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Abstract We investigate a new structure for machine learn-

ing classifiers built with neural networks and applied to

problems in high-energy physics by expanding the inputs to

include not only measured features but also physics param-

eters. The physics parameters represent a smoothly varying

learning task, and the resulting parameterized classifier can

smoothly interpolate between them and replace sets of clas-

sifiers trained at individual values. This simplifies the train-

ing process and gives improved performance at intermediate

values, even for complex problems requiring deep learning.

Applications include tools parameterized in terms of theoret-

ical model parameters, such as the mass of a particle, which

allow for a single network to provide improved discrimi-

nation across a range of masses. This concept is simple to

implement and allows for optimized interpolatable results.

1 Introduction

Neural networks have been applied to a wide variety of

problems in high-energy physics [1,2], from event classifica-

tion [3,4] to object reconstruction [5,6] and triggering [7,8].

Typically, however, these networks are applied to solve a spe-

cific isolated problem, even when this problem is part of a

set of closely related problems. An illustrative example is

the signal-background classification problem for a particle

with a range of possible masses. The classification tasks at

different masses are related, but distinct. Current approaches

require the training of a set of isolated networks [9,10], each

of which are ignorant of the larger context and lack the ability

to smoothly interpolate, or the use of a single signal sample

in training [11,12], sacrificing performance at other values.

In this paper, we describe the application of the ideas in

Ref. [13] to a new neural network strategy, a parameterized

neural network in which a single network tackles the full set

of related tasks. This is done by simply extending the list of

a e-mail: daniel@uci.edu

input features to include not only the traditional set of event-

level features but also one or more parameters that describe

the larger scope of the problem such as a new particle’s mass.

The approach can be applied to any classification algorithm;

however, neural networks provide a smooth interpolation,

while tree-based methods may not.

A single parameterized network can replace a set of indi-

vidual networks trained for specific cases, as well as smoothly

interpolate to cases where it has not been trained. In the case

of a search for a hypothetical new particle, this greatly sim-

plifies the task – by requiring only one network – as well as

making the results more powerful – by allowing them to be

interpolated between specific values. In addition, they may

outperform isolated networks by generalizing from the full

parameter-dependent dataset.

In the following, we describe the network structure needed

to apply a single parameterized network to a set of smoothly

related problems and demonstrate the application for theo-

retical model parameters (such as new particle masses) in a

set of examples of increasing complexity.

2 Network structure and training

A typical network takes as input a vector of features, x̄ , where

the features are based on event-level quantities. After train-

ing, the resulting network is then a function of these features,

f (x̄). In the case that the task at hand is part of a larger con-

text, described by one or more parameters, θ̄ . It is straight-

forward to construct a network that uses both sets of inputs,

x̄ and θ̄ , and operates as a function of both: f (x̄, θ̄ ). For a

given set of inputs x̄0, a traditional network evaluates to a

real number f (x̄0). A parameterized network, however, pro-

vides a result that is parameterized in terms of θ̄ : f (x̄0, θ̄ ),

yielding different output values for different choices of the

parameters θ̄ ; see Fig. 1.

Training data for the parameterized network has the form

(x̄, θ̄ , y)i , where y is a label for the target class. The addi-
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Fig. 1 Left, individual networks with input features (x1, x2), each

trained with examples with a single value of some parameter θ = θa, θb.

The individual networks are purely functions of the input features. Per-

formance for intermediate values of θ is not optimal nor does it nec-

essarily vary smoothly between the networks. Right, a single network

trained with input features (x1, x2) as well as an input parameter θ ; such

a network is trained with examples at several values of the parameter θ

tion of θ̄ introduces additional considerations in the training

procedure. While traditionally the training only requires the

conditional distribution of x̄ given θ̄ (which is predicted by

the theory and detector simulation), now the training data

has some implicit prior distribution over θ̄ as well (which is

arbitrary). When the network is used in practice it will be

to predict y conditional on both x̄ and θ̄ , so the distribution

of θ̄ used for training is only relevant in how it affects the

quality of the resulting parameterized network – it does not

imply that the resulting inference is Bayesian. In the studies

presented below, we simply use equal sized samples for a few

discrete values of θ̄ . Another issue is that some or all of the

components of θ̄ may not be meaningful for a particular target

class. For instance, the mass of a new particle is not meaning-

ful for the background training examples. In what follows,

we randomly assign values to those components of θ̄ accord-

ing to the same distribution used for the signal class. In the

examples studied below, the networks have enough general-

ization capacity and the training sets are large enough that

the resulting parameterized classifier performs well without

any tuning of the training procedure. However, the robust-

ness of the resulting parameterized classifier to the implicit

distribution of θ̄ in the training sample will in general depend

on the generalization capacity of the classifier, the number of

training examples, the physics encoded in the distributions

p(x̄ |θ̄ , y), and how much those distributions change with θ̄ .

