).

For  specific  differential  phase KDP,  the  observed  val-
ues in a range from 2 to 4 o km−1 are closely associated with
the main storm areas, which is indicative of strong reflectiv-
ity cores (Figs. 10a, 10b vs Figs. 8a, 8b). In the vertical direc-
tion, the area of the largest simulated KDP values is associ-
ated  with  the  major  supercell  in  this  slice  for  both  the  old

and new operators, and both agree with the observations in
the major storm core (Figs.  10d, f vs Figs.  8d, f).  The ver-
tical  extension  of  the  high  values  for KDP is  a  little  bit
deeper than that of ZDR (Figs. 10d, f vs Figs. 9d, f). This indic-
ates  that KDP may  be  more  useful  in  terms  of  identifying
strong storms. In this case, the high amounts of null or close
to  zero  values  for KDP are  associated  with  locations  where
the  simulated ZH is  lower  than  25  dBZ,  corresponding  to
small  amounts  of  hydrometeor  contents  simulated  by  both
sets  of  operators.  This  is  because KDP has  a  large  relative
estimation  error  in  measurements  for  light  precipitation.
This feature is consistent with the findings of Thomas et al.
(2020).

Regarding the co-polar correlation coefficient ρhv (Figs.
11a, b), the values are very close to 0.96 to 0.97 in the area
of the melting layer and above (around 3 km), indicating a
composition  of  mostly  mixed  liquid  and  ice  hydrometeors.
Far from the radar, ρhv values increase up to 1, indicating a
more  homogeneous  hydrometeor  distribution  for  small

 

 

Fig. 5. The same as Fig. 4, but for differential reflectivity (ZDR).
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particles.  In  both  simulations  (Figs.  11c, e),  most  of  the
areas where ZH is greater than zero dBZ are also associated
with  a ρhv close  to  1,  corresponding  to  very  homogeneous
areas in the observations. Furthermore, the melting layer is
visible in the simulation in both sets of the operators (Figs.
11d, f). Mixed phases of hydrometeors in or near melting lay-
ers lead to low ρhv values, especially for the new operators
(Fig. 11f). The simulation results for ρhv with the new operat-
ors  more  closely  matched  the  observations  than  the  simu-
lated  results  obtained  using  the  old  operators.  (Fig.  11d vs
11f). 

4.3.    Comparison of computational efficiency

For the idealized case, it takes 10.55 seconds to run the
PRD simulation using the old numerical integration method.
In comparison, it  takes only 0.098 seconds to complete the
simulation with the new parameterized operators on a single
node of the University of Oklahoma Supercomputer named
Schooner  (Table  5).  For  the  real  data  case,  the  model

domain  is  bigger.  It  takes  243.1  seconds  for  the  old  oper-
ator and 2.287 seconds for the new simplified operators. In
general, the new PRD simulation uses less than one percent
of  the  computing  time  compared  to  the  old  one.  The  PRD
operators or simulators can be used in any data assimilation
scheme in which PRD can be assimilated into NWP models,
such as  the WRF model  to  improve short-term,  convective
scale,  high-resolution NWP forecasts.  In such applications,
the  impact  of  the  new  PRD  operators  with  less  computa-
tional time can be significant because the PRD simulations
need  to  be  performed  many  times  until  convergence  is
reached in the DA analysis. The use of the new, more compu-
tationally  efficient  PRD  operators  may  greatly  help  fore-
casters or decision-makers quickly deliver their operational
products to the public. 

5.    Summary and discussions

To better  and  efficiently  use  PRD,  a  set  of  parameter-

 

 

Fig. 6. The same as Fig. 4, but for specific differential phase (KDP).
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ized  observation  operators  are  developed  to  link  PRD  and
NWP  model-predicted  hydrometeor  mixing  ratios  of  rain,
snow, hail, and graupel, as well as number concentrations of
each species. The model equivalent polarimetric radar vari-
ables  are  calculated  based  on  the  T-matrix  calculation  of
wave scattering and the integrations of  scattering weighted
particle size distribution. These polarimetric radar variables
are  then  fitted  to  simple  functions  of  water  content  (or
reflectivity  factor)  and  volume-weighted  mean  diameter  of
the hydrometeor particle size distribution.  The new operat-
ors have simple polynomial function forms of hydrometeor
mixing  ratios  and  mass/volume-weighted  mean  diameters,
which can be easily implemented and modified. The polyno-
mial form allows for easy calculation of the derivatives for
variational analysis.

The  parameterized  PRD  operators  are  applied  to  an
ideal case and a real case by transferring the WRF model out-
put  to  equivalent  polarimetric  radar  variables  to  show  the
operators’ validity,  applicability,  and efficiency.  A double-

moment microphysical parameterization scheme is used dur-
ing WRF model integration. Considering both case studies,
it  is generally found that realistic simulations of polarimet-
ric variables can be realized through parameterized and simpli-
fied  forward  operators.  The  parameterized  operators  use
less than one percent of the computing time of the old PRD
simulators to complete the same simulations. The high effi-
ciency  in  computation  and  easy  implementation/modifica-
tion make it a good candidate for PRD simulation and assimil-
ation usage.

It is worth to note that the parameterized operators are
derived  based  on  the  assumptions  of  constant  density  for
each  species  of  hydrometeor.  They  are  applicable  to  those
NWP  models  that  have  microphysical  parameterization
schemes which contain the same assumptions. Although the
parameterized operators are tested on the WRF with double-
moment microphysics, they can also be applied to the NWP
models  with  a  single  moment  microphysical  parameteriza-
tion  scheme in  which  the  volume-weighted  mean  diameter

 

 

Fig. 7. The same as Fig. 4, but for the row co-polar correlation coefficient (ρhv).
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Fig. 8. Radar PRD horizontal reflectivity at z = 5 km (a) observed by KUEX radar (through 3D linear interpolation);
(c) one-hour model forecast simulated using the numerical integration; (e) one-hour model forecast simulated using
the new PRD operators and their corresponding vertical slice through longitude of 98.25oN near 2200 UTC 1 May
2018 (b, d, f).
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Fig. 9. The same as Fig. 8, but for differential reflectivity (ZDR).
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Fig. 10. The same as Fig. 8, but for differential reflectivity (KDP).
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Fig. 11. The same as Fig. 8, but for the co-polar correlation coefficient (ρhv).
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can  be  calculated  from the  hydrometeor  mixing  ratio.  It  is
not our intention for the parameterized operators to be used
in  other  model  microphysical  schemes  such  as  triple-
moment parameterization or bin model microphysics.
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