3 Toy example

As a demonstration for a simple toy problem, we construct a

parameterized network which has a single input feature x and

a single parameter θ . The network, with one hidden layer of

three nodes and sigmoid activation functions, is trained using

labeled examples where examples with label 0 are drawn

from a uniform background and examples with label 1 are

Fig. 2 Top training samples in which the signal is drawn from a Gaus-

sian and the background is uniform. Bottom, neural network response

as a function of the value of the input feature x , for various choices of

the input parameter θ ; note that the single parameterized network has

seen no training examples for θ = −1.5,−0.5, 0.5, 1.5

drawn from a Gaussian with mean θ and width σ = 0.25.

Training samples are generated with θ = −2,−1, 0, 1, 2;

see Fig. 2a.

As shown in Fig. 2, this network generalizes the solu-

tion and provides reasonable output even for values of the

parameter where it was given no examples. Note that the

response function has the same shape for these values (θ =
−1.5,−0.5, 0.5, 1.5) as for values where training data was

provided, indicating that the network has successfully param-

eterized the solution. The signal-background classification

accuracy is as good for values where training data exist as it

is for values where training data does not.

4 1D physical example

A natural physical case is the application to the search for new

particle of unknown mass. As an example, we consider the

search for a new particle X which decays to t t̄ . We treat the
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Fig. 3 Feynman diagrams showing the production and decay of the

hypothetical particle X → t t̄ , as well as the dominant standard model

background process of top quark pair production. In both cases, the t t̄

pair decay to a single charged lepton (ℓ), a neutrino (ν) and several

quarks (q, b)

most powerful decay mode, in which t t̄ → W +bW −b̄ →
qq ′bℓνb̄. The dominant background is standard model t t̄

production, which is identical in final state but distinct in

kinematics due to the lack of an intermediate resonance.

Figure 3 shows diagrams for both the signal and background

processes.

We first explore the performance in a one-dimensional

case. The single event-level feature of the network is mW W bb,

the reconstructed resonance mass, calculated using tech-

niques described in Ref. [14]. Specifically, we assume

resolved top quarks in each case, for simplicity. Events

are simulated at the parton level with madgraph5 [15],

using pythia [16] for showering and hadronization and

delphes [17] with the ATLAS-style configuration for detec-

tor simulation. Figure 4a shows the distribution of recon-

structed masses for the background process as well as sev-

eral values of m X , the mass of the hypothetical X particle.

Clearly the nature of the discrimination problem is distinct

at each mass, though similar across masses.

In a typical application of neural networks, one might con-

sider various options:

• Train a single neural network at one intermediate value of

the mass and use it for all other mass values as was done in

Refs. [11,12]. This approach gives the best performance

at the mass used in the training sample, but performance

degrades at other masses.

• Train a single neural network using an unlabeled mixture

of signal samples and use it for all other mass values. This

approach may reduce the loss in performance away from

the single mass value used in the previous approach, but

it also degrades the performance near that mass point, as

the signal is smeared.

• Train a set of neural networks for a set of mass values

as done in Refs. [9,10]. This approach gives the best

signal-background classification performance at each of

the trained mass values. However, performance degrades

for mass values away from the ones used in training.

Most importantly, this approach leads to discontinuities

in selection efficiencies across masses, and interpolation

Fig. 4 Top distributions of neural network input mW W bb for the back-

ground and two signal cases. Bottom, ROC curves for individual fixed

networks as well as the parameterized network evaluated at the true

mass, but trained only at other masses

of the observed limits is not possible, as the degradation

of the performance away from the training points is not

defined.

In contrast, we train a single neural network with an addi-

tional parameter, the true mass, as an input feature. For a

learning task with n event-level features and m parameters,

one can trivially reconcieve this as a learning task with n +m

features. Evaluating the network requires supplying the set

of event-level features as well as the desired values of the

parameters.

We note that Ref. [18] previously applied a similar idea

with the same goal of improving the interpolation among

model parameters. However, in that study the application of

BDTs led to a marked decrease in sensitivity at each point

compared to isolated algorithms at specific values, and no

demonstration was made of the ability to interpolate complex

problems in high-dimensional spaces.
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Our parameterized neural networks are implemented

using the multi-layer perceptron in PyLearn2 [19], with

outputs treated with a regressor method and logistic acti-

vation function. Input and output data are subject to pre-

processing via a scikit-learn [20] pipeline (i.e. transfor-

mation to inputs/outputs with a minimum and maximum

of zero and one, respectively). Each neural network is

trained with 1 hidden layer of three nodes and using

Nesterov’s method for stochastic gradient descent [21].

Learning rates were initiated at 0.01, learning momentum

was set to 0.9, and minibatch size is set to treat each

point individually (i.e. minibatch size of 1). The train-

ing samples have approximately 100k examples per mass

point.

The critical test is the signal-background classification

performance. To measure the ability of the network to per-

form well at interpolated values of the parameter – values at

which it has seen no training data – we compare the perfor-

mance of a single fixed network trained at a specific value

of m0
X to a parameterized network trained at the other avail-

able values other than m0
X . For example, Fig. 4 compares a

single network trained at m0
X = 750 GeV to a parameterized

network trained with data at m X = 500, 1000, 1250, 1500

GeV. The parameterized network’s input parameter is set to

the true value of the mass m0
X , and it is applied to data gen-

erated at that mass; recall that it saw no examples at this

value of m0
X in training. Its performance matches or nearly

matches that of the single network trained at that value,

validating the ability of the single parameterized network

to interpolate between mass values without any apprecia-

ble loss of statistical performance. Clearly, however, such

arguments cannot be applied to extrapolation beyond the

boundaries of the training examples. Moreover, we rec-

ommend similar hold-out tests be performed to check the

quality of the parameterized network on a case-by-case

basis.

Here we focus on the performance of the parameterized

classifier itself. In order to perform a statistical test at an

intermediate value of m X one will also need to know the

distribution of the neural network output at that parameter

point, i.e. p( f (x, m X )|m X ). The issue of parametrized cal-

ibration is discussed in more detail in Ref. [13]. Of course,

this issue also applies to the case of a fixed network. In

both cases, a straightforward, but computationally expen-

sive strategy is to generate signal samples for each value

of m X that will be tested. An approximate, but more com-

putationally efficient strategy is to use an interpolation algo-

rithm to construct the parametrized distribution [22–24]. This

is common practice when parameterizing the distributions

with respect to nuisance parameters that describe system-

atic uncertainties. We advocate using hold-out to test the

quality of the parametrized calibration in these situations as

well.

5 High-dimensional physical example

The preceding examples serve to demonstrate the concept in

one-dimensional cases where the variation of the output on

both the parameters and features can be easily visualized. In

this section, we demonstrate that the parameterization of the

problem and the interpolation power that it provides can be

achieved also in high-dimensional cases.

We consider the same hypothetical signal and background

process as above, but now expand the set of features to include

both low-level kinematic features which correspond to the

result of reconstruction algorithms, and high-level features,

which benefit from the application of physics domain knowl-

edge. The low-level features are the four-vectors of the recon-

structed events, namely:

• the leading lepton momenta,

• the momenta of the four leading jets,

• the b-tagging information for each jet

• the missing transverse momentum magnitude and angle

• the number of jets

for a total of 22 low-level features; see Fig. 5. The high-

level features combine the low-level information to form

approximate values of the invariant masses of the intermedi-

ate objects. These are:

• the mass (mℓν) of the W → ℓν,

• the mass (m j j ) of the W → qq ′,
• the mass (m j j j ) of the t → W b → bqq ′,
• the mass (m jℓν) of the t → W b → ℓνb,

• the mass (mW W bb) of the hypothetical X → t t̄ ,

Fig. 5 Distributions of some of the low-level event features for the

decay of X → t t̄ with two choices of m X as well as the dominant

background process
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Fig. 6 Distributions of high-level event features for the decay of X →
t t̄ with two choices of m X as well as the dominant background process;

see text for definitions

for a total of five high-level features; see Fig. 6.

The parameterized deep neural network models were

trained on GPUs using the Blocks framework [25–27]. Seven

million examples were used for training and one million were

used for testing, with 50 % background and 50 % signal. The

architectures contain five hidden layers of 500 hidden recti-

fied linear units with a logistic output unit. Parameters were

initialized from a Gaussian distribution with mean zero and

width 0.1, and updated using stochastic gradient descent with

mini-batches of size 100 and 0.5 momentum. The learning

rate was initialized to 0.1 and decayed by a factor of 0.89

every epoch. Training was stopped after 200 epochs.

The high dimensionality of this problem makes it diffi-

cult to visually explore the dependence of the neural net-

work output on the parameter m X . However, we can test

the performance in signal-background classification tasks.

We use three types of networks. A single parameterized

network is trained using 7M training samples with masses

m X = 500, 750, 1000, 1250, 1500 GeV and tested in a sam-

ple generated with m X = 1000 GeV; the performance is

compared to a single fixed network trained with samples at

m X = 1000 (with 7M training examples). In each case, we

use approximately the same number of training and testing

examples per mass point. Figure 7 shows that the parameter-

ized network matches the performance of the fixed network.

A more stringent follow-up test removes the m X = 1000

sample from the training set of the parameterized network,

so that this network is required to interpolate its solution. The

performance is unchanged, demonstrating that the parame-

terized network is capable of generalizing the solution even

in a high-dimensional example.

Fig. 7 Comparison of the signal-to-background discrimination for

four classes of networks for a testing sample with m X = 1000

GeV. A parameterized network trained on a set of masses (m X =
500, 750, 1000, 1250, 1500) is compared to a single network trained

at m X = 1000 GeV. The performance is equivalent. A sec-

ond parameterized network is trained only with samples at mx =
500, 750, 1250, 1500, forcing it to interpolate the solution at m X =
1000 GeV. Lastly, a single non-parameterized network trained with all

the mass points shows a reduced performance. The results are indis-

tinguishable for cases where the networks use only low-level features

(shown) or low-level as well as high-level features (not shown, but iden-

tical)

Fig. 8 Comparison of the performance in the signal-background dis-

crimination for the parameterized network, which learns the entire

problem as a function of mass, and a single network trained only at

m X = 1000 GeV. As expected, the AUC score (integral of the curves

in Fig. 7) decreases for the single network as the mass deviates from

the value in the training sample. The parameterized network shows

improvement over this performance; the trend of improving AUC ver-

sus mass reflects the increasing separation between the signal and back-

ground samples with mass, see Figs. 5 and 6. For comparison, also

shown in the performance a single network trained with an unlabeled

mixture of signal samples at all masses

Conversely, Fig. 8 compares the performance of the

parameterized network to a single network trained at m X =
1000 GeV when applied across the mass range of interest,

which is a common application case. This demonstrates the

loss of performance incurred by some traditional approaches

and recovered in this approach. Similarly, we see that a sin-

gle network trained an unlabeled mixture of signal samples
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from all masses has reduced performance at each mass value

tested.

In previous work, we have shown that deep networks

such as these do not require the addition of high-level fea-

tures [28,29] but are capable of learning the necessary func-

tions directly from the low-level four-vectors. Here we extend

that by repeating the study above without the use of the high-

level features; see Fig. 7. Using only the low-level features,

the parameterized deep network achieves essentially indistin-

guishable performance for this particular problem and train-

ing sets of this size.

6 Discussion

We have presented a novel structure for neural networks

that allows for a simplified and more powerful solution to a

common use case in high-energy physics and demonstrated

improved performance in a set of examples with increasing

dimensionality for the input feature space. While these exam-

ple use a single parameter θ , the technique is easily applied

to higher dimensional parameter spaces.

Parameterized networks can also provide optimized per-

formance as a function of nuisance parameters that describe

systematic uncertainties, where typical networks are optimal

only for a single specific value used during training. This

allows statistical procedures that make use of profile likeli-

hood ratio tests [30] to select the network corresponding to

the profiled values of the nuisance parameters [13].

Datasets used in this paper containing millions of sim-

ulated collisions can be found in the UCI Machine Learn-

ing Repository [31] at http://archive.ics.uci.edu/ml/datasets/

HEPMASS.
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